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Next-generation reservoir computing is a machine-learning approach that has been recently proposed as an
effective method for predicting the dynamics of chaotic systems. So far, this approach has been applied mainly
under the assumption that all components of the state vector of dynamical systems are observable. Here we study
the effectiveness of this method when only a scalar time series is available for observation. As illustrations, we
use the time series of Rössler and Lorenz systems, as well as the chaotic time series generated by an electronic
circuit. We found that prediction is only effective if the feature vector of a nonlinear autoregression algorithm
contains monomials of a sufficiently high degree. Moreover, the prediction can be improved by replacing
monomials with Chebyshev polynomials. Next-generation models, built on the basis of partial observations,
are suitable not only for short-term forecasting, but are also capable of reproducing the long-term climate of
chaotic systems. We demonstrate the reconstruction of the bifurcation diagram of the Rössler system and the
return maps of the Lorenz and electronic circuit systems.

DOI: 10.1103/PhysRevE.109.064215

I. INTRODUCTION

Predicting the behavior of natural and human-built dynami-
cal systems from their output signals is a challenging task with
important practical applications. Significant progress has been
made in addressing this problem through the development
of various machine-learning algorithms based on artificial
neural networks [1]. One of the leading candidates is echo
state networks or reservoir computers (RCs) [2–7], which
process information signals using the nonlinear responses of
a high-dimensional dynamical system, known as a reservoir.
In RCs, the weights connecting the input layer to the reservoir
and the recurrent connection weights are assigned randomly
and remain fixed. Only the readout weights are trained us-
ing a simple and efficient least squares method. Recently,
Gauthier et al. [8] proposed next-generation RCs (NG-RCs),
which avoids the inherent random nature of traditional RC
and requires fewer metaparameters. The effectiveness of this
approach has been demonstrated mainly for the case where
all dynamic variables are available for observation [8–12].
However, in many experimental situations, especially when
dealing with a natural, non-man-made system, only partial
information about its dynamic variables can be extracted. The
purpose of this paper is to test the effectiveness of NG-RC in
such a situation.

The origins of RC research are mainly associated with
two seminal papers published by Jaeger [2] and Maasset al.
[3] in the early 2000s. Elegant in its simplicity, standard RC
has proven to be very effective in predicting chaotic time
series and reconstructing chaotic attractors [10,13–21]. RC
can be used as an observer to infer unmeasured variables

*Contact author: irmantas.ratas@ftmc.lt

of a chaotic system from continuously measured ones, but
this requires knowing the full state vector during the train-
ing phase [22]. The ability of RCs to reproduce long-term
statistical properties of chaotic systems, known as climate
replication [14,15], has recently been used to predict changes
in system behavior as a function of a control parameter.
This is achieved by incorporating an additional parameter-
control channel into the standard RC. Then, by training RCs
on time series at several parameter values, we can recon-
struct the dynamics of the system for parameter values not
included in the training set [23,24]. This method made it pos-
sible to reconstruct bifurcation diagrams of chaotic systems
[24–27] even in the case of noisy [26] and real experimental
[27] data. The standard RC has the advantage of being able
to implement the reservoir on physical hardware and thus
speed up computation [7,28–33]. The disadvantage of con-
ventional RCs is that there is only a limited amount of theory
about how they work. Theorists investigate the dependence
of RC performance on various factors such as generalized
synchronization [15,34,35], nodal dynamics [36,37], network
topology [17,38,39] and size [40,41], readout methods [42],
and others. Typically, to create a well-performing nonlinear
reservoir, a number of metaparameters need to be optimized.

RC theory is greatly simplified under the assumption that
the reservoir is a linear dynamical system and nonlinearity
is present only in the output layer (feature vector). It was
recently shown that a RC based on a linear reservoir and a
feature vector constructed as a weighted sum of nonlinear
functions of reservoir node values is a universal approximator
of dynamical systems [43,44], and such a RC is equivalent
to a nonlinear vector autoregression (NVAR) machine [45].
Inspired by these theoretical results, the authors of Ref. [8]
developed a modified version of RCs called NG-RC. In NG-
RC, there is no reservoir and fewer metaparameters need to be
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tuned. In addition, this approach requires less training data and
shorter warmup time than conventional RCs [9]. A NG-RC
uses the NVAR algorithm with a feature vector consisting of
several time-delayed input signals and their nonlinear func-
tions, which are usually taken in polynomial form.

The ability of NG-RCs to predict and reconstruct dynami-
cal systems has recently been demonstrated using time series
of reference low-dimensional chaotic systems [8–12], as well
as a system exhibiting spatiotemporal chaos [46]. In the ex-
amples [8–12], a NG-RC was applied under the assumption
that the full state vector of the system is observable (at least
in the training phase). In this paper, we apply a NG-RC to
two classical theoretical models of Rössler [47] and Lorenz
[48] systems and to experimental time series of an electronic
Rössler-like oscillator [49], assuming that only one scalar
variable of the dynamical system is observable. This is a more
complex task compared to one where all system variables are
available. In the latter case, NG-RC works well with a fairly
simple feature vector consisting of low-degree monomials
of dynamic variables [8]. When a univariate time series is
used, the algorithm becomes more complex. We now need to
estimate the appropriate delay time and embedding dimension
to reconstruct the system dynamics in time-delay coordinates
[50]. In addition, good NG-RC performance is only achieved
when high degree monomials are used. We show that perfor-
mance can be improved by replacing the basis of monomial
functions with an orthogonal basis of Chebyshev polynomials.
We refer to this modification as the NG-RC-Ch algorithm.

