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Data-driven exploration of swarmalators with second-order harmonics
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We explore the dynamics of a swarmalator population comprising second-order harmonics in phase interac-
tion. A key observation in our study is the emergence of the active asynchronous state in swarmalators with
second-order harmonics, mirroring findings in the one-dimensional analog of the model, accompanied by the
formation of clustered states. Particularly, we observe a transition from the static asynchronous state to the
active phase wave state via the active asynchronous state. We have successfully delineated and quantified the
stability boundary of the active asynchronous state through a completely data-driven method. This was achieved
by utilizing the enhanced image processing capabilities of convolutional neural networks, specifically, the U-Net
architecture. Complementing this data-driven analysis, our study also incorporates an analytical stability of the
clustered states, providing a multifaceted perspective on the system’s behavior. Our investigation not only sheds
light on the nuanced behavior of swarmalators under second-order harmonics, but also demonstrates the efficacy
of convolutional neural networks in analyzing complex dynamical systems.
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I. INTRODUCTION

Synchronization and swarming have been at the forefront
of research initiatives to gain insight into the collective be-
havior of coupled systems [1]. Following Kuramoto’s seminal
work in 1975, synchronization studies sharply increased and
have continued to rise ever since [2]. The influence of these
investigations is so significant that its application is widely
present in science and technology, ranging from power grid
networks [3,4] to cardiac pacemaker cells [5,6], to name a
few. Additionally, there are numerous examples of this in
natural systems, such as the chorusing frogs, fireflies [7],
clapping in unison [8], and crowd movements [9]. In par-
allel, the study of swarming behavior has also attracted the
attention of researchers based on the Vicsek model of swarm-
ing of self-propelled agents influenced by the neighboring
particles lying inside a unit radius [10], and this model fo-
cuses on the spatial position and structures of the particle
clusters. In continuation, depending on the spatial movement
of the particles, synchronization phenomena were studied
by the introduction of mobile agents or moving oscillators
[11,12]. These studies paid particular attention when look-
ing at the movements of flocks of animals, flocks of birds,
schools of fish, swarms of insects, etc. [13–16]. Discov-
eries from these studies have applications in technological
fields such as swarm robotics, aerial drones, and even traffic
control [17,18].

However, in recent times, synchronization and swarming
have been explored together in the fascinating phenomenon
of swarmalation, a common collective behavior seen in the
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entities called swarmalators [19]. This is mainly referred to as
the “swarming” oscillators, denoting the mobile phase oscil-
lators that can self-organize in time and swarm in space [20].
They currently describe the various systems where swarm-
ing and synchronization coexist and interact. For instance,
Japanese tree frogs [21], magnetic domain walls [22], swarm-
ing robots [23], starfish embryos [24], and Janus particles
[25] are a few examples where swarmalation effects are
encountered.

Tanaka [26], and Iwasa and Tanaka [27] have carried
out significant research that laid the platform for swarmala-
tor systems while studying the movement and dynamics of
chemotactic oscillators, which typically refers to the move-
ment of an organism or entity in response to a chemical
stimulus, suggesting that these oscillators respond to such
stimuli in a dynamic and interconnected manner. Following
this, the study by O’Keeffe et al. [28,29] introduced a three-
dimensional mathematical model of swarmalators. These are
characterized by their movement in a two-dimensional plane,
and their dynamics are based on the Kuramoto oscillator,
laying the pathway for a new branch of mobile oscillators. The
study reports five long-term collective states that demonstrate
a wide range of spatial aggregation and phase synchroniza-
tion. These states are static sync, static phase wave, active
phase wave, and splintered phase wave. In these states the
spatial attraction between two swarmalators is influenced
by their relative phase, and the phase coupling is affected
by the spatial distance between them. Recently, a two-
dimensional (2D) model comparable to the three-dimensional
(3D) swarmalator model was also developed as described
by O’Keeffe et al. [28]. This model is essentially a pair
of analytically tractable Kuramoto-type models and has re-
ceived well-deserved attention from the research community
[28–35].

Significant efforts have been made during the last few
years, and the dynamics of the swarmalators were further
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studied for different interaction functions and coupling
schemes by including external forcing [28–36,45]. The
researchers are interested in delving deeper into the study of
such systems due to the discovery of many new collective
states. Even though traditional approaches such as analytical
and numerical methods enable understanding of diverse
properties of such swarmalator systems, some properties still
need to be understood to identify the dynamical transitions
of the collective states. Even so, research in the fascinating
world of the swarmalator model is still in its early stages,
with ample scope for further exploration.

