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Biological and psychological processes have been conceptualized as emerging from intricate multiplicative
interactions among component processes across various spatial and temporal scales. Among the statistical
models employed to approximate these intricate nonlinear interactions across scales, one prominent framework
is that of cascades. Despite decades of empirical work using multifractal formalisms, several fundamental
questions persist concerning the proper interpretations of multifractal evidence of nonlinear cross-scale inter-
activity. Does multifractal spectrum width depend on multiplicative interactions, constituent noise processes
participating in those interactions, or both? We conducted numerical simulations of cascade time series featuring
component noise processes characterizing a range of nonlinear temporal correlations: nonlinearly multifractal,
linearly multifractal (obtained via the iterative amplitude adjusted wavelet transform of nonlinearly multifractal),
phase-randomized linearity (obtained via the iterative amplitude adjustment Fourier transform of nonlinearly
multifractal), and phase and amplitude randomized (obtained via shuffling of nonlinearly multifractal). Our
findings show that the multiplicative interactions coordinate with the nonlinear temporal correlations of noise
components to dictate emergent multifractal properties. Multiplicative cascades with stronger nonlinear temporal
correlations make multifractal spectra more asymmetric with wider left sides. However, when considering
multifractal spectral differences between the original and surrogate time series, even multiplicative cascades
produce multifractality greater than in surrogate time series, even with linearized multifractal noise components.
In contrast, additivity among component processes leads to a linear outcome. These findings provide a robust
framework for generating multifractal expectations for biological and psychological models in which cascade
dynamics flow from one part of an organism to another.
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I. INTRODUCTION

A. Multifractal geometry arising from multiplicative dynamics
in biology and psychology

Biology and psychology have begun to explain adaptive
behavior as cascades embodying nonlinear interactions across
nested spatial and temporal scales [1–3]. Linear modeling
of independent effects with normal (Gaussian) patterns of
residual variability can be suitable for systems where behav-
iors result from numerous modular components and exhibit
ergodicity, the statistical property of having stable averages.
However, measured behaviors in biology and psychology
break ergodicity [4–14] and also exhibit nonlinear tempo-
ral correlations across multiple spatial and temporal scales
entailing non-normal (i.e., non-Gaussian) distributions, such
as power laws characterized by scale-invariant tails [15,16].
“Scale invariance” is a mathematical description of how
power-law functions have the same form across all intervals
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of its domain, showing similar or “universal” dynamics across
various scales (e.g., seconds, days, and months) and even
across different systems, regardless of their material composi-
tion [17–19]. Modularity requires appeals to innate, stipulated
structure that contemporary biological, evolutionary science
make progressively less tenable [20–29]. Power-law pat-
terns offer the alternative that adaptive behavior might arise
from relatively generic cascade dynamics enacting nonlinear
interactions across scales [30–33]. Nonlinear dynamics prop-
agating across multiple spatial and temporal scales might help
to root our understanding of living, behaving systems in the
physics of symmetry breaking [34–37] that we might begin to
see even through multifractal geometry.

Probing power-law exponents in empirical measurements
for evidence of cascadelike nonlinear interactions across
scales involves multifractal geometry. Systems exhibiting a
single power law are commonly called “fractal” or “monofrac-
tal,” and cascadelike interactions across multiple scales
generate ergodicity-breaking processes with multiple power
laws within the same observable, warranting the neologism
“multifractal” [38,39]. A classic portrayal of multifractal-
ity is the so-called multifractal spectrum, a peaked, often
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asymmetric, inverted-U-shaped curve described by ordered
pairs of α and f for each setting of a parameter q; α and
f are each power-law exponents describing the change of
proportion and Shannon entropy, respectively, with scale [40].
The parameter q allows for the analytical estimation of these
power-law exponents for different-sized fluctuations. Positive
q, zero-valued q, and negative q estimate these power-law
exponents for larger, medium, and smaller fluctuations, re-
spectively, yielding the values for the left, peak, and right sides
of the multifractal spectrum. The descriptors from multifractal
geometry (e.g., multifractal spectrum width �α) provide both
an ergodic description that can submit to linear causal models
[41–45] and a testable operationalization of how cascades
might support adaptive behavior. Multiplicative cascades en-
act multiplicative relationships across scales by multiplying
noise terms defined over coarse and fine scales, and additive
cascades enact the same relationship between coarse and fine
but with the addition of noise terms, thus leading to none
of the nonlinearity observed in multiplicative cascades. The
standard statistical test for multiplicative cascadelike nonlin-
earity assesses �α for the original time series and a sample of
surrogate time series, preserving only the time series’ linear
structure. The difference between the original and surrogate
�α is multifractal evidence of cascadelike nonlinear interac-
tions across scales.

The multifractal evidence of cascadelike nonlinear inter-
actions across scales has consistently foreshadowed adaptive
behaviors in various domains: postural control [46–49], brain
function [50,51], cognition [52–54], and perceptuomotor re-
sponses [55–64]. Multifractal geometry thus offers a way to
explain ergodicity-breaking and adaptive aspects of measured
behavior [41–45]. If the organism coordinates its degrees of
freedom through cascadelike flows (cf. Refs. [1–3]), then the
empirical multifractal evidence of nonlinear interactions (i.e.,
“multifractal nonlinearity”) may be uniquely poised to show
how [61–66]. A perceptuomotor example of the foregoing
may illustrate the explanatory benefits and applied potential
of cascade modeling. Manually wielding an unseen object
(e.g., with eyes closed, in the dark, or with the hand be-
hind an occluding surface) is sufficient to provide a human
participant with an impression of how heavy or how long
the object is [67] and providing visual feedback on these
perceptual judgments can improve the judgments [68]. Wield-
ing on any trial exhibits fractal structure, and changes in
fractality (i.e., multifractality) of this wielding from trial to
trial predict individual differences in perceptual responses
across repeated trials [69]. Head sway carries similar trial-
to-trial variation in fractality predicting the use of visual
feedback [60]. Multifractal structure of movement fluctua-
tions across the body and the linear causal models confirm
that perceptuomotor performance in such tasks does depend,
adapt, and become more accurate through a bodywide net-
work of multifractal flows [57,61,62]. In a more applied vein,
understanding these multifractal fluctuations might help to
detect disorders in them [70–72] and also provide noninvasive
but targeted interventions that could support more accu-
rate perceptuomotor performance [70,73–75]. Multifractal
geometries allow us to query the role of multiplicative interac-
tions that enact cascades in coordinating adaptive organismal
behavior.

B. The present study: Examining the multifractal nonlinearity
of multiplicative and additive cascades incorporating

multifractal noise

The present work uses numerical simulations to develop
principled expectations for what this empirical multifractal
evidence of nonlinearity should look like when we allow
cascades to absorb multifractal fluctuations. Specifically, we
numerically simulated additive and multiplicative cascades
with four types of multifractal noise terms across cells within
these cascades: (i) nonlinearly multifractal—multifractal
structure with original nonlinear interactions across scales
from a cascade process; (ii) linearly multifractal—noise with
the same multifractal spectrum width but arising out of
purely linear interactions (obtained via the iterative ampli-
tude adjusted wavelet transform of multifractal nonlinearity
(IAAWT) [76,77]; (iii) phase-randomized linearity—noise
with nonlinear interactions removed that preserved only the
multifractal-spectrum width attributable to linear correlations
(obtained via the iterative amplitude adjustment Fourier trans-
form (IAAFT) [78,79]; and (iv) shuffled noise that destroyed
phase and amplitude spectra, leaving only multifractality due
to PDF skew.

We evaluated three specific hypotheses, considering the
range of data collection and processing decisions a behav-
ioral scientist might encounter with multifractal analysis.
Hypothesis 1 was that multiplicative cascades would pro-
mote wider multifractal spectra across progressively more
generations—on both the left and right sides of the spec-
tra to increase α at the peak for q = 0 (Hypothesis 1a).
We hypothesized further that sequential heterogeneity intro-
duced by nonlinear temporal correlations in multifractal noise
would make multifractal spectra more asymmetric (Hypoth-
esis 1b). Specifically, we predicted this asymmetry would
extend towards the left side, accentuating heterogeneity in
large-sized events. We made this prediction while maintain-
ing the evidence-based inference that, as previously found
[80], relatively linear correlations would promote the right-
side spectrum width. We predicted that multifractal-spectral
symmetry might be stronger even for more homogeneous
portions of the linearized surrogates. Linearized surrogates
from the IAAFT and IAAWT are relatively time symmet-
ric, leading their beginnings and endings to show a transient
on either side of their more homogeneous middle [81,82].
Last, we hypothesized that sampling these multifractal noise
processes from their beginning or midpoint would change
their effects on the resulting multifractal spectra and mul-
tifractal nonlinearity, tMF (Hypothesis 1c). Specifically, we
predicted that the noise sampled from the more homogeneous
middle of the linearized multifractal time series might con-
tribute to cascade dynamics with more symmetric multifractal
spectra.

Hypothesis 2 was that multiplicative cascades are more
likely to promote “multifractal nonlinearity,” defined by tMF,
the t-statistic comparing an original cascade time series’
multifractal spectrum width �αOrig to a sample of phase-
randomized surrogates time series’ multifractal spectrum
widths �αSurr [80]. In keeping with previous simulations
[80,83], we expected that, no matter the noise type, multi-
plicativity rather than additivity would increase the size and
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statistical significance of the tMF of simulated time series with
progressively more generations.

Furthermore, we expected in Hypothesis 3 that nonlinearly
multifractal noise would contribute to the ergodicity breaking
of the resulting cascade time series. Because ergodicity guar-
antees stable averages across time, it depends on Gaussian
variance and mixing, that is, homogeneity of a sequential
structure consistent with uncorrelated fluctuations [8]. Al-
though multiplicative and additive cascades break ergodicity
for different reasons, namely non-Gaussianity and sequential
heterogeneity, respectively, multiplicative cascades are more
sensitive than additive cascades to the sequential ergodicity-
breaking of constituent noise processes [80]. Accordingly, we
hypothesized that nonlinearly multifractal and linearly multi-
fractal noises exemplifying sequential heterogeneity would be
more likely to accentuate sequence-driven ergodicity breaking
in multiplicative cascades than the other multifractal noises.

II. METHODS

A. Generating cascade time series

1. Binomial fracturing and binomial noise terms
in prior cascade simulation

Cascades involve an iterative process spanning g gen-
erations, where ng cells in each generation manipulate the
proportions pi, j contained within them. Here i ranges from
1 to n j for generation j less than g. In the subsequent gen-
eration ( j + 1), there are nc children cells per parent, each
inheriting proportions denoted as pi, j+1, where i ranges from
1 to n j+1. In binomial cascades, each parent cell distributes
proportions to two children cells in the next generation (i.e.,
nc = 2). As elaborated below, we generated eight distinct
types of binomial cascades, half following a multiplicative
pattern while the other half adhering to an additive pattern.
In multiplicative cascades, the proportions allocated to the nc

children cells result from nc distinct multiplicative operations
governing the distribution of the parent cell’s proportion. Con-
versely, in additive cascades, the proportions are determined
by nc distinct addition operations. Our cascades underwent
binomial fracturing at each generation, with binomial noise
terms conventionally employed to determine the pairings of
children cells (Fig. 1). Instead of applying binomial noise,
deterministic weights can be used for any ith parent cell in the
jth generation; for instance, the fixed pair of weights, W1 =
0.25 and W2 = 0.75, could be applied consistently to calculate
the proportions in the (2i − 1)th and 2ith children cells in
the ( j + 1)th generation, resulting in p2i−1, j+1 = pi, j · W1 and
p2i, j+1 = pi, j · W2, respectively.