The rest of the paper is organized as follows. In Sec. II, we
formulate the problem and describe the NG-RC and NG-RC-
Ch algorithms as applied to univariate time series. Section III
presents the results of applying these algorithms to the Rössler
[47] and Lorenz [48] systems, as well as to the chaotic time
series generated by the electronic circuit [49]. The paper con-
cludes with a discussion of the results in Sec. IV.

II. PROBLEM STATEMENT AND METHODS

We consider the problem of predicting the dynamics of
chaotic systems described by autonomous nonlinear differen-
tial equations of the form

ẋ = F(x, p), (1)

where ẋ is the time derivative of the state vector x, F(x, p)
defines the vector field of the system, and p is a parameter.
We assume that the model Eq. (1) is unknown and the full
state vector x(t ) is unobservable, but the scalar variable S(t ),
which is a function of the state vector S(t ) = h[x(t )], can be
measured at the output of the system. We also assume that the
observed variable S(t ) is capable of accurately reconstructing
the underlying attractor in time-delay coordinates.

Suppose we have an equidistantly measured time series
Si = S(ti ) for ti = T0 + (i − 1)�t , where i � 1 is an integer,
T0 is the initial time, and �t is the sampling time. We set
T0 = −Ttrain, where Ttrain ≡ (n − 1)�t is the training time.
Our goal is to learn the dynamics of Si during the training
phase i = 1, . . . , n (−Ttrain � t � 0) and make a prediction of
Si for i > n. We denote the forecast time series as Ŝi, i > n.
Next, it is convenient to analyze the rescaled time series Ri

with values from −1 to 1:

Ri = 2
Si − Smn

Smx − Smn
− 1. (2)

Here, Smx and Smn denote the maximum and minimum values
of the time series Si determined before the prediction phase.
The scaled predicted time series R̂i is related to Ŝi in the same
way as Ri and Si.

We test our algorithms for short-term prediction and
long-term reconstruction of attractor dynamics (climate repli-
cation). The accuracy of short-term prediction is evaluated by
two measures: (i) the root mean square error

RMSE =
√

1/L
∑

i(R̂i − Ri )2

σR
, (3)

where L is the number of terms in the prediction interval and
σR is the standard deviation estimated before prediction; and
(ii) the valid prediction time Tvp (see Ref. [21]). To determine
Tvp, we first introduce the absolute error:

εi = |R̂i − Ri|/2. (4)

The valid prediction time is defined as the time interval
from the beginning of the prediction to the first point in time
when the absolute value of the error εi exceeds some arbitrary
threshold value εth. We choose εth = 0.01. To evaluate the
ability of our algorithms to reproduce the long-term statistical
properties (climate) of the original system, we use the largest
Lyapunov exponent, return maps, and bifurcation diagrams as
indicators.

A. NG-RC and NG-RC-Ch algorithms

Here we describe the NG-RC algorithm and its modified
version NG-RC-Ch for a fixed value of the parameter p. When
reconstructing a bifurcation diagram, we need to include in the
algorithm a dependence on the parameter p. Such a modifica-
tion is presented in the Appendix.

Given a scalar time series Ri, we reconstruct the dynam-
ics of the system in a multidimensional state space using
the time-delay coordinates. We define the delay time in
these coordinates as τ and introduce the k-dimensional state
vector as

Ri = [Ri, Ri−nτ
, . . . , Ri−(k−1)nτ

]T , (5)

where nτ = τ/�t is assumed to be an integer. We estimate
the embedding dimension k using the false nearest-neighbors
algorithm [51] and evaluate the embedding delay time τ from
the first minimum of average mutual information [52].

Following Refs. [8,45], we use the NVAR algorithm to
approximate the system dynamics with a map

Ri+1 = Ri + �tWoutO(Ri ), (6)

where Wout is the row vector of NG-RC output weights. It is
determined at the training phase. The feature vector O(Ri ) ≡
Oi is a function of the current state Ri. The feature vector Oi

is constructed from three parts: the bias c, the linear vector
O(1)

i , and a set of nonlinear vectors O(l )
i , l = 2, 3, . . .. Without

loss of generality, we take c = 1. The linear part is simply the
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state vector:

O(1)
i = Ri = [Ri, Ri−nτ

, . . . , Ri−(k−1)nτ
]T . (7)

The nonlinear vector O(l )
i is the set of all unique monomials

of degree l composed of all components of the state vector Ri.
For example, if we want to build a model in three-dimensional
embedding space, k = 3, the second-order nonlinear vector
l = 2 is as follows:

O(2)
i = [

R2
i , RiRi−nτ

, RiRi−2nτ
, R2

i−nτ
, Ri−nτ

Ri−2nτ
, R2

i−2nτ

]T
.

(8)

The total feature vector containing nonlinearities up to second
order is of the form

Oi = 1 ⊕ O(1)
i ⊕ O(2)

i . (9)

Here ⊕ represents the vector concatenation operation. In this
example, k = 3 and the length of the total vector Oi is 10.
In general, the total vector containing all vectors O(l )

i with
degrees up to order m can be written as

Oi = 1 ⊕ O(1)
i ⊕ O(2)

i . . . ⊕ O(m)
i . (10)

The length of the vector O(l )
i is dl = ∏l−1

i=0 (k + i)/l!, and the
length of the total vector Oi is

d = 1 +
m∑

l=1

dl . (11)

For time series Ri of length n, there are n − (k − 1)nτ possible
feature vectors Oi.