Therefore, we extended the swarmalator model by intro-
ducing second-order modes in the phase interaction function,
similar to the model introduced by Smith’s recent work
[37] reporting the stability, bifurcation, and structural prop-
erties of stationary clustered states. Our study, in contrast,
mainly focuses on the distinct collective dynamics of ac-
tive states in the swarmalators with second-order harmonic
phase coupling. This type of coupling is interesting because
it can result in certain dynamical features such as cluster
synchrony and more [38], which is already seen in physical
systems such as photochemical, electrochemical, and genetic
oscillators [39,40].

In this study we first consider second-order harmonics
in the swarmalators model, and their complete collective
dynamical states are explored. Second, we applied a machine-
learning (ML) approach to investigate the system based
on data-driven analysis and determine the classification of
collective dynamical states arising from the dynamics of
swarmalators. With growing interest in ML, recent works on
physical systems and the Kuromoto model have demonstrated
successful progress by adapting the appropriate ML approach
to underlying facts of chaotic behaviors and providing so-
called model-free prediction of the behavior of dynamical
systems [41,42]. Along with recent advances in ML algo-
rithms for phase transition in the Kuramoto model, it is
significant to consider the synchronization transition using the
ML approach [43]. As a model for describing phase oscillators
that swarm around space, they synchronize in time and are
also a suitable candidate for the platform to deal with the ML
approach. Despite the rich properties of these kinds of models,
the applications of ML approaches on this system still need to
be worked out.

Our present study examines the swarmalator model using
data-driven approaches to distinguish between several col-
lective dynamical states. We have adopted the ML approach
of convolutional neural networks, specifically employing the
U-Net neural network model, a type of convolutional neu-
ral network for identifying certain dynamical states such as
the active asynchronous state, active phase wave, and splin-
tered phase wave, and for determining the critical boundaries
among them [44].

The paper is organized as follows. After the present intro-
duction in Sec. I, we present in Sec. II the model under study.
In Sec. III the order parameter employed in the present study
and the occurrence of different collective dynamical states are
described. Meanwhile, Sec. IV focuses on an approximation
of the critical boundary of an active asynchronous state by us-
ing the semantic segmentation capability of U-Net. Section V
is devoted to the conclusion.

II. MODEL AND SIMULATION

We give a model for swarmalators whose phase and
spatial dynamics are coupled and represented as follows
[19,21,22,28,45]:

ẋi = vi + 1

N

N∑
j �=i

[χatt (x j − xi )τ (θ j − θi )

− χrep(x j − xi )], (1)

θ̇i = ωi + K

N

N∑
j �=i

τatt (θ j − θi )χ (x j − xi ), (2)

with i, j = 1, ...., N . For our case of two spatial dimensions,
the position of the ith swarmalator is denoted by xi = (xi, yi ),
and θi is the internal phase of each swarmalator, where
χatt (x j − xi ) and χrep(x j − xi ) are the attractive and repul-
sive interaction terms, respectively. τ (θ j − θi ) is the phase
interaction function, which describes the influence of the dif-
ference in phase between the ith and jth swarmalators on their
movement. τatt (θ j − θi ) is the phase interaction function and
χ (x j − xi ) is the spatial interaction function, which describes
the influence of the distance between the ith and jth swar-
malators on their phases.

Consider the following model where spatial interaction
functions are based on power law with positive exponents
ε1, ε2, ε3 along with a Kuramoto-inspired phase interaction
function with higher-order harmonic h:

ẋi = vi + 1

N

⎡
⎣ N∑

j �=i

x j − xi

|x j − xi|ε1
[A + J cos(θ j − θi )]

− B
x j − xi

|x j − xi|ε2

]
, (3)

θ̇i = ωi + K

N

N∑
j �=i

sin[h(θ j − θi )]

|x j − xi|ε3
. (4)

