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Intermittent generalized synchronization and modified system approach: Discrete maps
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The present work deals with the intermittent generalized synchronization regime observed near the boundary
of generalized synchronization. The intermittent behavior is considered in the context of two observable
phenomena, namely, (i) the birth of the asynchronous stages of motion from the complete synchronous state
and (ii) the multistability in detection of the synchronous and asynchronous states. The mechanisms governing
these phenomena are revealed and described in this paper with the help of the modified system approach for
unidirectionally coupled model oscillators with discrete time.
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I. INTRODUCTION

The intermittent behavior [1] revealed and studied ini-
tially in Lorenz system [2] is well-known to be observed in
the nature very widely, from physical [3,4] to living [5–9]
and even astronomical [10,11] systems. Researchers who
deal with the phenomenon of chaotic synchronization are
well-aware that the intermittent behavior precedes arising
the synchronous regimes. Indeed, all known types of syn-
chronous dynamics of coupled chaotic systems (to the best
of our knowledge) are always accompanied by intermittency,
when for the fixed values of the control parameters below
the synchronization onset time series of interacting oscillators
exhibit alternately both sections of the synchronous behavior
(so called “laminar phases”) and intervals of the asynchronous
dynamics (“turbulent phases,” respectively). So, below the
onset of the phase synchronization (PS) depending on the
parameters of the coupled oscillators type-I, eyelet, and ring
intermittencies may be observed [12–14]. Near the boundary
of complete (CS) [15] and lag synchronization (LS) [16,17]
the phenomenon of on-off intermittency is known to take
place. On-off intermittency [18,19] as well as jump intermit-
tency [20] are realized below the generalized synchronization
(GS) [21,22] onset. This type of intermittent behavior, where
synchronous and asynchronous intervals of motion alternate
with each other, observed below the boundary of generalized
chaotic synchronization is also called as “intermittent gener-
alized synchronization” (IGS). Under certain conditions the
mixed intermittency types [23,24] may also take place. In
other way, we can say the intermittency should be considered
as the core mechanism of transition from the asynchronous to
synchronous dynamics.

In this paper, we focus on considering intermittent gener-
alized synchronization as one of the most intriguing types of
presynchronous behavior of the GS regime in order to reveal
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how intermittent dynamics arises and to explain some of its
features.

The structure of our work is the following. In Sec. II,
we introduce the basic concepts of the theory of generalized
chaotic synchronization (including the intermittent behavior
below its boundary), describe the model system used, and
formulate two main issues that have remained unresolved so
far and require close attention from researchers. Section III is
devoted to the core idea of the modified system approach and
its adaptation to the system under study. The mechanism being
responsible for the laminar and turbulent phase alternations is
revealed in Sec. IV. Section V is devoted to the generalization
of decision made to multidimensional maps. Section VI deals
with the multistability properties observed in the intermittent
generalized synchronization regime. Final discussions and re-
marks are given in Conclusions.

II. PROBLEMS TO BE THOUGHT OVER

A. General theory and model system

As it is well known [21,22], two unidirectionally coupled
chaotic systems (say, x and y) are in the regime of generalized
chaotic synchronization if the state of the response system y is
completely determined by the state of the drive system x with
the help of functional F

y = F[x], (1)

with the analytical form of F being typically unknown.
As a model system in our paper we have mostly used the

one-dimensional logistic map

xn+1 = f (λ, xn), (2)

where f (λ, x) = λx(1 − x) is the evolution operator and λ

is the control parameter. It has long been well-known that
two unidirectionally coupled logistic maps (2) exhibit both
the generalized synchronization phenomenon and intermittent
behavior below the onset of GS [18,25]. Additionally, thanks
to its relative simplicity, it allows evident and clear expla-
nations of the phenomena under study. Following Ref. [26],
we consider two unidirectionally coupled logistic maps whose
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dynamics is described by evolution operator

xn+1 = f (λd , xn),
(3)

yn+1 = f (λr, yn) + ε( f (λd , xn) − f (λr, yn)),

where x and y are coordinates and λd , λr are control pa-
rameters corresponding to the drive and response systems,
respectively. Following Ref. [27], in our work, we have used
λd = 3.75, λr = 3.79, since for the given values of control
parameters both systems demonstrate developed chaotic dy-
namics and with the increase of the coupling parameter ε they
undergo to the regime of generalized synchronization through
intermittent behavior.

As it has been mentioned above, generalized synchroniza-
tion in unidirectionally coupled oscillators means the presence
of the functional F connecting unambiguously the states of
the drive and response systems (of course, after the transient
is finished). In our case, the condition of generalized synchro-
nization may be written as

yn = F (xn), (4)

although the analytical form of functional F is unknown.
The presence of the functional relation between the drive and
response systems, and, as a consequence, the existence of
the generalized synchronization regime may be revealed by
means of several methods, among which the nearest neighbor
method [21], the auxiliary system approach [28], the condi-
tional Lyapunov exponent calculation [29] are most often and
successfully used.

In the case of unidirectionally coupled systems (just the
case considered in this paper), the auxiliary system approach
seems to be the simplest, clearest and most effective way
to recognize the GS regime. As far as the IGS regime is
concerned, the auxiliary system approach is unique technique
allowing to detect synchronism between the drive and re-
sponse oscillators (from the point of view of the GS regime)
at any arbitrary chosen moment of (in the considered case,
discrete) time and, as a consequence, to analyze the intermit-
tent dynamics.