The row vector Wout is determined in the training phase
using the requirement that the map (6) provides the best ap-
proximation of the time series. The length of the vector Wout

is d . Let us introduce a notation for the difference between
two consecutive measurements:

Yi = (Ri+1 − Ri )/�t = WoutOi. (12)

The values Yi obtained at the training stage are collected into
a row vector

Ỹ = [Yn−1, Yn−2, . . . ,Yn−(k−1)nτ +1] (13)

of size n − (k − 1)nτ − 1. The feature vectors are collected in
a similar manner, resulting in a matrix

Õ = [On−1, On−2, . . . , O(k−1)nτ +1] (14)

of dimension d × [n − (k − 1)nτ − 1]. Now the regression
problem reads

Ỹ = WoutÕ. (15)

Using the least-squares method with Tikhonov regularization,
we obtain

Wout = ỸÕT (ÕÕT + βI)−1. (16)

Here β is the regularization parameter, also known as ridge
parameter, and I is the identity matrix.

Having determined the output weights Wout during the
training phase i � n (t � 0), we can now use it to predict the
dynamics of the system for t > 0, i.e., generate forecast time
series R̂i:

R̂i+1 = R̂i + �tWoutO(R̂i ), i � n, (17)

with the initial conditions R̂i = Ri for i = n − nw, . . . , n
where nw = (k − 1)nτ . The initial conditions are taken from
the interval t ∈ [−tw, 0] of the length tw = (k − 1)τ known as
the warm-up time.

It is worth noting that in the time-continuous limit �t → 0,
Eq. (17) is transformed into a scalar nonlinear delay differen-
tial equation (DDE),

dR̂/dt = WoutO[R̂(t ), R̂(t − τ ), . . . , R̂(t − (k − 1)τ )],

t > 0, (18)

with initial conditions R̂(t ) = R(t ) given on the time interval
t ∈ [−tw, 0]. Thus, in the time-continuous limit, the NG-RC
algorithm produces a surrogate prediction model in the form
of a nonlinear DDE that is trained by fitting its solution to a
given scalar signal.

The above algorithm is a direct replication of NG-RC
to the case of scalar time series. In addition, we present a
modified version of this algorithm, which we called NG-
RC-Ch. The main idea of the modification is to replace
the basis of monomial functions with an orthogonal basis
of Chebyshev polynomials of the first kind. More precisely,
monomials of type x j1 y j2 z j3 in nonlinear feature vectors are
replaced by expressions Tj1 (x)Tj2 (y)Tj3 (z), where Tjk is a
Chebyshev polynomial of degree jk . For example, a modifica-
tion of the nonlinear feature vector Eq. (8) has the following
form:

O(2)
i = [T2(Ri ), T1(Ri)T1(Ri−nτ

), T1(Ri )T1(Ri−2nτ
),

T2(Ri−nτ
), T1(Ri−nτ

)T1(Ri−2nτ
), T2(Ri−2nτ

)]T . (19)

In the next section, we will present a comparison of the per-
formance of both algorithms using specific examples.

III. RESULTS

We apply the above algorithms to scalar time series gen-
erated by two classical chaotic systems Rössler [47] and
Lorenz [48], as well as to experimental data generated by an
electronic Rössler-like oscillator [49]. Using these systems as
examples, we compare the performance of the NG-RC and
NG-RC-Ch algorithms depending on two parameters: sam-
pling time �t and the maximum degree m of monomials or
Chebyshev polynomials utilized in the feature vectors. We call
the parameter m the degree of nonlinearity of the algorithm
or trained model. In the figures below, we use the labels
Mn (monomials) and Ch (Chebyshev polynomials) followed
by the number m to denote the results of the NG-RC and
NG-RC-Ch algorithms with a given degree of nonlinearity,
respectively. The values of characteristic parameters of time
series for different systems are summarized in Table I.

A. Rössler system

We’ll start our analysis with the Rössler system [47],

ẋ = −(y + z), (20a)

ẏ = x + ay, (20b)

ż = b + z(x − c), (20c)
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TABLE I. Values of characteristic parameters of time series for
different systems. Here �t = 33.3 µs is the sampling time of the
chaotic time series of the electronic oscillator [49].

Parameter Rössler Lorenz Electronic oscillator

Observed variable y x v2

Embedding dimension 3 3 4
Embedding delay time 1.5 0.15 7�t
Lyapunov time 14.08 1.10 90�t

assuming standard parameter values a = b = 0.2, c = 5.7.
These parameters provide a chaotic regime with the largest
Lyapunov exponent � = 0.071 or Lyapunov time 1/� =
14.08. Let us imagine that the full state vector x(t ) =
[x(t ), y(t ), z(t )]T is unobservable and only the variable y(t )
is available for observation, that is, S(t ) = h[x(t )] = y(t ). We
reconstruct the dynamics of the system in time delay coordi-
nates using the scalar variable y(t ). A false nearest-neighbor
analysis [51] of the variable y(t ) shows that the appropriate
embedding dimension is k = 3 and the delay time estimated
from the average mutual information function [52] is τ = 1.5.
We use these parameter values in both the NG-RC and NG-
RC-Ch algorithms.