The natural frequency and self-propulsion velocity of the
ith swarmalator are denoted by ωi and vi, respectively. The
interaction strengths of the phase and spatial dynamics in θ̇i

and ẋi are denoted by K and J , respectively. A is selected
such that ∀J ∈ [−A,+A], A + J cos(θ j − θi ) > 0, which en-
sures τ (θ j − θi ) is always positive, contributing to the spatial
attraction, and B is the spatial repulsion strength. The ex-
ponents ε1 = 1 and ε2 = 2 play a crucial role in enabling
swarming behavior. The condition 1 � ε1 < ε2 ensures that
the repulsion force dominates the attraction force locally
among the swarmalators. By having ε2 = 2 we achieve short-
range repulsion, where the strength of repulsion decreases
as the distance between swarmalators increases, following an
inverse square law. This means that the swarmalators will tend
to move away from each other when they are in proximity. On
the other hand, having ε1 = 1 ensures long-range attraction.
Since the exponent in the denominator is smaller than ε2,
there is an attractive force that acts over longer distances.
This implies that swarmalators are inclined to move closer
to one another, even when they are at greater distances. In
addition to these exponents, ε3 is chosen to be the value one
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to ensure that neighboring swarmalators’ influence on their
phases resembles spatial attraction. The chosen exponents are
pivotal in ensuring that attractive force among the swarmala-
tors remains constant, irrespective of their mutual distances,
with the strength of interaction being exclusively phase
dependent.

The numerical simulations were performed using a pop-
ulation of N = 500 swarmalators for T = 1000 time steps,
with the parameters A and B set to 1. By the choice of ref-
erence frame, the natural frequency ωi and self-propulsion
velocity vi were kept at 0. The initial positions of all the
swarmalators were randomly distributed between–2 and +2
for both x and y coordinates. The initial phases were drawn
randomly from a uniform distribution ranging from −π to
+π , and to study the effect of second-order harmonics, we
set the order of harmonic h to 2 in Eq. (4). The values of inter-
action strengths (J, K ) of phase and spatial coupling among
the swarmalators, along with the second-order harmonics,
determine the destiny of the swarmalator system, where we
observe different collective states by varying the values of the
interaction strength pair. Incorporating second-order harmon-
ics within the swarmalator model leads to the emergence of
distinct states such as the clustered π state (CPIS), mixed
π state (MPIS), active phase wave (APW), splintered phase
wave (SPPW), static asynchronous state (SAS), static phase
wave (SPW), and active asynchronous state (AAS). Among
these, the formation of the CPIS, MPIS, and AAS are di-
rectly attributable to the inclusion of second-order harmonics.
However, swarmalators with distributed natural frequencies
exhibit only two possible states: the active asynchronous state
(AAS) and the static asynchronous state (SAS) as given in
Appendix A. In the following sections we explore these dy-
namical states and define several order parameters that are
useful for examining the properties of the emerging collective
states.

III. RESULTS AND DISCUSSION

A. Order parameters

In the context of swarmalators with second-order harmon-
ics, different order parameters have been utilized to separate
distinct states based on their collective behavior. To distin-
guish the various states, we define a set of complex order
parameters [19] as follows:

s1± = 1

N

N∑
j=1

ei(φ j±θ j ), (5)

s2± = 1

N

N∑
j=1

ei(φ j±2θ j ), (6)

where φi = tan−1( yi

xi
) represents the spatial angle and θi de-

notes the phase of the ith swarmalators, respectively. Here N is
the total number of swarmalators in the system. We designate
s1 as the min(s1+, s1−). s1 approaching unity indicates the
full correlation between spatial and phase angles, whereas
a null value of s1 signifies the absence of correlation. In a
similar vein, s2, defined as min(s2+, s2−), captures the essence
of synchronization among swarmalators that exhibit a phase
difference of π . For distinguishing a splintered phase wave

from an active phase wave, γ is defined and is given by

γ = Nrotation

N
, (7)

where Nrotation is the number of oscillators that executes at least
one full rotation in spatial angle φ = tan−1( y

x ).

