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Singular bifurcations and regularization theory
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Nonlinear sciences are present today in almost all disciplines, ranging from physics to social sciences.
A major task in nonlinear science is the classification of different types of bifurcations (e.g., pitchfork and
saddle-node) from a given state to another. Bifurcation analysis is traditionally based on the assumption of a
regular perturbative expansion, close to the bifurcation point, in terms of a variable describing the passage of
a system from one state to another. However, it is shown that a regular expansion is not the rule due to the
existence of hidden singularities in many models, paving the way to a new paradigm in nonlinear science,
that of singular bifurcations. The theory is first illustrated on an example borrowed from the field of active
matter (phoretic microswimers), showing a singular bifurcation. We then present a universal theory on how to
handle and regularize these bifurcations, bringing to light a novel facet of nonlinear sciences that has long been
overlooked.
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I. INTRODUCTION

Nonlinear sciences have now become a common topic
across different disciplines from physics and biology to social
sciences [1]. An important goal of nonlinear sciences is to
classify the number and nature of bifurcations. The lack of
analytical solutions for nonlinear systems had led to a system-
atic development of perturbative schemes for centuries.

The classical theory of bifurcations has known its glory on
chemical and physical systems. Typical examples are Bénard
convection [2,3], Turing patterns [4–6], crystal growth [7–9],
and so on. When varying a control parameter (e.g., tempera-
ture gradient in convection) the system exhibits a bifurcation
from one state (e.g., quiescent fluid) into a new state (the fluid
shows convection rolls) when the control parameter reaches
a critical value. In particular, pitchfork bifurcations describe
spontaneous symmetry breaking in many dynamical systems.
If μ designates the distance of the control parameter from
the bifurcation point for a classical pitchfork bifurcation, then
the amplitude A of the field describing the loss of symmetry,
say, convection amplitude, behaves as A ∼ ±μ1/2 for μ > 0.
The evolution equation of the amplitude A in the vicinity
of the bifurcation point, known as normal form, reads for a
supercritical pitchfork bifurcation

Ȧ = μA − A3, (1)

where dot designates derivative with respect to time t . The
steady-state solutions of (1) are A = 0 for μ < 0 (stable
branch) and A = 0 (unstable) and A = ±μ1/2 (stable) for
μ > 0. More generally, pitchfork bifurcations correspond to
solutions A(μ) of a steady-state problem,

AF (A, μ) = 0, (2)
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where the function F (A, μ) describing the physics of the
problem satisfies the symmetry condition in A:

F (−A, μ) = F (A, μ) (3)

and F (A = 0, μ = 0) = 0. The majority of physically rele-
vant problems are so complex that the function F (A, μ), let
alone the set of solutions A(μ) of Eq. (2), cannot be calculated
exactly. In this case, the problem has to be either solved
numerically or perturbatively. In the latter case, the function
F is expanded in a power series of A,

F (A, μ) =
∞∑

k=0

ak (μ)A2k, (4)

in which several first coefficients ak (μ) can be calculated
exactly or approximated numerically for many important
problems. The series (4) can be truncated at the second term
for A sufficiently small, which, after an appropriate rescaling
of A and μ, can be substituted in (2) to produce the steady-
state form of Eq. (1).

Expansion (4) requires the function F (A, μ) to be analyt-
ical in some region around A = 0. While this is often the
case, there are problems in which this assumption fails. A
notable example comes from the field of active matter, a
subject of great topicality: It has been shown by analytical cal-
culations that the swimming velocity of autophoretic particles
scales linearly with the control parameter close to the critical
point separating the stationary and motile states [10–12]. In
its simplest version, an autophoretic particle consists of a
droplet either emitting or absorbing a solute which diffuses
and is advected in the suspending fluid [10,13–20]. The solute
molecules modify the surface tension of the droplet, which
can induce fluid flows around the droplet due to Marangoni
stresses at the droplet-fluid interface. For low-enough emis-
sion rate, the particle is stationary and the solute concentration
in the fluid depends only on the distance from the droplet
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center. If the emission or absorption rate exceeds a critical
value, then the particle transits from a nonmotile to a motile
state, in which the concentration field is polarized along the
particle surface. This concentration polarity leads to the swim-
ming of the particle, while the backward flow of fluid in
the reference frame comoving with the particle maintains the
concentration polarity.

This transition clearly represents a spontaneous symmetry
breaking, since the stationary state is completely rotationally
invariant with respect to the droplet center and the swimming
direction is not predefined. Such transitions are classically
described by pitchfork bifurcations, with the instability ampli-
tude scaling as A = ±μ1/2 for μ > 0. However, the amplitude
of the swimming velocity was found to behave (for infinite
system size) [10–12] as |A| ∼ μ (or A ∼ ±μ, μ > 0), which
cannot be obtained from a classical pitchfork bifurcation. This
suggests a normal form,

Ȧ = μA − A|A|, (5)

in a marked contrast with the classical picture represented by
(1). On the other hand, numerical simulations [16] of this
system are consistent with a classical pitchfork bifurcation,
A ∼ ±μ1/2. Furthermore, a classical pitchfork bifurcation is
found in analytical calculations of a two-dimensional (2D)
model of autophoretic particles [21,22].

The first motivation of this work is to explain these con-
tradictory results. To this end, we introduce a notion of
singular pitchfork bifurcation, for which the function F (A, μ)
in Eq. (2) is an analytic function of complex amplitude A
with a singular point at A = 0 [where |A| corresponds to
(A2)1/2, which has a branch point for A = 0]. We show that
singular bifurcations can be regularized by moving the sin-
gular point A = 0 along the imaginary axis, which produces
a classical pitchfork bifurcation. For example, the function
|A| can be regularized as (A2 + ε2)1/2, where ε is the regu-
larization parameter. The function (A2 + ε2)1/2 has a regular
Taylor expansion for A = 0 and tends to |A| as ε decreases
to 0. We argue that the transition of autophoretic particles
to motility in an infinite fluid occurs via a singular pitchfork
bifurcation, which is regularized for finite system size, used in
analytical 2D calculations or by discretization in full numer-
ical simulation. Another way to regularize the problem is by
introducing consumption of the solute in the fluid suspending
the particle. This analysis is performed using a simplified
model of autophoretic particles, which has an explicit solution
and reproduces qualitatively the transition to motility.

