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Diffusion of noiseless active particles in a planar convection array
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We investigated, both analytically and numerically, the dynamics of a noiseless overdamped active particle
in a square lattice of planar counter-rotating convection rolls. Below a first threshold of the self-propulsion
speed, a fraction of the simulated particle’s trajectories spatially diffuse around the convection rolls, whereas
the remaining trajectories remain trapped inside the injection roll. We detected two chaotic diffusion regimes:
(i) below a second, higher threshold of the self-propulsion speed, the particle performs a random motion
characterized by asymptotic normal diffusion. Long superdiffusive transients were observed for vanishing small
self-propulsion speeds. (ii) above that threshold, the particle follows chaotic running trajectories with speed and
orientation close to those of the self-propulsion vector at injection and its dynamics is superdiffusive. Chaotic
diffusion disappears in the ballistic limit of extremely large self-propulsion speeds.

DOI: 10.1103/PhysRevE.109.064211

I. INTRODUCTION

In this paper we revisit the recurrent problem of the over-
damped dynamics of a massless particle diffusing in a square
lattice of planar counter-rotating convection rolls [1,2]. The
reference model is represented by a disk of coordinates x and
y, suspended in a two-dimensional (2D) stationary laminar
flow with periodic center-symmetric stream function [1,2]

ψ (x, y) = (U0L/2π ) sin(2πx/L) sin(2πy/L), (1)

where U0 is the maximum advection speed and L the size of
the flow unit cell, which consists of four counter-rotating flow
subcells, also termed convection rolls (see Fig. 1). The case
of a tracer suspended in a chaotic flow would require a more
sophisticated hydrodynamic modeling [3], which rests outside
the purpose of the present investigation.

The disk’s dynamics can be formulated by means of two
coupled nonlinear equations:

ṙ = vψ + v0,

θ̇ = (α/2)∇ × vψ, (2)

where vψ = J·∇ψ , with J denoting the symplectic unit matrix( 0 1
−1 0

)
, is the advection velocity, and v0 = v0(cos θ, sin θ ) is a

tunable drag due either to an external force (with α = 0) in the
case of a passive disk, or to some self-propulsion mechanism
in the case of an active disk (with α = 1, when adopting
Faxén’s second law [4,5]).

Particle dynamics of Eqs. (1) and (2) has been studied un-
der diverse physical conditions and a rich phenomenology has
emerged. The reference model [1] represents the unbiased dy-
namics of a passive disk with v0 = 0. In the absence of inertial
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effects, a suspended tracer follows necessarily a streamline of
the Eulerian velocity field vψ (x, y). The incompressible nature
of the advection field ∇·vψ = 0 implies that a suspension of
noninteracting disks, if initially uniform, must remain uniform
at any time.

By a closer inspection, one concludes that the symplectic
form of Eq. (2) holds also in the presence of an external drag
v0, not explicitly dependent on the particle’s position r. Let us
consider first the case of α = 0, that is a fixed external drag
oriented at an angle θ , with respect to the horizontal x axis.
As noted first in Ref. [6] for θ = −π/2, and later detailed
in Ref. [7] for any θ , the external forcing term changes com-
pletely the dynamics of a uniform particle suspension. Despite
the apparent spatial uniformity, individual disks can be either
trapped inside a subcell, where they retrace closed orbits
around an off-center stability point defined by the condition
vψ + v0 = 0, or cross the advection cells when running along
the flow-boundary layers bordering each subcell. These grow
wider with increasing v0 until for v0 > U0/

√
2 the trapping

(or “retention”) regions disappear at all.
Adding an inertial term to the first Eq. (2) (not shown)

impacts the dynamics of the particle suspension in two ways
[7]: (i) the retention regions dissolve over time, that is tra-
jectory trapping can only be detected as a transient effect;
(ii) an initially uniform particle distribution shrinks along
the stationary flow streams of the running massive particles.
More sophisticated modeling of the inertial effects may lead
to chaotic trajectories [8] or exotic particle responses, like an
absolute negative mobility [9].