B. Clustering and static states

Incorporating second-order harmonics into the phase inter-
action yields two clustered states: the clustered π state (CPIS)
and the mixed π state (MPIS). These clustered π states have
been previously identified in a solvable model of swarmalators
[46]. The phase locking of swarmalators characterizes these π

states with a phase difference of π , and they showcase radial
symmetry and static characteristics. To elaborate, for a given
phase ψ ranging from 0 to 2π , the swarmalators’ phases are
locked in such a way that for a subset of them, denoted as
[θ1, θ2, ..., θp], all phases equal ψ . For the remaining swar-
malators, indicated by [θp+1, θp+2, ..., θN ], the phases are set
at ψ + π . Here, p represents the number of swarmalators at
phase ψ . When the condition K > 0 is achieved, these π

states gain stability. This stability criterion for π states using
a reduced system is discussed in Appendix B, and the π states
differentiate further for different values of J . The CPIS is
observed when J > 0, illustrated in Fig. 1(a), where swar-
malators with identical phases are grouped into two distinct
clusters separated by a phase difference of π . In contrast, for
J � 0 the MPIS becomes evident as depicted in Fig. 1(b),
where two populations of swarmalators maintain a π phase
difference but are randomly scattered in space, forming a
disklike structure without any movement. The distinction of
various dynamical states is made with the help of order pa-
rameters and is depicted in Fig. 2.

To clarify the distinction between the mixed π state (MPIS)
and the clustered π state (CPIS), we rely on the order parame-
ter s1. Both the MPIS and CPIS states form two clusters offset
by a π phase difference. However, the CPIS is characterized
by its phase-cohesive clusters in the XY plane, meaning swar-
malators with like phases form clusters. Contrastingly, in the
MPIS, swarmalators are interspersed within a circular region,
showing no regard for phase congruity. A high s1 value, close
to 1, points to the well-organized CPIS state, whereas a lower
s1 value, near zero, suggests the less orderly MPIS state,
presented in Fig. 2(b).

Considering the values of K = 0 for J > 0, we can see
static states are characterized by the static phase wave (SPW)
as shown in Fig. 1(e), where swarmalators exhibit a fixed
phase within a continuous ringlike formation, and the static
asynchronous state (SAS), depicted in Fig. 1(g), marked by a
lack of phase alignment that results in total desynchronization
and absence of motion. To examine the behavior of the SAS
state apart from the MPIS state, we also use the order param-
eter s2, and it is plotted in Fig. 2(d). In the SAS, swarmalators
show no pattern in how their spatial positions relate to their
phases, leading to an s2 value that is nearly zero. In contrast,
the MPIS state tends for swarmalators to cluster by phase,
pushing the s2 value higher than in the SAS state.

Furthermore, the SPW state is identified using another
order parameter s2+, illustrated in Fig. 2(e), where the occur-
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FIG. 1. Spatial plot of swarmalators in which their phases are depicted in different colors. The plot shows seven distinct states, obtained
by varying the interaction strengths J and K : (a) clustered π state (CPIS), for J = 0.1 and K = 1; (b) mixed π state (MPIS), for J = −0.1 and
K = 0.1; (c) active phase wave (APW), for J = 1.0 and K = −0.75; (d) splintered phase wave (SPPW), for J = 1.0 and K = −0.1; (e) static
phase wave (SPW), for J = 1.0 and K = 0.0; (f) active asynchronous state (AAS), for J = 0.1 and K = −1; and (g) static asynchronous state
(SAS), for J = −0.1 and K = −0.75.

rence of a peak at K = 0 indicates SPW. In the SPW there
exists a direct correlation where the spatial angle φi is equal to
the phase angle θi plus a constant C. This results in a stronger
correlation between φ and θ than what is observed in adjacent
states.

C. Active states

Further, when K < 0 and J > 0, an APW, SPPW, and AAS
exist. The SPPW [Fig. 1(d)] features swarmalators segregated
into different groups, each with distinct phases with move-
ment confined within their group. The active phase wave APW

FIG. 2. Order parameter shows state transitions with respect to interaction strengths J and K . (a) In the s1, γ vs K plot for J = 0.5, s1

clarifies the transitions between APW, SPPW, and CPIS while γ separates APW and SPPW. (b) The s1 vs J graph for K = 0.1 distinguishes
MPIS from CPIS. (c) In the s1− vs J plot at K = −0.8, we observe clear separation among SAS and APW. (d) The s2 vs K curve for J = −0.2,
with s2 = min(s2+, s2−), serves to differentiate SAS from MPIS. (e) Finally, the s2+ vs K plot for J = 0.5 effectively distinguishes SPW from
adjacent states.
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FIG. 3. s1+ and s1− vs J for K = −0.6, showing the fluctuating
order parameter in the AAS region.

involves spatially counter-rotating swarmalators forming an
annular structure as shown in Fig. 1(c). A crucial distinction
within the study of swarmalators is separating the CPIS from
the different dynamics of the APW and the SPPW. The CPIS
is characterized by a highly synchronized phase configura-
tion in which two distinct clusters are set apart by a phase
difference of π . This high synchronization within the CPIS
is captured by the order parameter s1, depicted in Fig. 3(a),
typically approaching unity. Conversely, the APW and SPPW
are differentiated by a more complex distribution of phases
among the swarmalators and a notable lack of synchroniza-
tion, reflected by an s1 value approaching zero.

