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Elliptic-rogue waves and modulational instability in nonlinear soliton equations
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We present elliptic-rogue wave solutions for integrable nonlinear soliton equations in rational form by
elliptic functions. Unlike solutions generated on the plane wave background, these solutions depict rogue waves
emerging on elliptic function backgrounds. By refining the modified squared wave function method in tandem
with the Darboux-Bäcklund transformation, we establish a quantitative correspondence between elliptic-rogue
waves and the modulational instability. This connection reveals that the modulational instability of elliptic
function solutions triggers rational-form solutions displaying elliptic-rogue waves, whereas the modulational
stability of elliptic function solutions results in the rational-form solutions exhibiting the elliptic solitons or
elliptic breathers. Moreover, this approach enables the derivation of higher-order elliptic-rogue waves, offering a
versatile framework for constructing elliptic-rogue waves and exploring modulational stability in other integrable
equations.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation, the modified
Korteweg–de Vries (mKdV) equation, and the sine-Gordon
(SG) equation are renowned models for the dynamics of
waves [1,2]. They all belong to the class of integrable non-
linear soliton (INS) equations, distinguished by their soliton
solutions [3]. This class represents a distinct category within
nonlinear wave equations and finds significant utility in
studying various physical phenomena [4–6], including fluids,
plasmas, and optical systems.

Rogue waves (RWs), characterized by their sudden ap-
pearance and disappearance without a trace [7,8], have been
observed in various fields of physics, including oceanogra-
phy [7–10], quantum mechanics [11–13], optics [14–16], and
plasma physics [17,18]. These diverse experimental observa-
tions of RWs have spurred the exploration of RW solutions
for INS equations such as the NLS equation [19–25], the
Hirota equation [26], the coupled NLS equation [27], and
the derivative NLS equation [28], among others. So far, the
research on RWs on plane wave backgrounds has reached a
relatively advanced stage.

Nowadays, much attention is dedicated to constructing and
analyzing solutions on complicated wave backgrounds, par-
ticularly those arising from elliptic function backgrounds in
photonic crystal fibers and nonlinear metamaterials [29,30].
A multitude of elliptic-localized wave solutions [31–47] of
the INS equations have been constructed by developing the
integrable system methods [22–28,48–53]. These elliptic-
localized wave solutions exhibit the dynamic behaviors of
solitons, breathers, and RWs on elliptic function backgrounds
called elliptic solitons, elliptic breathers, and elliptic-rogue
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waves (eRWs), respectively. Moreover, eRWs have been ob-
served in experiments within the realms of nonlinear optics
and hydrodynamics [54].

Naturally, we are inclined to explore the exciting condi-
tions of the above-mentioned elliptic-localized waves. On the
plane wave backgrounds, the modulational instability (MI)
offers valuable insights into RWs, encompassing the existence
of RWs [55,56], the exciting conditions of RWs [57–59], and
the correspondence principle for RWs [60]. These insights
offer a profound understanding of the dynamic behaviors of
RWs [55–68] and provide a theoretical basis for observing
RWs in physical experiments. Under the condition of MI
on nonlinear stages, RWs can also be described by Akhme-
diev breathers [69,70]. However, studying the MI of elliptic
function solutions remains a challenge. While spectral and
orbital stability analyses of elliptic function solutions for the
NLS equation and the mKdV equation have been conducted
[46,47,71–73], systematic MI analyses of elliptic function so-
lutions for integrable nonlinear soliton (INS) equations remain
an open question. Numerical methods have been employed to
assess the stability outcomes of the NLS equation [42], but
a comprehensive MI analysis of elliptic function solutions
for INS equations is yet to be tackled. Therefore, our pri-
mary objective is to quantitatively reveal the correspondence
between eRWs and MI, and to deduce general higher-order
eRWs expressed in a rational form.

In this article, by developing the Darboux-Bäcklund trans-
formation and integrating it with theta functions, we propose
a method to construct rational-elliptic-localized wave solu-
tions for INS equations. Instead of utilizing the generalized
Darboux transformation, this method uses the limit at branch
points on elliptic breathers and elliptic solitons to obtain ra-
tional form solutions. By incorporating this approach with
the modified squared wave function (MSW) method, we es-
tablish a quantitative correspondence between eRWs and MI.
Additionally, we establish a correlation between modulational
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stability (MS) and elliptic solitons and elliptic breathers. This
method also enables the construction of higher-order eRW
solutions for INS equations. To illustrate these results, we
apply our approach to three INS equations: the NLS equation,
the mKdV equation, and the SG equation.

