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Robust design against frequency variation for amplitude death in delay-coupled oscillators
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Amplitude death has the potential to suppress unwanted oscillations in various engineering applications.
However, in some engineering applications, such as dc microgrids, airfoil systems, and thermoacoustic systems,
oscillation frequency is highly susceptible to external influences, leading to considerable variations. To maintain
amplitude death amidst these frequency variations, we propose a design procedure that is robust against
frequency variation for inducing amplitude death in delay-coupled oscillators. We first analytically derive the
oscillator frequency band in which amplitude death can occur. The frequency bandwidth is maximized when
the coupling strength is inversely proportional to the connection delay. Furthermore, our analysis reveals that
the oscillator frequency band is influenced by the minimum eigenvalue of the normalized adjacency matrix (i.e.,
network topology) and that bipartite networks exhibit limited robustness to frequency variations. Our design
procedure maintains the stability of amplitude death even under substantial frequency variations and is applicable
to various network topologies. Numerical simulations confirm the validity of the proposed design.
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I. INTRODUCTION

Coupling interactions between oscillators can cause vari-
ous interesting phenomena [1–9]. One notable phenomenon,
amplitude death, leads to a uniform steady state, in which all
the oscillators are quenched [10–16]. This phenomenon can
be induced through various interactions, including static [17],
dynamic [18], nonlinear [19], and conjugate connections [20].

Particular attention has been paid to delay connections,
a natural consequence of signal propagation delays, which
are ubiquitous in numerous systems [21]. Amplitude death
resulting from such delay connections has been investigated
theoretically [22] and experimentally [23–25]. Death by delay
has potential in engineering applications, particularly in con-
trol engineering, because a reference signal is not required, the
control signal is tiny after stabilization, and a signal propaga-
tion delay, which is inevitable, is used for stabilization [22].

Amplitude death can be used for suppressing unwanted
oscillations in various engineering systems. In dc microgrids,
for instance, the limit cycle of the bus voltage oscillation
occurs due to a constant power load and causes voltage
collapse [26,27]. By coupling microgrids, the limit cycle
oscillation can be suppressed [28,29]. Similarly, in ther-
moacoustic systems, self-excited oscillation, which leads to
the deterioration of gas turbine engines, emerges from the
interplay of heat transfer and pressure variations [30,31].
Connecting thermoacoustic systems using tubes and valves
can effectively suppress these oscillations [32–46]. For airfoil
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systems, flutter, a result of nonlinearities in plunge and pitch
stiffness, can be quenched by connecting two airfoils with a
spring [47–49].

To effectively achieve amplitude death in delay-coupled
oscillators, it is crucial to correctly set the coupling param-
eters, namely, coupling strength and connection delay, in
accordance with the oscillation frequency. Previous studies
on amplitude death assumed a constant oscillation frequency.
However, in practical engineering systems, the oscillation
frequency is subject to variation due to external influences.
For instance, in dc microgrids, load variations alter capaci-
tance and inductance, impacting the frequency of bus voltage
oscillations [50,51]. Similarly, the oscillatory behavior of
thermoacoustic systems qualitatively changes in driving tem-
perature [45,46]. For airfoil systems, the flutter frequency in
airfoil systems varies with airspeed [52]. Therefore, despite
successfully suppressing oscillations through delay coupling,
there is a potential for the reoccurrence of the oscillation due
to external factors causing frequency variations. To avoid the
reoccurrence of the oscillation, a parameter design that can
sustain the suppression of oscillation even amidst substantial
frequency variations is required. However, to the best of our
knowledge, the robustness of amplitude death against fre-
quency variations has not been previously investigated.

To address this challenge, this paper proposes a design
procedure for delay-coupled oscillators, which maintains am-
plitude death despite significant frequency variations. Initially,
we analytically derive the relationship between the oscil-
lator frequency and the coupling parameters for inducing
amplitude death. Our findings indicate an optimal coupling
strength that maximizes the frequency bandwidth where am-
plitude death is achievable. Furthermore, our analysis reveals
that the frequency bandwidth is influenced by the minimum
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eigenvalue of the normalized adjacency matrix and that
bipartite networks exhibit limited resilience to frequency
variations. The proposed design procedure can maintain the
stability of amplitude death amidst frequency variations and
is applicable across various network topologies. The efficacy
of our design is confirmed through numerical simulations.

The following notations are used in this paper. N is the set
of positive integers, and N0 is the set of non-negative integers.
The imaginary unit is defined as i := √−1.

II. PAIR OF OSCILLATORS

Self-excited unwanted oscillations in various engineer-
ing systems, such as dc microgrids [53], permanent-magnet
synchronous motors [54], airfoil systems [48], and thermoa-
coustic systems [55], arise through Hopf bifurcation [56].
When a system undergoes Hopf bifurcation, an operating
point of the system loses stability, leading to the emergence
of self-excited oscillations. The Stuart-Landau oscillator is
known as the normal form of Hopf bifurcation, since the
dynamics of systems close to Hopf bifurcation can be trans-
formed into the Stuart-Landau oscillator [56]. Thus, many
studies on delayed feedback control and amplitude death use
the Stuart-Landau oscillator [10,57].

The Stuart-Landau oscillator with the state variable z(t ) ∈
C at time t is governed by the equation ż(t ) = {1 + iω −
|z(t )|2}z(t ), where ω is the frequency of the oscillator. This
oscillator has a stable limit cycle with frequency ω and an
unstable equilibrium point z∗ = 0.

This section considers a pair of delay-coupled Stuart-
Landau oscillators,

ż1(t ) = {1 + iω − |z1(t )|2}z1(t ) + k(z2(t − τ ) − z1(t )),
(1)

ż2(t ) = {1 + iω − |z2(t )|2}z2(t ) + k(z1(t − τ ) − z2(t )),

where z j (t ) ∈ C ( j = 1, 2) is the state variable for the jth
oscillator.1 The second term on the right-hand side denotes
the coupling signal, where k � 0 is the coupling strength and
τ � 0 is the connection delay.2

The coupled oscillators in Eq. (1) have the following ho-
mogeneous steady state:

[z1
∗, z2

∗]T = [0, 0]. (2)

For decoupled oscillators [i.e., Eq. (1) with k = 0], steady
state (2) is unstable. This paper considers stabilization of
steady state (2) by a delay connection, which corresponds to
a suppression of the oscillation in Eq. (1). We investigate the
local stability of steady state (2).