The APW and SPPW are analyzed using the order pa-
rameter γ shown in Fig. 2(a) to further differentiate. The
SPPW is marked by limited movement within clusters, rarely
completing a full spatial rotation. Hence γ is near zero. In
contrast, the APW is characterized by swarmalators that move
in a consistent circular trajectory, which translates to a γ

close to 1.
The SAS, another distinct state, does not exhibit the dy-

namism of the APW. It is discerned from the APW through the
order parameter s1−, as illustrated in Fig. 2(c). Swarmalators
in the SAS are relatively immobile, displaying no consistent
relationship between their phase and spatial position, leading
to s1− values nearing zero. On the other hand, the APW
demonstrates an active state where a certain degree of phase-
position correlation exists, resulting in nonzero s1− values
indicative of the ongoing activity.

D. Active asynchronous state

An AAS was previously reported in one-dimensional (1D)
analog of the model by O’Keeffe et al. [29] and Lizárraga
et al. [47]. In AAS [Fig. 1(f)], swarmalators form a uni-
form disk in the XY plane rather than the annular structure
seen in the APW. Each swarmalator undergoes continuous
positional changes within the radial disk. From s1+ and s1−
as depicted in Fig. 3, it is evident that AAS exhibits some
degree of phase-space order. However, s1+ and s1− display
irregular fluctuations in the active asynchronous state, indicat-
ing residual local ordering that briefly persists and generates
the fluctuations. Furthermore, AAS exhibits partial phase-
space order, and the phase θ vs spatial angle φ behavior in
Fig. 4 highlights the critical difference between AAS and

FIG. 4. (a) Spatial angle φ vs phase θ for AAS and (b) φ vs θ for
APW, shows that the φ and θ are more correlated in APW relative
to AAS.

APW, with a spatial angle more strongly correlated to phase
in APW.

Additionally, in contrast to the static asynchronous state,
AAS has velocities associated with each swarmalator. The
instantaneous mean speed vi,t of the ith swarmalators at time
t can be calculated as [48]

vi,t =
√(

�xi,t

�t

)2

+
(

�yi,t

�t

)2

. (8)

Here, �xi,t and �yi,t denote the changes in the x and y co-
ordinates of the ith swarmalators, respectively, between two
consecutive time points (t − 1) and t . The speed vs time is
plotted in Fig. 5, and it highlights the difference between AAS
and static asynchronous state.

As illustrated in Fig. 3, no sharp transition is evident
between AAS and APW. Since both are active states and
exhibit chaotic behavior [49], the system becomes analytically
intractable. Given that the determination of stability by the

FIG. 5. Instantaneous mean speed vs time plot for (a) active
asynchronous state obtained from J = 0.1 and K = −1 and (b) static
asynchronous state for J = −0.1 and K = −0.75. vi is the instanta-
neous mean speed of the swarmalators where i = 0, 1, 2, ..., N .
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FIG. 6. U-Net network architecture.

order parameter yields only a less accurate approximation and
the analytical approach is difficult to realize, we can leverage
neural networks to identify the critical boundary for AAS. The
emergent behaviors of swarmalators lend themselves well to
data-driven techniques, as there are a number of features we
can extract from the simulation data. By training classifiers on
simulation data over a range of parameters, it is possible to de-
lineate phase boundaries and characterize transitions between
dynamical states.

