
PHYSICAL REVIEW E 109, 064214 (2024)

Emergence of order from chaos through a continuous phase transition
in a turbulent reactive flow system

Sivakumar Sudarsanan ,1,2 Amitesh Roy ,3 Induja Pavithran ,1,2 Shruti Tandon ,1,2 and R. I. Sujith 1,2,*

1Department of Aerospace, Indian Institute of Technology Madras, Chennai 600 036, India
2Centre of Excellence for Studying Critical Transition in Complex Systems, Indian Institute of Technology Madras, Chennai 600 036, India

3Institute for Aerospace Studies, University of Toronto, Ontario, Canada M3H 5T6

(Received 14 November 2023; revised 15 April 2024; accepted 9 May 2024; published 20 June 2024)

As the Reynolds number is increased, a laminar fluid flow becomes turbulent, and the range of time and
length scales associated with the flow increases. Yet, in a turbulent reactive flow system, as we increase the
Reynolds number, we observe the emergence of a single dominant timescale in the acoustic pressure fluctuations,
as indicated by its loss of multifractality. Such emergence of order from chaos is intriguing. We perform
experiments in a turbulent reactive flow system consisting of flame, acoustic, and hydrodynamic subsystems
interacting nonlinearly. We study the evolution of short-time correlated dynamics between the acoustic field
and the flame in the spatiotemporal domain of the system. The order parameter, defined as the fraction of
the correlated dynamics, increases gradually from zero to one. We find that the susceptibility of the order
parameter, correlation length, and correlation time diverge at a critical point between chaos and order. Our results
show that the observed emergence of order from chaos is a continuous phase transition. Moreover, we provide
experimental evidence that the critical exponents characterizing this transition fall in the universality class of
directed percolation. Our paper demonstrates how a real-world complex, nonequilibrium turbulent reactive flow
system exhibits universal behavior near a critical point.
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I. INTRODUCTION

The spontaneous emergence of order from a chaotic turbu-
lent state in the form of self-sustained periodic oscillations is
encountered frequently in nonequilibrium systems. Examples
of such spontaneous oscillations include birdsong, whistling,
and the sounds of woodwinds, which are very pleasant [1–4].
However, within engineering systems, uncontrolled oscilla-
tions are highly undesirable as they can frequently result in
catastrophic failures of gas transport pipelines [5], rockets
and gas turbine engines [6,7], and bridges, for example, the
devastating collapse of the Tacoma bridge [8].

As the Reynolds number (which is the ratio of inertial to
viscous force) is increased, the range of time and length scales
associated with a fluid flow increases [9,10]. Yet, in a turbulent
reactive flow system, as we increase the Reynolds number,
we observe the emergence of a single dominant timescale in
the acoustic pressure fluctuations, as indicated by its loss of
multifractality [11]. In this paper, we study the emergence of
order from chaos in a turbulent thermofluid system.

Recent studies in disparate turbulent flow systems reported
universal scaling relations during the transition from chaos to
order [12,13]. Such universal scaling laws observed during
a transition are often associated with a second-order phase
transition and characterized by critical exponents [14,15].
Systems that exhibit the same critical exponents are identi-
fied with a universality class. The transition in fluid flows
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from a laminar to a turbulent state follows the universality
class of directed percolation (DP) [16–19]. Moreover, the
synchronization transition in coupled map lattices [20,21] and
cellular automata [22], transition in turbulent liquid crystals
[23], and numerous other phenomena [14,24–26] fall under
the universality class of DP.

In the present paper, we perform experiments in a con-
fined turbulent reactive flow system, which consists of flame,
hydrodynamic, and acoustic subsystems interacting nonlin-
early. As the Reynolds number Re is increased, self-sustained
periodic oscillations of large magnitude emerge in the acous-
tic pressure as a result of a positive feedback between the
different subsystems [27,28]. This phenomenon, referred to
as thermoacoustic instability or combustion instability is a
significant concern for gas turbine power plants, aircraft and
rocket engines due to the catastrophic consequences associ-
ated with high-amplitude acoustic pressure oscillations [6].

We study the evolution of short-time correlated dynamics
between the acoustic field and the flame in the spatiotemporal
domain of a turbulent reactive flow system. We show that
during the emergence of order from a chaotic state, the order
parameter, defined as the fraction of correlated dynamics,
increases gradually from zero to one. Close to the onset of the
transition (critical point), the fluctuations in the order parame-
ter become significant and the variance of the order parameter
fluctuations, referred to as susceptibility, exhibits a diverging
behavior. We find that the correlations in fluctuations persist
longer in the vicinity of the critical point. In particular, the
correlation length and correlation time diverge according to a
power law at the critical point. These measures clearly imply
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the occurrence of a continuous phase transition from a chaotic
to an ordered state even as the Reynolds number is increased.
Further, we find that three critical exponents of the transition
corresponding to the order parameter and the distribution of
intervals between the occurrence of correlated dynamics along
space and time fall into the universality class of 2 + 1 DP. In
summary, we show that a highly turbulent nonlinear system
follows universal scaling laws close to the critical point of a
continuous phase transition.

II. PHASE TRANSITION IN NONEQUILIBRIUM SYSTEMS

In complex systems, a phase represents the collective state
of multiple interacting subsystems. When a suitable control
parameter is varied, complex systems can exhibit a qualitative
change in the collective state of the system. In nonequilibrium
systems, these collective, self-organized states emerge and are
maintained due to the constant flux of energy [29]. Examples
of phase transitions in nonequilibrium systems include sleep-
wake transition [30], the emergence of coherent light emission
in lasers [31], the transition from order to chaos occurring in
transitional turbulent flows such as Rayleigh-Bénard convec-
tion [32,33], Couette flow [32,34], and turbulent swirling flow
with a pair of counter-rotating impellers [35].

The DP model typifies the phase transition in diverse
nonequilibrium systems [14]. This model describes the spread
of activity through contact processes, such as the spreading of
an epidemic in a community or the spread of forest fires [14].
If the spreading probability p is less than a critical value (pc),
the system evolves to a state with no activity in the system
dynamics. As the spreading probability increases, for p > pc,
the activity exhibits a percolation phase transition [14].