The structure of this paper is organized as follows. In
Sec. II, we derive an infinite number of INS equations from
the classical Ablowitz-Kaup-Newell-Segur (AKNS) system
and present elliptic function solutions expressed in terms of
theta functions for these equations. In Sec. III, we study the
MI and baseband MI of these elliptic function solutions. In
Sec. IV, we construct rational-elliptic-localized wave solu-
tions. In Sec. V, we provide the correspondence between the
MI analysis and eRWs, revealing the connection between MI
and eRWs, as well as the connection between MS and elliptic
solitons and elliptic breathers. In Sec. VI, we are dedicated to
constructing multi-higher-order eRWs in theta functions. In
Sec. VII, we give conclusions and perspective. The Appen-
dices provide useful formulas and detailed proofs for certain
equations.

II. INTEGRABLE NONLINEAR SOLITON (INS)
EQUATIONS AND THEIR ELLIPTIC

FUNCTION SOLUTIONS

The INS equations include well-known equations such as
the NLS equation, the mKdV equation, the SG equation, and
others, which predominantly model wave dynamics in various
physical systems such as fluids, plasmas, and optical systems
[1–3]. The classical AKNS system [53,74–78] could derive
infinite numbers of INS equations by the AKNS spectral
problem �x = U�, where � ≡ �(x, t; λ) is called the wave
function with variables x ∈ R, t = (· · · , t−1, t1, · · · ) ∈ R∞,
and the spectral parameter λ; U ≡ U(λ; Q) is defined by λ

and the antidiagonal matrix Q. Considering the positive power
flow, we set a 2 × 2 matrix function � as

� = m exp

[
−iλσ3

(
x +

∞∑
n=1

λntn

)]
, (1)

where σ3 := diag(1,−1) is the third Pauli matrix; m ≡
m(λ; x, t) is a holomorphic matrix function. As λ → ∞, the
matrix function m could be expressed as

m = I2 + m1(x, t)λ−1 + m2(x, t)λ−2 + O(λ−3). (2)

Taking the derivative of variables x and tn and letting
�x �−1 = U (λ; Q) + O (λ−1), �tn �−1 = Vn (λ; Q) +
O(λ−1), we obtain that matrices U(λ; Q) and Vn(λ; Q) are

U(λ; Q) := −i(λmσ3m−1)+,

Vn(λ; Q) := −i(λn+1mσ3m−1)+, (3)

where (·)+ defines the regular part of the spectral parameter
λ. Combined with Eqs. (2) and (3), the x part of the Lax pair
could be written as

�x = U(λ; Q)�, U(λ; Q) = −iλσ3 + iQ,

Q = [σ3, m1(x, t)] =
[

0 q
r 0

]
, (4)

where q ≡ q(x, t), r ≡ r(x, t), and [A, B] is defined as the
commutator [A, B] = AB − BA. Based on them, we con-
struct the matrix Vn(λ; Q). Set � ≡ �(λ; x, t) := mσ3m−1

with �2 = I. Together with Eqs. (2) and (3), the matrix
function � could be represented as a summation form and
the matrix Vn(λ; Q) could be rewritten by matrix functions
�i ≡ �i(x, t) as follows:

� =
∞∑

i=0

�iλ
−i, Vn(λ; Q) = −i

n+1∑
j=0

� jλ
n+1− j . (5)

Based on the stationary zero curvature equation �x =
[U(λ; Q), �], �tn = [Vn(λ; Q), �], matrices �i in Eq. (5) are
expressed as follows: �0 = σ3, �1 = −Q, and

�off
m+1 = σ3

2

(
i�off

m,x + [
Q, �diag

m

])
,

�
diag
m+1 = −σ3

2

m∑
m=1

(� j�m+1− j )
diag, (6)

m = 1, 2, . . . . Plugging matrices �i into Eq. (5), we get
expressions for matrices Vn(λ; Q). In such a case, the com-
patibility conditions of ordinary differential equations �x =
U(λ; Q)� and �tn = Vn(λ; Q)� could deduce the related INS
equation [79] under different symmetries. Moreover, by com-
bining a linear combination of the aforementioned ordinary
differential equations with t̂n = ∑n

i=1 aiti, we can derive vari-
ous INS equations.