B. Auxiliary system approach and intermittent
generalized synchronization

In the framework of the auxiliary system approach, in par-
allel with the drive and response oscillators the another system
(called as auxiliary one) must be introduced into considera-
tion, with its evolution operator being equal to the response
system, i.e., in the considered case it is

zn+1 = f (λa, zn) + ε( f (λd , xn) − f (λa, zn)), (5)

where λa is the control parameter of the auxiliary system
supposed to be equal to λr . At the same time, the initial
condition, z0, of the auxiliary system has to differ from the
one of the response logistic map, y0, but to belong to the
same basin of attraction as y0. When the drive and response
systems are synchronized from the point of view of the gener-
alized synchronization regime, the states of the response and
auxiliary oscillators must coincide with each other due to GS
definition (4)

yn = zn = F (xn) (6)
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FIG. 1. Time series corresponding to the (a) drive x and (b) re-
sponse y and auxiliary z logistic maps (3), (5) obtained for ε = 0.3.
The bottom two plots [(c) and (d)] illustrate the behavior of the
response y and auxiliary z systems during the (c) laminar (n < 275,
n > 450) and (d) turbulent (275 < n < 450) phases of motion. The
transient is omitted.

and identity of the response and auxiliary ones. Alternatively,
if there is no synchronization between the drive and response
systems, the states of the response and auxiliary oscillators
are different (yn �= zn in the case under study). In other words,
considering the difference between the coordinates of the
response and auxiliary oscillators, ξ = y − z, one can easily
separate the intervals of synchronous ξ � 0 and asynchronous
|ξ | > 0 behavior bellow the onset of the GS (and, as the
next step, one can study the statistical characteristics of in-
termittency). If the coupling strength value is above the GS
threshold, this difference is equal to zero, ξ = 0, over all
interval of observation that is used in the framework of the
auxiliary system approach as the criterion of the GS presence.

The intermittent behavior of unidirectionally coupled
logistic maps (3), (5) observed below the onset of GS
(εc � 0.35) is illustrated in Fig. 1 for the coupling strength
ε = 0.3. One can see that the behavior of the drive system
differs form the dynamics of the response (as well as the
auxiliary) oscillator [compare Figs. 1(a) and 1(b)]. As far as
the oscillations in the response and auxiliary maps are con-
cerned [see Figs. 1(b)–1(d)], they may be identical (that is the
criterion of laminar phases) or different (that is the indication
of turbulent phases) depending on the moment of observation
time.

As far as the control parameter value λa of the auxiliary
system is concerned, its value is typically taken equal to the
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response oscillator one, λa ≡ λr . And if there are no pecu-
liarities in the case of analytical consideration, in the case
of numerical simulation one has to take into account that
in this situation the threshold εc of the GS regime will be
slightly underestimated. Indeed, below the true onset of the
generalized synchronization where the IGS regime is realized,
within the long laminar (synchronous) phase the difference
between the response and auxiliary system coordinates ξ may
become less than the accuracy of representing a number in
computer memory due to its finite digit capacity (so called
counting trap). After that the states of the response and aux-
iliary systems in numerical representation with finite digit
capacity are absolutely equivalent at any moment of time,
therefore, the difference between their states is always equal
to zero (ξ ≡ 0), and, as a consequence, the GS regime should
be detected. At the same time, for the considered coupled
oscillators the true small difference ξ between response and
auxiliary systems may increase later that results eventually
in the interruption of the laminar phase and transition to
the turbulent one. To avoid the above mentioned numerical
effect, the control parameter value of the auxiliary system
may be chosen slightly different from the response system
one, λa = λr + �λ, where |�λ/λr | � 1. Alternative way is
the addition of the very small noise signal |ζ | � yn, ∀n to
the auxiliary system to make the states of the response and
auxiliary oscillators slightly different. Both these approaches
(the introduction of a slight parameter mismatch or small
noise) represent actually processes taking place in real (not
numerical) systems. In our numerical calculations we have
used the first of them, namely the introduction of the small
parameter mismatch, �λ = 10−7, to avoid the counting trap
caused by the finite digit capacity representation of the system
states, while in the analytical consideration we have neglected
the small deviation �λ and supposed λr ≡ λa.

C. Two questions

Despite of the fact that both GS phenomenon and IGS
regime are now well-studied and described in detail in a lot
of scientific papers, there are certain points concerning the
IGS phenomenon which are, from one hand, important and,
from the other hand, unclear. In the framework of this work,
we focus on two interesting and intriguing points that are
important for a general understanding of the GS and IGS
phenomena.

The first of them is the dynamical mechanisms govern-
ing by the completion of the laminar phase and transition
to the turbulent one and vice versa. Indeed, why for certain
enough long time intervals the response and auxiliary systems
move practically identically (synchronous or laminar phase),
whereas for other time intervals the states of these systems
are significantly different? One would expect that in the gen-
eralized phase space of three considered systems (the drive,
response, and auxiliary ones) there are some subspaces corre-
sponding to the laminar phases (like the “corridor” between
the map function and bisector for the case of type-I inter-
mittency in the quadratic map [1]), however, all our previous
attempts (mostly unpublished, except for Ref. [30]) to find
these areas in the phase space mentioned above cannot be

(a) (b)

(c) (d)

FIG. 2. The probability distributions of the states of the [(a)and
(b)] drive and [(c) and (d)] response maps (3) calculated for [(a) and
(c)] laminar and [(b) and (d)] turbulent phases, ε = 0.3. The number
of points used to calculate each of distributions is N = 5 × 107, the
width of bin is �b = 0.02

considered as successful. We are also not aware of any similar
studies devoted to this topic that have been published so far.