2. Beyond binomial noise terms: Binomial-fracturing cascades
with noise terms defined across entire generations to test for

effects of length, f Gn, and multiplicativity

In this study, our primary objective revolves around
preserving the binomial fracturing pattern from parent to
offspring cells while introducing a random element to the
noise terms, extending beyond the confines of the binomial
(W (1),W (2)) structure. The pivotal deviation involves gen-
erating the cascade time series by introducing noise terms
spanning the entire generation. These noise terms exhibited

variations in interactivity, ranging from additive to multiplica-
tive, and encompass diverse noise types, including multifrac-
tally nonlinear, multifractally linear, phase-randomized, and
phase- and amplitude-randomized variations. We can now
precisely delineate the eight cascade types we simulated using
these terms.

(a) Nonlinearly multifractal noise. We generated multi-
fractally nonlinear noise using an established cascade model
[84] that shows the deformation predicted by the log-normal
model of Kolmogorov [85] and Obukhov [86]. The numerical
procedure for generating a time series from our model unfolds
as follows. We generate a stochastic process ξi, comprising
Gaussian white noise with a zero mean. This process contains
2m samples, where i < 2m with m representing the number of
cascade steps. In the initial cascade step, denoted as j = 1
( j < m), we partition the entire interval into two equal subin-
tervals. Subsequently, we multiply each element ξi within
these subintervals by random weights defined as exp [ω(1)(k)],
where k takes on values of 0 and 1. Notably, the ω(1)(k) val-
ues constitute independent Gaussian random variables, each
possessing a mean of zero and variance of 〈ω(1)(k)2〉 = λ2

0.
As we progress to the subsequent cascade step, designated
as j = 2, we subdivide each existing subinterval into two
equal segments. Here we apply the same random weighting
exp [ω(1)(k)], with k spanning values from 0 to 3. This process
continues iteratively until we have completed the m cascade
steps. The resulting time series, denoted as xi, represents the
outcome of this cascade process and is expressed as:

xi = ξi exp

[
m∑

j=1

ω( j)

(⌊
i − 1

2m− j

⌋)]
, (1)

where �·� is the floor function. The random variable xi is
not standardized to simplify the notation. We generated such
nonlinearly multifractal noise of length l = 215 (i.e., m =
15) with its probability density function (PDF) with vari-
ance λ2 = mλ2

0 according to the Castaing’s equation [87]; we
used λ2 = 0.5. We used these to obtain the other three noise
types, which ultimately were used to generate the random
additive and multiplicative cascades subjected to multifractal
and ergodicity-breaking analysis to test the above-mentioned
hypotheses.

(b) Linearly multifractal noise. To generate a linearly
multifractal version of this nonlinearly multifractal noise
time series, we used the IAAWT method, as outlined in
Refs. [76,77]. In the context of a time series with a length
of l = 2 j , the IAAWT procedure unfolds as follows:

(i) Execute a dual-tree complex discrete wavelet trans-
form, extracting both amplitudes and phases across all j scales
for the complex-valued w j,k with k ranging from 1 to 2 j−1 at
each j;

(ii) Randomly rearrange the original data and employ
the dual-tree complex DWT to generate randomized wavelet
phases at each scale;

(iii) Generate updated w j,k by merging the initial ampli-
tudes with the randomized phases;

(iv) Continuously iterate through the subsequent steps un-
til convergence is attained:
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FIG. 1. A binomial additive or multiplicative cascade serves as a mathematical framework for elucidating how the distribution of quantities
or events can evolve across increasingly smaller sample sizes and shorter time intervals. In the upper-left quadrant, we observe an additive
cascade characterized by multifractal (MF) nonlinear noise terms manifesting across 15 generations of iterative splitting and additive
interactions. Meanwhile, in the upper-right quadrant, a multiplicative cascade with MF nonlinear noise terms unfolds over 15 generations,
showcasing multiplicative interactions. Each curve has been normalized by its maximum value and vertically shifted by 1 unit to enhance
clarity. The lower panel presents a compelling display of both cascade types, exemplifying variations in interactivity that span from additive
to multiplicative. Both cascade types encompass various noise types, including nonlinearly multifractal noise, IAAWT-specified linearly
multifractal noise retaining both amplitude spectrum and multifractal spectrum width, IAAFT-specific linear noise maintaining only the
amplitude spectrum, and random shuffling of the original nonlinearly multifractal noise. Observe the pronounced prevalence of exceedingly
large events in multiplicative cascades, not additive cascades.
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(a) Execute the inverse wavelet transform to generate a
fresh time series, followed by applying the identical ampli-
tude adjustment step in the IAAFT algorithm.

(b) Utilize the dual-tree complex DWT to extract the
updated phases and then amalgamate these with the initial
amplitudes to produce the most recent w j,k .
The IAAWT method retains the original time series’ proba-

bility distribution while preserving its multifractal structure up
to a stringent convergence criterion. We produced 10 IAAWT
time series for each original nonlinearly multifractal time
series, pinpointing the one that demonstrated the minimal
variance in its multifractal spectral width compared to the
original nonlinearly multifractal time series.

(c) Phase-randomized, IAAFT noise. To generate a phase-
randomized version of this nonlinearly multifractal noise
time series, we used the IAAFT method, as outlined in
Refs. [78,88]. In the context of a time series xt , t =
1, 2, . . . , N , the IAAFT procedure unfolds as follows:

(i) Capture and retain the squared amplitudes derived
from the discrete Fourier transform of xt (i.e., X 2

f =
| ∑N

1 xt ei2π f (t/N )|2);
(ii) Initiate the process by randomly shuffling xt to yield

x( j=0)
t ;

(iii) Proceed by iteratively executing a power spectrum
step followed by a rank-order matching step on x( j)

t in the
following manner:

(a) Perform a Fourier transformation on x( j)
t and update

the squared amplitudes with X 2
f , keeping the phases intact.

Given the initial random sorting, this process conserves the
spectrum, albeit with randomized phases. Subsequently,
invert the Fourier transformation, restoring the original
amplitudes;

(b) Substitute the values within the fresh series x( j)
t

with those from xt through a rank-order matching pro-
cedure. While this approach maintains the integrity of
the original dataset, it does compromise the precision of
spectral matching, thereby elucidating the approximate
replication of Fourier amplitudes;
(iv) Continue the process until either the convergence cri-

terion is satisfactorily met or alterations become negligible,
thus rendering any reordering of values from the prior itera-
tion unnecessary.

In this way, the PDF of the original time series is preserved
precisely, and the Fourier spectrum is approximated to a given
error tolerance.

(d) Phase- and amplitude-randomized, shuffled noise. We
subjected this nonlinearly multifractal noise time series to
shuffling, resulting in a version characterized by randomized
phases and amplitudes. Shuffling effectively erases both the
phase and amplitude spectra of the time series, thereby nulli-
fying any characteristics associated with the original temporal
sequence of values.

Finally, we used these four kinds of noise series to generate
the following eight cascade types:

(1) Additive nonlinearly multifractal. Noise terms for
generation j + 1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from non-
linearly multifractally noise and the (2i − 1)th and 2ith
children cells in the ( j + 1)th generation holds proportions
pi + W2i−1, j+1 and pi + W2i, j+1, respectively.

(2) Additive linearly multifractal. Noise terms for gen-
eration j + 1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from linearly
multifractal noise and the (2i − 1)th and 2ith children cells in
the ( j + 1)th generation holds proportions pi + W2i−1, j+1 and
pi + W2i, j+1, respectively.

(3) Additive IAAFT. Noise terms for generation j +
1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from phase-randomized
IAAFT noise and the (2i − 1)th and 2ith children cells in
the ( j + 1)th generation holds proportions pi + W2i−1, j+1 and
pi + W2i, j+1, respectively.

(4) Additive shuffled. Noise terms for generation j + 1
include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from phase- and amplitude-
randomized, shuffled, and the (2i − 1)th and 2ith children
cells in the ( j + 1)th generation holds proportions pi +
W2i−1, j+1 and pi + W2i, j+1, respectively.

(5) Multiplicative nonlinearly multifractal. Noise terms
for generation j + 1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from
nonlinearly multifractal noise and the (2i − 1)th and 2ith
children cells in the ( j + 1)th generation holds proportions
pi · W2i−1, j+1 and pi · W2i, j+1, respectively.

(6) Multiplicative linearly multifractal. Noise terms for
generation j + 1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from lin-
early multifractally noise and the (2i − 1)th and 2ith children
cells in the ( j + 1)th generation holds proportions pi ·
W2i−1, j+1 and pi · W2i, j+1, respectively.

(7) Multiplicative IAAFT. Noise terms for generation j +
1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from phase-randomized
IAAFT noise and the (2i − 1)th and 2ith children cells in
the ( j + 1)th generation holds proportions pi · W2i−1, j+1 and
pi · W2i, j+1, respectively.

(8) Multiplicative shuffled. Noise terms for generation
j + 1 include x2 j+1 , x2 j+1+1, . . . , x2 j+2−1 from phase- and
amplitude-randomized, shuffled, and the 2(i − 1)th and 2ith
children cells in the ( j + 1)th generation holds proportions
pi · W2i−1, j+1 and pi · W2i, j+1, respectively.

To shed light on the underlying factors fueling multifractal
nonlinearity within biological and psychological processes,
we constructed cascades comprising 214 samples in their 15th
and concluding generation. This choice of sample length
mirrors the typical empirical time series duration commonly
encountered in these domains. To overcome any effects of
stochasticity in the generation of these cascades and to ensure
robustness in our analysis, we simulated 100 instances for
each noise type.

3. Padding cascades with consecutive repetitions of cell values to
disentangle generation number from length

Hypothesis 2 suggests that the progressive increase in the
number of generations is pivotal in these phenomena. To
disentangle the effects of length from those of the number of
generations, we extended each generation within the original
cascades from the 9th to the 15th generation by padding them
with repeated values, ensuring they all shared a uniform length
of 214. We applied a similar technique to the surrogate series
to ensure a uniform 214 length. Notably, we only enforced
this specific sequence length for the 9th through the 15th
generations, as we aimed to maintain the highest confidence in
the reliability of the IAAFT surrogates for the original series,
particularly for cases where l � 29.
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B. Multifractal and ergodicity-breaking analysis

We computed key metrics for each cascade instance across
generations 9 through 15 to gain insights into its multifractal
characteristics. These metrics encompassed the multifractal
spectrum width, denoted as �α, which we derived employing
Chhabra and Jensen’s direct method [40]. We also examined
the t-statistic, symbolized as tMF, serving as a yardstick for
contrasting the multifractal spectrum width �αOrig of the orig-
inal series against a set of surrogate samples characterized
by their respective multifractal spectrum widths �αSurr. In
tandem with these assessments, we assessed ergodicity break-
ing, employing the Thirumalai-Mountain metric (EB) [89,90].
This metric quantified ergodicity breaking in the original se-
ries and extended its reach to randomized shufflings of the
same series. It is important to note that while calculating tMF

leveraged phase-randomized surrogates to gauge the original
series, the evaluation of EB necessitated comparisons with
randomized shufflings. This deliberate choice arises because
shuffling perturbs linear and nonlinear sources of temporal
correlation, contributing to ergodicity breaking.