Another variation of Eq. (2) consists in replacing the con-
stant drag v0 with the fluctuating term ξ(t ) = (ξx(t ), ξy(t )),
where ξi(t ) with i = x, y are stationary, independent, delta-
correlated Gaussian noises 〈ξi(t )ξ j (0)〉 = 2D0δi jδ(t ) [10–13].
The first Eq. (2) thus turns into a Langevin equation: Not
only the uniformity of the initial suspension distribution is
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preserved, but a single diffusing tracer subject to periodic
boundary conditions would cover the advection unit cell uni-
formly, which defines the diffusive process as ergodic. On
increasing D0, its asymptotic diffusion constant D changes
from D = κ

√
DLD0, for D0 < DL (advective diffusion), to

D = D0, for D0 > DL (free diffusion). For the convection
array of Eq. (1), κ � 1.07 [10]. The crossover between these
two diffusion regimes occurs at D0 � DL and appears to
be quite sharp [14]. The quantity DL = U0L/2π can be re-
garded as the natural diffusion scale of the advection field.
This property was explained [10–13] by noticing that for
D < DL spatial diffusion across the subcell separatrices is re-
stricted to the boundary-flow layers delimiting the individual
advection rolls.

The symplectic form of the first Eq. (2) holds even if the
vector v0 evolves in time indirectly depending on the parti-
cle’s position. An example was addressed by the authors of
Ref. [15], who investigated the advection of an active particle
[16–19] with constant speed v0 and angle θ turning subject
to the advection torque of the second Eq. (2) with α = 1.
They concluded that such a self-propelling tracer would either
move along quasiperiodic orbits confined to a delimited region
at the center of the convection rolls, or follow unbounded
chaotic trajectories straddling the roll separatrices, if set off
in a flow-boundary layer. These two distinct regions would
be separated by an invariant surface, acting as a sort of ef-
fective “transport barrier,” which they predicted to vanish for
v0 � (2π/3)U0, i.e., at values of v0 larger than predicted for a
passive dragged-advected particle [7].

More recently [14], the diffusion model of Ref. [15] has
been generalized by replacing v0 with v0(cos θ, sin θ ) + ξ(t )
in the first Eq. (2) and possibly adding a rotational noise in
the r.h.s. of the second Eq. (2). It is the puzzling dependence
of the resulting particle’s diffusion constant D on v0 and D0

that led us to revisit the original noiseless model of Ref. [15],
thus discovering a richer phenomenology than previously re-
ported. In particular, extensive numerical simulations revealed
that below a first v0 threshold, much lower than predicted
in Ref. [15], a fraction of the injected particle’s trajectories
spatially diffuse across the convection rolls, whereas the re-
maining trajectories remain trapped inside the injection roll.
Two diffusion regimes of chaotic nature are identified: Below
a second, higher v0 threshold, the particle performs a ran-
dom motion characterized by asymptotic normal diffusion;
above that threshold, the particle executes a superdiffusive
dynamics, its chaotic running trajectories assuming speed and
orientation close to those of the self-propulsion vector at
injection.

The contents of this paper is organized as follows. In Sec. II
we separate trapped from running trajectories, analyze area
and geometry of the starting trapping regions, and determine
the value of the first threshold of the self-propulsion speed,
above which trapping is suppressed. To keep our analysis as
simple as possible, we only considered small-size circular
disks. Special geometries are known to strongly affect ad-
vective diffusion (like in the case of needles [15] or elastic
fibers [20,21]). In Sec. III we characterize the chaotic nature
of the running trajectories: ergodic and isotropically diffusive
for self-propulsion speeds below the second, higher thresh-
old, and quasiballistic above it, with orientation and average

speed conditioned by the initial value of the self-propulsion
vector. Below the first threshold, the coexistence of trapped
and running trajectories is marked by long superdiffusive
transients. In Sec. IV we focus on the disk’s chaotic dif-
fusion under different dynamical regimes. Between the first
and second threshold the particle undergoes normal diffusion,
independently of the initial conditions. Above the second
threshold, the chaotic nature of the quasiballistic trajectories
gives rise to unexpected superdiffusive manifestations, which
vanish only for exceeding large values of the self-propulsion
speed.