Order parameter (ρ) quantifies the density of active sites in
the system during the stationary state. During the DP phase
transition, the system exhibits critical scaling behavior near
the critical point, pc [14,36]. The order parameter exhibits a
power law ρ ∼ εβ with an exponent β, where ε = p − pc is
the distance from the critical point (pc).

Let the interval between the consecutive active sites in
space be �, at a time instant, and the duration between the
consecutive active instances be τ at a spatial location. These
intervals between the occurrences of activity are defined as in-
active intervals. The probability distributions (N ) of inactive
time intervals (τ ) and length intervals (�) exhibit power laws
with N (�) ∼ �−μ‖ and N (τ ) ∼ τ−μ⊥ at the critical point of
the DP phase transition [14]. The critical behavior associated
with the universality class of DP is characterized by power law
exponents β, μ‖, and μ⊥ [14,37]. Diverse systems including
fluid [18,24,38], material [25,39] and biological systems [40]
exhibit the same critical behavior as DP.

III. EXPERIMENTS IN A TURBULENT REACTIVE
FLOW SYSTEM

Our experimental setup, the turbulent reactive flow system,
consists of a mixing duct, bluff body, combustion chamber,
and a settling chamber (Fig. 1). Air is first passed through
a settling chamber to reduce fluctuations from the air supply
line. The fuel (liquified petroleum gas with a composition of
60% butane and 40% propane) is supplied into the mixing

FIG. 1. The schematic of a bluff body stabilized turbulent reac-
tive flow system comprising fuel and air inlets, a settling chamber,
and a combustion chamber. The acoustic pressure is measured using
a piezoelectric transducer mounted on the combustion chamber while
the heat release rate is measured using CH∗ chemiluminescence
imaging using a high-speed camera, whose field of view is shown
in the inset. The spatial region indicated by the dashed line is used
for further analysis.

tube through radial injection holes of the central shaft, then
mixes with the air from the settling chamber and flows into
the combustion chamber. The combustion chamber is a duct
of length of 1100 mm and with a square cross-section of
90 mm × 90 mm. One side of the combustion chamber
is a backward-facing step through which the reactant mix-
ture enters the combustion chamber. The reactant mixture is
ignited using a spark plug attached to the backward-facing
step of the combustion chamber. The other end of the combus-
tion chamber is connected to a rectangular chamber (or decou-
pler) of size 1000 mm × 500 mm × 500 mm, much larger than
its cross section. This rectangular chamber is to isolate the
combustion chamber from external ambient fluctuations. For
optical access to the combustion chamber, two quartz glass
windows of 90 mm × 360 mm are provided on both side walls.

The fundamental mode of the combustion chamber is ex-
cited during the emergence of periodic oscillations with a
frequency of 160 Hz ( f = c/4L, c is the speed of sound,
and L is the length of the combustor). A circular bluff body
of diameter 47 mm and thickness 10 mm fixed at a location
32 mm from the backward-facing step creates a wake flow
where the flame is stabilized. The flow rates of air and fuel
are separately controlled by mass flow controllers (Alicat sci-
entific MCR series) with an uncertainty of ±0.8% percent of
measured reading + ±0.2% of full-scale reading.

We fix the mass flow rate of fuel at 1.75 g/s and vary the
mass flow rate of air from 15.3 g/s to 29.5 g/s. This results in
the variation in Reynolds number from Re = 3.9 − 6.8 × 104.
Here, the Reynolds number is defined as Re = ρv̄D/μ, where
v̄ is the average velocity of the fuel-air mixture entering the
combustion chamber, D is the diameter of the bluff body, and
ρ and μ are the density and dynamic viscosity of the mixture
calculated by considering the variation in the mixture compo-
sition as the control parameter is varied [41]. The maximum
uncertainty in Re (calculated based on the uncertainty of the
mass flow controllers) is ±308. The experiments at each of
the specified values of Re are repeated ten times.

To study the emergence of order from chaos, we mea-
sure the acoustic pressure fluctuations [p′(t )] and the spatial
distribution of heat release rate fluctuations [q̇′(x, t )] inside
a rectangular region [Figs. 1 and 2(e)] of the combustion

064214-2



EMERGENCE OF ORDER FROM CHAOS THROUGH A … PHYSICAL REVIEW E 109, 064214 (2024)

FIG. 2. Transition from chaos to order. (a) The amplitude (p′
rms) and (b) the power spectral density (PSD) of p′ as a function of Re. With

an increase in Re, there is a gradual increase in the amplitude of oscillations accompanied by the appearance of a dominant frequency in the
power spectral density of acoustic pressure oscillations. Representative (c) time series (normalized p′ and q̇′

G) and (d) phase space trajectory for
p′ corresponding to the dynamical states of chaos, intermittency, and limit cycle oscillations, indicated in (a). The phase space is reconstructed
using time delay (τ ) embedding. (e) The distribution of heat heat release rate fluctuation q̇′(x, t ) at the indicated instances in (c).

chamber. The acoustic pressure fluctuations inside the com-
bustion chamber are measured using a piezoelectric pressure
transducer (PCB 103B02) mounted 120 mm from the
backward-facing step of the combustion chamber. The pres-
sure transducer is mounted to the wall of the combustion
chamber using a T-joint mount. A semi-infinite waveguide
of length 10 m and inner diameter 4 mm is connected to
the transducer mount to minimize the frequency response
of the probe. The pressure transducer has a sensitivity of
223.4 mV/kPa and an uncertainty of ±0.15 Pa. The acoustic
pressure is measured with a sampling frequency of 10 kHz
for a duration of 3 s. The signals from the piezoelectric pres-
sure transducer were recorded using a data acquisition system
(NI DAQ-6346).

The chemiluminescence intensity represents the line-of-
sight integrated heat release rate distribution [42]. The heat
release rate fluctuations are determined from the chemilu-
minescence images acquired using the high-speed Phantom
V12.1 camera outfitted with a CH* filter (a narrow band filter
of peak at 435 nm with 10 nm FWHM) along with a 100 mm
Carl-Zeiss lens. A region spanning 80 × 80 mm2 is imaged
at a resolution of 520 × 520 pixels at a sampling rate of
2000 Hz simultaneously with the acoustic pressure measure-
ments. We perform a coarse-graining operation by combining
10 × 10 pixels of the chemiluminescence images to decrease
noise effects.