The second question considered in this work is how the
singular limit can be reconstructed from the perturbative
expansion of the regularized problem, which is the only in-
formation that can be obtained by analytical calculation for
many systems. First, we show that the radius of convergence
of the perturbative expansion of the regularized problem at
A = 0 tends to 0 in the singular limit. This puts mutually
exclusive requirements on the regularization parameter, which
has to be both small enough to approach the singular limit and
large enough to ensure the convergence of the perturbative
solution in a reasonable region of A. As a consequence, the
perturbative expansion of the regularized problem does not,
in general, give a good approximation of the singular limit
at any range of A or ε. To solve this problem, we propose a

change of variables which allows us to reconstruct the singular
limit from the several first terms of the perturbative expansion
of the regularized problem. The reconstruction converges to
the exact result as more and more terms of the perturbative
expansion are taken into account, as shown for some exam-
ples. In the simplest case, the reconstruction is exact. This
reconstruction can also be used to approximate the regularized
problem beyond the radius of convergence of the perturbative
series.

II. A BRIEF PRESENTATION OF A PHORETIC MODEL
WITH SINGULAR BIFURCATION

It is instructive to begin with an explicit model revealing
a singular bifurcation. We first recall the full model, before
considering a simplified version which can be handled fully
analytically. The model consists [14] of a rigid particle (taken
to be a sphere with radius a), which emits or absorbs a solute
that diffuses and is advected by the flow. The advection-
diffusion equations read

∂c

∂t
+ u · ∇c = D�c, (6)

where c is the solute concentration and D is the diffusion
constant. The velocity field u is obtained by solving Stokes
equations in the fluid suspending the particle. The associated
boundary conditions of surface activity and the swimming
velocity are

Dn(r) · ∇c(r, t ) = −A (7)

for the solute emission and

u(r, t ) = V 0(t ) + M∇sc(r, t ) (8)

for the slip velocity at the particle boundary. Here n is the unit
normal; V 0 is the translational velocity of the particle, which
will be taken to be along the z direction; A is the emission rate
(A > 0: emission, A < 0: adsorption); and M is a mobility
factor (which can be either positive or negative); see Ref. [14]
for more details. The operator ∇s in (8) denotes the surface
gradient. Equations (7) and (8) are valid at the boundary of the
particle, while the boundary conditions at inifinity are c = 0
and u = 0.

Assuming no external force acts on the particle, the swim-
ming velocity can be related to the concentration distribution
at the particle surface. For the axially symmetric concentra-
tion fields considered in this work, this relation has a simple
expression in polar coordinates taking the particle center as
the origin and the symmetry axis as the polar direction:

V0(t ) = −M
a

∫ 1

−1
cos(θ )c(θ, t )d cos(θ ), (9)

where θ is the polar angle. The particle velocity V0(t ) in (9)
is a signed projection of the velocity on the polar direction
of the spherical coordinates. This model has been studied
numerically [14,16,17], coming to the conclusion that when
Péclet number, Pe (with Pe = |AM|a/D2), is sufficiently
small the only solution is the nonmoving state of the parti-
cle, with a concentration field that is symmetric around the
particle. When Pe exceeds a critical value it is shown that the
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FIG. 1. Schematic view of the point-source model of an au-
tophoretic particle. The vector r̃ = r − V 0t measures the coordinates
in comoving frame. Gray lines show concentration levels for a mov-
ing (in positive z direction) particle.

concentration field loses its spherical symmetry and a concen-
tration comet develops, resulting in a motion of the particle
with a constant velocity V0. It is found numerically (for a
2D version of this model) [16] that V0 is well represented by
V0 ∼ √

Pe − Pe1, where Pe1 is the critical value of Pe at which
the transition from a nonmotile to a motile state occurs. The
determination of the critical condition has also been analyzed
by linear stability analysis [14,16,17]. Analytical asymptotic
perturbative studies [10–12] (for an infinite system size) re-
vealed that the velocity of the swimmer follows in fact the
following singular behavior |V0| ∼ (Pe − Pe1).

III. EXACTLY SOLVABLE MODEL

In order to understand the origin of this discrepancy, we
use a simplified model of autophoretic particles, which has
an explicit solution, while reproducing qualitatively the tran-
sition to motility. The model geometry and notations are
shown schematically in Fig. 1. This model was introduced
in Ref. [23] and studied by other authors [24,25]. The main
simplification is to disregard the fluid, in that the variable u
is ignored in what follows. This simplification is valid if the
particle size is small in comparison to length scales of interest.
The only length scale is given by D/V0, so this assumption
corresponds to assuming a � D/V0. Under this assumption
the particle can be taken as a quasimaterial point so that c
obeys (in the laboratory frame)

∂c

∂t
− D�c = Sδ(r − V0t ), (10)

where S is the emission rate [related to A, by A = S/(4πa2)].
Using the diffusion propagator the solution is given by

c(r, t ) =
∫ ∞

0
dτ

S

(4πDτ )3/2
exp

{
− (r + V0τ − V0t )2

4Dτ

}
,

(11)

Expression (11) can be integrated to yield

c(r) = S

4πD

exp
{− r̃·V0+|V0|r̃

2D

}
r̃

(12)

with r̃ = r − V0t (the coordinate in the frame attached to the
particle). Along z, it is clear that the concentration decays

FIG. 2. Singular pitchfork bifurcation in the exactly solvable
model of transition to motility for autophoretic particles.

exponentially with distance ahead of the particle, while
it decays only algebraically at the rear (c has front-back
asymmetry). Indeed, the emitted solute is advected (in the
comoving frame) backwards, enriching the rear zone, whereas
ahead of the particle only diffusion can be effective.

Using (9), only the first spherical harmonic enters the ex-
pression of velocity, and we obtain V0 = −Mc1/(a

√
3π ), c1

being the first harmonic amplitude, obtained by projection of
(12) on that harmonic. This yields an implicit equation for V0.
We write this equation in nondimensional form,

A = 4Pe e−|A|/2

[
A cosh(A/2) − 2 sinh(A/2)

A2

]
, (13)

where nondimensional velocity A ≡ aV0
D serves as the ampli-

tude being solved for and the Péclet number Pe = AMa/D2

acts as the bifurcation parameter. Expanding for small A we
obtain

A = Pe

Pe1
A(1 − |A|/2), (14)

where Pe1 = 3, is the critical Péclet number. In the full model
with fluid flow it was found that thee critical value is Pe1 =
4 [14]. Including hydrodynamics close to particle surface we
can capture analytically this result (see Appendix A).

The result (14) has been also obtained in the full model
with flow (where no analytical solution is known) thanks to a
singular perturbative scheme [10–12]. The exact solutions of
(13) and the linear approximation (14) are shown in Fig. 2.
We see from (14) that A = 0 always exists. When Pe > Pe1,
there exists another solution given by

|A| � 2
3μ, (15)

where μ = Pe − Pe1 measures the distance from the critical
point. Expression (15) corresponds to a pitchfork bifurcation
(and not transcritical [11]), where the A = 0 solution becomes
unstable in favor of two symmetric solutions, A ∝ ±μ for
μ > 0. This is, however, an atypical behavior of a pitchfork
solution and is traced back to the infinite system size (as
seen below). We refer to this bifurcation as singular pitchfork
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bifurcation. The term “singular” refers to the nonanalytic na-
ture of Eq. (13), from which A is calculated.