1. Multifractal analysis

We used Chhabra and Jensen’s [40] direct method for
qualifying the multifractal structure of each cascade instance
across generations 9 through 15. This method estimates mul-
tifractal spectrum width �α by sampling a time series x(t )
at progressively larger scales using the proportion of signal
Pv (n) falling within the vth bin of natural-number scale n as

Pv (n) =
∑v·n

k=(v−1) n+1 x(k)∑
x(t )

, n = {4, 8, 16, . . . } < T/8,

(2)
where Nn = T/n. The growth of Pv (n) with n differs depend-
ing on the homogeneity of sequence in x(t ). For x(t ) with
homogeneous sequence, as n increases, Pv (n) represents a
progressively larger proportion of x(t ), such that

Nn∑
v=1

Pv (n) ∝ nα, (3)

suggesting a growth of the proportion according to one
“singularity” strength α [91]. For x(t ) with heterogeneous
sequence, multifractal dynamics manifest as multiple singu-
larity strengths, such that

Pv (n) ∝ nαv , (4)

whereby each vth bin may show a distinct relationship of
Pv (n) with n. The width of this singularity spectrum, �α =
(αmax − αmin), indicates the heterogeneity of these relation-
ships [92,93].

Chhabra and Jensen’s [40] method averages across all Nn

values of individual bin proportion Pv (n) to estimate P(n) for
Nn nonoverlapping n-size bins and transforms them into a
“mass” μ(q) using a q parameter emphasizing higher or lower
P(n) for q > 1 and q < 1, respectively, in the form

μv (q, n) = [Pv (n)]q∑Nn
k=1[Pk (n)]q

. (5)

Then α(q) is the singularity for mass μ-weighted P(n) esti-
mated as

α(q) = −limNn→∞
1

lnNn

Nn∑
v=1

μv (q, n)lnPv (n)

= limn→0
1

lnn

Nn∑
v=1

μv (q, n)lnPv (n). (6)

Equation (6) is the original phrasing from Chhabra and Jensen
[40] stated theoretically as a limit. In practice, n is a natural
number, and the limit reflects an expectation that the sin-
gular dynamics might extend below the sampling rate of a
discrete measurement. Each estimated value of α(q) belongs
to the multifractal spectrum only when the Shannon entropy
of μ(q, n) scales with n according to the Hausdorff dimension
f (q) [40], where

f (q) = −limNn→∞
1

ln Nn

Nn∑
v=1

μv (q, n)lnμv (q, n)

= limn→0
1

ln n

Nn∑
v=1

μv (q, n)lnμv (q, n). (7)

Equations (6) and (7) are the original phrasing from
Chhabra and Jensen [40] stated theoretically as a limit, reflect-
ing an expectation that the singular dynamics might extend
below the sampling rate of a discrete measurement to the finest
of measurable grains. In practical applications of this formal-
ism to discrete series, n is a natural number. We maintain
limit notation out of respect for the literature introducing this
method and because approximating a continuous variable n
can carry more significance when the measurement employs
a continuous sampling rate. However, in numerical simula-
tions with arbitrary lengths and discrete outputs, achieving
a continuous sampling rate is impractical unless we artifi-
cially extend the length of the time series to approximate
potentially denser sampling within arbitrarily long intervals.
In this scenario, we extend the time series length and conceive
each discrete value spanning a shorter scale relative to the
overall time series length. We aim for this approach with our
“padding” of simulation time series to isolate length effects
from generation effects. Following the same rationale, apply-
ing discrete n to numerical simulation series approximates
continuous n in cases where sampling is more frequent. In
this context, the “padded” time series approximates a mea-
surement with a sampling rate finer than the smallest variation
in the measurement time series. This approach allows our
numerical simulation’s natural number n to approximate the
empirical measurement case more closely with the continu-
ous sampling rate and continuous n. All measurement time
series with reliable sampling rates will themselves reduce
to discrete time series, but this was as true for the origi-
nal demonstrations in Ref. [40]. The limit notion describes
a theoretical expectation that the operationalized method-
ology always aims to estimate across different sampling
rates.

For values of q yielding a strong relationship between
Eqs. (6) and (7)—in this study, correlation coefficient r >

0.95, the parametric curve α(q), f (q) or (α, f (α)) constitutes
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the multifractal spectrum and �α (i.e., αmax − αmin) consti-
tutes the multifractal spectrum width. r determines that only
scaling relationships of comparable strength can support the
estimation of the multifractal spectrum, whether generated
as cascades or surrogates. Using a correlation benchmark
aims to operationalize previously raised concerns about mis-
specifications of the multifractal spectrum [94].

Our next objective was to discern whether a nonzero �α

truly signified multifractality arising from intricate nonlin-
ear interactions across various timescales. To achieve this
objective, we compared �α values between the original
series and 32 IAAFT surrogates [78,79] for each simu-
lated series across generations 9 through 15. IAAFT stands
out as a method capable of symmetrically reshuffling the
original values around their autoregressive structure. Con-
sequently, it generates surrogates that disentangle the phase
ordering of spectral amplitudes within the series while pre-
serving the linear temporal correlations. The one-sample
t-statistic, tMF, comes into play by computing the difference
between �α for the original series and the correspond-
ing values for the 32 surrogates, which is then divided by
the standard error of the spectrum width for these surro-
gates, facilitating a robust statistical assessment of multifractal
nonlinearity.

2. Justifying our choice of assessing multifractal nonlinearity
using the direct method

We opted for Chhabra and Jensen’s [40] direct method
over more recent variance-based techniques like detrended
fluctuation analysis and wavelet transform modulus maximum
[78,95,96]. This decision stems from Chhabra and Jensen’s
[40] approach, imposing fewer assumptions on the distribu-
tions of the measurement time series. While finite variance
methods, even when addressing nonstationary time series,
assume Gaussian variance beyond presumed stable nonsta-
tionarities, often detrended with polynomial functions, such
assumptions are seldom guaranteed in measurement time se-
ries [97–99]. These assumptions systematically fail in cascade
dynamical processes [42]. Moreover, the failure of these dis-
tribution assumptions regarding variance across the partition
function leads to subsequent failures in the Legendre trans-
formation on which variance-based methods rely [94]. The
appeal of Chhabra and Jensen’s [40] direct method lies in
several aspects. First, while it assumes regular sampling of a
continuous process, it employs proportion instead of variance
to estimate multifractality directly, bypassing the need for a
Legendre transform. Being a nonmicrocanonical method (cf.
Ref. [100]), it facilitates stable estimates even for ergodicity-
breaking time series, where variance may not be stable,
allowing examination of how sample means (in the form of
bin proportions) vary over time [101]. Additionally, unlike
the Legendre transformation, which estimates both Hausdorff
dimension f (α) and singularity strength α as two facets of
the same partition function, Chhabra and Jensen’s [40] di-
rect method permits independent specification of singularity
strengths α and Hausdorff dimension f (α). This enables us to
ensure that both quantities reflect stable scaling relationships
for each value of q. In essence, Chhabra and Jensen’s [40]
direct method imposes fewer assumptions on the occasionally

ergodicity-breaking series encountered in cascade-driven pro-
cesses while providing stronger confidence in the estimated
multifractal spectrum as a meaningful two-dimensional math-
ematical structure.

C. Estimating ergodicity breaking parameter
for cascade time series

The dimensionless statistic EB, the Thirumalai-Mountain
metric, can quantify the degree to which a time series breaks
ergodicity [89,90,102] as the variance of sample variance di-
vided by the total-sample squared variance:

EB[x(t )] = 〈[δ2[x(t )]]2〉 − 〈δ2[x(t )]〉2

〈δ2[x(t )]〉2
, (8)

where δ2[x(t )] = ∫ t−�

0 [x(t ′ + �) − x(t ′)]2dt ′/(t − �) is the
time average mean-squared displacement of the stochastic
series x(t ) for lag time �. Ergodicity with least breaking
appears as rapid decay of EB to 0 for progressively larger
samples, that is, EB → 0 as t → ∞. Thus, for Brownian
motion EB[x(t )] = 4

3 ( �
t ) [4,10]. Slower decay indicates pro-

gressively more ergodicity breaking as in systems with less
reproducible or representative trajectories, and no decay or
convergence to a finite asymptotic value indicates strong er-
godicity breaking [103]. EB[x(t )] thus allows for estimating
how much a given time series fulfills ergodic assumptions
or breaks ergodicity. Despite the traditional convention of
respecting ergodicity as a dichotomy, EB offers a window on
how continuous processes can exhibit gradually more or less
breaking of ergodicity [41–45]. For instance, Deng and Barkai
[103] have shown that for f Bm,

EB[x(t )] =
{

k(HfGn)�
t 0 < HfGn < 3

4

k(HfGn)( �
t )4−4HfGn 3

4 < HfGn < 1.
(9)

We computed EB for the original and a shuffled version of
each cascade instance across generations 9 through 15 (range
= T/8; lag � = 2 samples). The shuffled version allows us
to distinguish between two types of ergodicity breaking. In-
deed, recent theorizing about ergodicity has elaborated the
concept beyond simply the stability of a time-varying pro-
cess around an ensemble average [8]. This recent theorizing
distinguishes that a process can fail to be ergodic if its
temporal sequence exhibits heterogeneity even with the sta-
bility of time averages around an ensemble average. Hence,
whereas traditional ergodicity breaking involves the failure of
Gaussian-like stability, ergodicity breaking can also manifest
through sequence. The overall height of the EB-vs-t relation-
ship indicates ergodicity breaking due to non-Gaussian PDF
[41], and the difference between the decay of the original
EB-vs-t curve compared to that for its surrogates indicates
ergodicity breaking dependent on sequence [44,103].

III. RESULTS

We analyzed the evolution of multifractality and multifrac-
tal nonlinearity over more generations of binomial additive
and multiplicative cascades to explore the interplay between
these properties and ergodicity breaking within each cascade
type. Discussion of the ergodicity-breaking findings will be
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FIG. 2. The scaling relationships underlying Hausdorff dimension f (q) (negative Shannon entropy of bin mass and bin size) and
singularity-strength estimates α(q) (mass-weighted average bin proportion and bin size) for the 15th generation of additive and multiplicative
cascades for different q, with the cascades involving the application of nonlinearly multifractal noise, IAAWT-specified linearly multifractal
noise retaining both amplitude spectrum and multifractal spectrum width, IAAFT-specific linear noise maintaining only the amplitude
spectrum, and random shuffling of the original nonlinearly multifractal noise (in the far-left, center-left, center-right, and far-right columns,
respectively). We depict only those cases for the range of q for which both α(q) and f (q) describe scaling relationships with r > 0.95.

postponed until we present outcomes pertinent to Hypothesis
2.