IV. EMERGENCE OF ORDER FROM CHAOS

Figure 2 shows the transition in the dynamics of the
turbulent reactive flow system when the Reynolds num-

ber is increased from Re = 3.9 × 104 to Re = 6.8 × 104.
Figures 2(a) and 2(b) depict the change in the root-mean-
square (rms) of the acoustic pressure fluctuations and the
corresponding power spectral density, respectively. The low-
amplitude, aperiodic oscillations [Fig. 2(c)(i)] are identified
as high-dimensional chaos [43]. As Re is increased, we
notice that the turbulent reactive flow system undergoes a
transition from a state of low-amplitude, high-dimensional
chaos to a state characterized by high-amplitude periodic
acoustic pressure fluctuations through a state of intermittency
where bursts of high-amplitude periodic acoustic pressure
fluctuations appear amidst epochs of low-amplitude aperiodic
acoustic pressure fluctuations [Figs. 2(a) and 2(c)(i)–2(c)(iii)].
The power spectrum, which is broadband, becomes progres-
sively narrower as Re is increased. At the onset of sustained
periodic oscillations, the frequency of the dominant mode of
acoustic pressure oscillations is 160 Hz, evident in the power
spectrum shown in Fig. 2(b).

The phase-space trajectories associated with the acoustic
pressure fluctuations are reconstructed using Takens’ embed-
ding theorem [44] and are shown in Fig. 2(d). The optimum
time delay is selected as the first local minima of the average
mutual information [45] and the suitable embedding dimen-
sion is calculated using the false nearest neighbor (FNN)
method [46]. The optimum time delay obtained for the states
of chaos, intermittency, and periodic oscillations are 1.6, 1.5,
and 1.6 ms, respectively, with corresponding suitable em-
bedding dimensions of 9, 6, and 5 (refer to Appendix F for
more details). Corresponding to the state of chaotic fluctu-
ations, the trajectory [Fig. 2(d)(i)] appears to be cluttered
with no clearly defined attractor. During the chaotic state, the
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trajectory of the system often switches between multiple un-
stable periodic orbits (UPOs), as the trajectory is ejected along
the unstable manifold from one UPO and attracted towards the
stable manifold of another UPO [47,48]. The phase space of
the chaotic state thus appears haphazard due to the switching
between these UPOs [Fig. 2(d)(i)].

Upon further increase in Re beyond 5.1 × 104, we ob-
serve the state of intermittency [Fig. 2(c)(ii)] [49]. During
the state of intermittency, the trajectory of the system transits
between an inner chaotic region and outer periodic orbits in
the phase space [Fig. 2(d)(ii) [48]]. We observe sustained
periodic acoustic pressure oscillations [Fig. 2(c)(iii)] as we
further increase Re to 6.8 × 104. During the emergence of
periodic oscillations, the number of unstable periodic orbits
decreases and their stability increases. Eventually, a single
stable periodic orbit emerges [48], and the system exhibits
limit cycle oscillations (LCOs) [Fig. 2(d)(iii)].

To investigate the coupled dynamics of the flame and
the acoustic pressure, the time series of heat release rate
fluctuation is obtained from the chemiluminescence imaging
such that q̇′(x, t ) = q̇(x, t ) − q̇(x), where q̇(x) is the tempo-
ral average, calculated as 1/N

∑
t q̇(x, t ), with N denoting

the number of data points in the time series. The aggre-
gate heat release rate fluctuation is then obtained as q̇′

G(t ) =∑
x q̇′(x, t ). The normalized aggregate heat release rate fluc-

tuation (q̇′
Gn) is overlaid on normalized p′ to observe their

relative time evolution as shown in Fig. 2(c). We normalize
q̇′

G and p′ using their standard deviation values. Further, in
Figs. 2(e)(i)–2(e)(iii), the heat release rate fluctuations across
the spatial field q̇′(x, t ) are shown for the instances marked
in Figs. 2(c)(i)–2(c)(iii), respectively. The flame and acoustic
subsystems exhibit desynchronized dynamics [Fig. 2(c)(i)]
and the values of heat release rate fluctuations remain very
small [Fig. 2(e)(i)] during the state of chaos. The flame and
the acoustic field exhibit synchronized dynamics when the tur-
bulent reactive flow system exhibits sustained periodic limit
cycle oscillations [Fig. 2(c)(iii)] [50–52]. During this state,
the heat release rate fluctuations have large values distributed
throughout the reaction field [Fig. 2(e)(iii)]. The heat release
rate distribution for the state of intermittency is shown in
Fig. 2(e)(ii). In a previous study, Mondal et al. [52] showed
that synchronous and asynchronous dynamics between p′ and
q̇′(x, t ) coexist during the state of intermittency. Thus, the
turbulent reactive flow system clearly shows the emergence
of periodic oscillations from a chaotic state through intermit-
tency while we increase the Reynolds number.

V. EMERGENCE OF ORDER THROUGH A CONTINUOUS
PHASE TRANSITION

We quantify the transition by determining the short win-
dow time-delayed cross-correlation between p′(t ) and q̇′(x, t ).
The acoustic pressure fluctuations remain spatially uniform
within the region of interest (Fig. 1) since the reaction zone is
small in comparison to the acoustic length scales which are of
the same order as the length of the combustion chamber (refer
to Appendix A). Further, since the transition occurs through
the state of intermittency which features localized bursts of
periodic fluctuations, a short time window is used to capture

the intermittent features. The cross correlation is defined as

R(x, t, τi ) =
∫ t+W

t
p′

n(t1)q̇′
n(x, t1 + τi )dt1. (1)

Here, the correlation is calculated over a short time window of
time W for different time shift values ranging from τi = −T/2
to +T/2, where T is the time period of the dominant mode
of the acoustic pressure oscillations and the subscript “n”
signifies that the variables are normalized with their respective
standard deviation values. If W is too short, the correlation
becomes meaningless and depicts a significant level of fluc-
tuations, whereas if W is too large, the correlation fails to
distinguish short bursts of periodic oscillations. Here, we use
W = 4T , where T = 6.25 × 10−3 s.