Consider the negative power flow and expand the matrix
function � with respect to the spectral parameter λ at the zero
point (λ → 0),

� = m̂ exp

(
−i

∞∑
i=1

t−i

λi
σ3

)
,

where m̂ = m̂0 (x, t) + m̂1 (x, t) λ + m̂2(x, t)λ2 + O(λ3),
and m̂ ≡ m̂(λ; x, t) is a holomorphic matrix function.
Taking the derivative of variables t−i, we obtain
�t−i�

−1 = m̂t−i m̂
−1 − iλ−im̂ σ3 m̂−1 = V−i (λ; Q) + O(1).

Set �̂ ≡ �̂(λ; x, t) := m̂σ3m̂−1, which deduces det(�̂ ) = 1
and Tr(�̂ ) = 0. Matrix functions �̂ and V−n(λ; Q) could be
rewritten as

�̂ = �̂0 + �̂1λ + O(λ2), V−n(λ; Q) = −i
n−1∑
i=0

�̂iλ
i−n, (7)

where �̂i ≡ �̂i(x, t). Plugging the matrix � in Eq. (1) into the
Lax pair, and collecting coefficients of the spectral parameter
λ, we derive matrix functions �̂i, i = 0, 1, . . . , expressed
in terms of matrices mi(x, t), i = 0, 1, . . . . Combined with
the compatibility conditions, infinite numbers of INS equa-
tions are derived under the negative power flows of the AKNS
system.

A. INS equations and their Lax pairs

In this section, we derive three INS equations under
the different power flows [53,74–78]. Consider the second-
order positive power flow and suppose matrices U(λ; Q) and
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V1(λ; Q) satisfying the SU(2) symmetry,

U†(λ∗; Q) = −U(λ, Q), V†
1(λ∗; Q) = −V1(λ, Q), (8)

with r = q∗. Setting t = t1, the Lax pair could be written as

�x = U(λ; Q)�, �t = V1(λ; Q)�,

V1(λ; Q) = λU(λ; Q) + σ3

2
(iQ2 − Qx ), (9)

with λ ∈ (C ∪ {∞}) and matrix U(λ; Q) defined in Eq. (4).
Based on the compatibility conditions �xt = �tx, we deduce
the focusing NLS equation as

iqt + 1
2 qxx + |q|2q = 0. (10)

Consider the third-order positive power flow and suppose
matrices U(λ; Q) and V2(λ; Q) satisfy the SU(2) symmetry
(8) and the twist symmetry,

U�(−λ; Q) = −U(λ, Q), V�
2 (−λ; Q) = −V2(λ, Q),

(11)
which implies Q� = −Q and q ∈ iR. Without loss of gener-
ality, we set iq = u(x, t) ∈ R and t = t2/4 and then obtain the
Lax pair by the third-order flow as

�x = U(λ; Q)�, �t = V2(λ; Q)�,

V2(λ; Q) = 4λV1(λ; Q) − i(Qxx + 2Q3), (12)

with λ ∈ (C ∪ {∞}) and matrices U(λ; Q) and V1(λ; Q) de-
fined in Eqs. (4) and (9). By the compatibility conditions
�xt = �tx, we obtain the focusing mKdV equation,

ut + uxxx + 6u2ux = 0. (13)

For the SG equation, consider the t−1 part
of the Lax pair �t−1 = V−1(λ; Q)�/4. Combined
with Eq. (7), the matrix �̂0 is expressed as �̂0 =
im1,t−1 (x, t). Since 2σ3moff

1 (x, t) = Q, we obtain
�̂off

0 = iσ3Qt−1/2. Combining equations det(�̂ ) = 1
and Tr(�̂ ) = 0 with Eq. (7), we obtain det(�̂0) = 1 and
Tr(�̂0) = 0, which implies

�̂0 =
[
−√

1 + rt−1 qt−1/4 iqt−1/2

−irt−1/2
√

1 + rt−1 qt−1/4

]
.