Figure 1 shows an example of a prediction made by the
NG-RC-Ch [Fig. 1(a)] and NG-RC [Fig. 1(b)] algorithms
with degree of nonlinearity m = 8. The time is normalized
by the largest Lyapunov exponent. The predicted signals
(red dashed curves) are compared to the original signals
(blue solid curves). The blue and red curves in Fig. 1(c) show
the absolute errors of the NG-RC-Ch and NG-RC algorithms,
respectively. The sampling time �t = 0.1 and the training
time Ttrain = 1000 are taken to be the same for both algo-
rithms. The order of the regularization parameter β for each
algorithm was chosen by trial and error to obtain the best re-
sult. This example shows that Chebyshev polynomials provide
better prediction than monomials. The valid prediction time of
NG-RC-Ch is approximately two Lyapunov time units longer
than that of NG-RC.

The characteristic prediction time depends weakly on the
length of the training interval Ttrain if it is chosen large enough.
However, the prediction time is inhomogeneous on the attrac-
tor; the prediction result depends on the choice of the starting
point on the strange attractor. Therefore, for a more accurate
comparison of the NG-RC-Ch and NG-RC algorithms, the
statistical measures of performance over the initial conditions
should be used. In Fig. 2, the colored bars show the median of
valid prediction time med(Tvp) and the error bars indicate the
first and third quartiles. We generated N = 1000 trajectories
with different initial conditions on the Rössler attractor and
used them to train the output weights Wout and obtain valid
prediction times Tvp for both algorithms. Then, we found
quartiles of Tvp for each of the algorithms. The vertical axis
of Fig. 2 is normalized by the largest Lyapunov exponent. The
results are presented for four different values of the sampling
time �t , marked on the horizontal axis. The bars of different
colors, labeled Mn (monomials) and Ch (Chebyshev polyno-
mials), correspond to the NG-RC and NG-RC-Ch algorithms,
respectively. The numbers following these labels indicate the
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FIG. 1. An example of predicting the dynamics of the Rössler
system by the NG-RC-Ch and NG-RC algorithms. The blue con-
tinuous curves in (a) and (b) show the original time series y(t ).
The time series ŷ(t ) predicted by the NG-RC-Ch (a) and NG-RC
(b) algorithms are shown by the red dashed curves. The blue and
red curves in (c) show the absolute errors Eq. (4) of the scaled time
series for the NG-RC-Ch and NG-RC algorithms, respectively. The
parameters �t = 0.1, Ttrain = 1000, k = 3, τ = 1.5, and m = 8 are
the same for both algorithms. The regularization parameter β is 10−7

for NG-RC-Ch and 10−3 for NG-RC. The time axis is normalized by
the largest Lyapunov exponent.

FIG. 2. The medians of valid prediction time of the Rössler
system as a function of sampling time �t and degree of nonlinear-
ity m. The bars labeled Mn and ChM followed by the number m
correspond to the NG-RC and NG-RC-Ch algorithms, respectively.
Error bars show the first and third quartiles. The values of the pa-
rameters Ttrain = 2000, k = 3, and τ = 1.5 are the same for both
algorithms. The value of the ridge parameter β was chosen from a
set (10−3, 10−4, . . . , 10−9) for every bar individually to maximize
med(Tvp).
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degree of nonlinearity m used in the algorithm. The results
are presented for m = 8 and m = 14. The value of the ridge
parameter β was chosen for every bar individually to maxi-
mize med(Tvp). This figure shows that for a high degree of
nonlinearity, m = 14, NG-RC-Ch outperforms NG-RC for all
�t . For a lower degree of nonlinearity, m = 8, NG-RC-Ch
also provides a better result for almost all �t , except for
�t = 0.3, where med(Tvp) of NG-RC is slightly larger.

In many practical applications, continuous prediction of
system behavior is required. That is, knowing the history of
the output signal S(t ) up to time t , we need to predict its values
Ŝ(t + Tpred ) for varying t and fixed prediction time Tpred. We
implement such an algorithm using the following steps:

(1) Choose an initial point on the strange attractor and
generate the output time series R(ti ).

(2) In the training time interval [−Ttrain, 0], compute the
output weights Wout and keep it fixed for the whole sub-
sequent prediction procedure. The initial time at which the
prediction starts is t = 0.

(3) Iterating Eq. (17) with initial conditions R̂(ti ) = R(ti )
on the time interval [−tw, 0], find the predicted value of
R̂(Tpred ) at time Tpred.

(4) Shift the initial moment of prediction in Eq. (17) by
one sampling period ahead t → t + �t and, using initial con-
ditions R̂(ti ) = R(ti ) on the time interval [t − tw, t], find the
prediction R̂(t + Tpred ).

(5) Repeat step 4 until the time t reaches the end Tend of
the prediction interval [0, Tend] and compute the RMSE of the
prediction at that interval.

Note that in some segments of the prediction interval, the
predicted values of R̂(ti ) may go beyond the theoretically
permissible values of |R̂| � 1. Such events occur more of-
ten at larger Tpred. When estimating RMSE, we take R̂(ti ) =
sgn(R̂(ti )) for |R̂(ti )| > 1.