We found that finite domain regularizes Eq. (13) and turns
the singular bifurcation into a classical pitchfork bifurcation
(see Appendix B). Another way to regularize the model is
via a consumption of solute in the bulk [24]. In that case we
modify Eq. (10) by adding βc on the left-hand side, where β is
the consumption rate. We have in mind the possibility that the
emitted solute is consumed by a chemical reaction in the bulk.
The modified model is solved by multiplying the expression
under the integral in Eq. (11) by the decay factor e−βτ [where
τ is a dummy variable of integration in Eq. (11)]. The equation
for A becomes

A = 4Pe e−√
A2+ε2/2

[
A cosh(A/2) − 2 sinh(A/2)

A2

]
(16)

with ε2 = 4a2β/D. For ε = 0 we recover the singular bifurca-
tion equation (13), and for ε 	= 0 we obtain a regular pitchfork
bifurcation. Expansion for small A provides

A = PeAe−ε/2

{
1

3
+ ε − 10

120ε
A2 + O(A4)

}
. (17)

Besides solution A = 0, we have A ∼ ±μ1/2 (where μ ≡
Pe − Pe1 = Pe − 3eε/2), which is a classical pitchfork bi-
furcation. We thus observe that introducing consumption
regularizes the singular bifurcation. More precisely, two con-
ditions are satisfied: (1) the solutions of the regularized
equation (17) tend to the solutions of the singular equation
(13) for ε → 0 and (2) the equation (17) for any ε > 0 has
a regular expansion around A = 0, so that the solutions of
this equation undergo a regular pitchfork bifurcation. Simi-
larly, setting the concentration field to zero at a finite distance
from the particle center provides a different regularization of
Eq. (13). The inverse domain size serves as the regularization
parameter in this case.

Based on the analysis of the simplified model presented
above, we argue that a similar regularization occurs in the
full model of an autophoretic particle in an infinite domain.
Namely, the bifurcation is singular for an exact solution of
the full problem in an infinite domain but is regularized in a
finite domain. The finite domain can be obtained by setting
the concentration to zero at a given distance from the particle
as a boundary condition. This is often done in analytical or
numerical simulations in two dimensions to avoid logarithmic
divergence of the concentration field with the distance from
the particle. Regularization can also appear in numerical solu-
tions due to discretization of the spatial fluid domain, which
effectively sets the finite size of the system. This explains
the contradiction between the findings reported in analytical
[10–12] and numerical [16] studies.

IV. REGULARIZATION THEORY

Exactly solvable problems are an oddity in nonlinear
sciences. In the absence of an exact solution, perturbative
expansions are often used. Singular bifurcations considered
in this work cannot be obtained from a regular perturba-
tive expansion. Although singular perturbative expansions can
be obtained directly, for example using the boundary-layer
methods [10,11], it may be tempting to use the perturbative

expansion of the regularized problem to analyze the singular
limit. The feasibility of the latter approach is analyzed in this
section.

In its general form, the regularized pitchfork bifurcation is
written as

AF (A, μ, ε) = 0, (18)

where μ is the parameter measuring distance from the bi-
furcation point, ε� 0 is the regularization parameter, and A
is the perturbation amplitude, such that A = 0 corresponds
to the high symmetry solution. The A = 0 solution is often
simple enough to be obtained explicitly. For example, this
solution corresponds to a stationary autophoretic particle in
the problem considered above. The defining property of the
pitchfork bifurcation is that the function F is invariant under
the change of sign of A, which must follow from the symmetry
of the underlying physical problem. As above, μ = 0 is the
critical point for which the A = 0 solution looses stability. The
function F is analytic in A in some interval around A = 0 for
ε > 0. As such, it can be approximated for small-enough |A|
by a Taylor series of form

F (A, μ, ε) =
∞∑

k=0

ak (μ, ε)A2k, (19)

where the coefficients ak (μ, ε) can be calculated using stan-
dard perturbation approaches. In practice, only the first several
terms of the expansion (19) can be computed for most prob-
lems, since the complexity of symbolic calculation of ak

grows very quickly with k.
We further consider that there is a well-defined singular

limit for ε → 0 of the regularized problem,

F (A, μ) ≡ lim
ε→0

F (A, μ, ε), (20)

such that the function F (A, μ) has a singularity at A = 0. The
general question considered in this section is to which extent
the properties of the singular problem defined by the function
F (A, μ) can be deduced from the first several terms of the
expansion (19) of the regularized problem. We first consider
the function F defined by Eqs. (13) and (16), derived in the
previous section and then discuss the general case.

The truncated series (17) is what one would have obtained
by an analytical expansion in A in the absence of the exact
solution. By trying to compare it (dashed lines in Fig. 3, right
panel) to the exact solution [(16), solid lines in Fig. 3, right]
in the vicinity of bifurcation where A is small one realizes
that for given μ the smaller ε is the worse the approximation
(17) is, and a fortiori this expression can in no way account
for the singular limit ε = 0, a limit where the coefficients of
the series (17) diverge. This problem cannot be solved simply
by including more orders in the perturbative expansion of
Eq. (16), as shown in Fig. 3, left panel.

The crux of our theory is the observation that the singu-
lar behavior in the above model is due to the existence of
a singular point (branch point in this case) in the complex
plane, namely A = ±iε, arising from

√
A2 + ε2 in (16). Since

Eq. (18) is always satisfied by the trivial solution A = 0, we
focus on the behavior of F (A, μ, ε). The singularity in the
complex plane limits the radius of convergence of the expan-
sion (19) to |A| < ε. For |A| > ε, the series (19) diverges and
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FIG. 3. Convergence of the Taylor series for regularized bifurcations. Left: Leading-order approximation for several values of the
regularization parameter ε. Solid lines: Exact result (16). Dashed lines represent classically expanded solution Eq. (17). Right: The effect
of including higher-order terms in the Taylor series of Eq. (16). Shaded area marks the region of convergence of the Taylor series, in which
including higher-order terms improves the precision of the expansion. ε = 0.25, Pe1 = 3eε/2 ≈ 3.40.

thus does not provide a good approximation for F no matter
how many terms are taken into account. We therefore arrive
at two mutually exclusive conditions on ε for approximating
the singular limit for given A and μ: On the one hand, ε needs
to be sufficiently small to approximate the singular limit, and,
on the other hand, it has to be large enough for the series (19)
to converge. As Fig. 3 shows, these two conditions cannot be
satisfied at the same time.