If matrices U(λ; Q) and V−1(λ; Q) satisfy the SU(2) sym-
metry (8) and twist symmetry (11), i.e., Q� = −Q, q ∈ iR,
we can set q = −ivx/2 and choose t = 4t−1 without loss of
generality. The Lax pair, derived from the negative power flow
and satisfying SU(2) symmetry (8) and twist symmetry (11),
can be expressed as

�x = U(λ; Q)�, �t = V(λ; Q)�,

V(λ; Q) = �̂0

4
= − i

4λ

[− cos(v̂) sin(v̂)
sin(v̂) cos(v̂)

]
, (14)

where v̂ = arcsin(vxt ). By the compatibility conditions, we
obtain v̂ = v and the SG equation

vxt = sin(v). (15)

In this way, we could also obtain infinite numbers of INS
equations based on the negative power flows of the AKNS
system. The solutions of these INS equations could be ex-
pressed in terms of the (1,2) element of the antidiagonal

matrix Q, denoted as Q12, which corresponds to Q12 = q =
−iu = −ivx/2. We will express solutions using Q12 instead
of q, u, and vx.

B. Elliptic function solutions of INS equations

The MSW method [35,80] and the algebro-geometric ap-
proach [76–78] stand out as two highly effective methods
for constructing elliptic function solutions of INS equa-
tions [44–47]. In this section, we utilize the MSW method and
algebro-geometric approaches to present details for deriving
elliptic function solutions of INS equations. Then, we express
these solutions in terms of theta functions. We will apply this
method to the NLS equation (10), the mKdV equation (13),
and the SG equation (15). By doing so, we will obtain uniform
expressions for elliptic function solutions.

For the genus-g case, set

L := −i

⎛
⎝g+1∑

n=0

αnλ
n�

⎞
⎠

+

= −i
g+1∑
n=0

g+1−n∑
j=0

αn+ j� jλ
n, (16)

where L ≡ L(λ; x, t) and functions �, � j , j = 0, 1, 2, . . . are
defined in Eqs. (5) and (6). Let the matrix function L also
satisfy the stationary zero curvature equations,

Lx = [U(λ, Q), L], Lt̂i = [V̂i(λ, Q), L], (17)

where the matrix V̂i(λ; Q) = ∑i
j=1 a jV j (λ; Q), a j ∈ R.

Since �x = [U(λ; Q), �] and �ti = [Vi(λ; Q), �], parame-
ters α j satisfy α j,x = 0 and α j,t̂i = 0, j = 0, 1, · · · , g + 1.
When m > 0, the following equations hold:

i
g+1−n∑

j=0

α j+n� j,t̂m =
n∑

l=0

⎡
⎣ m∑

m=0

a j� j+1−n+l ,

g+1−l∑
j=0

α j+l� j

⎤
⎦.

(18)
By the matrix function L defined in Eq. (16), we set

L =
[

L11 L12

L21 −L11

]
, det (L) = −L2

11 − L12L21 = P(λ),

(19)
where P(λ) = ∏2g+2

i=1 (λ − λi ) = ∑2g+2
i=0 siλ

i, s2g+2 = 1. By
comparing the exact expression of the matrix L in Eq. (16)
with the function P(λ), we can derive certain equations cru-
cial to the construction of elliptic function solutions for INS
equations. In this context, we consider the genus-1 case as an
example.

Under the genus-1 case with α2 = 1 in Eq. (16) and i = 1
in Eq. (17), and combined with Eqs. (16)–(18), the matrix
function L is

L = −iσ3λ
2 + i(Q − α1σ3)λ + iσ3(iQx + Q2)/2

+ iα1Q − iα0σ3, (20)

and functions Li j ≡ Li j (λ; x, t) are

L11(λ; x, t) = −iλ2 − iα1λ − i(α0 − |q|2/2),

L12(λ; x, t) = −L∗
21(λ∗; x, t) = iq(λ − μ), (21)

where μ = −i(ln q)x/2 − α1. Since −L†(λ∗; x, t) = L(λ; x,
t), gained by the existence and uniqueness of the ordinary
differential equation, we obtain P(λ) = P∗(λ∗). As a result,
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the parameter λi, representing the zeros of the polynomial
P(λ) in Eq. (19), satisfies the relationship λ j+2 = λ∗

j , j = 1, 2.
Together with Eqs. (19) and (21), we obtain

2α1 = s3, α2
1 + 2α0 = s2,

α1(2α0 − |q|2) − |q|2(μ + μ∗) = s1,

(2α0 − |q|2)2 + 4|q|2μμ∗ = 4s0. (22)