In Fig. 2, the probability distributions for the drive and
response logistic maps obtained within the set of laminar
[Figs. 2(a) and 2(c)] and turbulent [Figs. 2(b) and 2(d)] phases
of motion are given for the coupling strength ε = 0.3. To
calculate each of distributions N = 5 × 107 points have been
used, the width of bin has been chosen as �b = 0.02. All dis-
tributions have been normalized to satisfy the normalization
condition

∑
j p j = 1. One can easily see that distributions

for the laminar and turbulent phases are identical completely
which indicates that within synchronous and asynchronous
phases of behavior the phase trajectories are located in the
same region of the generalized phase space. In other words,
the dynamical mechanisms of synchronous and asynchronous
motion alternations seem to be unrevealed and, therefore, that
is question 1, which we are going to answer in our paper.

The second task considered in our paper is related to the
newly discovered phenomenon of the multistability near the
onset of generalized synchronization in unidirectionally cou-
pled chaotic systems [26]. It has been found that for two
unidirectionally coupled chaotic systems being in the IGS
regime for one and the same moment of time depending on the
initial conditions of the auxiliary system both the synchronous
and asynchronous states can be detected. And although some
progress has been made in the study and description of multi-
stability in the IGS regime, there is still no explanation of the
mechanisms leading to multistability in this case. It is question
2 which will be answered in this paper.

So, there are two fundamental issues that are addressed in
this paper.

(1) Why in the IGS regime two coupled interacting sys-
tems being synchronized for a long time start suddenly to
exhibit the asynchronous behavior and vice versa (like in
Fig. 1)?
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(2) Why the intermittent generalized synchronization pos-
sesses the multistable properties?

And although at first sight these two mentioned above
questions seem to be quite different and independent from
each other, the answers to both of them can be given with
the help of the modified system approach proposed firstly in
Ref. [31]. Moreover, these two questions, as it will be shown
below, turn out to be closely related to each other due to this
approach. The main idea and adaptation of the modified sys-
tem technique to the coupled discrete systems under study (3)
is given in the next section.

III. THE MODIFIED SYSTEM

According to the methodology proposed and developed in
Reef. [31], the GS regime in two unidirectionally coupled
oscillators from the point of view of the modified system
approach may be considered as a result of superposition of
two cooperative mechanisms acting simultaneously. The core
idea of the modified system approach [31] is the following.
Instead of the response oscillator in Eq. (3) one has to con-
sider the modified system which in the case under study is
described by

un+1 = g(un) = (1 − ε) f (λr, un). (7)

So, substituting the modified system (7) for the response one
in Eq. (3) one can rewrite evolution operator (3) as

yn+1 = g(yn) + ε f (λd , xn). (8)

Obviously, obtained Eq. (8) is identical to the second oper-
atior of Eqs. (3) and (5) (with z ↔ y), but now the dynamics
of the system under study is clearly divided into two parts,
with the coupling parameter increase for each of them realis-
ing different mechanisms. With the increase of the coupling
strength (parameter ε in our case) (i) the dissipation in the
modified system g(y) grows as well as (ii) the amplitude of
the external signal enlarges. It is clear that both the processes
mentioned above are inextricably linked with each other by
means of the coupling parameter and cannot take place in the
coupled oscillators independently. At the same time, in the
framework of the modified system approach we can consider
these both processes separately. In other words, with the help
of the modified system method, we can focus our attention on
the problem how increasing the coupling parameter ε changes
the dynamics of the (modified) response system g(u), leaving
the external influence from the response system temporarily
out of consideration. It allows us to understand as the causes
of the completion of the laminar phase and transition to the
turbulent one in the case of the IGS regime as well as the
mechanisms leading to multistability in this case.

IV. LAMINAR AND TURBULENT PHASE ALTERNATION

Since all attempts to find the subspaces being responsible
for laminar and turbulent phases in the generalized phase
space of the drive and response systems seem to be unsuccess-
ful, we are going to explain the phenomenon of intermittent
generalized synchronization by considering short time inter-
vals corresponding to the transition from one type of the
behavior to another. Therefore we have concentrated on the

end of the laminar phase and the initial section of the transition
to asynchronous behavior.

From the analytical point of view, when the synchronous
epoch of the drive and response oscillator dynamics is fin-
ished and the turbulent motion starts to develop, the small
difference between coordinates of the response and auxiliary
systems ξn = yn − zn must increase. One can easily see that
the dynamics of this small difference between response and
auxiliary oscillators is described by

ξn+1 = yn+1 − zn+1 = g(yn) − g(zn). (9)

Taking into account that in the end of the laminar phase |ξn| �
1 and

lim
ξ→0

g(zn) = lim
ξ→0

g(yn − ξn) = g(yn) − g′(yn)ξn, (10)

from Eqs. (9) and (10), one can obtain

ξn+1 = g′(yn)ξn, (11)

where g(y) is the evolution operator of the modified sys-
tem (7). In other words, the dynamics of the small difference
between coordinates of the response (3) and auxiliary (5)
systems depend at each moment of discrete time on the state
of the response oscillator and is determined by evolution op-
erator of the modified system (7). It should also be noted that
relation (11) is not applicable when the difference between
the states of the response and auxiliary oscillators ceases to
be close to zero. In other words, Eq. (11) can only be used
within the laminar phases as well as time intervals where the
destruction of synchronous motion begins.