1Using the averaging method in Ref. [58], delay-coupled van der
Pol oscillators, which have been employed to model coupled ther-
moacoustic oscillators [33,34,44], can be transformed into Eq. (1).

2Delayed connections can be classified into diffusive and direct
couplings [59]. This paper considers the former, since diffusive cou-
plings are typically used to describe interactions in practical systems,
such as coupled thermoacoustic systems [33–40,44,48,49].

FIG. 1. Time-series data for Stuart-Landau oscillators described
by Eq. (1). Here, the oscillators’ frequency ω shifts from ω = 2π to
ω = 2π + 0.6 at t = 30. (a) demonstrates sustained amplitude death,
while (b) shows the failure to maintain amplitude death after t = 30.

Linearizing Eq. (1) around steady state (2) yields the char-
acteristic function gAB(s) that governs the local stability of the
steady state:

gAB(s) := gA(s)gB(s), (3)

gA(s) := s − 1 − iω + k(1 − e−sτ ), (4)

gB(s) := s − 1 − iω + k(1 + e−sτ ). (5)

Steady state (2) is stable if and only if the dominant roots for
both gA(s) = 0 and gB(s) = 0 lie within the open left-half of
the complex plane.

A. Instability caused by frequency variation

This subsection presents a numerical example illustrating
the loss of stability of steady state (2) due to variations in the
frequency ω. Time-series data of the state variables in Eq. (1)
are displayed in Figs. 1(a) and 1(b) for (k, τ ) = (4, 0.25) and
(3, 0.26), respectively. The oscillator frequency ω is set to 2π

for t ∈ [0, 30), followed by a change to 2π + 0.6 at t = 30.
In both figures, up to t = 30, the state variables converge
to steady state (2), indicating the occurrence of amplitude
death. After t = 30, however, the variables in Fig. 1(b) be-
gin oscillating, while stability is maintained in Fig. 1(a).
This demonstrates that the stability of steady state (2) can
be maintained even in the face of frequency variations if an
appropriate set of coupling parameters (k, τ ) is employed.

Figure 2 illustrates the stability regions in (k, τ ) space
where all the roots of Eq. (3) lie in the open left-half of the
complex plane. The regions enclosed by the blue, black, and
red curves, respectively, represent the stability regions for fre-
quencies ω = 2π − 0.6, 2π , and 2π + 0.6. Amplitude death
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FIG. 2. Stability regions in (k, τ ) space. The regions colored in
blue, black, and red denote stability regions for ω = 2π − 0.6, ω =
2π , and ω = 2π + 0.6, respectively. Points (a) and (b) correspond to
the coupling parameter used in Figs. 1(a) and 1(b), respectively.

occurs for the parameter set (k, τ ) in these regions. Points
(a) and (b) in Fig. 2 correspond to the coupling parameters
in Figs. 1(a) and 1(b), respectively. Point (a) is in the black
and red regions; thus, the stability is maintained even after
frequency shifts from ω = 2π to ω = 2π + 0.6, as observed
in Fig. 1(a). Conversely, Point (b) lies outside the red region,
leading to a reemergence of oscillations after the frequency
variation, as evident in Fig. 1(b). Notably, Point (a) is also
in the blue region, suggesting a greater robustness against
frequency variations compared to Point (b).

To ensure the persistence of amplitude death despite varia-
tions in frequency, it is critical to suitably design the coupling
parameter set (k, τ ). In this context, we consider a scenario
where the oscillator frequency ω varies within the range
[ωn − �ω,ωn + �ω], with ωn being the natural frequency of
the oscillator, affected by external factors. Our objective is to
devise a coupling parameter set (k, τ ) capable of maintaining
stability over the widest possible range of frequency variation
(±�ω). For instance, with a natural frequency of ωn = 2π ,
the coupling parameters at point (a) in Fig. 2 successfully
sustain stability for a frequency change of ±�ω = ±0.6.

Further examining the stability of steady state (2) relative
to frequency ω, Fig. 3 illustrates the real part of the dominant
roots for Eqs. (4) and (5), plotted against ω at points (a) and
(b) in Fig. 2. The real parts of the dominant root for gA(s) = 0
and gB(s) = 0 are, respectively, expressed as

SA(ω) := 1

τ
Re[W0(τke−(1−k)τ e−iωτ )] + 1 − k, (6)

SB(ω) := 1

τ
Re[W0(−τke−(1−k)τ e−iωτ )] + 1 − k, (7)

where W0 denotes the principal branch of the Lambert W func-
tion, satisfying W (x)eW (x) = x with x ∈ C [60,61]. The blue
and red curves, SA(ω) and SB(ω), respectively, represent the

FIG. 3. Variation of the real part of dominant roots against fre-
quency ω, for gA(s) = 0 (blue) and gB(s) = 0 (red). The coupling
parameters in (a) and (b) correspond to points (a) and (b) in Fig. 2,
respectively.

real parts of dominant roots for gA(s) = 0 and gB(s) = 0. For
stable gAB(s) [stable steady state (2)], both SA(ω) and SB(ω)
must be negative. For example, at point (a) [see Fig. 3(a)],
gAB(s) is stable from approximately ω = 5.536 (which is less
than 2π − 0.6) to ω = 7.030 (exceeding 2π + 0.6), indicat-
ing a frequency bandwidth for stable gAB(s) of approximately
1.494. The principal aim of this paper is to maximize this
frequency bandwidth, thereby enhancing the robustness of the
coupling parameter set against frequency variations.

B. Frequency bandwidth for stable gAB(s)

To identify the frequency band within which gA(s) and
gB(s) remain stable, we analytically derive the frequencies
at which stability changes, as indicated by the black dots in
Fig. 3. When a root of gA(s) = 0 is on the imaginary axis,
s = iλ (λ ∈ R), the real and imaginary parts of gA(iλ) = 0
are given by

−1 + k − k cos λτ = 0, (8)

λ − ω + k sin λτ = 0. (9)

From Eqs. (8) and (9), we obtain λ that satisfies gA(iλ) = 0:

λ± := ω ± √
2k − 1. (10)

For coupling strength k � 1/2, a root s of gA(s) = 0 intersects
the imaginary axis at points s = iλ±.