For the NLS equation (10), we consider the case with
parameters a1 = 1, i = 1, and g = 1 in Eqs. (16) and (17).
By Eq. (18), we obtain i�1,t = [�2, α1�0] + [�1, α0�0].
Combining with functions �i, i = 0, 1, 2, shown in
Eq. (6), we get Qt − 2iα0σ3Q + α1Qx = 0. Together
with Eq. (22) and the definition of μ, we obtain
2(μ − μ∗) = −i|q|2x/|q|2 and |q|4(μ − μ∗)2 = [α1(2α0 −
|q|2) − s1]2 − |q|2[4s0 − (2α0 − |q|2)2], which deduce
the equation −|q|4x = 4|q|6 + |q|4 [s2

3 − 2(4s2 − s2
3)] +

|q|2 [4s1s3 − 16s0 + (4s2 − s2
3)(2s2

3 + 1)/4] + 4s2
1 + (4s2 −

s2
3)(s2

3 − 16s1s3)/16 = 4(|q|2 + d2
1 ) (|q|2 − d2

2 )(|q|2 − d2
3 )

with three real-valued parameters d1 < d2 < d3. Upon
solving it, we obtain the elliptic function solution |q(x, t )|2 =
k2α2{sn2(Kl ) − sn2[α(x + s1t/2)]}, where parameters d1, d2,
and d3 [46] are well defined as follows:

d1 = −dn(Kl ), d2 = ikcn(Kl ), d3 = ksn(Kl ), (23)

with d1,2,3 ∈ R, d1 � 0 � d2 � d3, Kl = K + 4ilK , k ∈
(0, 1), l ∈ [0,−iτ/4], and α ∈ R. The values of parameters
l, k, and α depend on parameters si, i = 1, 2, 3. In combi-
nation with the Lax pair, the solution q can be expressed as
follows:

q = −i
√

v(ξ ) exp

[
is2t − is1(x + s1t )

2
−

∫ ξ

0

mds

v(s)

]
, (24)

where m = d1d2d3 and ξ = x + s1t/2. The detailed calcula-
tion process is given in Ref. [47].

As previously mentioned, utilizing the Lax pair of the
mKdV equation (13) discussed in Sec. II A, we consider the
case with parameters a2 = 4, a1 = 0, i = 2, and g = 1 in
Eqs. (16) and (17). Consequently, we get α1 = 0 and express
L as shown in Eq. (20). Furthermore, the derived equation is
Qt + 4α0Qx = 0. Taking these considerations into account,
the elliptic function solutions of the mKdV equation (13) can
be expressed as follows:

u = αkcn[α(x − st )], u = αdn[α(x − st )], (25)

where s = α2(d2
3 + d2

2 − d2
1 ) with l = 0 for cn-type solutions

and l = −iτ/4 for dn-type solutions. The detailed calculation
process for obtaining elliptic function solutions of the mKdV
equation (13) is given in Ref. [46].

To consider the matrix L of the SG equation, we focus
on the negative power of the spectral parameter λ. Combined
with Eq. (17), the equation is

i
g+1−n∑

j=0

αn+ j� j,t̂−i
= b

n−1∑
l=0

⎡
⎣�̂i+l−n,

g+1−l∑
j=0

α j+l� j

⎤
⎦, (26)

where n = 0, 1, · · · , g + 1, and �̂i is defined in Eq. (7). Sim-
ilarly, when g = 1, b = 1/4, and i = 1 in Eqs. (16) and (26),

elliptic function solutions of the SG equation (15) could be
written as

vx = 2αdn[α(x − st )], l = −iτ/4, (27a)

vx = 2αkcn[α(x − st )], l = 0, (27b)

where s = (−1)n(αk)−2d2
3 .

For ease of representation, we introduce a coordinate trans-
formation,

(x, t )
ξ=x−st						

η=t
(ξ, η), (28)

where s is the background velocity of solutions. By integral
formulas (A10), we express elliptic function solutions (24),
(25), and (27) in theta functions.