Finally, the short window time-delayed correlation is ob-
tained as

R(x, t ) = maxτi{R(x, t, τi )}. (2)

For aperiodic, uncorrelated fluctuations, the cross-correlation
values (R) are very small irrespective of the time shift
[Fig. 10(a)]. On the other hand, if both the time series are
periodic or correlated, the cross-correlation value (R) attains
a high value for a time-shift value corresponding to the phase
difference between the two time series [Fig. 10(c)].

We introduce the state variable (S), defined as

S(x, t ) =
{

1 if R � Rth

0 otherwise, (3)

to distinguish between correlated and uncorrelated dynamics.
The threshold value, Rth = 0.6 is obtained from a surrogate
test (refer to Appendix C for more details). The same value of
the threshold, Rth = 0.6, is set for all the dynamical states.

The scalar variable S classifies the existence of ordered
or disordered activity at a given space-time location (x − t).
Thus, S = 0 represents a disordered activity indicating the
presence of uncorrelated dynamics due to turbulence, whereas
S = 1 represents an ordered activity in the form of highly
correlated periodic fluctuations.

The choice of a measure based on linear correlation in our
analysis was inspired from the extended Rayleigh criteria for
the emergence of self-sustained acoustic pressure oscillations
in reactive flow systems [53]. The thermoacoustic driving
is proportional to the linear correlation between the acous-
tic pressure and the heat-release rate fluctuations [53,54]. If
the acoustic driving is greater than all the acoustic losses in
the system, then the acoustic energy is added to the system
[53]. Hence, we use a linear cross-variable correlation for
identifying the correlated and uncorrelated dynamics. Further,
some of the limitations of linear correlation, when applied to
periodic functions, are the inability to capture the time lag
and the assumption of a linear relation between the variables.
Therefore, we use a short window time-delayed correlation as
defined in Eq. (2).

The regions of ordered activity (ordered regions) show
a percolation phase transition in space and time as Re is
increased (Fig. 3). The evolution of ordered regions for the
state of chaos, intermittency, and limit cycle are shown in
Figs. 3(a)–3(c), respectively. During the state of chaos, or-
dered regions are small and scattered, and they appear and
disappear erratically [Fig. 3(a)]. However, during the state
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FIG. 3. Space-time (x − t) diagram illustrating the phase tran-
sition from chaos to order. Panels (a)–(c) correspond to the state
of chaos, intermittency, and limit cycle oscillations, respectively, as
indicated in Fig. 2(a). Regions of ordered activity, identifying the
existence of high correlation between the acoustic pressure and the
heat release rate fluctuations, is visualized with the color scheme and
is delineated from regions of disordered activity using Eq. (3). For
the chaotic state (a), the regions of ordered activity are very small
and disconnected. At the critical point associated with the state of
intermittency (b), small ordered regions grow and form giant ordered
regions. The slice in X − X ′ and T − T ′ shows the appearance and
disappearance of giant clusters in space and time. Inactive intervals
are labeled as �y in space and τ in time. During the state of limit
cycle oscillations (c), order percolates throughout the spatiotemporal
domain.

of intermittency, we observe that some randomly occurring
ordered regions grow and form a giant ordered region that
spans the entire spatial domain. The giant ordered region
formed at an instant (T − T ′ plane) is shown in Fig. 3(b).
The giant ordered region formed is not sustained long enough;
soon it breaks down and disappears [Fig. 3(b)]. The formation
and the breakdown of the giant ordered region are visible
in the slice X − X ′ of the spatiotemporal domain shown in
Fig. 3(b). During the state of limit cycle oscillations, we find
that ordered activity percolates in space and time [Fig. 3(c)].

In summary, as Re is increased, we observe a phase tran-
sition from a predominantly disordered state where ordered
regions appearing are small and scattered, to a dominant or-
dered state where the regions of ordered activity percolate
throughout space and time.

VI. CRITICAL EXPONENTS OF THE PERCOLATION
PHASE TRANSITION

A. Order parameter, susceptibility, and inactive
interval distribution

Here, we quantify the characteristics of the phase transition
observed in the previous section. The variable S allows us to
further quantify the system in terms of the order parameter and
related statistics. The order parameter (ρ) is a measure of the
degree of ordered activity in the system dynamics. The order
parameter is defined as the fraction of sites depicting order at

a given time instant. Formally, it can be expressed as

ρ(t ) = 1

L2

∑
x

S(x, t ), (4)

where L2 is the overall domain size and the summation spans
across the entire spatial domain. Consequently, the mean order
parameter is expressed as ρ̄ = 1/N

∑
t ρ(t ), where N is the

total number of points in the time series. Further, the ensem-
ble average of the order parameter 〈ρ̄〉 is obtained from ten
realizations of the experiment. Here, and in the following,
〈·〉 implies an ensemble average; refer to Appendix B for
more details on the ensemble averaging. In real systems, the
value of the order parameter at the critical point ρ(ε=0) 	= 0
due to the finite size of the system [55]. Thus, it is important
to introduce the normalization ρn = (〈ρ̄〉 − 〈ρ̄〉0)/(1 − 〈ρ̄〉0)
such that ρn varies between 0 and 1, so as to accurately obtain
a power law mentioned as in Eq. (6). Here, 〈ρ̄〉0 represents the
ensemble average of the order parameter at the critical point.
We further define the variance of the order parameter which is
referred to as the susceptibility, as

χ = 1

N

∑
t

[ρ2(t ) − (ρ̄)2]. (5)

Finally, close to the critical point, the normalized order pa-
rameter and susceptibility are well-known to scale as power
laws [56]:

ρn ∼ εβ, 〈χ〉 ∼ ε−γ , (6)

where, β and γ are the respective scaling exponents and
ε = (Re − Rec)/Rec. Here, Rec is identified as the value of
the Reynolds number corresponding to the maximum value
of susceptibility. The mean value of the critical Reynolds
number obtained from an ensemble of ten experiments is
(5.27 ± 0.04) × 104. Here, the uncertainty in Rec is estimated
from the standard deviation value.