II. TRAPPED TRAJECTORIES

For reader’s convenience, we now rewrite explicitly the
model equations (2) with α = 1:

ẋ = U0 sin(2πx/L) cos(2πy/L) + v0 cos θ,

ẏ = −U0 cos(2πx/L) sin(2πy/L) + v0 sin θ,

θ̇ = 	L sin(2πx/L) sin(2πy/L), (3)

where 	L = 2πU0/L is a characteristic advection angular
frequency. These ordinary differential equations were numer-
ically integrated by means of a standard Mil’shtein scheme
[22] to allow adding fluctuating terms as appropriate for a
comparison. Particular caution was exerted when computing
asymptotic quantities, like the effective running speed

Veff = lim
t→∞ r(t )/t, (4)

to properly account for the chaotic nature of the advected
disk’s trajectories. In our code, we used the advection field
parameters U0 and L to set convenient length and time units,
respectively, L and 	−1

L . In the simulation results reported
below, we set L = 2π and U0 = 1, so that the time unit
is 1. Therefore, tunable parameters in our analysis are the
self-propulsion speed v0, and the initial conditions x(0), y(0),
and θ (0).

To explore the chaotic dynamics of an advected active
disk, we integrated the trajectories corresponding to a uniform
distribution of N = 104 starting positions, (x(0), y(0)), in the
bottom-left counterclockwise rotating roll of Fig. 1, for dif-
ferent self-propulsion speeds v0, and initial orientations θ (0).
We ran our integration code for a long time, t = 105 or even
longer as appropriate, and thus distinguished between trapped
and running trajectories. In Fig. 2 we marked with red (blue)
dots the starting positions of the trapped (running) trajectories.
In consideration of the incompressibility of the configuration
space (x, y), this procedure defines a consistent measure of
the areas of starting trapping (red) and running (blue) regions.
One notices immediately that the starting trapping regions (i)
shrink with increasing v0 [Figs. 2(a)–2(c)]; (ii) are localized
on the subcell side where advection and self-propulsion point
in opposite directions [Figs. 2(c) and 2(d)]. Noticing that
the starting trapping region shifts along the roll boundary
as θ (0) is increased, one is not surprised to observe that a
trapped disk traces over time bound and generally not closed
trajectories that encircle the roll center [Figs. 3(a)–3(c)]. The
trapping regions of Fig. 2 resemble the retention regions of
Refs. [6,7] with an important difference (see the Appendix for
more details). There, θ = θ (0) at any time, because there is
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FIG. 1. Advected active particle in the 2D periodic convection
array of Eq. (1) with L = 2π . The unit cell of ψ (x, y) consists of
four counter-rotating rolls. If not stated otherwise, the trajectories re-
ported in this paper are referred to the bottom-left counterclockwise
rotating roll marked in red.

no advection stream exerting a torque on the disk (α = 0).
Accordingly, the disk retraces closed orbits inside a time-
invariant retention region (see, e.g., Figs. 2 and 3 of Ref. [7]).
Here, instead, the angle θ (t ) is periodically modulated as the
disk trajectory winds up around the advection center. As a
result, points of the starting trapping region get dispersed
over time and eventually distributed along a uniform ringlike
structure encircling the roll center [Fig. 2(f)]. Of course, their
number, Nt , is conserved as to be expected for the symplectic
dynamics of Eq. (3) [15]. More importantly, over time, due to
the advection torque, the starting red points mix together with
the blue ones, while conserving their number Nt . Contrary to
Ref. [15], no definite “barrier” separates trapped from running
trajectories.

Another difference between the trajectories with (α = 1)
and without (α = 0) advection torque is that for α = 0 the
area of the time-independent retention region, i.e., Nt , de-
pends on the choice of θ (0), whereas for α = 1 the area
of the starting trapping region is apparently independent of
θ (0) [Fig. 3(d)]. Moreover, contrary to Fig. 4 of Ref. [7],
the curves of Nt versus v0 are the same for both a fixed
θ (0) = 0, and a uniform distribution of the initial orientation
of the self-propulsion vector v0, at the starting positions. In
the latter case, the spatial distribution of the starting points
of the trapped trajectories is indistinguishable from that ob-
tained from the time evolution of any starting trapping region
[Fig. 2(f)]. Stated otherwise, the measure of the trapping re-
gion does not change owing to the combined effect of the
different circulation times [23] and the vanishing time aver-
ages of θ̇(t ) along the winding trajectories (no matter what the
integration time).