IV. STABILITY APPROXIMATION OF AAS
WITH DATA-DRIVEN TECHNIQUES

In the previous section we examined the dynamical states
of our model under various parameters. Building upon this
foundation, our study introduces a method to identify the
stability line of AAS, employing the U-Net image segmen-
tation neural network [50,51]. The primary application of the
U-Net architecture lies in the domain of semantic segmenta-
tion. This process involves the partitioning of an image into
several segments or regions. The objective is to distinguish
and isolate objects within the image through a systematic
labeling approach. In this scheme each label corresponds to a
specific type or class of object. Initially developed for biomed-
ical image segmentation [52], U-Net’s versatile design has

since been adapted for tasks including image classification,
localization, and generation. A key advantage of U-Net is its
ability to train efficiently on smaller datasets while retaining
high speed and accuracy, a feature particularly valuable in the
medical domain where labeled data is often scarce. This effi-
ciency makes U-Net an ideal choice for classifying dynamical
states in the parameter space, where extensive training data is
limited.

A. U-Net network description

The model comprises two primary pathways: the contract-
ing pathway, or “encoder,” and the expanding pathway, or
“decoder,” as illustrated in Fig. 6. The encoder consists of
successive convolutional layers with ReLU activation function
and max pooling layers with pool size 2 × 2. In U-Net and
similar deep-learning models, images are input as tensors
[53]. For instance, an RGB image is represented as a tensor
with dimensions corresponding to its height, width, and color
channels. The convolution layers in our model are designed
to take four-dimensional tensor inputs; therefore, the dataset,
denoted as χi,k , must be converted accordingly before being
processed by these layers. The transformation is expressed
as χ ′

i, j,k,l = χi,k , where i, j, k, l represent the batch size,
height of the tensor, width of the tensor, and number of
channels, respectively. The output of a convolutional layer is
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given by [54]

Oi j =
∑

m

∑
n

κmn ∗ ιi+m, j+n + β, (9)

where κmn is the kernel matrix with height m and width n,
ιi+m, j+n is the part of the input feature map covered by the
kernel, and β is the bias. The feature map is then fed into
an activation function. The activation function used is the
rectified linear unit (ReLU), defined as follows [55]:

ReLU(Oi j ) =
{

Oi j, if Oi j > 0
0, if Oi j � 0.

(10)

ReLU activation function introduces nonlinearity to the
model. This nonlinearity is crucial for enabling the network
to establish complex decision boundaries. The feature maps
are then subjected to a max pooling layer. Here, they are
downsampled, reducing their spatial dimensions while re-
taining the essential extracted features. This downsampling
process effectively reduces the computational burden, thus
enhancing the network’s efficiency. This contracting path is
akin to the feed-forward layers in other convolutional neural
networks (CNNs), which reduces the spatial resolution of
the input. The final layer of the encoder acts as a bottle-
neck, feeding the feature maps into the expansion layer. On
the other hand, the expansion pathway or decoder is com-
posed of successive layers where max pooling operators are
replaced by upsampling operators, thus increasing the spa-
tial resolution of the output. At each level of the expansive
path, the feature map from the corresponding level of the
contracting path is concatenated (skip connections) with the
upsampled feature map. This process reintroduces the high-
resolution features from the contracting path, which assists in
better localization and detailed reconstruction in the final seg-
mented image. Since our task involves binary classification,
we have utilized binary cross entropy as the loss function.
This choice is justified as it performs well with binary
classes, even when they are imbalanced [56]. Additionally,
each convolutional layer is equipped with L2 regulariza-
tion, which adds a penalty to the loss function, thereby
preventing overfitting and aiding in the model’s generaliza-
tion. The loss function, along with the regularization term, is
expressed as [57]

L(ϒ, ϒ̂ ) = − 1

η

η∑
i=1

[ϒi log(ϒ̂i )

+ (1 − ϒi ) log(1 − ϒ̂i )] + L2, (11)

L2 = λ
∑

i, j,k,c

W 2
i, j,k,c. (12)

ϒ represents the actual labels of the training samples, ϒ̂ rep-
resents the predicted probabilities corresponding to the actual
labels, and η is the number of samples. λ is the regulariza-
tion parameter which controls the extent of regularization.
A higher value of λ means more emphasis on keeping the
weights small. Wi, j,k,c represents the weights in the neural
network model. The indices i, j, k, c refer to different di-
mensions in a convolutional neural network, such as width,
height, depth, and channels. At the decoder’s end, the output

FIG. 7. Preprocessed training data of extracted statistical quan-
tities after augmentation and reshaping. (a) Spread of PSD,
(b) instantaneous deviation from the time average, (c) skewness, and
(d) kurtosis.

from the final convolutional layer is passed through a sigmoid
activation function to obtain probability values. The sigmoid
function, denoted as σ (Oi j ), is defined for any real input Oi j

as follows:

σ (Oi j ) = 1

1 + e−Oi j
. (13)

The function σ maps any real-valued number into a
value between 0 and 1, making it particularly useful for
models where the output needs to be interpreted as a
probability.