Elliptic function solutions of INS equations could be ex-
pressed in terms of theta functions as follows:

Q12 = iγ
ϑ2(α̂ξ + 2il )

ϑ4(α̂ξ )
ei(ωξ+κη), γ = αϑ2ϑ4

ϑ3ϑ3(2il )
, (29)

where ω = iαZ (Kl ) and α̂ = α/(2K ); ξ and η are defined in
Eq. (28); parameters Kl and d1,2,3 are defined in Eq. (23); and
ϑi(x) with ϑi ≡ ϑi(0), i = 1, 2, 3, 4, are called theta functions
defined in Definition 3. Parameters s and κ are defined by
different equations as follows:

(i) For the NLS equation (10), parameters are defined as
s = 0 and κ = α2(d2

3 + d2
2 − d2

1 )/2;
(ii) For the mKdV equation (13), parameters are defined as

s = α2(d2
3 + d2

2 − d2
1 ) and κ = 0;

(iii) For the SG equation (15), parameters are defined as
s = (−1)n(αk)−2d2

3 and κ = 0.
In this paper, we just consider the region of the param-

eter l and the modulus k as l ∈ [0,−iτ/4] and k ∈ (0, 1),
respectively. When l = 0, the solution (29) could be written
as αkcn(αξ )eiκη, where cn(·) is defined in Definition 1. The
solution is referred to as the cn-type solution, representing
the trivial phase solution. When l = −iτ/4, the solution (29)
transforms into αdn(αξ )eiκη, known as the dn-type solution,
which is also the trivial phase solution. For l ∈ (0,−iτ/4),
solutions (29) fall into the category of the nontrivial phase
solution. We can confine our consideration to the modulus
k ∈ (0, 1). Elliptic functions with k in the interval (1,∞) can
be transformed into the case (0,1) through reciprocal modulus
transformation formulas [[81], p. 38]. As the modulus k → 0,
solutions tend to degenerate into constants, while as k → 1,
solutions tend to degenerate into solitons. Based on these char-
acteristics, different types of solutions can be distinguished by
varying the values of parameters l and k, as depicted in the
sketch map shown in Fig. 1.

C. The fundamental solutions of related Lax pairs

Under the coordinate transformation (28), we can
construct the fundamental solutions of the related Lax
pair. Let ±iy denote the two eigenvalues of the ma-
trix L ≡ L(ξ, η; λ). By analyzing eigenvectors of the ma-
trix L corresponding to the eigenvalues ±y, we can set
φ2i ≡ φ2i(ξ, η) = ri(ξ, η; λ)φ1i(ξ, η) ≡ riφ1i, r1,2 = −(L11 ±
iy)/L12 = L21/(L11 ∓ iy), i = 1, 2. Functions φi j and Li j ,
i, j = 1, 2, represent the (i, j) elements of matrices � ≡
�(ξ, η; λ) and L, respectively. The fundamental solution of
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FIG. 1. The category of the elliptic function solution (29) of INS
equations corresponding to parameters l ∈ [0,−iτ/4] and k ∈ (0, 1).

the Lax pair could be expressed as

� =
[ √

�(ξ ) − β1eθ1
√

�(ξ ) − β2eθ2

r1
√

�(ξ ) − β1eθ1 r2
√

�(ξ ) − β2eθ2

]
, (30)

where �(ξ ) = k2α2[sn2(Kl ) − sn2(αξ )], β1,2 = 2λ2 + α2(d2
3+ d2

2 − d2
1 )/2 ∓ 2y,

r1,2 = i

√
Q∗

12(λ − μ∗)[�(ξ ) − β2,1]

Q12(λ − μ)[�(ξ ) − β1,2]
,

θ1,2 =
∫ ξ

0

iλβ1,2dx

�(x) − β1,2
+ iλ

2
ξ + iV1,2η, (31)

and functions V1,2 ≡ V1,2(z) are dependent on equations as
follows:

V1,2(z) = κ/2 ± y(z), NLS;

V1,2(z) = ±4λ(z)y(z), mKdV;

V1,2(z) = ±sy(z)/λ(z), SG. (32)

The detailed process can be obtained in [44–47].
Next, our objective is to introduce a uniform parameter z

and utilize theta functions to represent the solution (30). Upon
reviewing the Dubrovin-type equation for μ and setting λ =
μ, we get (L12)ξ = −iqμξ and (L12)ξ = −2iqL11 by Eq. (17),
which implies μξ = 2L11. Since ±iy are eigenvalues of the
matrix L, we obtain μξ = 2L11 = −2iy. Functions λ and y
are expressed by the uniform parameter z,