A further difference between the invariant trapping regions
with α = 0 [7] and the starting trapping regions reported
here, is the appearance of symmetrically distributed islets of
starting trapping points, bordering the main trapping region
[Figs. 2(b)–2(d)]. We verified that such islets are dense and
stable [compare Figs. 2(c) and 2(e)], also for much longer
integration runs. Trajectories originating in the trapping islets
appear to be more chaotic than those originating at the center
of the main trapping region [compare Figs. 3(a) and 3(c)].

As anticipated when first presenting Fig. 2, the starting
trapping region shrinks with increasing v0. This effect is
quantified by the decay of the curves Nt versus v0 plotted
in Fig. 3(d). From a detailed trajectory analysis we set the
v0 threshold for the disappearance of the starting trapping
region at v

(1)
th � 0.42U0. Our numerical estimate of v

(1)
th is

quite lower than reported in Ref. [15], but more consistent
with the analytical result obtained in Ref. [7] for α = 0 and
constant θ , that is, v

(1)
th = U0/(| cos θ | + | sin θ |), whence, on

varying θ with α = 0, one expects
√

2/2 � v
(1)
th � 1.

III. RUNNING TRAJECTORIES

The running trajectories exhibit qualitatively distinct be-
haviors depending on the value of the self-propulsion speed.
By inspecting Figs. 2(a)–2(c) one notices that at very low
v0, when the starting trapping region extends over the center
of the convection roll, the time evolution of the blue start-
ing points is confined to rather narrow layers bordering the
ψ (x, y) subcells. Accordingly, the corresponding running tra-
jectories tend to follow the cell separatrices, often encircling a
single roll, while maintaining a persistent overall direction.
The advected disk thus appears to diffuse isotropically by
executing long jumps either parallel or orthogonal to the x axis
[Fig. 4(a)]. Since close to the separatrices the advection torque
is suppressed [see third Eq. (3)], the angle θ (t ) varies very
little around its initial value, θ (0), over the entire integration
run [Fig. 4(d)]. We remind that θ (t ) should not be mistaken
for the trajectory orientation in the plane x-y. With increasing
v0, the running trajectories penetrate the convection rolls,
mixing with the coexisting trapped trajectories, if any. The
trajectories appear to diffuse isotropically, resembling those
of a Brownian particle [Fig. 4(b)], with the orientation of the
self-propulsion vector v0 strongly randomized by the advec-
tion torque [Fig. 4(e)]. In stark contrast with the previous
dynamical regime, here v0 appears to closely line up with the
Eulerian velocity vector vψ . Consequently, as the trajectory
encircles either a clock- or counterclockwise convection roll,
the self-propulsion angle θ varies by an amount of the order
of ∓π with time constant of the order of 2π/	L. Thus, as dis-
cussed in Sec. IV, the resulting random variable θ (t ) appears
to undergo normal diffusion [inset of Fig. 4(e)].

These diffusive scenarios give way to a quasiballistic
dynamics for self-propulsion speeds above a second, quite
high threshold, v

(2)
th . As shown in Fig. 4(c), the running

trajectories cut now across the ψ (x, y) cells with average
drift vector, Eq. (4), depending on the combined effects
of self-propulsion and advection. The orientation θeff of
such trajectories is attracted either parallel to the closest
diagonal through the stagnation regions at the corners of the
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FIG. 2. Trapping areas in the counterclockwise rotating roll marked in red in Fig. 1. N = 104 particles were injected in that subcell with
uniform spatial distribution, but fixed orientation, θ (0): 0 in (a)–(c) and (e); π/4 in (d); uniformly distributed in the range [0, 2π ] in (f), and
different self-propulsion speed v0 = 0.01 in (a), 0.1 in (b), and 0.2 in (c)–(f). Numerical integrations ran up to t = 105: red (blue) dots mark
the starting point of a trapped (running) trajectory. The plot in (e) is a blow up of the isolated red islet encircled in white in (c), while in (f) are
the starting red and blue points of (c) at t = 105. The advection parameters are L = 2π and U0 = 1.

ψ (x, y) subcells, θeff � π/4, or its initial value, θeff = θ (0),
depending on the initial conditions [Figs. 4(f) and 5].