A. Hypothesis 1: Multiplicative interactions dictate emergent
multifractal properties with nonlinearly multifractal noise

inducing spectral asymmetry

For now, we detail initial observations of how these mul-
tifractal spectra differ across the different types of cascade
simulations. Figures 2 and 3 show the scaling relationships
for different q and multifractal spectrum for the additive and
multiplicative variants of cascades applying each of the four
noise types. We ran a linear mixed-effect regression model of
three different multifractal spectral attributes to elaborate be-
yond these cursory portrayals. Our regression model included
five covariates:

(1) Feature, encoding three types of multifractal-
analytical outcomes [104], namely a baseline value of

αmax − α(q = 0) (i.e., spectral half-width to the right of
the peak) and two alternative values of α(q = 0) (i.e.,
the location of the spectral peak) and α(q = 0) − αmin(q)
(spectral half-width to the left of the peak).

(2) Type, encoding the four types of cascade as described
above indicating the kind of multifractal noise, with a baseline
value of nonlinear and three alternative values linear, IAAFT,
shuffled.

(3) Multiplicativity, encoding the way that cascade simu-
lations applied noise across generations, with a baseline value
of additive and alternative value multiplicative.

(4) Generation, encoding the number of generations from
9 through 15.

(5) Center, encoding whether the cascade is sampled from
the left of the noise time series (Center = 0) or towards the
center of the noise time series (Center = 1).

We used a full-factorial regression model, including
the highest-order interaction covariate Feature × Type ×
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FIG. 3. Representative multifractal spectrum for the four additive and multiplicative cascade types at the 9th, 12th, and 15th generations
(top, middle, and bottom, respectively) involving the application of nonlinearly multifractal noise, IAAWT-specified linearly multifractal noise
retaining both amplitude spectrum and multifractal spectrum width, IAAFT-specific linear noise maintaining only the amplitude spectrum, and
random shuffling of the original nonlinearly multifractal noise (in the far-left, center-left, center-right, and far-right columns, respectively). The
colored lines represent the original spectra, while the gray lines depict five representative surrogate spectra generated using the IAAFT method
for each original spectrum. Readers may find it challenging to identify the spectra corresponding to additive cascades with IAAFT-specified
noise; these spectra are so narrow as to appear at this grain as dots located at roughly [α = 1, f (α) = 1] where the other all-wider additive
cascades have their peaks. The bottom panels show additive spectra with an expanded horizontal scale to resolve this issue.

Multiplicative × Generation × Center and all component
lower-order interactions and main effects. We used the
function lmer from the package lme4 [105] in R [106]. We
detail the outcomes for each of the three features in the fol-
lowing paragraphs before detailing the outcome for each of
our hypotheses. The regression modeling treats the outcome
variables as weighted sums of the covariates. It returns B co-
efficients for each covariate, representing the average change
in the outcome variable for a one-unit increase in each corre-
sponding continuous variable. Each coefficient is paired with
a standard error SE , reflecting the variance of this average
change. We report the estimated coefficients for each covariate

that shows a statistically significant effect, with significance
determined at the P < 0.05 level.

Supporting Hypothesis 1a, the right-side width
of the multifractal spectrum, αmax − α(q = 0), grew
larger by the ninth generation with multiplicativity and
narrowed with progressively more generations. Additive
cascades with nonlinearly multifractal noise had nonzero
right-side width (B ± SE = 1.03 × 10−1 ± 1.23 × 10−2

and P < 0.0001). Additive cascades with IAAFT
noise reduced this right-side width to almost zero
(B ± SE = −9.68 × 10−2 ± 1.73 × 10−2 and P < 0.0001).
In contrast, no other noise had any effect on additive cascades.
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Multiplicative cascades with nonlinearly multifractal
noise nearly doubled the right-side width at the ninth
generation (B ± SE = 8.26 × 10−2 ± 1.73 × 10−2 and
P < 0.0001) but, supporting Hypothesis 1b, also produced
almost triple the nonlinearly multifractal noise’s rate
of narrowing of the right-side width with subsequent
generations (B ± SE = −1.51 × 10−2 ± 4.26 × 10−3

and P = 0.0004). With linearly multifractal and IAAFT
noises, the effect of multiplicativity on the 9th-generation
right-side width doubled and almost quadrupled,
respectively (Bs = 1.22 × 10−1 and 3.00 × 10−1, SEs =
2.45 × 10−2 and 2.45 × 10−2, and Ps < 0.0001, respec-
tively). Similarly, linearly multifractal and IAAFT noises
also doubled and quadrupled, respectively, multiplicative
cascades’ narrowing of the right-side width with
progressively more generations (Bs = −1.89 × 10−2 and −
5.17 × 10−2, SEs = 6.03 × 10−3 and 6.03×10−3, and
Ps = 0.002 and < 0.0001, respectively). However, sampling
noise processes from the center canceled many effects
of these linear noises. The center-sampled IAAFT noise
canceled the right-side width diminution for additive cascades
(B ± SE = 1.08 × 10−1 ± 2.45 × 10−2 and P < 0.0001).
The center-sampled linearly multifractal and IAAFT noises
canceled out the growth of the right-side width on the ninth-
generation’s right-side width (Bs = −1.66 × 10−1 and −
3.28 × 10−1, SEs = 3.47 × 10−2 and 3.47 × 10−2, and
Ps < 0.0001, respectively). Similarly, sampling the
linearly multifractal and IAAFT noises from the center
also canceled the otherwise observed doubling and
quadrupling, respectively, of multiplicative cascades’
narrowing of the right-side width with progressively more
generations (Bs = 3.42 × 10−2 and 4.56 × 10−2, SEs =
8.52×10−3 and 8.52×10−3, and Ps < 0.0001, respectively).

In support of Hypothesis 1c, incorporating the
center-sampled shuffled noise canceled out the changes
on the right-side width of the multifractal spectrum due to
nonlinearly multifractal noise, both on the 9th generation
and with progressively more generations (Bs = −6.83 ×
10−2 and 1.89 × 10−2, SEs = 3.47 × 10−2and 8.52 × 10−3,

and Ps = 0.049 and = 0.027, respectively). An alternate
regression only on the cascades with shuffled noise revealed
no such significant effects of center- versus left-sampling
of the noise process at p < 0.05. Hence, this finding is
largely artifactual of a simultaneous contrast among cascades,
the rest of which had expectable trends. Both the linear
trends induced by incorporating linearly multifractal and
IAAFT noises and the nonlinear trends implicit in nonlinearly
multifractal noise. So these effects of the center-sampled
shuffled noise indicate that multiplicative cascades with
the left-sampled linearly multifractal and IAAFT noises
make a stronger contrast with cascades incorporating the
left-sampled nonlinearly multifractal noise. The contrast
between nonlinearly multifractal noise effects and shuffled
noise effects on the right-side width is so small that it
only becomes visible when we center-sample the linearly
multifractal and IAAFT noises and thus diminish the
effect of beginning-transient trends. Hence, multiplicative
interactions across progressively more generations produced
a greater right-side width and its subsequent narrowing with
more generations. They also produced transient trends in

progressively more linear, less multifractal noise (i.e., with
progressive removal of the phase structure and then removal
of the original spectrum width), accentuating both the initial
widening and subsequent narrowing with progressively more
generations. In brief, linearizing linearly multifractal and
IAAFT noises induced a trend at the beginning of the noise
process that diminishes the right-side width. If this effect
complemented the persisting or growing left-side width,
then these effects on the right-side width of the multifractal
spectrum could indicate that linear trends across generations
of a cascade process could make the spectrum more
asymmetric.

The multiplicativity and type of noise at each generation
appeared to influence the modal singularity strength, as indi-
cated by the horizontal location of the peak of the multifractal
spectrum, α(q = 0). This peak was slightly less than 1 for
additive cascades with nonlinearly multifractal noise (B ±
SE = 9.05 × 10−1 ± 1.54 × 10−2 and P < 0.0001) and more
so with the left-sampled IAAFT noise (B ± SE = 9.00 ×
10−2 ± 2.17 × 10−2 and P < 0.0001). In support of Hypoth-
esis 1a, it increased as well with multiplicative cascades
applying the left-sampled nonlinearly multifractal noise (B ±
SE = 4.97 × 10−1 ± 2.17 × 10−2 and P < 0.0001) and—to
a greater degree—the left-sampled shuffled noise (B ± SE =
2.07 × 10−1 ± 3.07 × 10−2 and P < 0.0001), but it reduced
with multiplicative cascades applying the left-sampled lin-
early multifractal noise (B ± SE = −1.57 × 10−1 ± 3.07 ×
10−2, and P < 0.0001) and the left-sampled IAAFT noise
(B ± SE = −5.84 × 10−1 ± 3.07 × 10−2 and P < 0.0001).
Hence, as with the right-side width of the multifractal spec-
trum, preserving the multifractal spectrum width in the
left-sampled linearly multifractal noise helps mitigate the
decay of modal singularity strength due to phase randomiza-
tion. This location of the peak increased with progressively
more generations of multiplicative cascades with the left-
sampled nonlinearly multifractal noise (B ± SE = 3.10 ×
10−2 ± 6.03 × 10−3 and P < 0.0001), increasing with pro-
gressively more generations almost twice as fast with the
left-sampled linearly multifractal noise (B ± SE = 2.22 ×
10−2 ± 8.52 × 10−3 and P = 0.009) and more than twice as
fast with the left-sampled IAAFT noise (B ± SE = 8.37 ×
10−2 ± 8.52 × 10−3 and P < 0.0001). Hence, multiplicative
interactions across progressively more generations counteract
the earlier effects of phase randomization, building back the
modal singularity strength.

Again, as Hypothesis 1c predicted, linearly multifractal
and IAAFT noises canceled out the abovementioned effects
from the left-sampled effects. Center-sampling IAAFT noise
canceled out the increase in the singularity of the peak in
additive cascades (B ± SE = −9.97 × 10−2 ± 3.07 × 10−2

and P = 0.001), canceled out the reduction in peak singu-
larity for multiplicative cascades (B ± SE = 6.70 × 10−1 ±
4.35 × 10−2 and P < 0.0001), and canceled out the increase
in peak singularity (B ± SE = −7.69 × 10−2 ± 1.21 × 10−2

and P < 0.0001). Similarly, center-sampling linearly mul-
tifractal noise canceled out the reduction in peak singu-
larity for multiplicative cascades (B ± SE = 1.82 × 10−1 ±
4.35 × 10−2 and P < 0.0001) and canceled out the increase
in peak singularity (B ± SE = −3.62 × 10−2 ± 1.21 × 10−2

and P = 0.003).
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With the foregoing narrowing of the right-side width, the
peak α(q = 0) value increase goes hand in hand with an
extension of the left-side width of the multifractal spectrum.
An important point to highlight in support of Hypothesis 1a
is that, whereas the peak location increased for one of the
additive cascade types, the left-side width changed only for
multiplicative cascades. Much like the horizontal location of
the multifractal spectrum peak, α(q = 0), the left-side width
at the ninth generation increased for multiplicative cascades
with nonlinearly multifractal noise (B ± SE = 8.49 × 10−1 ±
2.17 × 10−2 and P < 0.0001) and even more with shuf-
fled noise (B ± SE = 2.51 × 10−1 ± 3.07 × 10−2 and P <