One could then be tempted to say that (17) is of little
practical interest for ε close to zero. However, and this is the
main point, we will be able, in a way that may seem a little
surprising, to extract from analysis of a regular expansion
(17) the singular behavior |A| ∼ μ (for ε → 0) dictated by
the exact calculation (16), without any a priori knowledge on
the exact solution. Moreover, we will regularize the expres-
sion (17) in such a way that it represents correctly the exact
behavior when ε is nonzero but small.

To this end, we introduce a change of variables and
match expansion coefficients to obtain a series with larger
region of convergence. Namely, we propose the following
transformation:

ε = |A0|(1 − s), A2 = A2
0(2s − s2) (21)

with A0 a real number (recall that ε is positive). Thanks
to this transformation A2 + ε2 = A2

0 remains constant. s is a
parametrization, and the singular limit corresponds to s = 1.
The above transformation means that instead of taking the
singular limit ε → 0 at given A, we move in the plane (A, ε)
along the circle of radius A0. This transformation renders
the expansion in terms of s regular since A2 + ε2 is constant
along the circle. Another way to appreciate our choice is that
the singularity in the original coordinate, A2 = −ε2, reads
A2

0(1 − (s − 1)2) = −A2
0(1 − s)2, and which has no solution

meaning that in terms of s variable the original singular-
ity has been moved to infinity. This guarantees absolute
convergence of series in term of s. The procedure consists
now in substituting in the expansion (19), truncated at the
highest available order, A and ε as functions of s and A0

[Eq. (21)] and expanding the result in a Taylor series in terms

of s as

F̃ (s, A0, μ) ≡ F [A(A0, s), μ, ε(A0, s)]

=
∞∑

k=0

ak[μ, A0(1 − s)](2s − s2)2kA2k
0

=
∑

k

bk (μ, A0)sk. (22)

The relation between bk and ak is easily deduced (see Ap-
pendix C). An important observation is that the coefficient bk

depends only on coefficients ak′ with k′ � k. It is therefore
possible to calculate the first terms in the s expansion of F̃
from a truncated A expansion of F . Close to the bifurcation
point A0 is small, so we will retain only b0, b1, and b2.
Let us illustrate the study on the autophoretic system. Taylor
expansion of (16) to order A4 [in the form (19)] yields

a0(ε) = Pe
e−ε/2

3
− 1, a1(ε) = Pe

1 − 10/ε

120
e−ε/2,

a2(ε) = Pe
ε3 − 28ε2 + 140ε + 280

13440ε3
e−ε/2. (23)

from which the coeffients b0, b1, and b2 are determined as

b0 = Pe
e−|A0|/2

3
− 1, b1 = Pe

e−|A0|/2

60
A2

0

b2 = Pe
e−|A0|/2

3360
A4

0 − Pe
e−|A0|/2

120
A2

0. (24)

The singular limit is approximated by evaluating the trun-
cated s series of F̃ (s, A0, μ) at s = 1, which corresponds
to ε = 0. The first three terms, with coefficients given in
Eqs. (24) expanded in powers of A0, yield [using F (A0, μ) ≡
F (A0, μ, 0) = F̃ (s = 1, A0, μ) ≈ b0 + b1 + b2]

F (A0, μ) = Pe[1/3 − |A0|/6 + |A0|2/20 + O(|A0|3)] − 1.

(25)

A remarkable feature is that due to our regularization theory
we are able to extract, by using the traditional analytical ex-
pansion (19) of the regularized problem, the singular behavior
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FIG. 4. Reconstructing the regularized bifurcation from its
Taylor series. Solid line: Exact result (16). Dotted line represents
classically expanded solution Eq. (17). Circles represent the first-
order regularized solution Eq. (26). These circles almost coincide
with solid lines (exact solution), despite that only leading order
in Eq. (26) is retained. Squares represent second-order regularized
solution, which provides an even better approximation. Shaded area
represents the region of convergence of the Taylor series of the
regularized solution at A = 0. ε = 0.25. Pe1 = 3eε/2 ≈ 3.40.

exhibiting the absolute value |A|. Referring to the exact result
obtained in the limit ε = 0 [Eq. (13)], we can check that to
leading order in A we obtain exactly the result (25) (recall that
we omit the trivial solution A = 0). This shows the consis-
tency of the theory.

Another virtue of the theory is that it allows us to transform
the expansion (17), which has a small radius of convergence
of order ε, into a form having a wider radius of convergence
by applying the method above (used for ε → 0) for a finite
ε with a corresponding value A. For that purpose we use
the substitutions A0 = √

A2 + ε2 and s = 1 − ε/
√

A2 + ε2 in
the second expression of (22). To leading order in s we
get F (A, μ, ε) = b0 + b1s + O(s2). As an illustration for the
phoretic model the function F takes now the form (to leading
order)

F (A, μ, ε)

≈ μ
e−√

A2+ε2/2

3

[
1 + A2 + ε2

20
− ε

√
A2 + ε2

20

]
− 1 (26)

instead of (17). Note that this expression was obtained using
only the first two terms of the expansion of the regularized
problem into powers of A. Neither the singular limit nor the
full regularized expression were required. We are also using
implicitly the knowledge that the only singular points of the
regularized equation are A = ±iε but we show below that the
method works even for the case of multiple purely imaginary
singular points, the precise location of which is not known.
It can be checked that expression (26) reduces to (17) after
expansion in A to order 2. Figure 4 summarizes the results.
Use of expansion (17) (dotted line in Fig. 4) fails to cap-
ture properly the bifurcation obtained from the exact result
(Eq. (16), represented by solid line in Fig. 4). In contrast

(26)—circles in Fig. 4—impressively captures the exact result
[Eq. (16), solid lines in Fig. 4]. Even better agreement with
the exact result is obtained by taking the expansion (26) to the
next order (squares in Fig. 4). The regularization theory not
only accounts properly for the singular limit [ε = 0; Eq. (25)]
but also offers a precious way to approach this limit [Eq. (26)].

V. GENERALIZATION TO ARBITRARY
LOCATION OF SINGULARITIES

A. General considerations

In the example above the singular points of the regularized
problem were located at A = ±iε. This knowledge was used
implicitly to construct the transformation that allows us to ex-
tract the singular limit from several leading terms of the Taylor
series of the regularized problem. In practical applications,
the location of the singularities in the complex plane is not
known a priori. It is therefore necessary to check under what
conditions the proposed transformation can be applied. This
task is a priori nontrivial, and we will see how this question
can be tackled in our spirit.