Above the threshold v
(2)
th [Fig. 6(a)], the modulus Veff of

the drift vector of Eq. (4), jumps abruptly from nearly zero up
to close but not equal to v0 [Fig. 6(b)]. It shows a minimum
when v0 is initially oriented diagonally across the advection
field. The magnitude of the Veff dip weakly depends on the

FIG. 3. Trapped trajectories in the counterclockwise rotating
roll marked in red in Fig. 1 for v0 = 0.2, θ (0) = 0, and different
starting positions (x(0), y(0)): (a) (0.5, 0.8)π , (b) (0.8, 0.8)π , and
(c) (0.4475, 0.4925)π , i.e., close to the center, the border, and inside
the encircled islet of the trapping region of Fig. 2(c). The fraction of
trapped trajectories, Nt/N vs v0, is plotted in (d) for different θ (0)
(see legend). The advection parameters are L = 2π and U0 = 1.

starting position (x(0), y(0)), and vanishes with increasing
v0. Accordingly, the threshold v

(2)
th is quite sensitive to both

the initial position and orientation of the advected particle.
In any case, v

(2)
th is much larger than U0 and, therefore, v

(1)
th .

In conclusion, the quasiballistic regime is characterized by
chaotic trajectories, whose angular spreading appears am-
plified in correspondence with large θeff − θ (0) differences
[Fig. 5(d)–5(e)].

IV. CHAOTIC DIFFUSIVITY

We characterize now the running trajectories by looking at
their diffusive properties. To this purpose we computed the
mean-square displacements (MSD) of the spatial coordinate x
and the self-propulsion angle θ . The averages were computed
either over time,


x2(t ) = lim
τ→∞[〈x2(t + τ )〉 − 〈x(τ )〉2],


θ2(t ) = lim
τ→∞[〈θ2(t + τ )〉 − 〈θ (τ )〉2], (5)

or over the initial conditions,


x2(t ) = 〈x2(t )〉 − 〈x(0)〉2,


θ2(t ) = 〈θ2(t )〉 − 〈θ (0)〉2. (6)

In the following, we only display MSD’s [Eq. (6)] averaged
over a uniform distribution of θ (0).

The running trajectories for v0 < v
(2)
th exhibit diffusive

properties independent of the initial conditions, with
vanishing asymptotic averages 〈[x(t ) − x(0)]〉 and
〈[θ (t ) − θ (0)]〉 (not shown). As a consequence, for large t the
MSD’s of Eqs. (5) and (6) coincide [compare, e.g., 
θ2(t )
in Figs. 4(e) and 7(a)], thus corroborating the ergodicity
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FIG. 4. Running trajectories for (a) v0 = 0.001, (b) v0 = 0.1, (c) v0 = 10, with initial conditions (x(0), y(0)) = (0.001, 0.001)π and

θ (0) = π/8, and integration time t = 107 (shorter-time details are shown in the insets). The corresponding angular observable θ (t ) [mod(π )]
is plotted in the panels of the lower row for (d) v0 = 0.001, (e) v0 = 0.1, and (f) v0 = 10. In the insets of (c) and (f) additional data are reported
for different initial starting positions (see legends). In the inset of (e), 
θ (t ), Eqs. (5) is plotted vs t ; the linear slope was drawn to guide the
eye. The advection parameters are L = 2π and U0 = 1.

claim of Sec. II. Moreover, both MSD functions approach an
oblique asymptote, which is a signature of normal diffusion
[Figs. 7(a) and 7(b)]. In contrast with the Brownian dynamics
[24], here normal diffusion must be ascribed to the chaotic
dynamics of the advected particle. [In the present model one
speaks of Lagrangian chaos since the Eulerian velocities on
the r.h.s. of Eq. (2) are non-chaotic.] Due to the orientational

randomness of the vector v0(t ), a slowly self-propelling
disk diffuses isotropically; self-propulsion only helps it
cross the roll separatrices, while advection is responsible
for the spatial and angular displacements. Based on this
argument, one estimates the relevant diffusion constants [24],
D = limt→∞ 
x2(t )/2t � (1 − Nt/N )(L/2)2/[2(2π/	L]
and Dθ = limt→∞ 
θ2(t )/2t � (1 − Nt/N )(π )2/[2(2π/	L].