In order to increase the difference ξ between the states of
the response and the auxiliary logistic maps for the (n + 1)th
iteration, |g′(yn)| must be greater than 1. Therefore the range
of possible yn values is divided into three regions: y < y∗

1
(region I), y∗

1 < y < y∗
2 (region II) and y > y∗

2 (region III),
where

y∗
1,2 = λr (1 − ε) ∓ 1

2λr (1 − ε)
(12)

are the boundary points separating areas of compression (re-
gion II) and stretching (regions I and III) in the phase space of
the modified system. For the selected control parameter values
(ε = 0.3, λr = 3.79), the boundary points are y1 ≈ 0.312 and
y2 ≈ 0.688. Obviously, the mere fact that the representative
point hits the divergence areas I or III does not mean the
destruction of the synchronous phase of the behavior. To in-
terrupt the laminar motion the phase trajectory of the response
logistic map {yi}|n+L

i=n within the short time interval corre-
sponding to the transition from synchronous to asynchronous
dynamics (here n is an initial point of the transition, L is the
transition length) must be located mostly in regions I and III
in comparison with regular (synchronous or asynchronous)
behavior.

In Fig. 3(a), the probability distributions p(y) of the states
of the response logistic map (3) calculated for the transition
from the laminar to turbulent phases of motion are given.
Taking into account the multistability phenomenon in the IGS
regime, the short time intervals corresponding to this transi-
tion, have been selected from the long time series with the
help of the calculation of the probability to detect of the asyn-
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(a) (b)

FIG. 3. (a) The probability distributions of the states of the
response logistic map (3) calculated for the short time intervals
corresponding to the transition from the laminar to turbulent phases
of motion (light brown bars) as well as for the laminar phases
(transparent bars), ε = 0.3. The gray rectangle corresponds to the
area of the phase space of the modified system (7), characterized by
the compression of the phase trajectories. (b) The same probability
distributions obtained for the noise driven system (13), ε = 0.23
. The number of points used to calculate each of distributions is
N = 5 × 107, the width of bin is �b = 0.02.

chronous regime (24) proposed for the first time in Ref. [26]
and described briefly in Sec. VI. The length of transition used
for the probability distribution calculation has been taken as
L = 12. The value of the method parameter L is dictated by
the typical time at which the destruction of the synchronous
state is observed for the systems under study. Obviously, the
choice of an appropriate duration of the transition length is
quite important to obtain the correct probability distribution.
Choosing a longer time interval means that points belonging
to both laminar and turbulent phases will be captured and,
therefore, the resulting distribution will be blurred. The longer
the used time interval L is, the closer the resulting distribution
is to the distribution plotted over the whole time series, and,
consequently, the less pronounced the desired effect is. On
the contrary, a reduction of the transition length L results in
poor statistics and associated distortions of the calculated dis-
tribution. For comparison, in the same figure the probability
density distribution of the response system [see Fig. 2(c)] ob-
tained for the laminar phases only is also shown by transparent
rectangles. In contrast to the previous one, this distribution
is plotted over intervals of time series with different lengths
corresponding to the durations of the analysed laminar phases.

As one can see from Fig. 3(a) for the transition epoch
the probability distribution p(y) radically changes its shape
in comparison with the laminar and turbulent phases. The
probability for the phase trajectory located in the compression
region II decreases sufficiently and in the vicinity of the point
ye = 0.5, where g′(ye) → 0, this probability is generally close
to zero. So, we come to the conclusion that in the time series
of the response system {yn} rather short segments sometimes
occur, where the majority of points are located in the phase
space regions (in the considered case, in regions I and III)
characterized by a divergence of neighbor trajectories. Within
this short interval of discrete time the phase trajectories of the
response and auxiliary systems diverge by a distance being
sufficient for the time series of these systems to become no-
ticeably different, which, in turn, triggers the turbulent phase.

It is also interesting to note some asymmetry in the be-
havior of the distributions p(y) in regions I and III. One can
see from Fig. 3 that for the transitions from synchronous to

asynchronous dynamics, a significant number of new points
appear in region III, while the changes in region I are not
practically noticeable. This asymmetry is explained by the fact
that a larger fraction of points of the chaotic attractor of the
system under study is located in region III in comparison with
region I. However, the key factor of the synchronous behavior
destruction is not an increase in the number of distribution
points in regions I and III, but a significant decrease in the
number of points in region II, with such points that corre-
sponding to the areas of maximal convergence of close phase
trajectories (see areas in Figs. 3(a) and 3(b) near the point
ye = 0.5, where g′(ye) = 0).

Given that it has been previously shown [32–34] that
the phenomenon of noise-induced synchronization [35–37] is
caused by the same mechanisms as generalized synchroniza-
tion, one can expect that the above discussed features of the
systems behavior revealed below the onset of the synchronous
regime should be also observed for oscillators under the ran-
dom signal. To confirm this assumption, we replace the signal
of the drive oscillator in the example under study by a random
variable ζn distributed uniformly in the range [0; 1]

yn+1 = f (λr, yn) + ε( f (λd , ζn) − f (λr, yn)),

zn+1 = f (λa, zn) + ε( f (λd , ζn) − f (λa, zn)). (13)

As one might expect, in system (13), at certain values
of parameter ε � εc = 0.26, there is also a completely
synchronous dynamics between the response and auxiliary os-
cillators (yn = zn) and, therefore, from a formal point of view,
system (13) exhibits a noise-induced synchronization regime.
Below a threshold value of εc, there is an intermittent behavior
being identical to the intermittent generalized synchronization
observed in (3), (5).