Consider the case with ω = 0 and varying connection
delay τ . At ω = 0 and τ = 0, we can see that gA(s) = 0 has
an unstable root s = 1. Since sgn(Re[ ds

dτ
]s=iλ+ ) > 0 at ω = 0,

a root crosses the imaginary axis at s = iλ+ from left to right
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FIG. 4. Frequency band for stable gA(s), gB(s), and gAB(s) (i.e., �A, �B, and �AB, respectively).

as τ increases from zero. We easily find that the crossing
occurs at τ = τ̄ (k) + π/

√
2k − 1, where

τ̄ (k) := π − φ(k)√
2k − 1

, (11)

φ(k) := cos−1

(
k − 1

k

)
∈ [0, π ]. (12)

Thus, gA(s) = 0 with ω = 0 has one unstable root for

k � 1

2
, τ ∈

[
0, τ̄ (k) + π√

2k − 1

)
. (13)

Under Eq. (13), the crossing direction of the root s = iλ±
with increasing ω can be calculated as

sgn

(
Re

[
ds

dω

]
s=iλ±

)
= sgn(λ± − ω). (14)

From Eqs. (10) and (14), the root crosses the imaginary axis
from left to right at s = iλ+ and from right to left at s = iλ−
with an increase in ω. Furthermore, Eqs. (8)–(10) lead to

sin λ±τ = ∓√
2k − 1

k
, (15)

cos λ±τ = k − 1

k
. (16)

From the sign of Eq. (15), we see that λ+τ ∈ [π, 2π ] and
λ−τ ∈ [0, π ]. Consequently, Eq. (16) informs us about
the conditions that lead to the determination of crossing
frequencies:

λ+τ = 2lπ − φ(k), l ∈ N,
(17)

λ−τ = 2lπ + φ(k), l = 0,±1,±2, . . . .

Substituting Eq. (10) into Eqs. (17), we identify the specific
frequencies at which roots cross the imaginary axis as

ω
(A)
+ (l ) := 2lπ − φ(k)

τ
− √

2k − 1, l ∈ N,

(18)

ω
(A)
− (l ) := 2lπ + φ(k)

τ
+ √

2k − 1, l ∈ N0.

As ω increases, the crossing at ω = ω
(A)
+ (l ) for a rightward

direction and at ω = ω
(A)
− (l ) for a leftward direction

delineates the stabilizing (ω(A)
− (l )) and destabilizing

(ω(A)
+ (l )) frequencies. Notably, for stable gA(s), the first

stabilizing frequency ω
(A)
− (0) must appear before the first

destabilizing frequency ω
(A)
+ (1) as ω increases from zero. The

inequality ω
(A)
− (0) > ω

(A)
+ (1) can be rewritten as

τ < τ̄ (k). (19)

Note that it is straightforward to confirm that ω
(A)
− (0) =

ω
(A)
+ (1) when k = 1/2.

Summarizing the above, if k and τ satisfy

k >
1

2
, τ ∈ [0, τ̄ (k)), (20)

then gA(s) = 0 has one unstable root for ω = 0. With increas-
ing ω from zero, gA(s) becomes stable at the first stabilizing
frequency ω = ω

(A)
− (0), as illustrated in the upper part of

Fig. 4. Stability for gA(s) is then maintained up to the point
where ω approaches the first destabilizing frequency ω

(A)
+ (1).

Therefore, gA(s) is stable between ω = ω
(A)
− (0) and ω =

ω
(A)
+ (1). Given the periodic occurrence of ω

(A)
+ (l ) and ω

(A)
− (l )

in intervals of 2π/τ with increasing l , the frequency band for
stable gA(s) similarly demonstrates periodicity, as indicated
by SA(ω) = SA(ω + 2π/τ ). Moreover, due to the relationship
between the real parts of the dominant roots for gA(s) and
gB(s), where SA(ω) = SB(ω − π/τ ), the frequency band for
stable gB(s) is equivalent to that for stable gA(s) shifted by
π/τ . The crossing frequencies for gB(s) can thus be expressed
as follows:

ω
(B)
+ (l ) := (2l + 1)π − φ(k)

τ
− √

2k − 1, l ∈ N0,

(21)

ω
(B)
− (l ) := (2l − 1)π + φ(k)

τ
+ √

2k − 1, l ∈ N,

where ω
(B)
+ (l ) and ω

(B)
− (l ) are the destabilizing and stabilizing

frequencies, respectively (see the middle part of Fig. 4). The
frequency bands for stable gA(s) and gB(s) can be summarized
as follows.

Lemma 1. Assume that k and τ satisfy Eq. (20). Character-
istic function gA(s) is stable if and only if ω belongs to

�A :=
⋃
l∈N

(
ω

(A)
− (l − 1), ω(A)

+ (l )
)
. (22)
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Characteristic function gB(s) is stable if and only if ω belongs
to

�B := [
0, ω

(B)
+ (0)

) ∪
⋃
l∈N

(
ω

(B)
− (l ), ω+(B)(l )

)
. (23)

Proof. The proof is omitted. �
From Lemma 1, we confirm that the center of the frequency

band for stable gA(s) is given by

CA(l ) := 2l − 1

τ
π, l ∈ N, (24)

and that for stable gB(s) is given by

CB(l ) := 2l

τ
π, l ∈ N, (25)

except for the first frequency band ω ∈ [
0, ω

(B)
+ (0)

)
(see

Fig. 4). Note that these center frequencies depend only on
the connection delay. Furthermore, the frequency bandwidth
for stable gA(s) and that for stable gB(s) except for the first
frequency band are the same and are expressed as

FA(k, τ ) := 2π − 2φ(k)

τ
− 2

√
2k − 1. (26)

gAB(s) is stable if and only if ω belongs to both �A and �B.
We see that �AB := �A ∩ �B exists for ω

(B)
+ (l ) > ω

(A)
− (l ).

This inequality is satisfied if and only if

k > 1, τ ∈ [0, τ̄AB(k)), (27)

where

τ̄AB(k) := 1

2

(
τ̄ (k) − φ(k)√

2k − 1

)
. (28)

The following lemma summarizes the frequency band for
stable gAB(s).

Lemma 2. Under Eq. (27), gAB(s) = gA(s)gB(s) is stable if
and only if ω belongs to

�AB :=
⋃

l∈N0

(
ω

(A)
− (l ), ω(B)

+ (l )
) ∪ (

ω
(B)
− (l + 1), ω(A)

+ (l + 1)
)
.