The function F in Eq. (18) is an analytic function of A with
exception of singular points Ai(ε) = �iε. Here we allow �i to
be arbitrary complex numbers. Applying the transformation
ε = A0(1 − s) and A2 = (2s − s2)A2

0 [Eq. (21)], we obtain a
function F̃ of s and A0 [as written in the first line of Eq. (22)].
This function is an analytical function of s with exception of
singular points si given by

si = 1 ± 1√
1 + �2

i

. (27)

The radius of convergence of the expansion of F̃ in powers
of s in Eq. (22) is governed by the singular point si with the
lowest absolute value. The success of the proposed method
requires this radius of convergence to be at least 1. The method
thus works if all �i are such that |si| > 1, where si is given by
(27). Figure 5 shows the region of the complex plane which
must contain �i for all singular points of F̃ in order for the
expansion in s to converge for s = 1.

B. Multiple singularities on the imaginary axis

Here we show how the singular function F (A, μ) can
be recovered from the perturbative expansion of the regu-
larized function F (A, μ, ε), even if the function F (A, μ, ε)
has multiple singularities on the imaginary axis. Among all
singularities of F , we take the one with the smallest absolute
value for given ε, which determines the radius of convergence
of the A series of F . We write this singularity as A = ±�0ε.

Applying the transformation

ε = A0(1 − s)/�, A2 = (2s − s2)A2
0 (28)

with � = |�0| for given A0 and μ reduces the function
F (A2, μ, ε) to a function of s. The singularities of this func-
tion of F are given by

si = 1 ± �√
�2 + �2

i

, (29)
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FIG. 5. The radius of convergence of the expansion of F̃ in pow-
ers of s (22) as a function of the proportionality coefficients �i setting
the singular points of F̃ as a function of ε. The black curves mark the
boundary of the region of � for which the radius of convergence is
greater than 1. Only this region is colored.

where �i are complex numbers such that the set �iε de-
fines the singularities of the function F (x, μ, ε) for a given
ε. Here all numbers �i are on the imaginary axis and we
have |�i| � |�0|. This implies that all singular points in the s
domain lie on a line Resi = 1. The expansion (22) of F̃ in
powers of s thus has the radius of convergence of at least
one. If the set of singularities �iε is infinite with the absolute
values |�i| increasing to infinity, then the singular points si

given by Eq. (29) have an accumulation point at s = 1. This
implies an essential singularity at s = 1 and the radius of
convergence of the expansion (22) of F̃ in powers of s being
exactly 1. We show that this still allows us to reconstruct
the limit of s → 1. Indeed, for any s < 1 the expansion (22)
of F̃ in powers of s converges and thus taking a sufficient
number of terms in the s expansion of F̃ would allow us to
approximate F̃ correctly. Since the limit of F (A, μ, ε) for
ε → 0+ is well defined, so is the limit of F̃ for s → 1−. For
a given number of known terms in the s expansion of F̃ , the
approximation error of F̃ at s = 1 and a given value of A0 is a
combination of two contributions: the difference of exact val-
ues of F (A(s, A0), μ, ε(s, A0)) − F (A(1, A0), μ, ε(1, A0)) ≡
F (A(s, A0), μ, ε(s, A0)) − F (A0, μ) and the difference of the
exact value F (A(s, A0), μ, ε(s, A0)) and its approximation
by a truncated series in powers of s. The first of these
contributions decreases as s approaches 1, while the sec-
ond one in general decreases as s is decreased. There is
thus a compromise of choosing the correct value of s to
approximate F (A0, 0) as the sum of the truncated s series
of F (A(s, A0), μ, ε(s, A0)). We can argue, however, that in-
cluding more terms in the truncated series leads to a higher
optimal value of s and thus better precision of the overall
approximation.

C. Example of multiple singularities on the imaginary axis

As a practical example of this method, we consider the
expression of particle velocity in a finite-size domain, given

FIG. 6. Function F defined by (16) with change of variables
F (A(s, A0), μ, ε(s, A0)) shown as a function of s (solid line). Sym-
bols show the approximation of F̃ using the truncated series of F for
several truncation orders.

by Eq. (B9) in Appendix B. The singularities of this equa-
tion correspond to simple poles given by the solutions of
sinh A/(2ε) = 0 with A 	= 0. There is also an essential sin-
gularity at infinity. The poles of F thus lie on the imaginary
axis and correspond to A = ±2π iεk with positive integer k.
The region of convergence of the Taylor series is thus given
by |A| < 2πε. Performing the change of variables (28) with
� = 2π , we rewrite the function F as a series in powers of s:

F̃ (s, A0, μ) ≡ F (x(s, A0), μ, ε(s, A0)) =
∞∑

k=0

bk (A0, μ)sk,

(30)

where a coefficient bk (A0) can be explicitly computed through
coefficients ak′ with k′ � k in the expansion (19) and their
derivatives, as given in Eqs. (C2) for the leading terms. We
also tried different values of � in Eq. (28) and confirmed that
the method still converges to the correct result, although a
higher number of terms might be needed compared to � = 2π

to achieve the same precision. This shows that the exact ex-
pression of the radius of convergence of the Taylor series as
function of ε is not necessary to apply the proposed method.
It is sufficient to get an estimate of the convergence radius
from the coefficients ak (ε) by a conventional method, such
as computing the sequence |ak (ε)|1/k for a given ε. The only
condition that needs to be satisfied is that the smallest absolute
value of the singular points in the s domain defined by Eq. (29)
be at least one. This implies that we can overestimate the
radius of convergence of the Taylor series (19) by a factor of
2/

√
3 and still get a convergent series in s.

The results are presented in Figs. 6 and 7. First, we plot the
exact expression of F̃ as a function of s and its approximation
by a truncated series for several orders of truncation (Fig. 6).
We observe that indeed increasing the number of terms in the
truncated series allows to expand the region of its applicability
as close to 1 as necessary.

Second, we show how the truncated series of F̃ converges
to the exact value as the number of terms is increased for a
given s (Fig. 7). It is seen that convergence is faster for smaller
values of s. This shows that indeed the correct value of f
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FIG. 7. Convergence of the truncated series (30) to the exact
value as a function of the number of terms for several values of s
(symbols). Solid lines show the exact values.

for s = 1 (or, equivalently, ε = 0) can be extrapolated from
expansion (19) by computing the truncated series (30) for s
close to 1. The optimal value of s depends on the number of
terms taken in expansion (30) and approaches 1 as the number
of terms is increased.

Finally, we show the full bifurcation diagram of Eq. (B9)
reconstructed from the truncated Taylor series (19) using the
transformation (28). We consider both the singular limit ε =
0 and the regularized problem (ε = 0.05) (Figs. 8, left and
right, respectively). As evident from this figure, the singular
behavior close to the bifurcation point can be recovered only
using the first terms of the series (19). Taking further terms in
expansion (30) increases the precision of the approximation
and allows us to recover the correct bifurcation diagram far
from the bifurcation point.