λ(z) = μ
( zl

α

)
, y(z) = α

4K

d

dz
μ

( zl

α

)
= α

4K

dλ(z)

dz
, (33)

with zl = 2i(z − l )K . Since μ = −i(ln q)x − α1, we get

λ(z) = iα

2

(
scd(zl ) − scd(Kl )

sn2(Kl ) − sn2(zl )

)
,

y(z) = α2k2[sn2(zl ) − sn2(−zl − Kl + iK ′)]/4, (34)

with scd(·) := sn(·)cn(·)dn(·) and Kl defined in Eq. (23). It
solves the algebraic curve y2 = −λ4 − s3λ

3 − s2λ
2 − s1λ −

s0 automatically. The conformal map λ(z) [44–47] maps the
rectangular area,

S := {z ∈ C| |Re(z) − l| � −iτ/2, |Im(z)| � 1/4}, (35)

into the whole complex plane C ∪ {∞} with two cuts. There-
fore, we turn to study z ∈ S instead of λ ∈ C ∪ {∞} in the
following.

Combined with Eq. (A15), the corresponding fundamental
solutions (30) of the related Lax pair could be expressed in
theta functions,

� = γϑ3(2il )

ϑ4(α̂ξ )
ϒ

⎡
⎣ ϑ1[i(z−l )−α̂ξ ]

ϑ4[i(z−l )]
ϑ3[i(z+l )+α̂ξ ]

ϑ2[i(z+l )]

iϑ3[i(z+l )−α̂ξ ]
ϑ2[i(z+l )]

iϑ1[i(z−l )+α̂ξ ]
ϑ4[i(z−l )]

⎤
⎦E, (36)

where E = diag(eiW1(z)ξ+iV1(z)η, eiW2 (z)ξ+iV2 (z)η ),

W1(z) := λ − iαZ (zl ), ϒ = diag(1, e−i(ωξ+κη) ),

W2(z) := λ + α̂π − iαZ (iK ′ − Kl − zl ). (37)

Functions λ ≡ λ(z) and y ≡ y(z) are defined in Eq. (34).
K ≡ K (k) and K ′ ≡ K (k′) are both the first complete elliptic
integrals defined in Definition 2; ϑi(z), i = 1, 2, 3, 4, are theta
functions defined in Definition 3; Z (x) ≡ Z (x, k) is the Zeta
function defined in Definition 4; parameters κ and s are de-
fined in Eq. (29); and functions V1,2(z) are defined in Eq. (32).
It should be noticed that functions W1(z) and W2(z) are not
mutually independent. Combining Eqs. (34) and (37) with the
formulas listed in Appendix A, functions W1,2(z) satisfy

W2(z) − ω + W1(z) = 0, (38)

where ω is defined in Eq. (29), which implies W ′
2 (z) =

−W ′
1 (z), shown in Appendix B. Similarly, based on the defini-

tion of functions V1,2(z) in Eq. (32), we get V ′
2 (z) = −V ′

1 (z).
Denote the branch points as

B := {z1,2 = −i/4 ∓ iτ/4, z3,4 = i/4 ∓ iτ/4}. (39)

Substituting zi ∈ B, we can directly deduce y(zi ) = 0. Com-
bining this with fundamental solutions expressed by the
spectral parameter λ and the function y in Eq. (30), we obtain
β1 = β2, θ1 = θ2, and r1 = r2. Thus, when zi ∈ B, two column
vectors of the fundamental solution �(ξ, η; λi) in Eq. (36)
exhibit a linear correlation, which means det[�(ξ, η; λi)] = 0,
λi = λ(zi).

III. THE MI ANALYSIS

The MI analysis involves linearizing INS equations and
calculating eigenvalues � and eigenvectors p of the related
linear operator L. Perturbed functions of elliptic function so-
lutions (29) for INS equations have the form

p(ξ, η) = ei(ωξ+κη)[p1(ξ )ei�η + p∗
2(ξ )e−i�∗η]. (40)

Substituting the solution Q12 + εp(ξ, η), |ε| 
 1 into INS
equations, we obtain that the linearized INS equation could
be transformed into

Lp = �p, p = [p1(ξ ) p2(ξ )]�, (41)

where p is the eigenvector corresponding to the eigenvalue
� ∈ C of the linear operator L. Therefore, the MS and
MI problems revolve around studying the eigenvalue � of
Eq. (41) for the bounded function p.