(29)
Proof. This is obvious from the preceding analysis and the

observed periodicity of the frequency band for stable gA(s)
and gB(s). �

Figure 4 graphically shows the frequency bands for stable
gA(s), gB(s), and gAB(s). The bold lines denote the sets �A,
�B, and �AB. We can see that the frequency band for stable
gAB(s) appears periodically in terms of ω. Each frequency
bandwidth for stable gAB(s) is given by

FAB(k, τ ) := π − 2φ(k)

τ
− 2

√
2k − 1, (30)

which depends on k and τ , but is independent of l (see Fig. 4).
The goal of this paper is to design (k, τ ) that maximizes

the bandwidth FAB(k, τ ), thereby enhancing the robustness
against frequency variations. The frequency bandwidth can be
maximized with respect to the coupling strength k as follows.

Lemma 3. Under Eq. (27), the frequency bandwidth
FAB(k, τ ) is maximized with respect to k at k = 1/τ .

Proof. This can be confirmed by differentiating Eq. (30)
with respect to k. �

Note that in Ref. [62], for a single Stuart-Landau oscillator
with delayed feedback control, it is shown that k = 1/τ is
the optimal feedback parameter value (i.e., that for which the
stability is strongest). However, the frequency bandwidth is
not discussed in Ref. [62].

The center of each frequency band for stable gAB(s) (see
Fig. 4) is given by

CAB(l ) = 2l − 1

2τ
π, l ∈ N, (31)

which depends only on the connection delay τ . In other words,
the center frequency can be adjusted by varying τ .

III. DESIGN PROCEDURE FOR PAIR OF OSCILLATORS

Based on the results in the previous section, we propose a
design procedure for the coupling parameter set (k, τ ) that is
robust against frequency variation.

Here, we consider the situation where the natural frequency
of the oscillator ω = ωn is given. The design focuses on align-
ing the center of the first frequency band, CAB(1) = π/(2τ ),
with the given natural frequency ωn, and on maximizing the
frequency bandwidth FAB(k, τ ).

Since the center point given in Eq. (31) depends only on τ ,
the center of the first frequency band, CAB(1), can be aligned
with the natural frequency ωn by setting

τ = τ ∗ := π

2ωn
. (32)

From Lemma 3, the bandwidth FAB(k, τ ) is maximized with
respect to k when

k = k∗ := 1/τ ∗ = 2ωn

π
. (33)

The maximized frequency bandwidth is given by

F ∗
AB := FAB(k∗, τ ∗)

= 2ωn

π

{
π − 2φ

(
2ωn

π

)}
− 2

√
4ωn

π
− 1. (34)

Positioning ωn precisely at the center of the frequency band
for stable gAB(s) ensures stability for frequencies within
the range ω ∈ [ωn − F ∗

AB/2, ωn + F ∗
AB/2]. Summarizing the

above, a design for a pair of oscillators that is robust against
frequency variation is achieved as follows.

Theorem 1. Assume that ωn satisfies

π

2ωn
<

π − 2φ(2ωn/π )

2
√

4ωn/π − 1
. (35)

For (k, τ ) = (k∗, τ ∗), the local stability of steady state (2) is
maintained even if the frequency changes by up to ±F ∗

AB/2.
Proof. The designed parameters (k, τ ) = (k∗, τ ∗) satisfy

Eq. (27) if Eq. (35) holds. It is obvious that for (k, τ ) =
(k∗, τ ∗), ωn aligns with the center of the first frequency band
for stable gAB(s) and the stability is maintained for ω ∈ [

ωn −
F ∗

AB/2, ωn + F ∗
AB/2

]
. �

Furthermore, the following provides a simpler condition
than Eq. (35).

Corollary 1. If ωn satisfies

ωn � 2π, (36)

then Eq. (35) holds.
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As a design example, the natural frequency ωn = 2π ,
which satisfies Eq. (36), is given. Then, the parameter set
(k, τ ) = (k∗, τ ∗) = (4, 0.25) is obtained. This parameter set
is used in Fig. 2(a). We can confirm that the natural frequency
ωn = 2π is in the center of the frequency band [see the green
star in Fig. 3(a)]. The allowable frequency variation for main-
taining stability is calculated as ±F ∗

AB/2 � ±0.747, thereby
ensuring the stability of steady state (2) against frequency
shifts approximately ±12% relative to ωn.

IV. OSCILLATOR NETWORKS

This section expands upon the preceding discussion, apply-
ing the findings to a coupled oscillator network. We provide
a design procedure applicable to any network topology aimed
at ensuring robustness against frequency variations.

A. Frequency band for coupled oscillators

The dynamics of N coupled oscillators is given by

ż j (t ) = {1 + iω − |z j (t )|2}z j (t ) + u j (t ), (37)

u j (t ) = k
N∑

l=1

a jl

d j
(zl (t − τ ) − z j (t )), (38)

where j = 1, . . . , N . Here, ajl ∈ {0, 1} is the ( j, l )th element
of the adjacency matrix A. If oscillator j is connected to oscil-
lator l , a jl = al j = 1; otherwise, a jl = al j = 0. Self-feedback
is forbidden (i.e., a j j = 0). The degree of oscillator j is de-
fined as d j := ∑N

l=1 a jl . Equations (37) and (38) have the
following homogeneous steady state:

[z∗
1 · · · z∗

N ]T = [0 · · · 0]T. (39)

The local stability of steady state (39) is governed by the
characteristic function,

G(s) :=
N∏

j=1

g(s, ρ j ), (40)

g(s, ρ) := s − 1 − iω + k(1 − ρe−sτ ), (41)

with ρ j ( j = 1, . . . , N ) is the eigenvalue of the normalized
adjacency matrix An := D−1A, where D := diag(d1, . . . , dN )
is the diagonal degree matrix. It is known that the eigenvalue
ρ j satisfies ρ1 = 1 � ρ2 � · · · � ρN � −1 for any network
topology [63]. Note that gA(s) and gB(s) in Eq. (3) correspond
to g(s, 1) and g(s,−1), respectively. The real part of the dom-
inant root is given by

S(ω, ρ) := 1

τ
Re[W0(ρτke−(1−k)τ e−iωτ )] + 1 − k. (42)

Due to S(ω, 0) = 1 − k, the characteristic function g(s, ρ)
with ρ = 0 is stable independent of ω if and only if k > 1. For
nonzero ρ, we can analytically derive the frequency band for
stable g(s, ρ) using a calculation similar to that in the previous
section.