0.0001). However, the left-side width increased less for multi-
plicative cascades with linearly multifractal noise (B ± SE =
−1.59 × 10−1 ± 3.07 × 10−2 and P < 0.0001) and progres-
sively less for multiplicative cascades with IAAFT noise (B ±
SE = −5.82 × 10−1 ± 3.07 × 10−2 and P < 0.0001). Here
we see a major difference between the results for the left-side
width and those for the prior two features (i.e., the right-side
width and the peak). In the prior features, linearly multifrac-
tal and IAAFT noise accentuated the effects of nonlinearly
multifractal nonlinear noise in multiplicative cascades. How-
ever, on the left-side width, linearly multifractal and IAAFT
noises act in the opposite direction from nonlinearly mul-
tifractal noise. Here we see support again for Hypothesis
1b that nonlinear temporal correlations in multifractal noise
promote spectral asymmetry, with a predominance of the left
side at the expense of the right-side width—hence, phase-
randomization reduces the left-side width. Yet again, even
the opposition of these noises to the nonlinearly multifrac-
tal case shows a similar buffering of cascades’ multifractal
spectrum width. Although phase-randomized noise counter-
acts more of the nonlinearly multifractal noise’s effect on
the left-side width, phase-randomized noise maintaining the
multifractal spectrum width from the nonlinearly multifractal
case exerts less of this diminution of the multifractal structure.
Beyond the ninth generation, the left-side width increased
with progressively more generations for nonlinearly multi-
fractal noise (B ± SE = 5.04 × 10−2 ± 6.03 × 10−3 and P <

0.0001). This increase was faster—by almost an additional
half of the nonlinearly multifractal rate—for multiplicative
cascades with linearly multifractal noise (B ± SE = 2.20 ×
10−2 ± 8.52 × 10−3 and P = 0.010), and the left-side width
increased at almost double the nonlinearly multifractal rate
(B ± SE = 8.66 × 10−2 ± 8.52 × 10−3 and P < 0.0001). So,
again, as with the other two features of the multifractal spec-
trum, the progressively more multiplicative interactions across
generations balance out the effects of the phase-randomized
noises, both linearly multifractal and IAAFT noises.

Once more, in support of Hypothesis 1c, center-sampling
IAAFT noise and linearly multifractal noise canceled out the
effects noted above from the left-sampled effects. Center-
sampling IAAFT noise canceled out the reduction in the
left-side width for multiplicative cascades (B ± SE = 1.79 ×
10−1 ± 4.35 × 10−2 and P < 0.0001) and canceled out the
increase in the left-side width (B ± SE = −3.69 × 10−2 ±
1.21 × 10−2 and P = 0.002). Similarly, center-sampling lin-
early multifractal noise canceled out the reduction in the
left-side width for multiplicative cascades (B ± SE = 7.03 ×
10−1 ± 4.35 × 10−2 and P < 0.0001) and canceled out the

increase in the left-side width (B ± SE = −8.22 × 10−2 ±
1.21 × 10−2 and P < 0.0001).

B. Hypothesis 2: Multiplicativity amplifies
multifractal nonlinearity

Multifractal spectrum width for the original time series
(�αOrig) was largely constant across generations 9 through
15 (Figs. 3 and 4, top), while multifractal spectrum widths
for the linearly structured IAAFT surrogates (�αSurr) was
reduced (Figs. 3 and 4, middle). Specifically, the t-statistic
expressing multifractal nonlinearity by comparing �αOrig and
�αSurr—that is, multifractal nonlinearity tMF, grew across
progressively more generations, reaching tMF = 50 by the
15th generation (Fig. 4, bottom). Hence, evidence for the
cascade process’s multifractal nonlinearity becomes clearer as
the surrogate-spectrum width narrows with more generations.

To model the change of these quantities, we used a full-
factorial regression model, much like that for features above,
replacing the covariate Feature with an analogous covariate
Outcome assigned a baseline value of �αOrig and alternate
values �αSurr and tMF. The highest-order interaction in the
regression modeling of these quantities was Outcome ×
Type × Multiplicative × Generation, and modeling included
all component lower-order interactions and main effects. In
what follows, we detail the effects of these factors on tMF both
in terms of its continuous variation and its more dichotomous
status as statistically significant or not, using the functions
lmer and glmer from the package lme4 [105] in R [106].

1. Multiplicative interactions across scales increased the
continuous value of tMF except when involving IAAFT noise

The linear regression modeling of continuous tMF had eight
significant effects, all referring only to changes in tMF. The
general indication was twofold. First, multiplicativity incorpo-
rating nonlinearly multifractal noise promoted the growth of
tMF across progressively more generations of the cascade. Sec-
ond, whereas IAAWT-series and shuffled-time-series noises
produced no difference in tMF for multiplicative cascades as
compared to nonlinearly multifractal noise, multiplicative cas-
cades with IAAFT noise reduced progressively diminished
tMF across progressively more generations of the cascade. The
sampling issue only appeared in the first nine generations,
with left-sampling showing a diminution of tMF in additive
cascades and accentuation of tMF in multiplicative cascades.

The results replicated various previous effects [80]. For
instance, by the ninth generation, multiplicative cascades
initially exhibited smaller tMF (B ± SE = −9.16 × 100 ±
3.00 × 100 and P = 2.239 × 10−3). Subsequent generations
reversed this difference: Additive cascades exhibited signif-
icantly lower tMF with progressively more generations (B ±
SE = −1.90 × 100 ± 5.88 × 10−1 and P = 1.247 × 10−3),
and multiplicative cascades exhibited significantly higher
tMF with progressively more generations (B ± SE = 7.90 ×
100 ± 8.31 × 10−1 and P < 0.0001). The notable exception
to this initial finding was a set of cascades with IAAFT
noise. Additive cascades with IAAFT noise had dramati-
cally lower tMF on the ninth generation (B ± SE = −1.29 ×
101 ± 3.00 × 100 and P = 1.700 × 10−5), but multiplicative
cascades with IAAFT noise had dramatically higher tMF
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FIG. 4. Multifractal spectral properties of the four additive and multiplicative cascade types across progressively more generations.
Multifractal spectrum width for the original cascades �αOrig (top), multifractal spectrum width for the corresponding 32 IAAFT surrogates
�αSurr (middle), and multifractal nonlinearity tMF (bottom) involving the application of nonlinearly multifractal noise, IAAWT-specified
linearly multifractal noise retaining both amplitude spectrum and multifractal spectrum, IAAFT-specific linear noise maintaining only the
amplitude spectrum, and random shuffling of the original nonlinearly multifractal noise (far-left, center-left, center-right, and far-right,
respectively). The bold lines represent the average values derived from N = 100 numerical simulations, while the finer lines alongside them
portray individual data points within these simulation sets.

on the ninth generation (B ± SE = 1.62 × 101 ± 24.24 ×
100 and P = 1.290 × 10−4). Then multiplicative cascades
with IAAFT showed none of the rest of multiplicative cas-
cades’ growth of tMF with progressively more generations,
instead yielding a diminution of tMF with progressively more
generations (B ± SE = −2.88 × 100 ± 1.18 × 100 and P =
1.421 × 10−2).

The only difference in the effects for cascades with the
center-sampled noise was for the IAAFT-noise case. Center-
sampling the IAAFT noise canceled out the observed reduc-
tion in tMF for additive cascades (B ± SE = 1.18 × 101 ±
4.24 × 100 and P = 5.327 × 10−3) and canceled out the
relative increase of tMF across the nine generations for multi-
plicative cascades (B ± SE = −1.29 × 101 ± 4.24 × 100 and
P = 3.129 × 10−3). The only feature that persisted when
IAAFT noise was sampled from the center was the already-
reported diminution of tMF for progressively more generations
of multiplicative cascades. To summarize, the effect of the
series-beginning trend of IAAFT noise was to reduce and
inflate tMF in early generations of additive and multiplica-
tive cascades, respectively. Whether the noise was sampled

from the left or the center, incorporating IAAFT noise led
multiplicative cascades to reduce tMF with progressively more
generations.

2. Multiplicative interactions across scales increased the
likelihood of statistically significant tMF except when involving

IAAFT noise

To model the number of significant positive values of tMF >

2.04, we used a mixed-effect logistic regression with the func-
tion glmer from the package lme4 [105] in R [106]. Models
replicating the same family of higher-order and component
lower-order interactions and main effects did not converge.
Therefore, we trimmed the model to test only the sum of three
main effects and one interaction, namely Type, Multiplicative,
Generation, and Type × Generation, and found significant
effects.

The pattern of significance we found for explaining
positive, significant tMF reflected the same themes from
the continuous-valued model of tMF. First, there were
lower logarithmic odds for significant tMF (B ± SE =
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−6.36 × 10−1 ± 1.63 × 10−1 and P < 0.0001) early on, that
is, in the ninth generation of multiplicative cascades. Addi-
tive cascades showed a significant reduction in logarithmic
odds of a significantly positive tMF with each generation
following the ninth generation (B ± SE = −3.04 × 10−1 ±
2.79 × 10−2 and P < 0.0001). With each generation after
the ninth generation, there was a significant increase in the
logarithmic odds of a significantly positive tMF for mul-
tiplicative cascades (B ± SE = 9.77 × 10−1 ± 4.13 × 10−2

and P < 0.0001). Last, additive cascades with IAAFT noise
showed the lowest logarithmic odds of a significantly pos-
itive tMF (B ± SE = −1.51 × 100 ± 1.86 × 10−1 and P <

0.0001). Adding multifractal outcomes for the center-sampled
cascades with those for the left-sampled cascades led this re-
gression model to fail to converge. This regression model with
failed convergence did show that cascades with the center-
sampled IAAFT canceled out the left-sampled IAAFT reduc-
tion in logarithmic odds of significantly positive tMF (B ±
SE = 1.85 × 100 ± 2.62 × 10−1 and P < 0.0001). However,
running the same regression model on multifractal outcomes
for the center-sampled cascades alone revealed that center-
sampling did reverse the results uniquely for IAAFT noise
while leaving all other effects intact from the left-sampled
results. Specifically, only modeling the multifractal outcomes
for the center-sampled cascades suggested an increase in log-
arithmic odds of significantly positive tMF for cascades with
the center-sampled IAAFT noise (B ± SE = 3.77 × 10−1 ±
1.86 × 10−1 and P = 0.043).

We also applied this regression modeling to significantly
negative tMF values (i.e., cases with narrower-than-surrogate
original multifractal spectrum). The same regression model
converged after removing the interaction of Multiplicativity
× Generation and considering only the main effects. Hence,
we could not replicate the previous finding that multiplicative
cascades were more likely to produce significant negative tMF

with fewer generations but less likely to produce significant
negative tMF with progressively more generations [80]. How-
ever, we found in the present case that additive cascades with
IAAFT noise had greater logarithmic odds of producing a sig-
nificantly negative tMF (B ± SE = 1.77 × 100 ± 1.81 × 10−1

and P < 0.0001), although progressively more generations of
additive cascades reduced the logarithmic odds of a signifi-
cantly negative tMF (B ± SE = −7.06 × 10−2 ± 1.78 × 10−2

and P < 0.0001). Across all generations—early or late—
multiplicative interactions reduced the logarithmic odds of
significant negative tMF (B ± SE = −2.49 × 100 ± 1.33 ×
10−1 and P < 0.0001). Notably, this effect of generations
weakened but failed to—even at the 15th generation—wipe
out the logarithmic odds of significant negative tMF for addi-
tive cascades with IAAFT noise. On the other hand, the effect
of multiplicativity was sufficient to predict that multiplicative
cascades with IAAFT noise would have significantly lower
logarithmic odds of a significantly negative tMF than additive
cascades with IAAFT noise.