VI. CLASSIFICATION OF SINGULAR BIFURCATIONS

The singular bifurcations discussed above are related to
a branch point of the complex square root. In general, more

complicated singular bifurcations can be constructed. Let us
briefly consider different options on the basis of the behavior
of the function F in (18). Suppose that the singularity is due
to the presence of terms of the form (A2 + ε2)α , where α is
real noninteger positive number such that α < 1. Following
the general procedure presented above, we straightforwardly
obtain to leading order the singular limit,

F (A, μ) = μ − |A|2α, (31)

where we have rescaled A so that the coefficient in front of the
singular term can be set to unity. Note that if we took α > 1,
then the first dominant term is A2 and to leading order the
expansion would be regular. We assume here a supercritical
bifurcation, and this is why we set the coefficient of the first
nonlinear term to be negative. In terms of a dynamical system,
and by remembering that we assume A = 0 to exist always as
a solution, the corresponding normal form is

Ȧ = μA − A|A|2α. (32)

Equation (32) constitutes the generic normal form of an alge-
braic singular bifurcation. The nontrivial fixed point behaves
as A ∼ ±μ1/(2α). The bifurcation structure is qualitatively
different depending on whether α > 1/2 or α < 1/2. In the
first case the bifurcation diagram is similar to a pitchfork
bifurcation with infinite slope at μ = 0, whereas in the second
case the slope vanishes for μ = 0. α = 1/2 is a special case
with finite slope. Finally, for α < 0 the normal form is

Ȧ = μA + A|A|2α. (33)

We adopted the positive sign in front of the nonlinear term
to guarantee a stable branch for A 	= 0. Note that this does
not affect the bifurcation diagram topology. The nontrivial
fixed point is given A ∼ ±(−μ)1/(2α). Figure 9 summarizes
the results. We note four different singular bifurcations (in
blue in Fig. 9) corresponding to (i) α > 1/2, (ii) α < 1/2,
(iii) α = 1/2, and (iv) α < 0. We refer to these four singular
bifurcations as (i) fold, (ii) cusp, (iii) angular, and (iv) un-
bounded. When these bifurcations are regularized, they all fall
into a pitchfork bifurcation (Fig. 9). We may refer to the above

FIG. 8. Bifurcation diagrams for regularized problem with multiple singularities on the imaginary axis. See Eq. (B9) for the explicit form
of the equation. Comparison between the truncated s series (30) and the exact result for several orders of the expansion. Left: Singular problem
(ε = 0). Right: Regularized problem with ε = 1/20. The shaded area marks the region of convergence of the original Taylor series (19)
|A| < 2πε � 0.314.
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FIG. 9. Diagram for the four different singular bifurcations (in
blue) and for their regularized form (in black), with α = 2/3, α =
1/3, α = 1/2, and α = −3/2. Solid lines refer to stable solutions
and dashed lines to unstable ones.

bifurcations as singular pitchfork bifurcations as well, albeit
the singular limits have different behaviors.

It must be noted that the above classification does not
exhaust by far all kinds of singularities. For example, the
2D phoretic model provides an example of transcendental
singularity where the velocity behaves as V̄0 ∼ e−2/Pe (see Ap-
pendix D). Finally, the classification can easily be generalized
to other bifurcations, which degenerate into other bifurcations
than the pitchfork one (e.g., saddle-node and subcritical bifur-
cations) after regularization.

The exponent α can be related to the Taylor expansion (19)
of the regularized problem in a straighforward way: Close to
the critical point, Eq. (19) can be transformed to a canonical
form,

μ −
∞∑

k=0

ãk (ε)A2k = 0, (34)

by neglecting the terms of order O(μ2) and dividing Eq. (18)
by the coefficient in front of μ. Here ãk (ε) are coefficients
related to the coefficients of the original series (19). Consider
now that the coefficients ak scale as ak (ε) ∼ ε p−2kq for ε → 0.
From this, we first conclude that the radius of convergence
of the series in Eq. (34) scales as εq. Using the radius of
convergence as the new regularization parameter ε̃, we get
ak (ε̃) ∼ ε̃ p/q−2k . Applying the transformation (21) with ε re-
placed by ε̃ and truncating the series to the zeroth order in s,
we obtain an expression of form (31) with α = p/(2q).

VII. CONCLUSION

This study has brought to light a problem that has gone
unnoticed in the field of nonlinear science, in spite of its old
age of foundation. A singular behavior was encountered in the
early 1990s for moving drops [10] but was not highlighted. We
have seen here that the dogma of a regular expansion in bifur-
cation theory has its limits, which can lead to meaningless

results. The absence of exact analytical results in nonlinear
systems has not allowed to draw easily attention to the singu-
lar character of bifurcations.

We have provided a framework to deal with singular
bifurcations. The few concrete examples mentioned in the
Introduction are far from having exhausted all cases where
singular bifurcations manifest themselves. Several numerical
studies could have alerted to the nonstandard character of
bifurcations. For example, Sauzade et al. [26] analyzed the
speed of the Taylor swimmer sheet in perturbation theory as a
function amplitude of the swimmer deformation by including
up to 1000 terms in the series expansion. They found that
the series diverges beyond an amplitude of deformation. This
is symptomatic of a hidden singularity in the model. In an-
other problem, that of vesicles (a simple model of red blood
cells) in a flow [27,28], the perturbative scheme for vesicle
dynamics (in power series of excess area from a sphere) has
a small range of applicability even when including higher and
higher-order terms in the series expansion. This is indicative
of potential singularity in complex plane. It is hoped that
this study serves as a general framework to analyze singular
bifurcations for explicit nonlinear models.

The topic of this work is the regularization of singular
bifurcations. The bifurcation diagram is thus defined by solu-
tions of an equation that is singular for order parameter equal
to 0. It is also possible for solutions of a regular bifurcation
problem to have singular expansions [29,30], in what is called
an imperfect bifurcation, when a small perturbation of the
equation changes qualitatively the bifurcation diagram. We
note, however, that the problem considered in this work is
completely different because for imperfect bifurcations, the
equation that defines the problem can be well approximated by
a truncated power expansion in A, μ, and ε (as considered in
Ref. [29]), from which the singular limit ε = 0 follows auto-
matically. The singularities for imperfect bifurcations appear
only in solutions of the equation defining the problem.

The example of phoretic particle considered in this work
corresponds to α = 1/2 in 3D (order parameter grows linearly
above the critical point) and to α = 0 in 2D (order parameter
grows as e−1/μ for μ > 0; see an explicit example in Ap-
pendix D). An interesting question is whether other values
of α can be encountered in physical problems. Phase transi-
tions in thermodynamics can be characterized by fractional
or irrational critical exponents (e.g., 1/8 for magnetization in
2D Ising model [31]). They are also known to be regularized
by finite system size. Similarly to the problems considered
in this work, the critical points for thermodynamic phase
transitions correspond to singularities of the thermodynamic
potentials (zeros of the partition function). These singularities
are located in the complex plane of inverse temperature for
finite systems but tend to the real axis in the thermodynamic
limit. Despite these similarities, the modeling of the phase
transitions in thermodynamics is quite different from the prob-
lems considered here, which prevents us from drawing a more
direct analogy.