Figure 4 presents the scaling behavior of the order param-
eter and susceptibility as a function of ε. We find that the
ensemble average of the mean order parameter 〈ρ̄〉 gradually
increases from close to 〈ρ̄〉 = 0 to 〈ρ̄〉 = 1 during the tran-
sition [Fig. 4(a)]. Between order and chaos, we observe that
the variance of the order parameter fluctuations becomes ex-
tremely significant and diverges [Fig. 4(a)]. Such a divergence
clearly reveals that the system is approaching a critical point
and an impending phase transition.

Next, we observe that the normalized order parameter ρn

increases following the power law: ρn ∼ εβ with the expo-
nent β = 0.55 ± 0.12 for ε > 0 [Fig. 4(b)]. However, no such
power-law scaling behavior is observed for the variation of
ρn for ε < 0. The scaling observed for ε > 0 closely fol-
lows the scaling behavior of directed percolation. Further,
we find that the susceptibility diverges with a power law:
〈χ〉 ∼ ε−γ with the exponents γ = 0.95 ± 0.35 for ε > 0 and
γ ′ = 0.93 ± 0.18 for ε < 0, respectively, [Fig. 4(c)]. Thus,
the observed transition is continuous with susceptibility ex-
hibiting a diverging behavior between chaos and order.

Here, and in what follows next, the uncertainty in the
value of scaling exponents is obtained by considering the 90%
confidence. Further, the vertical and horizontal error bars are
calculated based on the standard deviation from the ensemble
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FIG. 4. (a) Variation of the order parameter 〈ρ̄〉 and the susceptibility 〈χ〉 as a function of distance from the critical point, ε =
(Re − Rec)/Rec. (b) Scaling of the normalized order parameter ρn with an exponent β = 0.55 ± 0.12. The scaling associated with the
universality class of 2 + 1 directed percolation (βDP = 0.583) is also shown by the dashed line as a reference. (c) Power-law scaling of
〈χ〉 as a function of |ε| as the critical point is approached from either side, with the exponents γ ′

ε<0 = 0.93 ± 0.18 and γε>0 = 0.95 ± 0.35.
The uncertainty in the scaling exponents is obtained by considering a 90% confidence; all the error bars correspond to the standard deviation.

of the mean order parameter values and ε values within bins
of size δε = 0.025.

Next, we quantify the critical exponents associated with
the inactive interval distribution. The inactive interval refers
to the duration (τ ) or separation (�x, �y) between two consec-
utive ordered activities, as illustrated in Fig. 3(b). We obtain
the probability distribution of inactive interval distribution in
space [N (�x ), N (�y)] and time [N (τ )] from the percolation
diagram, as highlighted in Fig. 3. The resulting distributions
are plotted in Fig. 5. We find that close to the critical point
of the transition, the distributions of inactive intervals also
exhibit power-law scaling of the form

N (�x ) ∼ �−μ⊥x
x , N (�y) ∼ �

−μ⊥y
y , N (τ ) ∼ τ−μ‖ . (7)

We find that the scaling exponents for the distribution of
inactive intervals along x and y are μ⊥x = 1.21 ± 0.06 and
μ⊥y = 1.28 ± 0.09 in the range of 1.5 mm to 31 mm. The
observed scaling behavior is consistent for all the trials of
experiments with the exponents nearly remaining the same
(refer to Appendix D). The distribution of inactive intervals

in time exhibits a scaling behavior between 0.001 s to 0.134 s
with a scaling exponent of μ‖ = 1.53 ± 0.08. We observe a
scaling law for three decades for the distribution of inactive
time intervals. However, the range of spatial scales where the
scaling law is observed is limited by the finite size of the
system (the combustor used in our experiments). As a result,
we observe only a limited range of scales over which the
scaling law is observed in the spatial domain.

Power-law behaviors in the distribution of inactive inter-
vals signify the scale-invariant nature of the system at the
critical point. We also find that the critical exponents corre-
sponding to the inactive interval distributions [N (τ ), N (�x )
and N (�y)] fall into the universality class of 2 + 1 DP (see
Appendix D).

B. Scaling of correlation length and time

In complex systems, significant correlations arise in space
and time due to the interaction between the constituent sub-
systems. We define the two-point correlation function for

FIG. 5. Power-law scaling of the probability distribution N of inactive intervals in (a), (b) space (�x, �y) and in (c) time (τ ) close to the
critical point ε ≈ 0. The observed scaling behavior closely follows the power law scaling associated with the inactive interval distribution of
2 + 1 DP (dashed line).
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FIG. 6. (a)–(c) Normalized correlation function (G) along x, y, and t are shown for three ε values: (i) ε = −0.28, (ii) ε = 0, and (iii)
ε = 0.18 in the log-log scale. The correlation lengths (ξx and ξy along x and y directions) and the correlation time (ξτ ) have also been identified
as the lengths or duration where the correlation function crosses G = 2/e (dashed line). Correlation G persists the longest at the critical point
ε = 0.

the scalar field S(x, t ), which quantifies how the state of
the system at two points separated by duration τ and space
r = [rx, ry]T are interrelated. Formally,

g(τ ) = 〈[S′(x, t )S′(x, t + τ )]〉, (8)

g(r) = 〈[S′(x, t )S′(x + r, t )]〉. (9)

Here, S′ = S − 〈S〉 and the averaging 〈 f (x, t )〉 =
1/NL2 ∑

x,t f (x, t ) are defined over space and time. The
correlation is further normalized by its value at the origin,
or the autocorrelation, g(τ = 0), g(r = 0) such that we have
G(τ ) = g(τ )/g(τ = 0) and G(r) = g(r)/g(r = 0).

The plot for normalized correlation functions (G) along
x, y, and t for three different values of ε, before the critical
point, very close to the critical point, and after the critical
point (ε = −0.28, 0, and 0.18) are shown in Figs. 6(a)–6(c).
As the distance (duration) between the spatial locations (in-
stances) increases, the correlation function decreases. In the
vicinity of the critical point, G(rx ), G(ry), and G(τ ) decay
relatively slower as compared with the cases far from the
critical point (see Fig. 6 or refer to Appendix E). Such per-
sistence and slow decay close to the critical point imply
that the correlation length and time become large due to the
scale-invariant nature of clusters of ordered activity arising in
the system.