The results of continuous prediction of the Rössler system
by the NG-RC and NG-RC-Ch algorithms are presented in
Fig. 3. Calculations were carried out using 24 trajectories
with different initial conditions on a strange attractor. For
each trajectory, RMSE was estimated over a prediction time
interval of length Tend = 560. The horizontal axis represents
the prediction time Tpred normalized by the largest Lyapunov
exponent. The vertical axis shows the parameters of statisti-
cal averaging of RMSE over the trajectories. The quartiles
of the RMSE distribution are indicated by the three hori-
zontal bars, with the middle bar showing the median. The
red and blue colors correspond to the NG-RC and NG-RC-
Ch algorithms, respectively. Both algorithms have the same
degree of nonlinetity m = 14. This figure shows a clear ad-
vantage of NG-RC-Ch over NG-RC. NG-RC-Ch predicts the
behavior of a Rössler system up to eight Lyapunov times
with RMSE less than 1%, while NG-RC gives more or less
adequate forecast for only six Lyapunov times.

Finally, we turn to the problem of long-term climate pre-
diction. In long-term forecasting, the signal R̂(ti ) generated
by the trained model (17) need not necessarily coincide with
the original signal R(ti ). This model should reproduce only the
statistical properties of the original system so typical charac-
teristics of a strange attractor, such as Lyapunov exponents,
return maps, bifurcation diagrams, etc., can be recovered.

1 2 3 4 5 6 7 8 9
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Ch14
Mn14

FIG. 3. The results of continuous prediction of the Rössler sys-
tem. The root mean square prediction errors for the NG-RC (red)
and NG-RC-Ch (blue) algorithms are shown as a function of the
prediction time Tpred normalized to the largest Lyapunov exponent.
The values of the parameters Ttrain = 2000, Tend = 560, �t = 0.1,
k = 3, τ = 1.5, and m = 14 are the same for both algorithms.
The value of the ridge parameter β was chosen from the set
(10−3, 10−4, . . . , 10−9) for different Tpred and different algorithms
separately to minimize the RMSE.

Typically, Eq. (17) generates a bounded signal over a large
time interval. However, this equation does not guarantee the
asymptotic stability of the solution, and on fairly large timess-
cales the trajectory may escape from the strange attractor
and even diverge to infinity. Instability of trained models is
observed for both RC and NG-RC algorithms and is generally
a major open problem [5,15,53]. In the examples below, our
trained models generate stable time series over sufficiently
large time intervals so we can recover the statistical charac-
teristics of the strange attractor.

As a first test for long-term prediction, we estimated the
largest Lyapunov exponent of the Rössler system using a
trained model based on the NG-RC-Ch algorithm with degree
of nonlinearity m = 8. Training was performed on a time
series with sampling time �t = 0.1 over an interval of length
Ttrain = 1000. We then generated a time series of length 2800
using the trained model. Applying the Rosenstein [54] algo-
rithm to this time series, we estimated the largest Lyapunov
exponent. We repeated this procedure for 700 different initial
conditions on the strange attractor and obtained an average
value of the largest Lyapunov exponent equal to � = 0.060.
The same algorithm for the original time series gave the result
� = 0.062. Thus, the difference between the Lyapunov ex-
ponents estimated from the original time series and the time
series generated by the trained model is about 3%.

As the next example of climate prediction, we consider the
problem of recovering the bifurcation diagram of the Rössler
system from the scalar observable y(t ). We fixed the param-
eter values a = 0.2 and c = 5.7 as before and chose b as the
bifurcation parameter. This parameter becomes an additional
component in the state vector Ri (see Appendix for details).
Figure 4(a) shows the original bifurcation diagram obtained
from the Rössler Eqs. (20). The dots show the local maxima
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FIG. 4. Reconstructing the bifurcation diagram of the Rössler
system from a scalar observable. The dots show the local maxima of
the variable y(t ) obtained (a) from the original system Eqs. (20) and
(b) from the trained prediction model. The parameter values a = 0.2
and c = 5.7 of the Rössler system are fixed as before and b is the
bifurcation parameter. The four vertical dashed lines indicate the val-
ues of the bifurcation parameter at which time series of the variable
y(t ) were recorded for training the prediction model based on the
NG-RC-Ch algorithm. The parameters are Ttrain = 1000, �t = 0.1,
k = 4, τ = 1.5, m = 7, and β = 10−3.

of the variable y(t ). The four vertical dashed lines indicate the
values of the bifurcation parameter from which the bifurcation
diagram shown in Fig. 4(b) was recovered. At these parameter
values, four time series of the variable y(t ) with length Ttrain =
1000 were generated to train a prediction model based on the
NG-RC-Ch algorithm with a degree of nonlinearity m = 7.
The trained model made it possible to generate time series
for values of the bifurcation parameter that were not used
in the training process. We see that the bifurcation diagram
reconstructed from several time series of the scalar observ-
able generally replicates well the original bifurcation diagram.
Although some details, such as narrow periodic windows,
are not always captured in the reconstructed diagram. The
results can be improved by increasing the number of reference
parameter values. However, there is no guarantee to obtain a
good extrapolation of the bifurcation diagram far beyond the
range of reference points [12].