Lemma 4. Assume that k and τ satisfy

k ∈
(

1

1 + |ρ| ,
1

1 − |ρ|
]
, τ ∈

[
0,

π − 
(ρ, k)√
D(ρ, k)

)
. (43)

Characteristic function g(s, ρ) with ρ 	= 0 is stable if and only
if ω belongs to �(+) for ρ > 0 and �(−) for ρ < 0, where

�(+) :=
⋃
l∈N

(
ω

(+)
− (l − 1, ρ), ω(+)

+ (l, ρ)
)
, (44)

�(−) := [
0, ω

(−)
+ (0, ρ)

) ∪
⋃
l∈N

(
ω

(−)
− (l, ρ), ω(−)

+ (l, ρ)
)
, (45)

with

ω
(+)
+ (l, ρ) := 2lπ − 
(ρ, k)

τ
−

√
D(ρ, k), (46)

ω
(+)
− (l, ρ) := 2lπ + 
(ρ, k)

τ
+

√
D(ρ, k), (47)

ω
(−)
+ (l, ρ) := (2l + 1)π − 
(ρ, k)

τ
−

√
D(ρ, k), (48)

ω
(−)
− (l, ρ) := (2l − 1)π + 
(ρ, k)

τ
+

√
D(ρ, k), (49)

D(ρ, k) := (ρ2 − 1)k2 + 2k − 1, (50)


(ρ, k) := cos−1

(
k − 1

|ρ|k
)

. (51)

Proof. The crossing frequency can be derived using the
same procedure as that used for gA(s) and gB(s). The proof
is omitted. �

From Lemma 4, we can see that the center of the frequency
band for stable g(s, ρ), for positive and negative ρ, is deter-
mined by Eqs. (24) and (25), respectively, regardless of the
value of ρ. For larger values of k, the stability of g(s, ρ) is
maintained for all non-negative frequencies ω as follows.

Corollary 2. If the condition

k >
1

1 − |ρ| , |ρ| 	= 1, (52)

holds, then characteristic function g(s, ρ) is stable for
any ω � 0.

Proof. g(s, ρ) with ω = 0 is stable if Eq. (52) is satisfied
[64]. It is easily confirmed that the stability of g(s, ρ) never
changes as ω increases from 0. �

Let �ρ j be the frequency set for stable g(s, ρ j ). For steady
state (39) to be stable, the frequency ω must belong to all the
sets �ρ j ( j = 1, . . . , N). This implies that there must be an
intersection of all the frequency sets �ρ j ( j = 1, . . . , N). By
deriving the condition for the existence of such an intersec-
tion, the stability of G(s) is summarized as follows.

Lemma 5. Assume that k and τ satisfy

k ∈
(

1,
1

1 + ρN

]
, τ ∈

[
0,

π − 
(ρN , k) − 
(1, k)√
D(ρN , k) + √

D(1, k)

)
.

(53)

Characteristic function G(s) is stable if and only if ω belongs
to

� :=
⋃

l∈N0

((
ω

(+)
− (l, 1), ω(−)

+ (l, ρN )
) ∩ (

ω
(−)
− (l + 1, ρN ), ω(+)

+ (l + 1, 1)
))

. (54)
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FIG. 5. Coupling parameter areas that satisfy Eqs. (53) and (55),
in which the frequency band for stable G(s) exists.

In addition, under the condition

k >
1

1 + ρN
, τ ∈ [0, τ̄ (k)), ρN > −1, (55)

G(s) is stable if and only if ω belongs to �A.
Proof. See Appendix. �
We can see that Lemma 5 is the extended version of

Lemma 2 since � in Eq. (54) is equivalent to �AB in Eq. (29)
when ρN = −1. Lemma 5 shows that under Eq. (53), the
frequency set for stable G(s), which is the intersection of all
�ρ j ( j = 1, . . . , N ), is given by the intersection of �ρ1 and
�ρN . Roughly speaking, the smallest and largest eigenvalues
(ρ1 and ρN ) fundamentally govern the determination of the
frequency set for stable G(s). In addition, under Eq. (55), the
frequency set for stable G(s) is the same as �ρ1 .

Figure 5 shows the parameter areas that satisfy Eqs. (53)
and (55) for ρN = −0.5,−0.8090, and −1. The pink and
green dotted lines denote k = 1/(1 + ρN ) for ρN = −0.5 and
−0.8090, respectively. In the area to the left of the pink
(green) dotted line and below the pink (green) solid curve,
Eq. (53) with ρN = −0.5 (ρN = −0.8090) holds. The area to
the right of the pink (green) dotted line and below the pink
(green) solid curve satisfies Eq. (55) with ρN = −0.5 (ρN =
−0.8090). The area below the black curve satisfies Eq. (53)
with ρN = −1. In these areas, there exists a frequency ω for
stable G(s). We can see that the parameter space expanding as
ρN increases.

Figures 6 and 7 show the real part of the dominant roots
of g(s, ρ) = 0, denoted as S(ω, ρ), against ω for ring net-
works comprising N = 12 and N = 5 oscillators, respectively.
The minimum eigenvalues ρN for these networks are ρ12 =
−1 and ρ5 = cos(4π/5) � −0.8090. The connection delay is
fixed at τ = 0.25. The coupling strength is set to k = 4 for
Figs. 6(a) and 7(a) and k = 8 for Figs. 6(b) and 7(b). These
coupling parameters satisfy Eqs. (53) or (55), as highlighted
by the red cross marks in Fig. 5.

In Figs. 6 and 7, each curve corresponds to S(ω, ρ j ) for a
specified ρ j , using the notation ρ j,l to indicate ρ j = ρl . Red
and blue curves denote the dominant roots for the negative and
positive eigenvalues, respectively, and bold curves represent
S(ω, ρ1) and S(ω, ρN ). The crossing frequencies marked as

FIG. 6. Real part of dominant roots for g(s, ρ j ) = 0, S(ω, ρ ), for
ring network with N = 12 (τ = 0.25): (a) k = 4 and (b) k = 8.

black dots are calculated based on Eqs. (46)–(49). For stable
G(s), the real part of all the dominant roots must be negative.