FIG. 5. Running trajectories: orientation of v0(t ) for θ (0) = 0 (a), π/6 (b), and π/4 (c), v0 = 10, and different starting positions [see legend
in (c)]. The asymptotic value θ (t ) defines the orientation θeff of the vector Veff of Eq. (4). Trajectory samples of length t = 100, folded in the
bottom-left subcell of the ψ (x, y) unit of Fig. 1 are displayed for v0 = 10, θ (0) = π/8 [see Figs. 4(c) and 4(f)], and (x(0), y(0)) = (0.1, 0.2)π
(d), (0.1, 0.5)π (e), and (0.1, 0.8)π (f). The advection parameters are L = 2π and U0 = 1.
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FIG. 6. Running trajectories: (a) v
(2)
th vs θ (0) for different starting

positions (see legend); (b) Veff vs θ (0) for different v0 and starting
positions (see legend). In both the advection parameters are L = 2π

and U0 = 1 and the integration run length is t = 107.

For the ψ (x, y) parameters U0 = 1 and L = 2π adopted
throughout this paper, D = Dθ � (1 − Nt/N )π/4,
consistently with our numerical data. A similar behavior
is reported in Ref. [8] for a driven-advected particle in an
inertial 2D convection array with α = 0.

For exceedingly small v0 values, v0 	 v
(1)
th , in Fig. 4(a) the

running trajectories were shown to jump multiple rolls parallel
to the x or y axis before changing direction. Accordingly, the
corresponding spatial MSD’s develop a prominent superdiffu-
sive transient, which grows quadratically with t [Fig. 7(b)].
A similar behavior was reported in Ref. [25], whereby the
convection-square array and the low self-propulsion speed are
replaced by a square lattice potential and a strong inertial
term.

In the quasiballistic regime v0 > v
(2)
th , the trajectories

appear to depend on the initial conditions (Figs. 4–6), with
θeff → θ (0) and Veff → v0 in the ballistic limit v0/U0 → ∞.
For this reason and contrary to Ref. [8], here we restrict our
discussion to the time-averaged spatial MSD’s of Eqs. (5).
For relatively large v0, the spatial MSD is largely suppressed
regardless of the initial conditions [Fig. 7(c) and 7(d)], as
expected when approaching the ballistic limit [24]. More

FIG. 7. Chaotic diffusivity: (a) 
θ2(t ), Eq. (6), v0 = 0.1 and dif-
ferent θ (0); (b) 
x2(t ), Eq. (5), for a uniform distribution of θ (0) and
v0 < v

(2)
th (see legends). In both the starting position is (x(0), y(0)) =

(0.001, 0.001)π . The lines t and t2 represent the asymptotic and
transient-diffusion laws. 
x2(t ), Eq. (5), has been computed also for
v0 = 20 and (c) (x(0), y(0)) = (0.001, 0.001)π and different θ (0);
(d) θ (0) = π/8 and different starting positions (see legends). In (e)
and (f) are the curves 
x2(t ), Eq. (5), corresponding to the running
trajectories of Figs. 5(d) and 5(e), respectively.

interesting is the case of intermediate suprathreshold values
of v0, where the MSD can be either vanishingly small or grow
quadratically with time, depending on the particle starting
position. Two examples of different diffusivity are illustrated
in Figs. 7(e) and 7(f) for the choice of x(0), y(0), and θ (0) of
Figs. 5(d) and 5(e), respectively. The superdiffusive behavior
of Fig. 7(f) appears to be related with the larger chaoticity of
the trajectories in Fig. 5(e). A simple argument in support for
this result is as follows. Modeling the chaoticity of a running
trajectory as a superposition of drifts, with random speeds
(Veff )x, yields


x2(t ) � [〈
(Veff )2

x

〉 − 〈(Veff )x〉2
]
t2, (7)

where 〈. . . 〉 denotes the average taken with respect to
the (Veff )x distribution. The variance of such distribution
may depend on the initial conditions, but vanishes for
asymptotically large v0.