The correlation time (ξτ ) and lengths (ξx and ξy) are then
defined as the time or separation at which the correlation
function crosses G = 2/e [57–59] (see Appendix E). This is
also indicated in Figs. 6(a)–6(c). The correlation time (ξτ )
or the correlation length (ξx, ξy along x, y, respectively) is
a measure of how far the correlation persists in the system.
The variation in correlation lengths and correlation time are
shown in Figs. 7(a)–7(c). We find that ξτ , ξx, and ξy increase
in a power-law manner as we approach the critical point
from either side. Thus, for ε > 0, we obtain the power-law
exponents for the variation of ξτ , ξx, and ξy as ν‖ = 0.68 ±
0.21, ν⊥x = 0.46 ± 0.11, and ν⊥y = 0.44 ± 0.12. Similarly,
for ε < 0, we obtain ν‖ = 0.77 ± 0.12, ν⊥x = 0.31 ± 0.08,
and ν⊥y = 0.47 ± 0.10, respectively. Such growing correla-
tion time and lengths are characteristics of a second-order

phase transition [56]. The observed differences in the values
of ν along x and y directions is due to the spatial inhomogene-
ity as observed in the inactive interval distribution (Fig. 5).
The inhomogeneity arises due to the presence of the shear
layer, wake regions, and the streamwise (x) direction of the
mean flow.

VII. DISCUSSION

We conducted experiments in a confined turbulent reac-
tive flow system and studied the evolution of the correlated
dynamics between the flame and acoustic subsystems. We
observe that the correlated dynamics undergoes a percolation
phase transition during the emergence of order from chaos.
We find that the order parameter gradually increases from
zero to one during the percolation phase transition. The cor-
relation time, correlation length, and susceptibility diverge
at the critical point of the transition. The critical exponents
that characterize this phase transition are listed in Table I.
We find that close to the critical point, the critical exponents
corresponding to the normalized order parameter (β) and the
distribution of inactive intervals along space (μ⊥x and μ⊥y)
and time (μ‖) fall into the universality class of 2 + 1 DP.
We observe that the choice of a threshold value within a
range of thresholds does not affect our results (refer to Ap-
pendix C for details). Further, similar scaling exponents can
be obtained if the critical Reynolds number is chosen as the
Reynolds number where the correlation length is maximum
(refer to Appendix B for details). Our results suggest that the
critical phenomenon we studied belongs to the universality
class of DP.

The DP conjecture states that the transition in a system
with a unique absorbing state, short-range dynamic rules,
and the absence of special attributes such as the existence of
inhomogeneities belongs to the universality class of directed
percolation [60]. In experimental systems, a pure absorbing
state is challenging to achieve due to the inherent fluctua-
tions in the system [37]. Moreover, this limitation makes it
hard to identify systems that belong to the universality class
of DP through experimental realizations [37]. Despite these

064214-7



SIVAKUMAR SUDARSANAN et al. PHYSICAL REVIEW E 109, 064214 (2024)

FIG. 7. Log-log plot showing the variation of the (a), (b) correlation lengths (ξ⊥x , ξ⊥y) and the (c) correlation time (ξτ ) with respect to
ε. A power law of the form ξ ∼ |ε|−ν is fitted with observed values of the correlation length and time for |δε| < 0.16. We observe that the
correlation lengths and duration grow as a power law as the system approaches the critical point from either side of the critical point.

difficulties, a handful of experimental studies showed that
the transition in turbulent liquid crystals [23], the transition
in ferrofluids [26], the onset of the Leidenfrost effect [24],
and the transition from a laminar to turbulent state in fluid
mechanical systems [18,38] fall under the universality class
of DP.

In our system, the reactant mixture entering the combustion
chamber burns while being convected downstream and the
propagation of these reactions (burning reactants) is analo-
gous to a contact process [61]. The dynamics of the ordered
activity are governed by this contact process as well as the
fluctuations induced by the global acoustic field. A unique ab-
sorbing state is absent during the chaotic state in the turbulent
reactive flow system since small regions of ordered activity
erratically appear and disappear for ε < 0. The inherent fluc-
tuations in the system due to turbulence could be the reason
for not observing a unique absorbing state [37]. However, we
observe that three critical exponents (β, μ⊥, and μ‖) fall into
the universality class of DP. The robustness of the universality
class of DP under the relaxation of the DP conjecture [62–65]
could be why we still observe the critical exponents to be the
same as the universality class of DP.

TABLE I. Critical exponents obtained for the percolation phase
transition in the turbulent reactive flow system.

Exponent Turbulent reactive flow system 2+1 DPa

βb 0.55 ± 0.12 0.583
μ‖c 1.53 ± 0.08 1.549
μ⊥c,d 1.21 ± 0.06 (1.28 ± 0.09) 1.204
ν‖b 0.68 ± 0.21 1.295
ν⊥b,d 0.46 ± 0.11 (0.44 ± 0.12) 0.733
γ b 0.95 ± 0.35 0.2998

aReference [36].
bFor β, ν, and γ , the exponents mentioned are obtained for ε > 0.
cFor μ, the exponents are measured for ε ≈ 0.
dFor μ⊥ and ν⊥, exponents measured in x and y directions are shown
in this order.

Numerical studies on many spatially extended systems
suggest that synchronization transitions could belong to the
universality class of DP [20–22,66–69]. Future studies on
identifying the synchronization activity between the flame
and acoustic subsystems and its spatiotemporal evolution will
help characterize the synchronization transition in turbulent
reactive flow systems.

The universality class of DP typifies the phase transition
observed in a wide variety of physical systems [14]. Fur-
ther, the universality in statistical models provides insights
into how the correlated dynamics (between the subsystems)
in diverse systems such as turbulent flow [18,38] and bi-
ological systems [40,70,71] are connected, irrespective of
their microscopic system details. The statistical analysis based
on interdependent fluctuations between the interacting sub-
systems could help us gain more insights into emergent
phenomena associated with nonequilibrium phase transition
in complex systems.
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APPENDIX A: ACOUSTIC PRESSURE VARIATION
ACROSS THE REGION OF INTEREST

We considered that the acoustic pressure variation p′(t )
within the region of our study is uniform [p′(x, t ) = p′(t )].
Further, the ordered activity is identified by calculating the
cross correlation [R(x, t, τi )] between the global acoustic
pressure [p′(t )] and the spatial heat release rate fluctuations
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FIG. 8. (a), (b) The normalized acoustic pressure fluctuations for
the state of chaos (Re = 2.45 × 104) and limit cycle oscillations
(Re = 3.72 × 104) at three different locations along the longitudinal
axis of the combustor at x = 120 (p1), 230 (p2), and 460 mm (p3).
The normalization is done using their respective standard deviation
values. (c) The root mean square of the acoustic pressure fluctuations
for Re = 3.72 × 104 for these three different axial locations. We
observe that the acoustic pressure fluctuations are uniform within the
region of interest.