Although for Eqs. (13) time series of the response and
auxiliary systems are randomized, in these time series, as
well as for deterministic oscillators (3) and (5), there are also
short intervals in which points are mostly located in the phase
space regions I and III, where the divergence of the phase
trajectories takes place. It is these segments of time series
{yi}|n+L

i=n that complete the laminar phases of the behavior and
start the phases of asynchronous (turbulent) dynamics. The
probability distributions obtained for these short transition
intervals (light brown bars) in comparison with the laminar
phases (transparent bars) are given in Fig. 3(b). One can see
that these distributions p(y) obtained for the deterministic
[Fig. 3(a)] and random [Fig. 3(b)] drive signals are qualita-
tively equivalent.

Taking into account the obtained results, it can be assumed
that the occurrence of sequences {yi}|n+L

i=n obeys probabilistic
regularities. In other words, in the time series of the response
oscillator relatively short sequences {yi}|n+L

i=n appear among
the entire set of points yn which triggers turbulent phases,
with the probability of such sequences occurrence decreasing
with the growth of the coupling parameter ε. In order to test
the probabilistic nature of the occurrence of these sequences
{yi}|n+L

i=n , we consider the behavior of the difference ξn between
two neighbor trajectories governed by linearized Eq. (11), but
instead of the coordinates yn of the response system we use
a random sequence ζn with the uniform probability distri-
bution within the range [0; 1]. In other words, we emulate
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FIG. 4. The probability distribution p(ζ ) of the random points ζn

corresponding to transitions from the laminar to turbulent phases of
motion. The gray rectangle corresponds to the area of the phase space
of the modified system (7), characterized by the compression of the
phase trajectories. The number of points used to calculate distribution
is N = 5 × 107, the width of bin is �b = 0.02. The control parameter
of modified system are λ = 3.79, ε = 0.3.

the chaotic (but deterministic) time series yn by completely
random surrogate signal ζn. Further, considering sequentially
all segments {ζi}|n+L

i=n with length L of the random sequence ζn,
we will choose only those for which the distance ξn increases
by more than K1 times (i.e., ξn+L/ξn > K) and consider them
as short time intervals corresponding to transitions from lam-
inar phases to turbulent ones just like in cases of coupled
logistic maps (3) and logistic maps driven by noise (13). In our
study, we have used K = 10 that corresponds to a significant
divergence of the initially adjacent trajectories.

In Fig. 4, the probability distributions p(ζ ) of the random
surrogate points assigned to intervals emulating the transitions
from laminar to turbulent phases are shown. One can see,
that despite of the completely random nature of the surrogate
signal ζn, the qualitative form of the distribution p(ζ ) of points
corresponding to transitions from laminar to turbulent phases
happens to be exactly the same as for the cases of coupled
logistic maps (3) and logistic maps driven by noise (13). Fig-
ure 4 clearly shows a pronounced minimum of the probability
density p(ζ ), located in the region around ζe = 0.5 where
the maximum strong compression of phase trajectories takes
place. The apparent identity of the probability densities p(y)
and p(ζ ) given in Figs. 3 and 4 convincingly confirms the
probabilistic nature of the phenomenon observed.

So, just below the synchronization onset in the phase
trajectory of the response system with a certain (small) prob-
ability there are short sections mostly lying in the regions
of the phase space, which for the modified system are areas
of divergence of the close phase trajectories. There are these
sections of the phase trajectories that are responsible for the
divergence of the initially close trajectories of the response
and auxiliary systems at a considerable distance from each
other, after which the phase trajectories of these systems be-
come different, which results in the detection of the turbulent
phase.

It should also be noted that the backward transitions from
turbulent to laminar phases are also associated with the ran-

(a) (b)

FIG. 5. (a) The probability distribution of the states of the
response logistic map (3) calculated for the short time intervals cor-
responding to the transition from the turbulent to laminar phases of
motion (light brown bars), ε = 0.3. The gray rectangle corresponds
to the area of the phase space of the modified system (7), charac-
terized by the compression of the phase trajectories. (b) The same
probability distribution obtained for the noise driven system (13),
ε = 0.23 . The number of points used to calculate each of distribu-
tions is N = 5 × 107, the width of bin is �b = 0.02.

domly occurring short segments of the phase trajectory of the
response system, which, in turn, are mostly located in the area
of the modified system phase space where the compression
takes place, including the region with the maximal one (for
the system under consideration it is the region in the vicinity
of ye = 0.5, where g′(ye) � 0). The probability distributions
obtained for these intervals for the deterministic (a) and ran-
dom (b) driven signals are shown in Fig. 5. In both cases,
contrary to the transition from laminar to turbulent phases, a
very pronounced peak of the probability distribution p(y) is
clearly visible in region II, at ye = 0.5.

Now, having a clear understanding of the mechanisms that
results in the alternation of laminar and turbulent phases near
the synchronization onset, it remains for us to answer one
important question, namely, why does the transition to fully
synchronous dynamics occur with an increase of the coupling
parameter ε?

It is obvious that, firstly, with an increase of the control
parameter ε, there is a gradual expansion of region II (and,
accordingly, a compression of regions I and III). Accordingly,
some part of the points that, at a lower value of the coupling
parameter ε, fell into the regions of scattering of initially close
phase trajectories (regions I and III), with an increase of the
coupling strength, start to be located in region II, characterized
by the compression of the phase space. Secondly, those points
of the trajectory of the driven system, which still fall into
the regions of the phase trajectories divergence, for the same
value of y are characterized by a smaller degree of divergence
of close phase trajectories, |g′(y)|. The combination of these
two factors decreases the probability of the appearance of
segments of the phase trajectory, the representing points of
which are located mainly in the divergence regions, that, in
turn, for a certain (critical) coupling parameter value, εc, re-
sults in the transition to a completely synchronous generalized
synchronization regime.