The singular behavior appears for autophoretic particles
due to the divergence of the characteristic length scale of the
concentration field close to the critical point. This dependence
of the length scale on the distance from the critical point can
be related to the distribution of the eigenvalues of the linear
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stability operator of the stationary solution. This suggests that
the spectrum of the linear stability operator of the unperturbed
solution can be related to the exponent α of the singular
bifurcation. Analyzing this relationship can be an interesting
question for further research.

The absolute value function, which appears in the singular
limit of the problem considered in this study, can be viewed
as a generic piecewise smooth function. The dynamic systems
defined by discontinuous functions are a topic of active re-
search (as shown in a recent review [32]). Such systems can
show bifurcations not observed for classical systems. Regu-
larization is an important tool used in studies of discontinuous
multidimensional systems to link the bifurcation type in the
discontinuous limit to the behavior of the regularized system
(as reviewed in Ref. [33]). In contrast to the present study, the
regularization in these works was applied in a finite vicinity
of the discontinuity only and the regularized function was still
not analytical at the boundary of the regularization region.
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APPENDIX A: EFFECT OF HYDRODYNAMICS
ON CRITICAL CONDITION

The goal of this section is to introduce the corrections into
the exactly solvable model in order to account for the finite
size of the particle. These corrections are evaluated for small
propulsion velocity and provide quantitatively correct value
of the critical Peclet number. There are two finite-size effects
that are neglected in the main model: First, the near-field flow
disturbance due to a translating spherical particle is neglected
and, second, the particle emission is represented by a point
source, while the finite-size particle should be represented by
a distribution of sources along the particle surface. Both of
these two effects are essential for quantitative evaluation of
the concentration field close to the critical point.

This problem is solved in the reference frame comoving
with the particle. The concentration evolution equation is then
written as

ċ(r) + ∇ · (u(r)c(r)) = D∇2c(r) + S(r), (A1)

where u(r) is the fluid velocity relative to the particle, S(r)
represents a distribution of sources and source dipoles on the
particle surface which accounts for the concentration emission
or consumption, and r is the position vector relative to the par-
ticle center. It is known that the velocity field in the comoving
frame can be written as

u(r) = −V 0 + a3

2r3

[
3

r(r · V 0)

r2
− V 0

]
(A2)

for a rigid force-free spherical particle or radius a, moving
with velocity V0 relative to the laboratory frame. The flow
field in Eq. (A2) can be written in potential representation

u(r) = ∇φ(r), where

φ(r) = −(V 0 · r)

(
1 + a3

2r3

)
. (A3)

We also have ∇2φ(r) = 0 for r > 0 due to the flow
incompressibility.

We focus on the steady-state solution of Eq. (A1). Multi-
plying Eq. (A1) by exp[−φ(r)/(2D)], yields

D∇2c̄(r) − u(r)2

4D
c̄(r) + S̄(r) = 0, (A4)

where c̄(r) = c(r) exp[−φ(r)/(2D)] and S̄(r) =
S(r) exp[−φ(r)/(2D)].

The original model corresponds to setting u(r)2 to V 2
0 , φ(r)

to −V 0 · r, and S̄(r) to a point source in Eq. (A4). Here we
still simplify u(r)2 to V 2

0 because this term is quadratic in the
particle velocity and thus should be small close to the critical
point. We keep, however, the full expression for φ and replace
the S̄(r) term with a combination of a point source and a point
source dipole. The amplitude of the source dipole is chosen
in a way that corresponds to an isotropic emission rate at
distance a from the particle center.

We thus consider the following equation:

D∇2c̄(r) − V 2
0

4D
c̄(r) + 4πa2A[δ(r) + b(V 0 · ∇)δ(r)] = 0.

(A5)

This equation can be solved analytically, yielding

c̄(r) = a2A
Dr

exp

(
−V0r

2D

)
+ b(V 0 · ∇)

{
a2A
Dr

exp

(
−V0r

2D

)}
,

(A6)

The constant b is found by taking the concentration field
c(r) ≡ c̄(r) exp[φ(r)/(2D)] and setting the first harmonic of
r · ∇c(r) to zero:

b = 9a2

2D

ξ + 3

ξ 2 + 6ξ + 18

(ξ − 2)eξ + ξ + 2

(ξ 2 − 4ξ + 8)eξ − (ξ 2 + 4ξ + 8)
,

(A7)

where ξ = 3V0a/(2D). Substituting Eq. (A7) into Eq. (A6)
yields the corrected concentration field. We extract the first
harmonic of the concentration for r = a from this solution,
which gives us the following expression of the swimming
velocity:

V0 = −18AMa[(ξ − 2)eξ + ξ + 2] exp
(− 5ξ

6

)
Dξ 2(ξ 2 + 6ξ + 18)

= −AMaV0

4D2
[1 − aV0/D + O((aV0/D)2)]. (A8)

Dividing both sides of Eq. (A8) by V0 and setting V0 to 0 yields
−AMa/D2 ≡ Pe = 4 for the critical Peclet number, which
agrees with the previous works.

APPENDIX B: FINITE-SIZE EFFECT

We consider the same phoretic model except that the size
is finite. We focus here only on steady-state solutions in the
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comoving frame with velocity V0. The concentration field
obeys in this frame

D�c + V0 · ∇c = −Sδ(r). (B1)

The particle is taken to move along the z direction. Making
the substitution c = c̄e− zV0

2D we find

�c̄ − k2c̄ = − S

D
δ(r), k2 = V 2

0 /(4D2). (B2)

This is the so-called screened Poisson equation with a delta
source term. The associated Green’s function is defined as

�G(r, r′) − k2G(r, r′) = δ(r − r′). (B3)

We consider the domain to be finite and bounded by a
sphere with radius r = R (counted from the point source).
The boundary condition is taken as c̄(r = R) = 0. We use the
eigenfunctions of the Laplacian in order to express the Green’s
function. The Laplacian eigenfunctions are spherical harmon-
ics Y m

 (θ, φ) times spherical Bessel functions j(r). Let βn

define the zero’s of j, we have j(βn) = 0. The Laplacian
eigenfunction which vanishes at r = R can be written as

ψnm(r, θ, φ) = AnY
m
 (θ, φ) j(βnr/R). (B4)

Then making use of the classical method to express the
Green’s function in terms of eigenfunctions, we obtain

G(r, r′) = −
∑
nm

2

R3 j2
+1(βm)

× Y m
 (θ, φ) j(βmr/R)Y m

 (θ ′, φ′) j(βmr′/R)

k2 + (βm/R)2
.