B. Data preprocess and training

U-Net, designed explicitly for image segmentation, de-
mands preprocessed data to match its structural requirements,
which involves augmentation and reshaping of data. To
achieve this, we utilized four statistical metrics: the spread of
power spectral density (PSD), instantaneous deviation from
the time average, kurtosis, and skewness. Each metric acts
as a distinct channel, analogous to the RGB channels in an
image. These channels are derived from the instantaneous
mean speed time series of swarmalators, across various J and
K values. We compiled a training dataset from a dense array of
J and K values, producing multiple stripes of data points with
diverse intervals in the range −1 < K < 0 and 1 > J > 0.
This ensures that the training data consists of data points that
belong to both AAS and APW states. The corresponding la-
bels for this data were generated manually based on the J and
K values they obtained. Each input feature was normalized
and transformed into a 152 × 160 matrix through reshaping
and duplication for augmentation, shown in Fig. 7. These four
channels were then combined into a tensor with dimensions of
152 × 160 × 4. We extracted a training set (121 × 160 × 4)
and a validation set (31 × 160 × 4), each expanding to 152 ×
160 × 4 through augmentation to meet the network’s input
criteria. We set the batch size to 8 for training and limited
epochs to 50, based on various trials, to avoid overfitting. Af-
ter the 50th epoch, U-Net displayed a training loss of 0.7359
and an accuracy of 1.00, alongside a validation loss of 1.0891
and an accuracy of 0.8947. With the increase in epoch, there
is no observable increment in the validation accuracy, even
with the reduced loss. This suggests the model has reached
its learning capacity and is thereby ready to predict the
unseen data.
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FIG. 8. Color maps show the statistical measures extracted from
the time series of instantaneous average of velocities in the JK plane:
(a) spread of PSD, (b) instantaneous deviation from the time average,
(c) skewness, and (d) kurtosis.

C. Prediction and postprocessing

For prediction, the channels used are same as the training
data, which include spread, deviation, kurtosis, and skew-
ness. These are calculated for a range of values, precisely,
0.01 < J < 0.5 and −1 < K < −0.01. The data is then nor-
malized and resized to dimensions of 152 × 160 × 4 as shown
in Fig. 8, using a min-max scaler which rescales data to a
specified range, typically 0 to 1, ensuring consistent feature
scales for optimal performance, and subsequently fed into the
model to obtain the predicted probability values.

After examining these predicted probabilities, a threshold
of 0.735 was selected, enabling the conversion of these proba-
bilities into binary class labels (where 0 represents AAS and 1
represents APW). Interestingly, the model not only identified
the AAS and APW states but also detected the SPPW state,
categorizing it in the same class as AAS shown in Fig. 9(a).
To delineate the boundaries between AAS-APW and APW-
SPPW, we employed the Sobel edge detection algorithm [58].
The boundary data obtained from the Sobel filter is scaled
to match the input data’s format, and then the linear fit is
taken for both boundaries separately Fig. 9(b). The regression

FIG. 9. JK plane as U-Net predicted labels: (a) binary predicted
labels with APW region (yellow) and AAS, SPPW (deep purple);
(b) boundaries identified with Sobel filter, with red dashed line rep-
resenting the AAS-APW boundary and green solid line representing
the APW-SPPW boundary.

FIG. 10. JK plane of max(s1+, s1−) shows the existence of vari-
ous states corresponding to different parameter values: blue markers
represent the numerical boundary of SPPW calculated from γ ; the
black and magenta dashed lines are the critical lines of AAS and
SPPW, respectively, estimated by U-Net; the yellow solid line at
K = 0 and J > 0 shows the existence of SPW; and the black and
magenta dashed lines show the U-Net–predicted boundaries of AAS
and SPPW, respectively. At J = 0 and K = 0, represented by white
lines, the SAS and π states lose their stability. This loss of stability
for the SAS state is derived from the order parameter, and for the π

state it is substantiated through analytical verification.

analysis of boundary data revealed the stability boundary of
AAS as J = −0.12K + 0.003 and SPPW as J = −5.092K +
0.014; the SPPW’s U-Net predicted boundary is in good
agreement with the boundary predicted by the order pa-
rameter γ , as seen in Fig. 10. To emphasize the effect of
second-order harmonics, the dynamics of swarmalators with-
out the harmonic term in the phase interaction are presented in
Appendix C.