V. THE CASE OF N-DIMENSIONAL MAPS

The use of the modified system approach to
explain the mechanism of intermittent generalized synchro-
nization described in the previous Sec. IV can be generalized
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to the case of N-dimensional unidirectionally coupled maps
with the dissipative coupling. Indeed, let N-dimensional
vectors x = (x1, x2, . . . , xN )T , y = (y1, y2, . . . , yN )T ,
z = (z1, z2, . . . , zN )T be the states of the drive, response
and auxiliary systems, respectively. The dynamics of the
drive and response systems are determined by the following
evolution operators:

xn+1 = Fd (xn, pd ) (14)

and

yn+1 = F(yn, pr ) + εA(Fd (xn, pd ) − F(yn, pr )), (15)

where Fd = (F d
1 , . . . , F d

N )T and F = (F1, . . . , FN )T are the
N-dimensional vector-functions, pd and pr — the control
parameter vectors of the drive and response maps, respec-
tively. A = {ai j} (ai j = 0 or 1) is the dissipative coupling
matrix. The auxiliary system is also determined by Eq. (15)
with substitutions of the quantities z for y and pa for pr ,
(pa = pr + �p, ||�p|| → 0). The modified system for the
considered N-dimensional map is

un+1 = G(un) = (E − εA)F(un, pr ), (16)

where G = (G1, . . . , GN )T is n-dimensional vector-function,
E is an n-dimensional unit matrix, ei j = 1 if i = j and 0 oth-
erwise. As well as in the case of one-dimensional maps (see
previous Sec. IV), the small differences between coordinates
of the response and auxiliary systems decrease at those points
yn of the N-dimensional phase space of the response system
for which

|μi| < 1, ∀i = 1, . . . , N, (17)

where μi are the eigenvalues of matrix

JG =

⎛
⎜⎜⎜⎜⎜⎝

∂G1
∂u1

∂G1
∂u2

. . . ∂G1
∂uN

∂G2
∂u1

∂G2
∂u2

. . . ∂G2
∂uN

...
...

. . .
...

∂GN
∂u1

∂GN
∂u2

. . . ∂GN
∂uN

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
u=yn

(18)

and increase otherwise [if at least one of the values |μi|
(i = 1, . . . , N) is greater than 1]. Again, as well as in the case
of one-dimensional maps the laminar motion is interrupted
when the phase trajectory of the response map {yi}|i=n+L

i=n
within the short time interval corresponding to the transition
from synchronous to asynchronous dynamics (here n is an
initial point of the transition, L is the transition length) is lo-
cated mostly in subspaces of the phase space characterized by
the divergence of phase trajectories (i.e., where ∃i, |μi| > 1)
in comparison with regular (synchronous or asynchronous)
behavior.

We illustrate the described generalized approach to mul-
tidimensional discrete systems with the example of a two-
dimensional Hénon map [38]. In this case, the vector-function
of the drive system is

Fd (x, pd ) =
(

1 − pd
1x2

1 + x2

pd
2x1

)
, (19)

the vector-function for the response system is given by

F(y, pr ) =
(

1 − pr
1y2

1 + y2

pr
2y1

)
(20)

and the coupling matrix is chosen as

A =
(

1 0
0 0

)
. (21)

For the selected values of the control parameters pd
1 = 1.4,

pr
1 = 1.35, pd

2 = pr
2 = 0.3 the autonomous (ε = 0) Hénon

maps demonstrate the chaotic behavior. With the growth of
the coupling strength ε the coupled systems undergo to the
generalized synchronization regime at εc = 0.34, whereas just
below the boundary of GS the intermittent behavior (intermit-
tent generalized synchronization) is observed.

The eigenvalues of the matrix JG in the considered case
are

μ1,2 = (1 − ε)

(
±

√
(pr

1y1)2 − pr
2

1 − ε
− pr

1y1

)
(22)

and, as it can be seen, μ1,2 depend only on the first coordinate
of the response system, y1. Accordingly, we can now consider
the projection of phase space of the response system on the y1

axis and divide it into regions of compression and stretching of
phase trajectories, respectively. According to criterion (17) the
projection of the response map phase space y1 (and, the whole
phase space, accordingly) is divided into three subspaces:
y1 < −y∗ (region I), −y∗ < y1 < y∗ (region II) and y∗ < y1

(region III), where

y∗ = 1 + pr
2(1 − ε)

2pr
1(1 − ε)

. (23)

For the selected control parameters, the boundary point value
is y∗ ≈ 0.64. Regions I and III are responsible for the diver-
gence of the close phase trajectories, while region II, on the
contrary, provides a reduction in the distance between such
trajectories.

In Fig. 6, the probability distribution p(y1) of the response
Hénon map (20) calculated for the transition intervals from the
laminar to turbulent phases of motion is shown by light brown
bars. The length of transition used for the calculation has been
chosen the same as in the case of logistic maps considered
above (L = 12). Again, for comparison, in the same figure the
probability density distribution of the response system ob-
tained for the laminar phases only is shown by transparent
rectangles. Obviously, just as in the case of one-dimensional
maps described above (Sec. IV), in the considered case for the
time intervals of transition from laminar phases to turbulent
ones it is clearly seen a sharply pronounced change in the
character of the distribution p(y1). From Fig. 6, one can see
a radical reduction in the number of points in region II being
responsible for the convergence of close phase trajectories.