In Figs. 6(a), 6(b) and 7(a), the frequency band that en-
sures the stability of G(s) emerges as the overlap between
the bands of g(s, ρ1) and g(s, ρN ). Specifically, in Fig. 7(b),
where the coupling strength k = 8 exceeds 1/(1 + ρ5), thus
fulfilling Eq. (55), the frequency band is determined only by
S(ω, ρ1) = SA(ω), resulting in an extended frequency band.

FIG. 7. Real part of dominant roots for g(s, ρ j ) = 0, S(ω, ρ ), for
ring network with N = 5 (τ = 0.25): (a) k = 4 and (b) k = 8.
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FIG. 8. Relationship between frequency bandwidth for stable
G(s) and coupling strength k (τ = 0.25). Points A–D correspond to
the parameters used in Figs. 6(a), 6(b), 7(a), and 7(b), respectively.

From Lemma 5, the frequency bandwidth can be classified
into two types according to (k, τ ) as follows.

Corollary 3. Under Eq. (53), the frequency bandwidth for
stable G(s) is given by

F (k, τ, ρN ) := π − 
(ρN , k) − 
(1, k)

τ

−
√

D(ρN , k) −
√

D(1, k). (56)

In addition, under Eq. (55), the frequency bandwidth for stable
G(s) is given by Eq. (26).

Proof. Under Eq. (53), the frequency bandwidth in �

of Eq. (56) is calculated as ω
(−)
+ (l, ρN ) − ω

(+)
− (l, 1) =

ω
(+)
+ (l, 1) − ω

(−)
− (l, ρN ). �

Notably, F (k, τ, ρN ) and FA(k, τ ) remain consistent for
all l values. Furthermore, the condition for the frequency
bandwidth F (k, τ, ρN ) to be a minimum with respect to ρN

is derived.
Corollary 4. For bipartite networks, the frequency band-

width F (k, τ, ρN ) takes a minimum value with respect to ρN

and is given by Eq. (30).
Proof. By differentiating F (k, τ, ρN ) with respect to ρN ,

we see that F (k, τ, ρN ) shrinks with decreasing ρN and takes
a minimum value when ρN = −1. It is known that the min-
imum eigenvalue is ρN = −1 if and only if the network is
bipartite [65]. �

Corollary 4 implies that bipartite networks exhibit lim-
ited robustness to frequency variations. Figure 8 illustrates
the relationship between the frequency bandwidth for stable
G(s) and the coupling strength k for different network topolo-
gies: bipartite networks with ρN = −1, and ring networks
with N = 3 (ρ3 = −0.5) and N = 5 (ρ5 = cos(4π/5) �
−0.8090), with the connection delay consistently set at τ =
0.25. The frequency bandwidth calculations employ FA(k, τ )
from Eq. (26), F (k, τ, ρN ) from Eq. (56), and FAB(k, τ ) from
Eq. (30), with points A–D representing the parameter sets
used in Figs. 6(a), 6(b), 7(a), and 7(b), respectively.

For bipartite networks, such as networks with N = 2 or a
ring network with N = 12, the bandwidth is notably narrower
compared to nonbipartite networks, as depicted by the black
curve against the pink and green curves for networks with
N = 3 and N = 5. The bandwidth jumps at k = 1/(1 + ρN ),

namely, k = 2 for the ring network with N = 3 and k � 5.24
for the ring network with N = 5 (see the pink and green dot-
ted lines). This increase signifies that, beyond this threshold,
the stability of G(s) is governed only by gA(s), particularly
evident in Fig. 7(b).

The observations from Fig. 8 highlight a strategic approach
to achieving extensive frequency bands: steering clear of bi-
partite networks and, in the case of ring networks with an
odd number of oscillators, avoiding large values of N . This
is because the minimum eigenvalue, ρN , tends towards −1
as N increases, diminishing the robustness against frequency
variations [65].

B. Design procedure for oscillator networks

Based on the previous section, we propose a design proce-
dure for oscillator networks that is robust against frequency
variation. We consider the situation where the natural fre-
quency ω = ωn and the minimum eigenvalue ρN are given.
Similar to the case with N = 2, the design guideline is to set
the coupling parameters such that the center of the frequency
band is aligned with ωn and that the frequency bandwidth is
maximized.

Let us first consider the frequency band for stable G(s) un-
der Eq. (55), which is given by Eq. (22). The natural frequency
ωn aligns with the first center frequency CA(1) in Eq. (24)
when

τ = π

ωn
= 2τ ∗. (57)

If τ ∗ < 1/2, the frequency bandwidth FA(k, 2τ ∗) is maxi-
mized with respect to k at k = 1/(2τ ∗):

F ∗
A := FA(k∗/2, 2τ ∗)

= 2ωn

π

(
π − φ

(ωn

π

))
− 2

√
2ωn

π
− 1. (58)

The sufficient condition for FA(k, 2τ ∗) to be positive is given
by

k ∈
(

1

1 + ρN
,
ω2

n

8
+ 1

2

)
. (59)

We now derive a design procedure for nonbipartite net-
works with ρN > −1, where the following three specifications
are satisfied: (i) the stability of G(s) is governed only by gA(s),
(ii) the center of the frequency band for gA(s) aligns with
the natural frequency ωn, and (iii) the frequency bandwidth
FA(k, τ ) is maximized with respect to k.

Theorem 2. Assume that ωn and ρN > −1 satisfy

ωn >
π

1 + ρN
. (60)

For (k, τ ) = (k∗/2, 2τ ∗), the local stability of steady state
(39) is maintained even if the frequency changes by
up to ±F ∗

A/2.
Proof. Under Eq. (60), Eq. (55) is satisfied for (k, τ ) =

(k∗/2, 2τ ∗) and τ ∗ < 1/2 holds. Therefore, for (k, τ ) =
(k∗/2, 2τ ∗), the stability of G(s) is determined only by gA(s)
and the frequency bandwidth is given by Eq. (58). �

Our design is categorized into three distinct scenarios
based on the provided values of ωn and ρN :
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Case (i) ρN = −1 and ωn satisfies Eq. (35):
From Corollary 4, the frequency band for G(s) is the
same as that for gAB(s). Utilizing Theorem 1 to set the
parameters ensures that the center of the frequency band
for gAB(s) aligns with ωn, and the frequency bandwidth
is maximized with respect to k. The designed parameter
can maintain the stability amidst frequency changes up
to ±F ∗

AB/2, as demonstrated at point A in Fig. 8.