(B5)

Note that the eigenvalues of the Laplacian are −(βm/R)2,
meaning that the eigenvalues of the full operator in (B2) are
−k2 − (βm/R)2. The above Green’s function can be rewritten
as

G(r, r′) = − 2

R3

∑
n

2 + 1

4π
P[cos(γ )]

× 1

j2
+1(βm)

j(βmr/R) j(βmr′/R)

k2 + (βm/R)2
(B6)

after having used the addition theorem for spherical har-
monics, where P is the Legendre polynomial of order
 and cos(γ ) = cos(θ ) cos(θ ′) + sin(θ ) sin(θ ′) cos(φ − φ′).
Since the source term is assumed to be at the center, we set
r′ = 0, so that j(βmr′/R) = j(0). Due to the properties of
j only  = 0 survives in the sum. Using the definition of j0
and j1 functions, we obtain (on using that β0n = nπ ) that the
concentration field can be written as

c(r, θ ) = A
4πDr

e− rV0 cos(θ )
2D csch(|k|R) sinh[|k|(R − r)], (B7)

where we have used the result
∞∑

n=0

n sin(na)/(n2 + b2) = πcsch(π |b|) sinh[(π − a)|b|)],

(B8)

csch being the hyperbolic cosecant function. Projecting c(r, θ )
on the first spherical harmonic, and using the condition that

V0 = −Mc1/(a
√

3π ) (recall that c1 is the concentration con-
tribution of the first harmonic at r = a), we find

A = 4Pe

[
A cosh(A/2) − 2 sinh(A/2)

A2

]

× sinh[|A|(1/ε − 1)/2]

sinh[|A|/(2ε)]
, (B9)

where A = aV0/D is the perturbation amplitude and ε = a/R
is the regularization parameter. Expanding this result for small
A we obtain to cubic order

A = Pe

3
A

[
1 − ε − A2

24
(2ε−1 − 3 + ε)

]
. (B10)

We see that the expansion is regular; the finite size has reg-
ularized the singular pitchfork behavior. The solution A = 0
always exists. Beyond a certain critical value Pe = Pe1 there
exists another solution behaving as A ∼ ±μ1/2, with μ =
Pe − Pe1 and Pe1 = 3/(1 − R̄−1). The last factor in Eq. (B9)
can be transformed as

sinh[|A|(1/ε − 1)/2]

sinh[|A|/(2ε)]

= cosh(|A|/2) − coth[|A|/(2ε)] sinh(|A|/2). (B11)

Taking the limit ε → 0+ for fixed A 	= 0 simplifies
coth[|A|/(2ε)] to 1, transforming Eq. (B11) into e−|A|/2, which
recovers the infinite-size expression (13).

Equation (B9) has an infinite and countable set of sin-
gularities on the imaginary axis, A = ±inπε/2, n being a
positive integer. These singularities correspond to the zeros
the function sinh(|A|ε/2) in the denominator of (B9).

APPENDIX C: RELATION BETWEEN ak AND bk

It is easy to obtain the general relation between ak and bk .
However, here we only list the relations for the first three
terms (generalization to arbitrary order is straightforward).
The starting point is to write the Taylor expanion in terms of
ak (ε)x2k and make the substitution ε = A0(1 − s) and A2 =
(2s − s2)A2

0, so that we have

b0(A0) + b1(A0)s + b2(A0)s2 + · · ·
= a0[A0(1 − s)] + a1[A0(1 − s)](2s − s2)A2

0

+ a2[A0(1 − s)](2s − s2)2A4
0 + · · · . (C1)

Then expanding ak[A0(1 − s)] in Taylor series at s = 0 and
matching the coefficients for each power of s, we obtain to
leading order,

b0(A0) = a0, b1(A0) = −A0a′
0 + 2a1A2

0,

b2(A0) = A2
0a′′

0

2
− a1A2

0 − 2A3
0a′

1 + 4a2A4
0, (C2)

where ak as well as a′
k and a′′

k , which designate first and second
derivative with respect to ε, are evaluated at ε = A0.

APPENDIX D: 2D MODEL WITH CONSUMPTION

In 2D we only need to substitute in the denominator of the
propagator (4πτ )3/2 by 4πτ , so that the concentration field
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takes the form

c(r, t ) =
∫ ∞

0
dτ

S

4πDτ
exp −

{
(r + V0τ − V0t )2

4Dτ

}
, (D1)

yielding

c(r, t ) = Aa

D
K0

⎛
⎜⎝ r̃

√
V 2

0 + 4βD

2D

⎞
⎟⎠e−r̃V̄0 cos(θ )/(2D), (D2)

where K0 is the Bessel function of the second kind. Projecting
(B10) on the first Fourier mode and using the equation fixing
velocity as a function of concentration (see main text) we find
V0 = −Mc1/a (where c1 is the amplitude of the first Fourier
mode), obtaining finally

A = 2PeI1(A/2)K0

(√
A2 + ε2

2

)
, (D3)

where I1 is the Bessel function of the first kind. Besides the
trivial solution, this equation exhibits a motile solution for any
value of Pe, as shown here.

The right-hand side of (D3) can be expanded for ε = 0 as

2PeI1(A/2)K0(A/2) = −Pe A[ln(A/4) + γ + O(A2 ln A)]/2,

(D4)

where γ � 0.577 is the Euler constant. Here we have used
the asymptotic expansions I1(A/2) � A/4 and K0(A/2) �
− ln(A/4) − γ . Substituting (D4) into (D3) yields the

following asymptotic solution:

A = 4 exp(−2/Pe + γ ). (D5)

The Taylor series of the right-hand side of (D3) for finite
values of ε reads

F2D(A, ε) = −Pe
K0(ε/2)

2
+ Pe

[
K1(ε/2)

8ε
− K0(ε/2)

64

]
A2

+ Pe

[
−K0(ε/2)

6144
− K0(ε/2)

128ε2
+ K1(ε/2)

256ε

− K1(ε/2)

32ε3
− K2(ε/2)

128ε2

]
Ā4 + O(A6) − 1, (D6)

where AF2D(A, ε) represents Eq. (D3). The radius of conver-
gence of expansion (D6) is equal to ε. Using the expressions
(C2), we get

F2D(A, 0) = −Pe K0(A/2)(1/2 + A2/64 + A4/1536) − 1,

(D7)

where we have retained the terms up to s2 in the expansion
of the right-hand side of (D6) in s. Expansion (D7) agrees
with the singular expression (D4) since we have 2I1(A/2) =
−A/2 − A3/64 + O(A5). We have checked that taking more
terms in s and, consistently, truncating the regularized ex-
pansion (D6) at a higher power of A allows us to calculate
correctly the higher-order terms in the expansion of I1(A/2)
in the singular expression (D4).
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