B. Lorenz system

Next, we compare the performance of the NG-RC and NG-
RC-Ch algorithms using the time series of the Lorenz system
[48]:

ẋ = σ (y − x), (21a)

ẏ = x(ρ − z) − y, (21b)

ż = xy − βz. (21c)

We use the standard parameter values σ = 10, r = 28, b =
8/3, and assume that x(t ) is a scalar observable. The largest
Lyapunov exponents at these parameters is � = 0.91. When
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FIG. 5. An example of predicting the dynamics of the Lorenz
system by the NG-RC-Ch and NG-RC algorithms. The blue con-
tinuous curves in (a) and (b) show the original time series x(t ). The
time series x̂(t ) predicted by the NG-RC-Ch (a) and NG-RC (b) algo-
rithms are shown by the red dashed curves. The blue and red curves
in (c) show the absolute errors Eq. (4) of the scaled time series for
the NG-RC-Ch and NG-RC algorithms, respectively. The parameters
�t = 0.005, Ttrain = 100, k = 3, τ = 1.5, m = 9, and β = 10−9 are
the same for both algorithms.

constructing the feature vector, we suppose that information
about the symmetry of the system is known in advance.
Specifically, knowing that the Lorenz equations are symmetric
under the transformation (x, y, z) = (−x,−y, z), we compose
the feature vector for the observable x from only odd degree
monomials or only odd degree Chebyshev polynomials. Also,
to preserve this symmetry in scaled time series, we set Smx =
−Smn = max(|Si|) in Eq. (2).

Figure 5 shows an example of prediction performed by the
NG-RC-Ch and NG-RC algorithms with a degree of nonlin-
earity m = 9. The sampling time �t = 0.005 and the training
time Ttrain = 100 is the same for both algorithms. The opti-
mal value of the regularization parameter for both algorithms
is β = 10−9. The advantage of NG-RC-Ch over NG-RC is
clearly seen from the error dynamics shown in Fig. 5(c). NG-
RC-Ch provides good predictions up to two Lyapunov times,
while the signal predicted by NG-RC deviates significantly
from the original signal already at half the Lyapunov time.

A more detailed comparison of the NG-RC-Ch and NG-RC
algorithms for the Lorenz system is presented in Fig. 6. As for
the Rössler system, the advantage of NG-RC-Ch over NG-RC
is more pronounced when the degree of nonlinearity m is
larger. When m = 21, the median of valid prediction time
of NG-RC-Ch, depending on the sampling time �t , ranges
between 2.7 and 3.3 Lyapunov times. Whereas for NG-RC,
the valid prediction is only between 1.5 and 1.9 Lyapunov
times.

Figure 7 shows the performance of the NG-RC-Ch and
NG-RC algorithms for the Lorenz system in the case of
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FIG. 6. The medians of valid prediction time of the Lorenz sys-
tem as a function of sampling time �t and degree of nonlinearity
m. The designations are the same as in Fig. 2. The parameters are
Ttrain = 200, k = 3, and τ = 0.15. The value of the ridge parameter β

was chosen as described in the caption of Fig. 2. The valid prediction
time is averaged over N = 1000 trajectories with different initial
conditions on the Lorenz attractor.

continuous prediction. Results are presented for degree of
nonlinearity m = 21 and sampling time �t = 0.05. Again, we
see that NG-RC-Ch provides better prediction accuracy than
NG-RC for any chosen value of prediction time Tpred.

0.1 0.3 0.5 0.7 0.9

10 -3

10 -2

10 -1
Ch21
Mn21

FIG. 7. The results of continuous prediction of the Lorenz sys-
tem. The root mean square prediction errors for the NG-RC (red)
and NG-RC-Ch (blue) algorithms are shown as a function of the
prediction time Tpred normalized to the largest Lyapunov exponent.
The designations are the same as in Fig. 3. The parameters are
Ttrain = 1000, �t = 0.05, k = 3, τ = 0.15, and m = 21. The value
of the ridge parameter β was chosen as described in the caption of
Fig. 3. The RMSE was evaluated on a prediction time interval of
length Tend = 400, using 24 trajectories with different initial condi-
tions on a strange attractor.
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FIG. 8. Reconstruction of the Lorenz map from a scalar observ-
able using the NG-RC-Ch algorithm. Return map of the actual and
predicted variable z of the Lorenz system. This plot is made with a
time series of length 1100, where the blue dots refer to the actual
Lorenz system and the red dots overlaying the blue dots refer to
the prediction. The parameters are Ttrain = 100, �t = 0.001, k = 3,
τ = 0.1, m = 9, and β = 10−5.

We now turn to the long-term prediction of the Lorenz sys-
tem. First, we evaluate the largest Lyapunov exponent using
the NG-RC-Ch model with degree of nonlinearity m = 9. We
train this model on a time series of variable x(t ) of length
Ttrain = 100 with sampling time �t = 0.005. Then, using the
trained model, we generate a time series of length 110 and
estimate the largest Lyapunov exponent. Repeating this pro-
cedure for 1000 different initial conditions on the strange
attractor, we obtain an average value of the largest Lyapunov
exponent equal to � = 0.94. The same algorithm for the
original time series results in � = 0.87. As a next test of
long-term forecasting, we reconstruct the Lorenz map. The
classical Lorenz map is constructed based on the variable z(t )
of the Lorenz system, so we now assume that this variable
is a scalar observable. The NG-RC-Ch model with degree
of nonlinearity m = 9 was trained on a time series of length
Ttrain = 100 with a sampling step �t = 0.001. Since there is
no symmetry in the dynamics of the variable z(t ) of the Lorenz
system, the feature vector was composed using Chebyshev
polynomials of both even and odd degrees. The results are
presented in Fig. 8. We followed Lorenz’s procedure to plot
the return map of successive maxima of z(t ). We first obtain
z(t ) for a long period of time, 0 < t < 1100, for both the
actual and the predicted time series. We then arrange all local
maxima of the actual and predicted z(t ) in time order and label
them [z1, z2, . . . , zM]. Then, we plot successive pairs of these
maxima [zi, zi+1] as dots in Fig. 8. The blue dots are from
the actual Lorenz system, while the red dots printed over the
blue dots are from the trained model. The red dots generated
by the trained model fall on top of the blue dots through-
out the entire running time (0 < t < 1100). Note, however,
that the blue dots corresponding to the large and small
values of the local maxima of the actual time se-
ries z(t ) remain uncovered. This is due to the fact
that such maxima are rare events in the time se-
ries z(t ) of the actual Lorenz system. They are not
picked up by the reconstructed model during the training
phase.
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FIG. 9. Prediction of experimental time series of the electronic
Rössler-like oscillator. The prediction is performed by the NG-RC-
Ch algorithm with degree of nonlinearity m = 9. (a) Dynamics of
actual (blue curve) and predicted (red dashed curve) time series.
(b) Dynamics of the prediction error Eq. (4) obtained from a scaled
time series. (c) Return maps constructed from the original (blue dots)
and predicted (red dots) time series. The parameters in all panels are
Ttrain = 15 000�t , k = 4, τ = 7�t , and β = 10−9.