3. Disentangling length and generation effects

The foregoing results provide encouraging evidence that
multiplicative interactions across progressively more gener-
ations within a cascade strengthen multifractal nonlinearity

as indexed by both continuous and significantly positive tMF.
However, it is worth noting that the canonical binomial-
fracturing method of constructing cascades confounds the
generation number with the length of the cascade time series.
As noted in previous simulation work [80], this confound
can be demonstrated in two ways. First, we can take the
final generations’ resulting cascade time series and submit
subsets of those final-generation time series to multifractal
analysis and surrogate comparison. For instance, we can draw
26, 25, 24, 23, 22, and 21 nonoverlapping subsets of varying
lengths, including l = 28, 29, 210, 211, 212, and 213, respec-
tively, from the final-generation time series. However, the
drawback of this first method is that the nonoverlapping
definition of these subsets underestimates any effect of the
abrupt shifts across binomial fracturing. So we can ex-
amine progressively longer subsets whose lengths are not
explicitly powers of 2. Length dependencies across these
nonoverlapping segments within the 15th generation of the
cascade model show stable �αOrig(q), decreasing �αSurr (q),
and growing tMF (Fig. 5) with longer nonoverlapping subset.
Second, we can draw progressively longer subsets anchored
on either the first or last values of the final-generation
time series. More specifically, we can use natural-number
multiples of our segment lengths [e.g., for j + 1 gen-
eration of a cascade, l = m · 27+s, m = 1, 2, 3, . . . , n/27+s,
where n is the time series length (= 214) and s � j − 7]
and anchoring, to begin with, the first value of the se-
ries p1, j+1 (e.g., spanning [p1, j+1, p2, j+1, . . . , pm·27+s, j+1])
or to end with the last value of the series (e.g., span-
ning [x2 j−m·27+s+1, j+1, x2 j−m·27+s+2, j+1, . . . , x2 j , j+1]). For these
overlapping, natural-number-multiple-length subsets of the fi-
nal time series, the relationships did not depend on whether
subsets began from the beginning and grew towards the end of
the 15th generation of the cascade time series (Fig. 6) or from
the beginning and grew towards the end of the 15th and final
generation of the cascade time series (Fig. 7). In both cases
of overlapping subsets, �αOrig(q) remained stable, �αSurr (q)
reduced, and tMF grew with greater length.

We had previously simulated “padded” versions of cas-
cade time series to break the length-generation confound.
Effectively, this strategy ensures that all time series are
the same length, and it merely defines the cells of the
binomial-fracturing cascade process over progressively fewer
nonoverlapping subsets of the same series length. Hence, the
length of the series is the same for every generation. In con-
trast, previously, a parent cell might have given rise to two
children’s cells in the next generation. This padding entailed
that each parent was simply a subset of the series double the
length of each child’s cell. Another way to think about this
procedure is in terms of the MATLAB procedure “repelem”
that takes two inputs (a vector a of length na and scalar
nb such that nb/na is a natural number) and outputs a new
vector b of length na · nb for which each ith element of a
becomes the [(i − 1) ∗ nb/na + p]th values of b, where p =
{1, 2, 3, . . . } � nb/na. Removing the “padding” of repeated
values is necessary to compute a surrogate for such a series.
The repeated values make it all too likely that a phase random-
ization that preserves the amplitude spectrum for the padded
time series would have a comparable multifractal spectrum.
However, multifractal analysis could proceed for the padded
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FIG. 5. Multifractal spectral properties of the four additive and multiplicative cascade types across nonoverlapping segments in 15th
and final generation. Multifractal spectrum width for the original cascades �αOrig (top), multifractal spectrum width for the corresponding 32
IAAFT surrogates �αSurr (middle), and multifractal nonlinearity tMF (bottom). Thick and thin lines indicate segments of length l = 212 and 210,
respectively. Each line represents the average values derived from N = 100 numerical simulations.

original and surrogate series. This procedure yields equally
long time series reflecting different accumulated interactions
across timescales. When we thus control for length, the out-
come is comparable once more to all foregoing examples:
�αOrig(q) remained stable, decreasing �αSurr (q), and tMF

grew with greater numbers of generations (Fig. 8). Hence,
we confirm that the relations we found were not exclusively
specific to length.

C. Hypothesis 3: Multifractal heterogeneity in sequence
influences ergodicity breaking

Cascades consistently broke ergodicity, a phenomenon
detailed in previous work [80]. Interestingly, multiplicative
and additive cascades exhibited distinctive forms of ergodic-
ity breaking. Multiplicative cascades, known for generating
non-Gaussian PDFs (e.g., Refs. [84,107]), yielded higher in-
tercepts on the EB-vs-t curves compared to their additive
counterparts. In stark contrast, additive cascades displayed
notably shallow EB-vs-t curves, especially evident as the cas-
cades progress from generations 9 through 15 (Fig. 8, top),
emphasizing the robust presence of ergodicity breaking within
the additive system. Curiously, the examination of the EB-vs-t
curves of additive cascades revealed no distinction between
those generated from nonlinearly multifractal and linearly
multifractal components.

It is worth noting that the EB-vs-t curves assume
flatter profiles for additive cascades constructed from

phase-randomized IAAFT noise. Notably, neither the origi-
nal nor the shuffled multiplicative cascades reach small and
diminishing values for the ergodicity breaking factor (EB),
as observed in shuffled additive cascades—however, the EB-
vs-t curves are visibly shallower for the original time series
compared to the shuffled time series, particularly in the cases
of multiplicative cascades with nonlinearly multifractal noise
and linearly multifractal noise of the same spectrum width.
In contrast, the curves are steeper for multiplicative cascades
with IAAFT and shuffled noises. This nuanced distinction is
evident in the bottom row of Fig. 9, where the original EB-vs-t
curves (bolded-line traces) extend beyond two shuffled-time-
series curves for multiplicative cascades with nonlinearly and
linearly multifractal noises. For multiplicative cascades with
IAAFT noise, the EB-vs-t curves barely cross two shuffled-
time-series curves. Conversely, multiplicative cascades with
shuffled noise exhibit a more linear reduction, crossing only
one shuffled-series curve. This pattern holds even for padded
“repelem”-type cascades that control for length (Fig. 10).

In summary, the EB-vs-t curves decay more slowly over
shorter timescales for cascades with the nonlinearly mul-
tifractal and IAAWT-specified linearly multifractal noises.
Although multiplicative cascades seem to display weaker
ergodicity breaking than additive cascades, the compara-
ble nature of ergodicity breaking across both cascade types
suggests that the multifractal spectrum width definitively
characterizes the extent of weak ergodicity breaking in the
multiplicative case.
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FIG. 6. Multifractal spectral properties of the four additive and multiplicative cascade types across progressively longer segments from the
beginning to the end in 15th and final generation. Multifractal spectrum width for the original cascades �αOrig (top), multifractal spectrum
width for the corresponding 32 IAAFT surrogates �αSurr (middle), and multifractal nonlinearity tMF (bottom). The line thickness is reduced
progressively from the longest segment length of 212 to 211, then to 210, and finally to 29. Each line represents the average values derived from
N = 100 numerical simulations.

IV. DISCUSSION

This study examines the outcomes of numerical simula-
tions, underscoring the dominance of multiplicative interac-
tions over the intrinsic nonlinear characteristics of constituent
processes. To illuminate this phenomenon, we executed
simulations involving cascade time series with component
processes operating at disparate timescales. These processes
were characterized by four distinct properties: nonlinearly
generated multifractality, linearly generated multifractality
from constrained phase-randomization (achieved through
the IAAWT applied to nonlinearly multifractal), phase-
randomized linearity (achieved via the IAAFT applied to non-
linearly multifractal), and phase- and amplitude-randomized
(achieved through shuffling of nonlinearly multifractal). Our
results establish that the emergent multifractal properties are
dictated by the multiplicative interactions among components
rather than the intrinsic properties of the component processes
themselves. Remarkably, even component processes exhibit-
ing purely linear traits can engender nonlinear interactions
across scales when these interactions assume a multiplica-
tive nature. In stark contrast, additive interactions among
component processes invariably yield linear outcomes. These
findings provide a robust theoretical foundation for current
interpretations of multifractal nonlinearity. They firmly sit-
uate the origin of multifractal nonlinearity in the realm of

multiplicative interactions across scales within biological and
psychological processes. We tested three primary hypothe-
ses. First, we posited that multiplicative cascades fostering
interactivity across timescales would generate wider multi-
fractal spectra—both on the right and left sides, with peaks
corresponding to greater singularity strength α—compared
to additive cascades. As a nuance of this first hypothesis,
we expected that multiplicative cascades whose cross-scale
interactions involved noise with stronger nonlinear temporal
correlations would generate multifractal spectra with left-side
asymmetry. Second, we anticipated that progressively more
generations of multiplicative cascades would yield larger and
more statistically significant values of tMF, surpassing the
relationships between the length and the number of gener-
ations inherent in cascade simulations. Third, we expected
that multiplicative cascades would exhibit more pronounced
ergodicity breaking based on non-Gaussianity and weaker
sequence-driven ergodicity breaking than additive cascades.
Throughout, building on our previous discovery that these
effects of multiplicative cascade dynamics were more pro-
nounced in cascades incorporating f Gn at each generation
[80], we explored whether these effects of multiplicativity
depended on multifractal noise. Our results validated all these
predictions, except that progressively more generations of
multiplicative cascades seemed to accentuate a decay of the
right-side spectrum width.
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FIG. 7. Multifractal spectral properties of the four additive and multiplicative cascade types across progressively longer segments from the
end to the beginning in 15th and final generation. Multifractal spectrum width for the original cascades �αOrig (top), multifractal spectrum
width for the corresponding 32 IAAFT surrogates �αSurr (middle), and multifractal nonlinearity tMF (bottom). The line thickness reduces
progressively from the longest segment length of 212 to 211, then to 210, and finally to 29. Each line represents the average values derived from
N = 100 numerical simulations.