Case (ii) ρN > −1 and ωn > π
1+ρN

:
By setting the parameters based on Theorem 2, the
stability of G(s) is governed only by gA(s). These pa-
rameters ensure that the center of the frequency band of
gA(s) is aligned with ωn and the frequency bandwidth
is maximized. The designed parameters can maintain the
stability for frequency shifts of up to ±F ∗

A/2, highlighted
at point E in Fig. 8.

Case (iii) ρN > −1 and ωn � π
1+ρN

:
The stability of G(s) is governed only by gA(s) if the
coupling strength satisfies Eq. (59). Additionally, setting
the connection delay by Eq. (57) ensures that the center
of the frequency band is aligned with ωn. It is noteworthy,
however, that this scenario does not entail maximized
frequency bandwidth, with the tolerable frequency vari-
ation being ±FA(k, 2τ ∗)/2, as indicated at point D
in Fig. 8.

It is important to highlight that in case (iii), while any k
satisfying Eq. (59) is available, excessively high values of k
are generally discouraged in practical engineering contexts,
such as thermoacoustic systems [33], due to the monotonic
decline of FA with increases in k beyond 1/τ . The above
design can be applied to various network topologies, ensuring
resilience to frequency variations.

In the first example, a natural frequency ωn = 2π and a
minimum eigenvalue ρN = −1, which corresponds to bipar-
tite networks such as ring networks with N = 2 and N = 12,
are given. Since the minimum eigenvalue is ρN = −1 and
ωn = 2π satisfies Eq. (35), the design is performed according
to case (i). According to Theorem 1, the coupling parameters
are determined as (k, τ ) = (4, 0.25). With these coupling pa-
rameters, ωn is equal to the center of the frequency band, as
depicted by the green star in Fig. 6(a). Moreover, the black
curve in Fig. 8 demonstrates that the frequency bandwidth
reaches its maximum at k = 4 (see point A). The allowable
frequency variation, ±F ∗

AB/2, is approximately ±0.747 (or
approximately ±12% of ωn). Figure 9(a) shows the time-
series data for Re[z1,...,12(t )] for a ring network with N = 12,
using the designed parameters, under frequency variations.
The frequency ω shifts from ωn = 2π as follows: ω = 2π for
t ∈ [0, 40), ω = 2π + 0.6 for t ∈ [40, 80), and ω = 2π − 0.6
for t ∈ [80, 120]. Notably, the oscillators remain quenched
even with these frequency changes.3

In the second example, we examine a scenario with ωn =
4π and ρN = −0.5, corresponding to a ring network with

3In our simulation, a uniform random external force within the
range [−5, 5] was applied to the right-hand side of Eq. (37) for all
oscillators at t = 40 and 80.

FIG. 9. Time-series data for coupled oscillators with designed
coupling parameters and that for frequency variation.

N = 3. These values satisfy ωn > π
1+ρN

= 2π , leading to the
application of case (ii) for parameter design. Consequently,
the parameter set (k, τ ) is chosen as (k, τ ) = (4, 0.25). The
pink curve in Fig. 8 confirms that the frequency bandwidth
is maximized at k = 4 (see point E). The allowable fre-
quency width, ±F ∗

A/2, is approximately ±7.03 (equivalent
to approximately ±56% from ωn). Figure 9(b) shows the
time-series data for an N = 3 ring network with the designed
parameter set. The frequency of the oscillators undergoes the
following changes: ω = 4π for t ∈ [0, 40), ω = 4π + 6 for
t ∈ [40, 80), and ω = 4π − 6 for t ∈ [80, 120]. Despite the
considerable frequency variation, the oscillations are effec-
tively suppressed.

In the third example, ωn = 4π and ρN = cos(4π/5), cor-
responding to a ring network with N = 5, are given. Since
the condition ωn � π

1+ρN
� 5.24π is met, the design follows
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FIG. 10. Frequency bandwidth with frequency mismatch. The
star marks show the numerical results with the frequency mismatch
of variance 0.5, and the dotted curves are the analytical results with-
out frequency mismatch shown in Fig. 8.

case (iii). We select a coupling strength k = 8, in accordance
with Eq. (59), and set the connection delay τ to 0.25 by
Eq. (57). Then, the center of the frequency band is aligned
with ωn = 4π , as indicated by the green star in Fig. 7(b). No-
tably, point D in Fig. 8 suggests that the chosen parameters do
not maximize the frequency bandwidth. However, Eq. (26) en-
sures stability over a frequency variation of ±FA(8, 0.25)/2 �
±6.67 (approximately ±53% from ωn). Time-series data for
a ring network with N = 5, shown in Fig. 9(c), demonstrate
that amplitude death is sustained despite frequency variations,
following the same frequency change pattern as in Fig. 9(b).

V. DISCUSSION

This section discusses the following: the effect of fre-
quency mismatch on the frequency band for amplitude death,
a comparison of parameter designs in this paper and previous
studies, and a potential extension to coupled high-dimensional
oscillators.

In the previous sections, for theoretical analysis, we as-
sume an ideal situation where all the oscillators have the same
frequency (i.e., no frequency mismatch). However, this is
practically impossible. Therefore, we numerically investigate
how the frequency mismatch affects the frequency bandwidth
in which amplitude death occurs. Figure 10 shows the nu-
merical results of the frequency bandwidth with frequency
mismatch for N = 3, 5, and 12 ring networks. The connec-
tion delay is fixed at τ = 0.25. Uniform random values with
a variance of 0.5 are added to the oscillator frequencies in
Eq. (37) to create frequency mismatch while fixing the mean
frequency. The frequency bandwidth is estimated by calculat-
ing the dominant root in a linearized system containing the
frequency mismatch around steady state (39) using an m-file
function in MATLAB called eigAM [66]. Ten trials are per-
formed for each coupling strength k. The star marks show the
numerical results accounting for the frequency mismatch, and
the dotted curves are the analytical results without frequency
mismatch shown in Fig. 8. Even with the frequency mismatch,
the bandwidth does not change significantly compared to the
situation without mismatch. This result suggests that our no-
frequency mismatch design procedure may be beneficial in

situations with frequency mismatch. A detailed investigation
of the relationship between frequency mismatch and the fre-
quency bandwidth for amplitude death will be studied in the
future.