C. Experimental time series of the electronic
Rössler-like oscillator

Finally, we applied our algorithm to realistic time series
in which noise perturbations, measurement errors, and other
imperfections are inevitable. Specifically, we used the ex-
perimental data sets of the electronic Rössler-like oscillator
provided by Vera-Ávila et al. [49]. In this work, the authors
recorded signals from a network of 28 identical electronic
oscillators. The recordings were carried out at different values
of the coupling strength between the oscillators, including
the case of uncoupled (free) oscillators. Just such a case is
analyzed in our paper. We use the time series of one free os-
cillator, designated in Ref. [49] as the first oscillator. The state
of the oscillator is determined by three dynamic variables:
voltages v1, v2, and v3. In our analysis, we use the time series
of the variable v2(t ) that was recorded with a sampling rate
of 30 KS/s or sampling time �t = 33.3 µs. The waveform of
the electronic oscillator resembles that of the standard Rössler
oscillator, although the dynamic equations governing these
systems are significantly different. The nonlinearity in the
standard Rössler equations is determined by the product of
the dynamic variables, whereas in the dynamic equations
of the electronic circuit given in [49], the nonlinearity is
determined by a piecewise linear function.

The results of our analysis are presented in Fig. 9. A false
nearest-neighbor analysis [51] of the time series v2(t ) shows
that the appropriate embedding dimension is k = 4, and the

delay time estimated from the average mutual information
function [52] is τ = 7�t . Rosenstein’s algorithm [54] gives
the value of the largest Lyapunov exponent � = 1/(90�t ).
We demonstrate the prediction of the experimental time se-
ries using NG-RC-Ch algorithm with degree of nonlinearity
m = 9. The NG-RC-Ch model was trained on a time interval
of length Ttrain = 15 000�t . The time series predicted by the
trained model (red dashed curve) is compared with the actual
time series (blue curve) in Fig. 9(a). Figure 9(b) shows the
dynamics of the prediction error. A fairly good prediction is
seen up to two Lyapunov times.

To demonstrate long-term prediction, we reconstructed the
return map. As in the case of the Lorenz map, we found
local maxima [v2,1, v2,2, . . . , v2,M ] of the original and pre-
dicted time series v2(t ). We then plotted successive pairs of
these maxima [v2,i, v2,i+1] as dots in Fig. 9(c). The blue dots
correspond to the actual time series, while the red dots printed
over the blue dots correspond to the trained model. The red
dots are consistently near the blue dots, indicating that the
trained model reproduces the climate in the long term. Note
that the red dots fall on an imaginary thin continuous curve,
while the blue dots are scattered (presumably due to noise
present in the experimental time series) in the neighborhood of
this curve. The effect of less scattering of red dots correspond-
ing to the reconstructed map can be explained by the ability
of the next-generation RC algorithm to filter out noise. This
explanation is consistent with the claim of a recent publication
[27] that a conventional reservoir computer can be used as a
noise filter to recover system dynamics from noisy signals.

IV. DISCUSSION

The aim of this paper was to investigate the effectiveness
of the NG-RC approach for predicting the dynamics of chaotic
systems when only partial observations are available. We fo-
cused on the most difficult case, when a prediction needs to
be made based on the dynamics of a scalar observable. In our
paper, we used time series of chaotic Rössler [47] and Lorenz
[48] systems as well as chaotic time series generated by an
electronic circuit [49].

Previous works [8–12] have shown that NG-RC is very
effective when all components of the state vector of a chaotic
system are used for prediction. Good results were achieved
using a fairly simple feature vector consisting of only low-
degree monomials. In the case of univariate time series, we
used time-delay coordinates to reconstruct the dynamics of
the system in a high-dimensional state space. It turns out that
NG-RC in these coordinates only works when high-degree
monomials are taken into account. To improve the perfor-
mance of the NG-RC algorithm, we replaced the basis of
monomial functions with an orthogonal basis of Chebyshev
polynomials of the first kind. We called this modification
the NG-RC-Ch algorithm. The advantage of NG-RC-Ch over
NG-RC is confirmed by a detailed comparison of their char-
acteristics on time series of the Rössler and Lorenz systems.
For the same degree of nonlinearity, the modified algorithm
increases the valid prediction time interval by about two units
of Lyapunov time. The benefit of the modification is more
pronounced at higher degrees of nonlinearity.
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Next-generation RC models, built on the basis of partial
observations, are suitable not only for short-term forecasting
but are also capable of reproducing the long-term climate of
chaotic systems. The value of the largest Lyapunov exponent
estimated from the time series generated by the trained NG-
RC-Ch model is close to the value estimated from the original
time series. Using the time series of only one component of
the state vector of the Rössler system, we were able to recon-
struct the bifurcation diagram. Having trained the NG-RC-Ch
model on four time series corresponding to different values
of the bifurcation parameter, we reproduced the dynamics of
the system at values of the bifurcation parameter not included
in the training set. A long-term prediction of the Lorenz sys-
tem was demonstrated by the successful reconstruction of the
return map.