A. Multifractal noise with nonlinear temporal correlations and
with linear transients each led multiplicative cascades to

promote left-side asymmetry in multifractal spectra

Incorporating multifractal noise processes into multiplica-
tive cascades resulted in multifractal spectra characterized by
a broader left side and a more singular peak [i.e., exhibiting a
higher α(q = 0)]—more asymmetric than previous findings
involving monofractal f Gn in multiplicative cascades. The
width of the multifractal spectrum on the right side aligned
with prior work when multifractal noise was introduced,
resembling outcomes observed with both additive and mul-
tiplicative cascades utilizing additive white Gaussian noise
(awGn) but not with f Gn [80]. Although additive cascades
progressively narrowed the right-side width of the multifractal
spectrum with progressively more generations, multiplicative
cascades initially expanded this width at the ninth generation.
These novel outcomes suggest that the application of non-
linearly multifractal noise or phase-randomized multifractal
IAAFT noise in early generations can either enhance or di-
minish, respectively, the heterogeneity represented by small
fluctuations on the right side of the multifractal spectrum.
Departing from our previous work [80,83], multifractal noises
generally reduced the right-side width of the multifractal
spectrum, with two nuances: First, multiplicative cascades
with nonlinearly multifractal noise narrowed the right-side
width with progressively more generations, and secondly,

phase-randomized multifractal noises increased the ninth gen-
eration’s right-side width and accentuated its narrowing,
particularly with IAAFT noise compared to the nonlinear
case. Confirming previous findings that linearity undermines
small-fluctuation heterogeneity [80,83], our results indicate
that preserving the original multifractal spectrum width likely
maintains small-fluctuation heterogeneity. Furthermore, mul-
tiplicative cascades, especially with monofractal f Gn, may
be more adept at sustaining greater right-side spectrum width
across generations. The observed small-size heterogeneity
may be attributed to the ergodicity-breaking capacity of f Gn
and the ability of multiplicative interactions across timescales
to translate these effects into heterogeneous sequences within
small-sized fluctuations. Likewise, preserving the multifrac-
tal spectrum width for noise applied at each generation
reinforces cascades with more robust multifractal spectrum
widths, a factor not contributing in the case of additive
cascades.

This study also reveals how asymmetric multifractal
spectra can indicate sensitivity to progressively linearized
multifractal noise trends. Despite the initial generations fea-
turing only a handful of children (e.g., 2, 4, 8, and 16 in the
first four generations), the expanding pool of offspring in
later generations amplifies the influence of diverse multifrac-
tal noises on the resulting multifractal structure. The robust
time-symmetry of IAAFT noise exerts a profound impact,
narrowing both sides of the multifractal spectrum. Transient

064212-16



MULTIFRACTAL PERTURBATIONS TO MULTIPLICATIVE … PHYSICAL REVIEW E 109, 064212 (2024)

FIG. 8. Multifractal spectral properties of the four additive and multiplicative cascade types across progressively more generations after
controlling for length. Multifractal spectrum width for the original cascades �αOrig (top), multifractal spectrum width for the corresponding 32
IAAFT surrogates �αSurr (middle), and multifractal nonlinearity tMF (bottom). To ensure consistent length across generations, time series were
padded with consecutive repetitions of individual-cell values for 9th through 15th generations 64, 32, 16, 8, 4, 2, and 1 times, respectively. The
bold lines represent the average values derived from N = 100 numerical simulations, while the finer lines alongside them portray individual
data points within these simulation sets.

trends at the onset of IAAWT noise also lead to a similar
constriction in the resulting cascades’ multifractal spectra.
This observation is intriguing, considering that IAAWT noise
represents a linearization that alters the original sequence
while retaining the same multifractal spectrum–a constrained
form of phase randomization [108]. Even this constrained
phase randomization proves sufficient to generate transients
that multiplicative cascades manifest through substantial al-
terations in the multifractal spectrum. Shuffled multifractal
noise exhibits no statistically discernible effects until all these
noise processes are sampled from the center. In this scenario,
cascades involving the two linearizations of multifractal noise
(IAAFT and IAAWT) exhibit the weakest trends, displaying
minimal deviation from the nonlinearly multifractal noise.
Within these conditions, multiplicative cascades with shuffled
multifractal noise showcase their ability to maintain the right-
side width. In contrast, multiplicative cascades incorporating
nonlinearly multifractal noise yield more asymmetric multi-
fractal spectra with broader left sides. Meanwhile, even when
the center of IAAFT processes is sampled, multiplicative
cascades with IAAFT noise lead to a progressive reduction
of tMF in subsequent generations.

To summarize the effects on spectral features, multifractal
noise leads to progressively more asymmetric multifractal
spectra with greater left-size width, and this asymmetry
grew with progressively more generations for nonlinearly

multifractal noise and the left-sampled linear surrogates of
multifractal noise. Hence, incorporating multifractal noise can
skew the multifractal spectrum of the resulting cascades even
with nonlinear temporal correlations in the noise, and linear
trends in the noise process unfolding across each generation
might accentuate that skewness. So when behavioral and bio-
logical sciences find asymmetric multifractal spectra for any
single observable, important questions to explore involve (i)
whether the observable is receiving multifractal noise from a
component process, (ii) whether there are nonlinear and linear
sources of such noise, and (iii) whether the linear components
of this multifractal noise are in full swing or just beginning to
participate in cascadelike relationships across the organism’s
degrees of freedom. It would also be important to consider
how initiating a linear constraint on multifractal noise on the
organism’s other degrees of freedom might induce a transient
asymmetry in the resulting multifractal spectra.

B. Multiplicative cascades promoted greater multifractal
nonlinearity tMF except with IAAFT noise

We observed intriguing patterns in the emergence of multi-
fractal nonlinearity across generations. Notably, progressively
later generations exhibited a higher value of tMF when com-
paring the original multifractal spectrum with the spectrum
of linear surrogates. This finding aligns with the previous
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FIG. 9. Ergodicity breaking in the four additive (top) and multiplicative (bottom) cascade types across progressively more gener-
ations. This phenomenon is quantified using the ergodicity breaking factor EB[x(t )] (lag � = 2 samples). The traces progressively
deepen in color from 9 through generation 15. Notably, the time series length experiences exponential growth across these generations—
28, 29, 210, 211, 212, 213, and 214 for the 9th through 15th generation, respectively. Each line represents the average values derived from
N = 100 numerical simulations.

empirical work that interprets increased multifractal non-
linearity as indicative of more intricate interaction-driven
dynamics supporting perception and action (see Ref. [65] for
review). As the data’s sampling duration increased, the growth
in multifractal nonlinearity became apparent, providing more
robust evidence of nonlinear interactions across scales via
IAAFT surrogate comparison, suggesting that nonlinear ev-
idence of cross-scale interactions intensifies with the time
series length. Importantly, the independence of multifrac-
tality from specific sampling times enhances its reliability
as an empirical technique. Multifractal nonlinearity remains
constant within a data segment sampled for a specific du-
ration, implying that any chunk of data can represent the
entire process, provided the sampling length remains consis-
tent across repeated sampling or comparisons across groups
or conditions. Understanding that subsequent events can-
not retroactively change the reality of prior evolution in a
physical system underscores the significance of consistent
interpretation, particularly when analyzing extended datasets.
The consistent multifractal nonlinearity across same-length
chunks reinforces this point, particularly in the context of
multiplicative interactions, supporting our central finding on
the pivotal role of such interactions in shaping emergent mul-
tifractal properties. Center-sampling only nullified IAAFT’s
effects on additive cascade tMF and early-generation tMF in

multiplicative cascades. Regardless of controlling for tran-
sient trends at the beginning of IAAFT noise, multiplicative
cascades with IAAFT noise consistently exhibited smaller
and less often significant values of tMF. Hence, the asym-
metry of multifractal spectra due to all but shuffled-noise
multiplicative cascades does not alter the outcome of most
multiplicative cascades’ multifractal nonlinearity. Comparing
the entire cascade time series to its own IAAFT surrogates
allowed controlling for many linear factors in the left-sampled
noises. Whether sampled from the left or the center of the
noise process, IAAFT noise consistently prevented multi-
plicative cascades from promoting multifractal nonlinearity
across generations.

C. Noise with greater multifractal spectrum width contributed
to stronger sequence-dependent ergodicity breaking

in multiplicative cascades

Finally, our findings regarding ergodicity breaking are par-
ticularly thought-provoking. They add confirmatory evidence
supporting both the previous theorizing that ergodicity break-
ing might stem from the sequential structure as well as from
the failures of processes to stabilize around Gaussian mean
[8] and the more recent evidence that additive and multi-
plicative cascades distinctly promote the former and latter
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FIG. 10. Ergodicity breaking in the four additive (top) and multiplicative (bottom) cascade types across progressively more generations
after controlling for length. This phenomenon is quantified using the ergodicity breaking factor EB[x(t )] (lag � = 2 samples). The traces
progressively deepen in color from 9 through generation 15. To ensure consistent length across generations, time series were padded with
consecutive repetitions of individual-cell values for the 9th through 15th generations 64, 32, 16, 8, 4, 2, and 1 times, respectively. Each line
represents the average values derived from N = 100 numerical simulations.

sources, respectively [80]. We found that additivity promoted
sequence-driven ergodicity breaking, as in the case of the
linear process f Gn showing strong ergodicity breaking with
greater temporal correlations [103]. We also found that mul-
tiplicative cascades showed less sequence-driven ergodicity
breaking but greater ergodicity breaking due to non-Gaussian
PDF. Again, as in Ref. [80], noise type affected sequence-
driven ergodicity-breaking that depended on multiplicativity:
the entailment of more homogeneous, more time-symmetric
temporal structure in the IAAFT-noise promoted sequence-
driven ergodicity breaking in additive cascades, but the wide
multifractal spectrum in nonlinearly multifractal noise and
its preservation in the linear multifractal noise served to
strengthen sequence-driven ergodicity breaking in multiplica-
tive cascades.

Hence, the assessment of ergodic properties remains a per-
tinent endeavor when modeling biological and psychological
processes [41–45,73]. And it now appears consistently that
both the mathematical relationship across generations (i.e.,
multiplications or additions) and the temporal structure in
the noise implicated in the cascade process (e.g., nonlin-
early multifractal, IAAWT, IAAFT, or shuffled) could each
play a part in determining the ergodicity-breaking proper-
ties of our raw empirical measurements. Beyond replicating
this point from our previous simulation work [80], an in-

triguing implication of the present findings is that IAAFT
noise can provoke strong sequence-driven ergodicity breaking
in additive cascades but diminish it in multiplicative cas-
cades. A complementary intriguing implication is that a wider
multifractal spectrum appears to promote sequence-driven er-
godicity breaking, and the comparable ergodicity-breaking
results for multiplicative cascades with nonlinearly mul-
tifractal noise and IAAWT noise suggests that nonlinear
temporal correlations might not themselves be necessary for
sequence-dependent ergodicity breaking. Then again, the con-
trast of results between cascades with nonlinearly multifractal
noise and cascades with IAAFT noise suggests that nonlinear
temporal correlations certainly suffice to produce a differ-
ence in ergodicity-breaking. Although the failure of mixing
(i.e., the linear correlations in IAAFT noise) is sufficient for
sequence-driven ergodicity breaking in additive cascades, the
greater multifractal spectra for cascades with nonlinearly mul-
tifractal noise entail variety in the failure of mixing. Previous
work had shown that multiplicative cascades with nonmixing
f Gn indeed showed this greater sequence-dependent ergodic-
ity breaking [80]; now we learn from the present results that
multiplicative cascades can show greater sequence-dependent
ergodicity with greater varieties in failure of mixing. In
summary, we conclude that multiplicative cascades might pro-
tect against sequence-dependent ergodicity breaking, bringing
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relative stability to the cascade outcome precisely when the
underlying noise process shows the least variety in its failure
of mixing. The same multiplicative cascades appear to unleash
relatively more sequence-dependent ergodicity breaking when
the underlying noise processes are more variable in their fail-
ure of mixing.