Thus, after considering the intermittent behavior in unidi-
rectionally coupled Hénon maps below the threshold of the
GS regime, we can conclude that in multidimensional systems
(in the case under consideration, two-dimensional) the same
mechanism that has been revealed on the example of one-
dimensional logistic maps is responsible for the emergence
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FIG. 6. The probability distribution of the y1 coordinates of the
response Hénon map (20) with coupling term given by matrix (21)
calculated for the short time intervals corresponding to the transition
from the laminar to turbulent phases of motion (light brown bars)
in comparison with the analogous distribution obtained for laminar
phases (transparent bars), ε = 0.3. The gray rectangle corresponds to
the area of the phase space, characterized by the compression of the
phase trajectories (region II). The number of points used to calculate
each of distributions is N = 5 × 107, the width of bin is �b = 0.02.

of alternating epochs of the synchronous and asynchronous
behavior. This, in turn, allows us to speak on the universality
of the revealed mechanism and the possibility of using it to de-
scribe, both qualitatively and quantitatively, the phenomenon
of intermittent generalized synchronization in discrete-time
dynamical systems of arbitrary dimension. In addition, due
to the connection between the flows and the maps via the
Poincaré secant method [39], it is hoped that the developed
technique may serve as a bridge to the understanding of the
mechanisms that lead to the emergence of the IGS regime in
flow systems.

VI. MULTISTABILITY IN THE IGS REGIME

Let us now move to the consideration of question 2 and
try to answer where the multistability in the intermittent gen-
eralized synchronization regime comes from. As well as it is
known [26], for the regime of intermittent generalized syn-
chronization in certain periods of time the current stage may
be detected as both synchronous and asynchronous motion
depending on the choice of initial condition of the selected
auxiliary system. To describe quantitatively the revealed in-
termittency phenomenon in Ref. [26] the probability of the
detection of the asynchronous regime in the nth moment of
discrete time Pa

n has been proposed. This measure of multista-
bility may be calculated for the set of N → ∞ identical (with
the precision to �λ) response systems y j

n ( j = 1, . . . , N) as

Pa
n = 1 −

N∑
j=1

n
(
y j

n
)

N (N − 1)
, (24)

where n(y j
n) is a number of the response oscillators being in

the identical state with jth response oscillator y j
n at the mo-

ment of discrete time n. At the beginning, the initial conditions
of all oscillators under consideration may be chosen arbitrarily

from the basin of attraction of the chaotic attractor of the au-
tonomous system, providing that all initial points are different.
After a long transient process (we have used Ttr = 105), when
the regime of intermittent generalized chaotic synchronization
is considered to be fully established, the measure of multi-
stability Pa

n may be calculated. Two response oscillators, y j
n

and yk
n, are assumed to be in identical states at the moment of

discrete time n with the accuracy of elementary volume δ � 1
in the phase space x ∈ (0; 1) if∣∣y j

n − yk
n

∣∣ < δ. (25)

Due to its probabilistic approach Eq. (24) is closely connected
to the concept of “tipping probabilities” used to describe the
rate-tipping phenomena [40].

If Pa
n is equal to zero, it means that all considered response

oscillators are in one and the same state and the synchronous
phase of dynamics is realized in the unidirectionally coupled
logistic maps. The closer the value of Pa

n > 0 is to unity, the
greater is the probability of detecting the turbulent phase with
the help of the auxiliary system method. Having calculated
the dependence of Pa

n on the discrete time n one can easily
separate the epochs of the synchronous and asynchronous
behavior as well as the segments of the transitions between
these phases. Indeed, at discrete time nl

end, when the value
of Pa

n , which was below some predetermined threshold value
Pc, begins to exceed this value, the moment of completion of
the laminar phase is fixed. After this moment of discrete time
the interval of duration L begins, during which the laminar
phase is destroyed and the transition to the turbulent phase
is realized. In this case, the beginning of the developed tur-
bulent phase is nt

start = nl
end + L. Conversely, the moment of

discrete time nl
start , when the value of Pa

n , which exceeded
previously the critical level Pc, happens to be below it (and
then stays below this critical value during the following L
iterations), is considered as the beginning of the laminar
phase, whereas the moment of the turbulent phase destruc-
tion is fixed as nt

end = nl
start − L. The interval of L discrete

units between nt
end and nl

start corresponds to the transition
from turbulent (asynchronous) to laminar (synchronous) be-
havior. It is the approach that has been used in Sec. IV to
calculate the probability distributions for the different types
of dynamics of unidirectionally coupled logistic maps (3),
logistic maps driven by the random signal (13) and coupled
Hénon maps (14) and (15). The threshold value in our con-
sideration has been fixed as Pc = 10−3 for coupled logistic
maps and Hénon maps. Due to the noise influence for logistic
maps driven by random signal the threshold value should
be enlarged, therefore, in this case, it has been chosen as
Pc = 5 × 10−2.

To reveal the underlying mechanism of the multistability
manifestation in the intermittent generalized synchronization
regime, we turn to the consideration of the modified sys-
tem (7) again. For the control parameter values λr = 3.79
and ε = 0.3 used in our work and corresponding to the IGS
regime, the attractor of the autonomous modified system is
the stable fixed point

u0 = λ(1 − ε) − 1

λ(1 − ε)
. (26)
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If one consider the term ε f (λd , xn) in Eq. (8) as the
additional control parameter h ∈ [0; ε)] of the modified
system

un+1 = g(un) + h = (1 − ε) f (λr, un) + h, (27)

the attractors of this modified system are the stable fixed point

u0 =
√

4λh(1 − ε)ε + (λ(1 − ε) − 1)2 + λ(1 − ε) − 1

2λ(1 − ε)
(28)

for

h < hc = (λ(1 − ε) + 1)(3 − λ(1 − ε))

4λ(1 − ε)ε
≈ 0.3982 (29)

and stable 2-cycle, otherwise, if h > hc. It is clear that since
the parameter h depends on the state of the drive system xn and
varies greatly from the iteration to iteration, the attractor of
the modified system is also rebuilt at each moment of discrete
time n, so the system is always in the state of an unfinished
transient. Nevertheless, the modified system is highly dissi-
pative and, in turn, the ensemble of N response systems y j

n

( j = 1, . . . , N) will tend to collapse to one and the same state
yn which should correspond to the generalized synchroniza-
tion regime. In fact, this is exactly what happens during the
laminar phase, when all response systems are assembled into
one compact cluster.