[q̇′(x, t )]. In this Appendix, we show that our consideration
of uniform acoustic pressure variation within the region of
interest for identifying the ordered activity remains valid.
The acoustic pressure fluctuations measured at three locations
(x = 120, 230, and 460 mm) along the longitudinal axis of
the turbulent reactive flow system are shown in Fig. 8. The
region of interest for our study is a square section of 80 ×
80 mm. The region of interest is located 50 mm away from
the backward-facing step of the combustor along the down-
stream direction. The pressure fluctuations recorded at these
three locations are almost identical. The distance between the
locations where the acoustic pressure is measured is greater
than the size of the region of interest (80 mm). Hence, within
the region of interest, the acoustic pressure fluctuations are
uniform.

APPENDIX B: A DIFFERENT CRITERIA FOR
IDENTIFYING THE CRITICAL POINT

The susceptibility and the correlation length diverge at
the critical point [72,73]. In our paper, we have selected the
critical Reynolds number as the Reynolds number where the
susceptibility is maximum. The observed scaling exponents
for this criterion are β = 0.55 ± 0.12, γ = 0.95 ± 0.35 for
ε > 0, and γ ′ = 0.93 ± 0.18 for ε < 0.

FIG. 9. (a), (b) The variation of normalized order parameter ρn

and 〈χ〉 with respect to ε = (Re − Rec)/Rec. The critical exponents
for the variation of ρn is β = 0.6 ± 0.12. For the variation of 〈χ〉, the
obtained power-law exponents are γ = 1.58 ± 0.50 for ε > 0 and
γ ′ = 0.99 ± 0.24 for ε < 0.

As a different criterion for identifying the critical Reynolds
number, we can select the critical point as the control pa-
rameter value at which the correlation length is maximum
[72,73]. The variation of the normalized order parameter (ρn)
and 〈χ〉 with respect to ε is shown in Fig. 9. The critical
exponents obtained using this criterion are β = 0.6 ± 0.12,
γ = 1.58 ± 0.50 for ε > 0, and γ ′ = 0.99 ± 0.24 for ε < 0.
The obtained scaling exponents for β and γ ′ (for ε < 0)
remain nearly the same; however, we observe a variation in
the value of γ for ε > 0.

The ensemble average values 〈·〉 are obtained by consid-
ering bins of ε = (Re − Rec)/Rec. Each bin has a width of
δε = 0.025.

APPENDIX C: SURROGATE TEST TO CHOOSE
THE CORRELATION THRESHOLD

Here, we use a surrogate test to obtain a suitable threshold
for identifying the correlated dynamics. The value of short
window time-delayed correlation between the original time
series of q̇′

n(x, t ) and p′
n(t ) is denoted as Robs. For perform-

ing surrogate analysis, we find the random permutation of a
short window time series of q̇′

n(x, t ) and find its time-delayed
correlation with the corresponding short window p′

n(t ) time
series (original). The value of correlation thus obtained is
denoted as Rsurr. In this manner, we perform the random
permutation for 1000 times and thus obtain a distribution for
the values of Rsurr. We consider the original short window
time-delayed correlation (Robs) to be significant if Robs is
more than the 99.99th percentile of the distribution of Rsurr

values. Therefore, the 99.99th percentile of the distribution
Rsurr value obtained from the surrogate test is selected as the
threshold value.

We have performed the surrogate test for all spatial lo-
cations and 2000 different short time windows out of 4000,
obtaining the distribution Rsurr (blue shaded distribution) for
the state of chaos, intermittency, and limit cycle oscillations,
as shown in Fig. 10. It is assumed that there is no true cor-
relation between the variables after the random permutation
of one of the variables. Therefore, the threshold values we
obtained for the state of chaos, intermittency, and limit cycle
oscillations are 0.582, 0.525, and 0.546 fall in a very narrow
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FIG. 10. (a)–(c) The distribution of Rsurr and Robs are shown in blue and red colors for the state of chaos, intermittency, and limit cycle
oscillations. The threshold value is selected as the 99.99th percentile of the distribution of Rsurr from the surrogate test for the state of chaos.
The obtained threshold value for identifying the correlated dynamics is 0.58, which is represented by a solid blue line. The percentile for
selecting the threshold value is varied from 98th to 99.999th percentile, resulting in the variation of threshold value from 0.4 to 0.65, shown as
a yellow-colored band. We have shown in Fig. 11 that the scaling relations nearly remain the same for the threshold values within this range.

range. We choose the threshold from surrogate analysis dur-
ing chaos so as to differentiate correlated and uncorrelated
dynamics during all dynamical states. The threshold value
obtained from the surrogate analysis is shown as the solid,
blue vertical line in Fig. 10. The distribution of the short
window time-delayed correlation between the original time
series of q̇′

n(x, t ) and p′
n(t ) (Robs) are shown as red shaded

distribution (Fig. 10). During the state of chaos, for the un-
correlated fluctuations between q̇′

n(x, t ) and p′
n(t ), the values

of short-window time delayed correlations are relatively low
[red shaded distribution in Fig. 10(a)]. On the other hand,
for the correlated dynamics between q̇′

n(x, t ) and p′
n(t ) dur-

ing the state of limit cycle oscillations, we observe a high
value of short-window time delayed correlations with a time
delay corresponding to the phase difference between the time
series [red shaded distribution in Fig. 10(c)]. The threshold
value we have obtained clearly demarcates the correlated and
uncorrelated dynamics between q̇′

n(x, t ) and p′
n(t ) during the

state of limit cycle oscillations. Further, we have varied the
percentile for the selection of the threshold value from 98th
percentile to 99.999th percentile, resulting in the variation of
the threshold value from 0.4 to 0.65, which is shown as a
yellow-colored band in Fig. 10. In Fig. 11, we have shown that
the scaling behavior remains and the values of β, μ⊥, and μ‖
are very close to that obtained in Table I for threshold values
ranging from 0.40 to 0.65. The results presented in our paper
correspond to the threshold value of Rth = 0.60 obtained from
the surrogate analysis.