To test the performance of the NG-RC-Ch algorithm in
a real experimental situation, where noise and measurement
errors are inevitable, we applied it to the time series generated
by an electronic Rösler-like oscillator [49]. The reconstructed
return map obtained from the trained model looks less noisy
than the return map of the original time series. This is con-
sistent with the results of a recent publication showing that a
conventional RC can be used as a noise filter [27].

The choice of Chebyshev polynomials in our modified
NG-RC-Ch algorithm was motivated by the fact that these
polynomials have a unique and important minimax property.
They provide a near-best uniform approximation of a function
defined on a finite interval by a polynomial of a given degree
[55]. An interesting question is how the performance of the
NG-RC algorithm changes if we replace Chebyshev polyno-
mials with other types of orthogonal polynomials, and how do
these results depend on the particular time series we want to
predict? We leave the analysis of these issues for future work.

The main unsolved problem of both conventional and
next-generation RCs is related to the stability of the au-
tonomous dynamics of the reconstructed model [5,15,53]. The
RC model can be well fitted to the training time series, but
due to instability its trajectory may asymptotically deviate
from the strange attractor of the original system and produce
a false climate. The question of how to construct an RC model
that autonomously generates asymptotically stable trajectories
close to a true strange attractor remains open.
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APPENDIX: PARAMETER-DEPENDENT ALGORITHM

Suppose we have np scalar time series measured for dif-
ferent values of parameter p: {pj} j=1,...,np . For simplicity, we
assume that all time series have the same length n and the
same embedding delay time can be used for each of them. Our
goal is to incorporate all these time series into the training pro-
cedure and modify the algorithm so it can predict the system
dynamics for parameter values not included in the training set.

We denote the scaled values of the time series measured
at parameter value pj as Ri| j , where i = 1, . . . , n and j =
1, . . . , np. The parameter is incorporated in the algorithm as

an additional component of the state vector, extending its
dimension by one. Specifically, instead of the state vector
defined by the Eq. (5), we now write

Ri| j = [Ri| j, Ri−nτ | j, . . . , Ri−(k−1)nτ | j, p j]
T . (A1)

Using the components of this state vector, we compose the
feature vectors in the same way as described in Sec. II A. The
linear part of the feature vector now has the form

O(1)
i| j = Ri| j . (A2)

For the NG-RC algorithm, the nonlinear vector O(l )
i| j is the set

of all unique monomials of degree l composed of all com-
ponents of the state vector Ri| j . For example, in the case of
two-dimensional embedding space, k = 2, the second-order
nonlinear vector l = 2 is as follows:

O(2)
i| j = [

R2
i| j, Ri| jRi−nτ | j, Ri| j p j, R2

i−nτ | j, Ri−nτ | j p j, p2
j

]T
.

(A3)

For the NG-RC-Ch algorithm, the monomials should be re-
placed by Chebyshev polynomials, and the above example
looks like this:

O(2)
i| j = [T2(Ri| j ), T1(Ri| j )T1(Ri−nτ | j ), T1(Ri| j )T1(p j ),

T2(Ri−nτ | j ), T1(Ri−nτ | j )T1(p j ), T2(p j )]
T . (A4)

Note that in this case, the parameter p must be scaled so its
scaled value is in the interval [−1, 1] throughout the whole
range of values to be studied. In the general case, the length
of the vector O(l )

i| j is equal to dl = ∏l−1
i=0 (k + 1 + i)/l!. The

total feature vector including all vectors O(l )
i, j with degrees up

to mth order can be written as

Oi| j = 1 ⊕ O(1)
i| j ⊕ O(2)

i| j . . . ⊕ O(m)
i| j . (A5)

As before, we introduce a notation for the difference between
two consecutive measurements, for a fixed parameter pj :

Yi| j = (Ri+1| j − Ri| j )/�t . (A6)

Now we combine all differences Yi| j for the jth training time
series into a row vector

Ỹ j = [Yn−1| j, Yn−2| j, . . . ,Yn−(k−1)nτ +1| j] (A7)

and merge all vectors Ỹ j into the total row vector:

Ỹ = Ỹ1 ⊕ Ỹ2 . . . ⊕ Ỹnp . (A8)

Accordingly, we first combine the feature vectors of the time
series corresponding to the jth parameter value:

Õ j = [On−1| j, On−2| j, . . . , O(k−1)nτ +1| j]. (A9)

Note that Oi| j is a column vector, while Õ j is a matrix.
Combining the matrices Õ j for all time series

Õ = [Õ1, Õ2, . . . , Õnp], (A10)

we finally write the regression problem in the form of

Ỹ = WoutÕ. (A11)

Formally, this equation has the same form as Eq. (15), and
given the new definitions for Ỹ [Eq. (A8)] and Õ [Eq. (A10)],
its solution can be expressed as Eq. (16).
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