D. Conclusion and future directions

We have shown in this simulation work that multifrac-
tal formalisms represent a robust approach for evaluating
whether fluctuations in empirical time series indicate multi-
plicative interactions among component processes operating
across various scales and in various parts of an extended sys-
tem. Previous work investigating cascade-driven simulations
has traditionally only addressed isolated cascade processes,
essentially isolating the parameters of a single cascade and
confirming which range of parameters could produce specific
ranges of fractal and multifractal outcomes. This work has
been crucial for all empirical work considering any observable
that may embody a single cascade process. Simulation work
with single cascades provides an ample testing ground for
exploring why and under what constraints we should expect
multifractal outcomes with or without sequence-driven er-
godicity breaking—but only in single or isolated degrees of
freedom. So long as we hope for cascade-dynamical modeling
to speak to organism-wide interactivities, the next crucial step
in cascade modeling may be to derive valid theoretical predic-
tions for cascades that are not simply producing multifractal
structure but incorporating different forms of multifractal
noise as well. The present results provide new perspectives
for interpreting how asymmetric multifractal spectra in single
observables might reflect multiplicative cascades operating
on multifractal noise absorbed elsewhere in the organism or
task context. This theoretical work allows asking more subtle
questions about the proposed linearity or nonlinearity implicit
in multifractal fluctuations endogenous to the organism (e.g.,
Refs. [61,62]) or in exogenous multifractal stimulation from
the task context (e.g., Refs. [70,73–75]).

This proposed direction for theoretical work is decid-
edly not a program of building multifractal noise to provide
a “turtles all the way down” explanation of the origin of
multifractal structure in biological and psychological mea-
surements. First, we do not expect that cascade dynamics
should be purely transparent to multifractal perturbation—that
is, cascade dynamics themselves may be a fundamental mech-
anism sufficient to produce multifractal structure, and cascade
dynamics is a compelling mechanism because cascadelike
fracturing is not in and of itself a multifractal mechanism. In
other words, cascades constitute minimally only one straight-
forward route for producing multifractal structure, and there is
nothing inherently multifractal about the repetition of biased
splitting of proportions in parent cells [92]. Second, we do
not aim to re-present long-understood rules of superposition
by which adding one fractal signal to another might produce
a new signal of superposed fractality [109], and the present
work is also not simply adding one multifractal time series to
another multifractal time series of comparable length. Beyond
what previous work has shown about potentially multifractal
or nonmultifractal routes to multifractal results, we can point

to the present results as evidence of the diverse effects of
incorporating multifractal noise. Indeed, the capacity for zero
and (significantly) negative tMF in additive cascades and even
multiplicative cascades with IAAFT noise suggests that cas-
cades chart many routes towards nonmultifractal outcomes.
While it may not seem significant at first glance, IAAFT
noise consistently demonstrated a notable reduction in the
multifractal spectrum width compared to the nonlinearly mul-
tifractal noise. However, the persistence of a residual nonzero
multifractal spectrum width due to the PDF skewness tech-
nically qualifies IAAFT noise as multifractal. Furthermore,
our observations reveal a noteworthy phenomenon: numerous
additive cascades featuring multifractal noise may present
only scant evidence of multifractal structure, as exemplified
by the subtle traces in the blue lines across all top-row pan-
els in Figs. 4–7. Consequently, there is no guarantee that
cascades consistently yield compelling evidence of multifrac-
tality. Similarly, no categorical assurance suggests that we
should exclusively expect multifractal structure from cascades
generated by applying multiple generations of multifractal
noise.

Instead, cascades that incorporate multifractal noise open
up a field of theoretical inquiry that paves a path towards
scaling a multifractal model of biological and psychological
processes up from single observables to an entire organism—
that path that network science has already begun to hint at
[110]. The present exploration of cascades with multifractal
noise is an early step in learning how to interpret our single
observables’ multifractality better. The present work does not
give indicators of network topology; instead, it offers a view
of how classic categories of cascades (i.e., additive and mul-
tiplicative) react to and involve multifractal noise that might
spread through the system from spatiotemporally neighboring
points of cascade dynamics. This work informs this line of
theoretical inquiry by indicating that the mathematical form
of cascade dynamics (i.e., additive or multiplicative) radi-
cally changes the effect of the simulated observable absorbing
multifractal noise. For instance, we confirmed a previous
finding that multiplicative cascades show stronger tMF sig-
natures of nonlinearity with progressively more generations
[80]. However, multifractal cascades generate much stronger
tMF signatures of nonlinearity with multifractal noise than
with less multifractal IAAFT noise. This point extends the
previous finding that multiplicative cascades involving f Gn
showed greater tMF than multiplicative cascades with awGn
[80]. Hence, we may be able to rank-order the strength of
multifractal nonlinearity from the greatest to the least for
multiplicative cascades involving multifractal noise with
wider spectra or more nonlinear temporal correlations towards
multifractal noise with narrower spectra more closely approx-
imating monofractal f Gn as well as awGn. This work also
informs this approach by indicating that noise with greater
multifractal spectrum width (e.g., in the comparison between
nonlinearly multifractal noise and IAAWT noise) and greater
nonlinear temporal correlations (i.e., in the contrast between
nonlinearly multifractal noise and IAAFT noise) can promote
specifically different forms of ergodicity breaking.

This more nuanced cascade modeling respects that organ-
isms are not monoliths but richly textured and task-sensitive
ensembles of many degrees of freedom [111,112]. We mean
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“degrees of freedom” not in the statistical sense (e.g., “N −
1”) but in the thermodynamics and movement-science con-
notation of all those details of the system that can vary and
are available for a controller or context to release constraints.
Organisms thrive on their fluid capacity to gather and release
their degrees of freedom with constraints they can build or
break according to task demands [113–116], that is, organisms
marshal their degrees of freedom through interactions across
scales, exemplifying cascade form [117]. The observable in-
teracts with various degrees of freedom, receiving stimulation
such as innervations, collisions, and suggestions. These inter-
actions, coupled with the task context, lead to the emergence
of new adaptive behaviors that subsequently influence the
entire system [118–125].

Network science has already begun to invoke multi-
fractality as an elegant operationalization of the cascade
relationships that might coordinate an organism’s distribution
of degrees of freedom—a point that appears theoretically
[110] and empirically [46–64]. Also, multifractality may en-
tail more about the broader system than a single observable
can embody. We know that the extended systems behind our
observables can have a spatiotemporal structure more globally
[126], and we know that fractal structure has even supported
the theoretical expectation that we should be able to unpack
more global dynamics from the lower-dimensional projection
of these dynamics appearing in our single observables [127].
Presumably, we have not been lucky enough to pick only
the observables with multifractal structure; presumably, the
multifractal structure is a more generic property of the whole
organismic system. The hierarchical structure implicit in any
observable is unlikely to belong strictly to that observable
but sooner reflects the aggregates wielding that observable.
Hence, we reserve a hope that the multifractal structure of any
single observable should bear traces of the activity of other
observables throughout the system. We expect that the mul-
tifractal structure of any single observable could thus carry,
at the same time, echoes of the broader system that contains
it and echoes of the novel contacts that it engages in. For
instance, we collected full-body motion data from human
participants during a perceptual task [61,128]. Basic net-
work analyses examining the full array of bodywide markers
revealed pervasive connections among anatomical compo-
nents, showing widespread effects of current multifractality
in one observable on subsequent multifractality in another.
The empirical evidence suggests that multifractality at any
single observable may bear the imprint of multifractality
elsewhere.

A longer range goal is to establish principled expecta-
tions for a network of multifractal observables. How should
multifractality spread? What potentially cascading spatiotem-
poral constraints might govern that spreading? In one sense,
the insights available from studying a single observable’s
multifractality have potentially blossomed beyond the earlier
possibilities that, say, more or less multifractality is associ-
ated with health (e.g., Refs. [129–131]). Yes, the nonlinear
properties of a single observable may carry traces of a whole
body’s functioning [71,72,132–135]. But with these concerns
in mind, global coherence of organism-wide coordination may
be intermittent with the loosening of constraints according to
task needs. Nonetheless, multifractal models might support

predictions about the long-range patterns of such intermit-
tency (e.g., single degrees of freedom in a complex movement
system) in which we can begin to model how a single multi-
fractal observable is a participating member of an ensemble.
One observable might stand alone in a theoretical vacuum,
but it might also be a particle modeled as part of a loosely
interactive ensemble. Loose interactions among observables
within the ensemble allow that. For instance, simulation work
investigating single cascade processes has been crucial for
understanding the sequential variations of a single human’s
forefinger pressing a button, for example, to signal their es-
timation of 1-s intervals [136,137]. This strategy is central
to furthering a cascade-dynamical portrayal of the finger be-
havior in that task. However, in this example, the pressing
of a fingertip is only the most immediate point of contact
between the whole organism and the task environment. As
we acknowledge that the single button press is only the tip
of an organism-wide iceberg, we recognize that the pressing
of the fingertip emerges lawfully from a vast network of
anticipatory postural adaptations and longer-range postures
distributed across the whole movement system [118–125].
Presumably, what we see in the single observable is the en-
dogenous flow of coordinating cascades from neighboring or
connected observables endogenous to the organism and any
exogenous stimulation (e.g., Refs. [70,73–75]). The foregoing
evidence from multifractal estimates from the brain and body
could indicate cascades spreading from one observable to the
next. That spatiotemporal spreading of cascades through the
organism could provide a way to explain these anticipatory
adaptations at many spatial and temporal scales. But again,
the major challenge that future work needs to overcome is that
we have no theoretical guide to our expectations of diagnosing
these organism-wide flows from individual-observable multi-
fractal results.

Hence, the present simulation work is a critical step in es-
tablishing an interactive framework to understand the adaptive
functions of organisms, for instance, perceiving, acting, and
cognizing. Instead of presenting a novel concept, we have
clarified how we might interpret multifractal results when
expecting our cascadelike measurements to bear the multi-
fractal imprints of cascade processes elsewhere within the
same body. The next steps for this process involve elabo-
rating beyond the strictly additive and strictly multiplicative
(e.g., Ref. [83]) and also developing the structure of mul-
tifractal noise to simulate different network relationships
feeding into the cascade simulation (see also Refs. [70,73–
75]). We hope also to explore the possibility that multifractally
nonlinear signatures of cascade dynamics might help to clas-
sify qualitatively different modes of biological motility [45].
Behind this prospect is the further goal to connect our work
with the network modeling that already provides glimmers
of the relationship between distributed coordination and mul-
tifractal cascades [110]. A longer-range goal of this work
would be to develop and empirically test predictions of how
well multifractal nonlinearity can detect changes in cascade
structure due to endogenous multifractal behavior of the or-
ganismal network, especially as it may change with network
topology or with successful goal satisfaction. At that point,
it might even be possible to begin sketching out methods
for simulating exogenous perturbations that could begin to
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develop theoretical predictions for how external threats or
pressures might reshape the cascades that organismal net-
works of observables wield (cf. Refs. [70,73–75]). Such
theoretical advances would welcome support for the growing
empirical attempt to elaborate so-called “stochastic reso-
nance” or “noise-based” stimulation beyond the classically
“white-noise” awGn structure [138–146] to more endoge-
nously naturalistic fractal and multifractal types of stimulation
[70,73–75,147,148]. To summarize, the simulations herein
furnish a sturdy theoretical foundation that aligns with cur-
rent interpretations of multifractal nonlinearity and can root

further work to articulate the cascade dynamics spanning
diverse spatial and temporal scales within biological and psy-
chological processes.
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