Here, we introduce the parameter designs for inducing
amplitude death in delay-coupled oscillators proposed in pre-
vious studies and compare them with the parameter design
proposed in this paper. The design procedure for delay-
coupled high-dimensional oscillator networks was proposed
in Ref. [67]. The design does not depend on the topology
of oscillator networks. Previous studies [68,69] proposed
the design procedures for multiple delay connections and
time-varying delay connections, respectively. These designs
can induce amplitude death independently of delays. The
design for Cartesian product networks of two subnetworks
was proposed in Ref. [70]. This design does not require
any information on the topologies of the subnetworks. In
the above studies, parameters of oscillators (e.g., frequency)
are assumed to be constant. Therefore, the robustness of
these designs against frequency variations is yet to be inves-
tigated. Conversely, this paper focuses on robustness toward
frequency variation. Furthermore, our analytical method may
be applicable for other delay connections.

This paper considers coupled Stuart-Landau oscillators,
in which each oscillator is described by a two-dimensional
ordinary differential equation. In general, each oscillator in
real applications would have higher dimension. Recently, a
coupled generalized high-dimensional Stuart-Landau oscilla-
tor, which can capture rich dynamics in many real systems,
has been proposed [71]. An extension of our paper’s re-
sults to the high-dimensional oscillators should be considered
in the future, enhancing their applicability across various
applications.

VI. CONCLUSION

This paper investigated the frequency band for amplitude
death in delay-coupled oscillators. The relationship between
the oscillator frequency and the coupling parameters for
inducing amplitude death was derived. We found that the fre-
quency bandwidth is maximized when the coupling strength is
inversely proportional to the connection delay. The paper also
revealed that the frequency bandwidth is influenced by the
minimum eigenvalue of the normalized adjacency matrix, and
that bipartite networks exhibit limited resilience to frequency
variations. Building on these insights, we proposed a robust
design procedure applicable to a variety of network topologies
that is robust against frequency variations. The efficacy of this
design procedure was validated through a series of numerical
simulations.
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APPENDIX: PROOF OF LEMMA 5

Here, we show the following: (i) the frequency set for
stable G(s) is given by the intersection of �ρ1 and �ρN ;
(ii) Eq. (53) is the necessary and sufficient condition for the
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existence of the intersection of �ρ1 and �ρN ; and (iii) for
k > 1/(1 + ρN ), G(s) is stable if and only if ω belongs to �A.

For (i), G(s) is stable if and only if g(s, ρ) with an uncertain
parameter is stable for any ρ ∈ [ρN , 1]. We apply the stability
criterion of a quasipolynomial with uncertain parameters [60]:

p(s) = s − α − βe−sτ . (A1)

Let β be the uncertain parameter β = βreiβθ

, where βr ∈
[βr, β

r
] and 0 � βr � β

r
. For fixed α ∈ C and βθ , the real

part of the dominant root for the quasipolynomial (A1) is
given by (see Lemma 6 in Ref. [60])

max{Sw(α, β ) | βr ∈ [βr, β
r
]}

= max{Sw(α, βreiβθ

), Sw(α, β
r
eiβθ

)}, (A2)

where

Sw(α, β ) := 1

τ
Re[W0(τβe−ατ )] + Re[α]. (A3)

Equation (A2) implies that the quasipolynomial (A1) is stable
for any βr ∈ [βr, β

r
] if and only if Eq. (A1) is stable for

both βr and β
r
. Let us apply the above to g(s, ρ). Since

ρN is always negative, we consider the following two cases:
ρ ∈ [ρN , 0] and ρ ∈ [0, 1]. For the former case, g(s, ρ) is
represented by Eq. (A1) with α = 1 − k + iω, βr = 0, β

r =
−kρN , and βθ = π ; thus, g(s, ρ) is stable for any ρ ∈ [ρN , 0]
if and only if g(s, ρN ) and g(s, 0) are stable. For the latter
case, g(s, ρ) is represented by Eq. (A1) with α = 1 − k + iω,
βr = 0, β

r = k, and βθ = 0. g(s, ρ) is stable for any ρ ∈
[0, 1] if and only if g(s, 0) and g(s, 1) are stable. Therefore,
G(s) is stable if and only if g(s, 0), g(s, 1), and g(s, ρN ) are

stable. g(s, 0) is stable independent of ω if k > 1. Hence, the
frequency set for stable G(s) is given by the intersection of
that for g(s, 1) and that for g(s, ρN ) (i.e., �ρ1 ∩ �ρN ). We can
see that � in Eq. (54) represents �ρ1 ∩ �ρN .

For (ii), from Eqs. (44) and (45), the frequency band for
g(s, ρ) appears periodically with increasing ω. The center
of the frequency band is given by Eq. (24) for g(s, ρ1) and
Eq. (25) for g(s, ρN ). Thus, the intersection of �ρ1 and �ρN

exists if and only if ω
(−)
+ (l, ρN ) − ω

(+)
− (l, ρ1) > 0. This in-

equality can be rewritten as

τ <
π − 
(ρN , k) − 
(1, k)√

D(ρN , k) + √
D(1, k)

. (A4)

Furthermore, to guarantee that the right-hand side of Eq. (A4)
is positive, the coupling strength k must satisfy

k > 1. (A5)

Additionally, the frequency sets �ρ1 and �ρN exist when
Eq. (43) holds for ρ = ρ1 and ρ = ρN . Thus, the intersection
of �ρ1 and �ρN exists if and only if Eqs. (A4), (A5), and (43)
with ρ = ρ1 and ρ = ρN are satisfied. These conditions are
summarized as Eq. (53).

For (iii), assume that ρN 	= −1. From Corollary 2, g(s, ρ)
with any negative ρ ∈ (0, ρN ] is stable independent of ω for
k > 1

1−|ρN | = 1
1+ρN

. As shown in (i), g(s, ρ) with ρ � 0 is
stable if and only if g(s, 0) and g(s, 1) ≡ gA(s) are stable.
g(s, 0) is stable independent of ω for k > 1. Under Eq. (20),
g(s, 1) is stable if and only if ω belongs to �A. Thus, under
Eq. (55), G(s) is stable if and only if ω is contained in �A.

From (i)–(iii), the lemma is proven.
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