V. CONCLUSION

In this study we investigated the impact of second-order
harmonics, particularly setting h = 2, introduced through the
phase interaction function, on swarmalators’ dynamical states,
building on the findings of previous study [19]. Our find-
ings indicate that second-order harmonics lead to clustering
states such as the clustered π state (CPIS) and mixed π state
(MPIS), especially when the phase coupling strength K is
positive. We analytically confirmed the stability of these π

states, identifying the eigenvalue λ = −2K
d as key to their

stability. Contrary to earlier observations, the domain of the
static async state is now restricted to conditions where both J
and K are unfavorable. This shift contrasts with the previously
established stability of static async states at K = −1.2J . Fur-
thermore, introducing second-order harmonics significantly
changes the dynamics within the JK parameter plane, af-
fecting the parameter regions of various dynamical states.
One such is the emergence of an active async state, relevant
to biological phenomena such as insect swarming [59] and
bacterial motility [60], which occupies a transitional region
between the static async state and the active phase wave
state. We employed U-Net, a convolutional neural network,
to identify stability boundaries between AAS, APW, and
SPPW states. The determined boundaries for AAS and SPPW
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FIG. 11. Swarmalators with nonzero natural frequency. (a) The
active asynchronous state at J = 1.0 and K = −0.75, which occurs
throughout the parameter space where K < 0. The arrows show the
direction of movement of the swarmalator at time t , indicating it is an
active state. (b) Static asynchronous state for J = 0.5 and K = 0.5,
emerging in the domain where K > 0.

are J = −0.12K + 0.03 and J = −5.092K + 0.014, respec-
tively, and SPPW’s boundary closely matches the numerical
boundary from the order parameter γ . Our findings highlight
the utility of CNN’s advanced image segmentation capability
in boundary estimation for dynamical systems. Immediate
future research might focus on the effects of external forc-
ing terms and second-order harmonics on various states of
the swarmalators and explore potential control methods for
desynchronization states such as AAS, SAS, etc.

ACKNOWLEDGMENTS

The work of R.G. and V.K.C. forms part of a re-
search project sponsored by SERB-DST-CRG Project Grant
No. C.R.G./2023/003505. R.G. and V.K.C. thanks DST,
New Delhi, for computational facilities under the DST-
FIST programme (Grant No. SR/FST/PS-1/2020/135) to the
Department of Physics.

APPENDIX

1. Swarmalators with unimodal natural frequencies

We introduced heterogeneity to the natural frequencies
by distributing the ωi from a unimodal Cauchy distribution.
This inclusion of heterogeneity led to the observation that the
swarmalators exhibit only two stable configurations, as shown
in Fig. 11.

2. Stability of π states

In this section we analyze the stability of π states. To
sufficiently capture the essence of their collective behavior,

FIG. 12. J vs K plot demonstrating the absence of harmonic
phase interaction through the order parameter S1+.

focusing on the phase dynamics of the swarmalators is
enough. The equations that describe the reduced system ob-
tained from Eq. (4) are given as follows:

θ̇1 = K

2d
sin [2(θ2 − θ1)], (A1)

θ̇2 = K

2d
sin [2(θ1 − θ2)], (A2)

where d =
√

(x2 − x1)2 + (y2 − y1)2 represents the Euclidean
distance between the two swarmalators. When the system is
evaluated at the stable fixed point, we find the steady states
as θ1 = ψ and θ2 = ψ + π , with h = 2. Following this, the
Jacobian matrix is calculated as follows:

J =
(

−K
d

K
d

K
d −K

d

)
. (A3)

Upon determining the eigenvalues of the Jacobian J , we
find that λ = −2K

d . This result underscores the stability of the
π state for K > 0, which aligns with the outcomes of our
numerical simulations.

3. Swarmalators without harmonical phase interaction

To contrast the effects of second-order harmonic phase
interactions in swarmalators, we set τatt in Eq. (2) to unity.
This simplifies the JK parameter space to only two possible
states: active phase wave (APW) and static asynchronous
state (SAS). The parameter space for this case is depicted
in Fig. 12.
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