V. CONCLUSIONS

In this paper we analyzed in detail the dynamics of an
overdamped noiseless self-propelled 2D particle suspended
in a square laminar convection array. We separated two types
of trajectories, trapped and running, the former disappearing
for self-propulsion speeds v0, above a first threshold v

(1)
th .
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FIG. 8. Trapping regions for θ (0) = 0, v0 = 0.2 and increasing values of the advection torque strength α (see legends). All other parameter
values are as in Fig. 2.

Contrary to earlier estimates [15], such a threshold turns out
to be smaller than the advection speed U0. Furthermore we
distinguished the running trajectories in diffusive and qua-
siballistic, for v0, respectively, below and above a second
threshold v

(2)
th , larger than U0. Their chaotic nature manifests

itself in peculiar properties of the particle spatial diffusiv-
ity, ergodic and normal for v0 < v

(2)
th , superdiffusive and

dependent on the initial conditions for v0 > v
(2)
th . Superdiffu-

sive transients are detectable also for v0 << v
(1)
th , while diffu-

sion is totally suppressed in the ballistic limit, v0/U0 → ∞.
The contribution of Lagrangian chaos to the spatial diffu-

sivity of an advected particle was reported by other authors
[8,26] in special cases of massive dragged-advected parti-
cles, where inertia was responsible for the onset of chaos.

FIG. 9. Trajectories of length t = 102 traced by a particle injected at the white dots of the corresponding panels of Fig. 8, (x(0), y(0)) =
(0.5, 0.6)π , with θ (0) = 0. All other parameters are as in Fig. 2(c).
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FIG. 10. Trapping regions for negative advection torque, α =
−0.5 (a),(c) and α = −1 (b),(d). The initial conditions of the tra-
jectories of length t = 102 in (c) and (d) are (x(0), y(0), θ (0)) =
(0.5, 0.6, 0)π ; all other parameters are as in Fig. 2(c). The white
dots in (a) and (b) denote the starting point at t = 0. (e) Fraction
of trapped trajectories, Nt/N vs v0, for different positive and negative
α (see legend) to be compared with Fig. 3(d).

Lagrangian chaos may explain the convergence issues en-
countered in the numerical analysis of the diffusive properties
of a noisy active particle in the advection field of Eq. (1)
[14]. For instance, in the limit of vanishing translational noise,
D0 = 0 (and zero angular noise), the spatial diffusion at low
self-propulsion speeds is certainly dominated by Lagrangian

chaos, which, as shown here, may require exceedingly long
simulation runs to be established.
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APPENDIX

As mentioned in Sec. II, at fixed v0 the trapping regions for
α = 1 are smaller than for α = 0 [6,7]. This is a chirality ef-
fect induced by the advection torque of strength α introduced
in the third of the Eqs. (3).

To illustrate this point, in Figs. 8 and 9 we characterized the
particle’s dynamics following the approach as in Sec. II, but
for a tunable α. The area of the trapping regions shrinks with
increasing α, and for α > 1 they reveal a more complex topol-
ogy. This effect, clearly due to the nonlinearity of Eqs. (3),
rests outside the purpose of the present study.

To fully explore the parameter space of the our model,
in Fig. 10 we also considered the case of negative α values:
for increasingly negative α values, the trapping regions ex-
pand, while the particles injected there keep tracing bounded
(but, in general, not closed) orbits around the center of the
convection roll.

The different particle’s dynamics for positive and negative
α can be qualitatively explained observing that for α > 0 the
circulation in the roll and the self-propulsion vector rotation
are parallel (i.e, both oriented counterclockwise). This en-
hances the centripetal push on the particle, thus making its
orbit expand for 0 < α < 	L, as displayed in Fig. 9. [Note
that, on further increasing α above 	L, the advection torque
wins over the roll circulation and the orbits tend to shrink
(not shown).] Vice versa, in Fig. 10, for α < 0 the circulation
and torque due to advection are opposite, so that the particle
orbits tend to slowly shrink with increasing the modulus of α.
As a consequence, the area of the trapping regions decrease
(increase) with increasing |α| for positive (negative) values.
This occurrence is confirmed by the α dependence of the
curves Nt/N vs v0, displayed in Fig. 10(e).

Notice that for the sake of a purely mathematical anal-
ysis, in this Appendix we have treated the strength of the
advection torque as a free parameter, whereas, according to
Faxén theory [27], α is determined by the geometry and the
chemical-physical properties of the particle surface.
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