However, there are several factors preventing the establish-
ment of a fully synchronous regime. The first of them is the
passage of phase trajectories of the response systems through
the short intervals, characterized by a significant divergence
of the neighbor trajectories and being responsible for the
transition from the synchronous phase to the asynchronous
one, which has been described above in the Secs. IV and V.
After passing through such intervals, the states of the response
systems y j

n are, as a rule, still within the same cluster, however,
its size becomes significantly larger. As a result, when one
determines the synchronism with some predetermined accu-
racy δ, the synchronization is still detected between some
response systems, but between some ones it is no longer exist.
Accordingly, the probability to detect a turbulent phase Pa

n
increases in parallel with the multistability effect begins to be
observed.

The second factor supporting the existence of turbulent
phases and, accordingly, intermittent behavior near the onset
of GS, is the permanent rearrangement of the attractor of the
modified and, accordingly, the response systems (due to the
dynamics of the drive oscillator), which prevents the states
of the ensemble of response systems from rapidly collapsing
back into a highly localized area corresponding to the syn-
chronous regime. And the third one is the limit cycle of period
two that occurs from time to time in the modified system phase
space due to the evolution of the control parameter h (i.e.,
due to the dynamics of the drive oscillator), the appearance
of which can break up the existing cluster of the response
system states into several ones. It is important to note that the
observed behavior is very closely related to the concepts of
multiscale systems, critical manifolds and rate tipping points
and has some features in common with tipping phenomena in

(a)

(b)

FIG. 7. (a) The dependence of the probability to detect the tur-
bulent (the asynchronous) motion Pa

n on the discrete time n (the solid
red line) and the coordinates y j

n of N = 250 response systems (blue
points), ε = 0.3. (b) The short fragment of Fig. 7(a).

dynamical systems, whith the state of the drive system plaing
the role of the drift parameter [40].

All three factors described above one can easily see from
Figs. 7 and 8. In Fig. 7(a), the dependence of the probability
to detect the turbulent (the asynchronous) motion Pa

n on the
discrete time n is shown. The given fragment is chosen to
be sufficiently long, and, therefore, it covers several phases

FIG. 8. The typical distribution of the states of the response os-
cillator cluster (blue points) on the Lamerey diagram of the modified
system (27) for the case when the stable 2-cycle (red points and rect-
angle) is the attractor in the modified oscillator, ε = 0.3, h = 0.172.
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of both the laminar and turbulent motion. The shorter time
interval corresponding to the transition from the laminar to
turbulent phase is shown in Fig. 7(b) [this fragment is marked
by the gray rectangle in Fig. 7(a)]. In both Figs. 7(a) and 7(b)
in parallel with Pa

n , the coordinates y j
n of N response systems

are shown by blue points. For illustration and clarity, the
number of the response systems was chosen to be relatively
small, N = 250. One can see that within the laminar phase all
response systems form the localized cluster and, as a conse-
quence, the probability (24) to detect the turbulent phase with
the predetermined accuracy δ = 5 × 10−2 is equal to zero.
At the same time, out of the laminar phases the coordinates
of the response oscillators are localized within one or several
clusters whose size exceeds the accuracy δ that, in turn, re-
sults in the growth of Pa

n value and the manifestation of the
multistability, respectively.

In Fig. 8, the typical distribution of the response oscillator
states y j

n on the Lamerey diagram of the modified system is
shown for the case when (due to the control parameter values)
the attractor of the modified system is the stable cycle with pe-
riod of 2. The elements of the stable periodic cycle are shown
as two red points connected by the red square representing
periodic oscillations in Lamerey diagram. One can see that all
points y j

n representing the states of the response systems are
divided into two extended clusters each of them is attracting
to one of two elements of periodic 2-cycle. Obviously, such
stretching of the set of potential locations of the response
systems in the phase space results in a significant increase in
the value of Pa

n and, accordingly, a noticeable manifestation of
the multistability properties in the regime of the intermittent
generalized synchronization.

VII. CONCLUSIONS

In conclusion, in the present paper we have described the
mechanisms of the intermittent generalized synchronization
regime observed near the boundary of generalized synchro-
nization in unidirectionally coupled discrete maps. Having
considered the features of the behavior of coupled logistic
maps, we have explained the causes of the turbulent phases
as well as multistability emergence. Taking into account the
close relationship between systems with continuous and dis-
crete time, one can reasonably expect that the mechanisms
identified and described in this paper for the coupled maps
may to some extent determine the features of intermittent
behavior near the boundary of generalized chaotic synchro-
nization in the coupled chaotic oscillators with continuous
time. At the same time, due to the characteristic features of
flow systems and their significant differences from maps, it
is obvious that the direct “mechanical” transfer of the regu-
larities found for maps to flow systems does not seem to be
reasonable, and, accordingly, the analysis of the behavior of
coupled flow oscillators near the boundary of the generalized
chaotic synchronization regime requires the additional efforts
and deserves the separate consideration.
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