APPENDIX D: SCALING BEHAVIOR OF THE
DISTRIBUTION OF INACTIVE INTERVALS

The distribution of the interval between two consecutive
ordered activities exhibits a scaling behavior close to the crit-
ical point. In this Appendix, we show that the distribution of
these intervals closely matches that of the universality class of
directed percolation.

At the critical point, the distributions of inactive intervals
are characterized by power laws with exponents μ‖ in time
and μ⊥ in space. The inactive interval distributions along
time, x, and y for all the trials of the experiment are shown

in Figs. 12–14. The power-law behavior observed for the
inactive interval distribution is very close to that of the univer-
sality class of 2 + 1 DP across all the trials of the experiment
(Figs. 12–14).

APPENDIX E: CORRELATION FUNCTION

Close to the critical point, the correlations between the
fluctuations of the acoustic pressure and the heat release rate
persist longer. The correlation function along time and space
is defined in Eqs. (8) and (9). The correlation function along
time, x, and y directions for each experiment corresponding to
three conditions ε ≈ 0, ε > 0, and ε < 0 are shown in Fig. 15.
The correlation function close to the critical point exhibits
large variations as evident from the green color lines. Further,
in all the experiments we have performed, the correlation

FIG. 11. (a)–(d) The critical exponents β, μ‖, μ⊥x , and μ⊥y

calculated for various threshold values. The error bars represent
the uncertainty in the scaling exponents corresponding to 90%
confidence. The horizontal dashed blue lines represent the scaling
exponent values of the universality class of 2 + 1 DP. The reported
scaling exponents remain nearly the same for the choice of the
threshold values Rth between 0.4 to 0.65.
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FIG. 12. The distribution of inactive interval in time [N (τ )] exhibits power-law behavior very close to that of the universality class of 2 + 1
directed percolation. (a)–(j) N (τ ) at the critical point for each trial of the experiments. The dashed line is the reference line corresponding to
the universality class of 2 + 1 directed percolation with a slope of μ‖DP = 1.5495. The black line segment is the best fit for the distribution
of the τ values falling within the line segment. There is a close agreement between the best fit for the inactive interval distribution and the
universality class of 2 + 1 DP. The ensemble mean of the exponent corresponding to the best fit (μ‖) from the experiments is μ‖expt = 1.57
with a standard deviation of 0.09.

function decays slowly near the critical point when com-
pared to control parameter values away from the critical point
(Fig. 15). The distance (or duration) at which the correlation
function decays to 2/e is defined as the correlation length (or

time). The factor 2/e, instead of 1/e, is selected owing to the
large variations in the correlation function. We observe that,
close to the critical point, the correlation function persists for
a longer distance (or duration).

FIG. 13. The distribution of inactive interval distance [N (�x )] along the spatial dimension (x) exhibits power-law behavior very close to
that of the universality class of 2 + 1 directed percolation. (a)–(j) N (�x ) at the critical point for each of the experiments. The dashed lines in
(a)–(j) are the reference lines corresponding to the universality class of 2 + 1 DP with a slope of μ⊥DP = 1.204. The black line segment is the
best fit for the distribution of the �x values falling within the line segment. The ensemble mean of the scaling exponents for the distribution of
inactive interval is μ‖expt = 1.28 with a standard deviation of 0.16.
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FIG. 14. (a)–(j) The distribution of inactive interval along y direction ]N (�y )] at the critical point for each trial of the experiments. The
dotted line in (a)–(j) is the reference line corresponding to the universality class of 2 + 1 DP with a slope of μ⊥DP = 1.204. The black line
segment is the best fit for the distribution of the �y values falling within the line segment. The ensemble mean of the scaling exponents is
μ‖expt = 1.26 with a standard deviation of 0.1.

APPENDIX F: OPTIMUM TIME DELAY AND SUITABLE
EMBEDDING DIMENSION FOR PHASE SPACE

RECONSTRUCTION

For reconstructing the phase space, the optimum time
delay is selected as the first local minima of the aver-
age mutual information [45] and the suitable embedding
dimension is calculated using the FNN method [74]. A
FNN in the phase space changes its relative position as
the embedding dimension is increased. In this method,
we keep track of the fraction of the FNN in the phase
space as the embedding dimension is progressively in-
creased. When the percentage of FNN falls to zero for

a particular value of the embedding dimension (d − 1)
for the first time, the dimension corresponding to the next
higher value is considered the optimal embedding dimension
(d) required for the phase space reconstruction. The optimum
lag (τ ) and embedding dimension for reconstructing the phase
space for the state of chaos, intermittency, and limit cycle
oscillations are shown in Fig. 16. The optimum lag values ob-
tained for the state of chaos, intermittency, and LCOs are 1.6,
1.5, and 1.6 ms, respectively. The optimal embedding dimen-
sions obtained for the state of chaos, intermittency, and LCO
are 9, 6, and 5. The percentage of FNN remains the same if the
embedding dimension is greater than the optimal dimension
(d) (Fig. 16).

FIG. 15. (a)–(c) Normalized correlation function [G(τ ), G(rx ), and G(ry )] along time, x, and y directions are shown for ten experiments
corresponding to the control parameter values ε ≈ 0, ε > 0, and ε < 0. The correlation function persists for a longer duration or distance close
to the critical point in comparison with the control parameter values away from the critical point.
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FIG. 16. (a) Average mutual information with respect to delay, (b) percentage of FNN with respect to the embedding dimension, and (c) the
reconstructed phase space for the state of (i) chaos, (ii) intermittency, and (iii) limit cycle oscillations (LCOs). The optimum lag obtained for
the state of chaos, intermittency, and LCO are 1.6, 1.5, and 1.6 ms, respectively, and they are highlighted. The optimal embedding dimensions
obtained for the state of chaos, intermittency, and LCO are 9, 6, and 5 and they are highlighted.
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