Define functions I1,2(z), �i, and �i as follows:

I1,2(z) := 2W1,2(z) ± α̂π − ω, �i := I ′
1(zi)/(4iK ),

�i := �′
1(zi )/(4iK ), zi ∈ B. (42)

Introduce a subset of the set S in Eq. (35) as

Sb := {z ∈ S|Im[I j (z)] = 0, j = 1, 2}. (43)
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Since W1(z) = ω − W2(z), ω ∈ R, as stated in Eq. (38),
we know Im[I1(z)] = −Im[I2(z)]. Then, to determine the
set of Sb, it is equivalent to getting the set about z such
that Im[I1(z) − I2(z)] = 0. By Eq. (A11), the derivative of
the function I1(z) − I2(z) is [I1(z) − I2(z)]′ = 4αK[dn2(zl ) +
dn2(zl + Kl − iK ′) − 2E/K]. In the view of [46], we could
obtain that when l = 0 and l = −iτ/4, the set Sb consists of
the real line and two curves. For l = −iτ/4, two curves are
parallel to the real line. For l = 0, if 2E/K � 1, two curves
in set Sb are intersecting with the real axis; if 2E/K < 1, two
curves in set Sb are intersecting with the imaginary axis. For
the case l ∈ (0,−iτ/4) described in [47], we could also obtain
similar results by using a similar approach as in the case of
l = 0, which we are unable to present here.

By symmetric properties of the Hamiltonian systems [82],
eigenvalues �(z) for INS equations derived by the AKNS
system are symmetric about the imaginary axis. This sym-
metry implies that both �(z) and −�∗(z) are eigenvalues
of the operator (41). Thus, if there exists z ∈ Sb such that
�(z) ∈ C\R, the elliptic function solution is modulationally
unstable; if �(z) ∈ R, for any z ∈ Sb, the elliptic function
solution is modulationally stable. If �1,2(z) = 0 and I1,2(z) =
0, the corresponding consequences indicate baseband MI or
baseband MS [55,56].

In summary, we obtain the following results about the
stability of elliptic function solutions. Set two linearly inde-
pendent solutions p j as

p j =
[
�2

1 je
−iωη−2iVjη

�2
2 je

iωη−2iVjη

]
=

[
p̂1 j (ξ )eiIjξ

p̂2 j (ξ )eiIjξ

]
, j = 1, 2, (44)

where I j ≡ I j (z), z ∈ Sb, defined in Eq. (42); p̂i j (ξ ) are 2K/α

periodic functions; and �i j is the (i, j) element of � defined
in (36). Together with Eqs. (41) and (44), it becomes ap-
parent that the eigenvalues corresponding to eigenvectors p j

are represented as � j ≡ � j (z) = 2Vj − κ . By Eqs. (36), (43),
and (44), it is evident that eigenvectors p j remain bounded
only when z ∈ Sb. Consequently, studying the MS and MI of
elliptic function solutions for INS equations is transformed
into examining the values of � j (z) for z ∈ Sb. If there exists
z ∈ Sb\B such that �1,2(z) ∈ C\R, elliptic function solutions
are modulationally unstable; for any z ∈ Sb\B with �1,2(z) ∈
R, elliptic function solutions are modulationally stable.

Consider a special case Im[I1,2(z)] ≡ 0, z ∈ S. The tangent
vector field of the level curves Im[(I j (z)] ≡ const can be rep-
resented as[

−dIm(I j )

dIm(z)
,

dIm(I j )

dRe(z)

]
=

[
−Re

(
dIj

dz

)
, Im

(
dIj

dz

)]
,

where I j ≡ I j (z). The derivative of I j (z) along the line
Im[I j (z)] = 0 could be expressed as[

dIj

dRe(z)
,

dIj

dIm(z)

][
−dIm(I j )

dIm(z)
,

dIm(I j )

dRe(z)

]

= −
[

Re

(
dIj

dz

)]2

−
[

Im

(
dIj

dz

)]2

� 0,

which implies that along the curve Im[I j (z)] ≡ 0, the func-
tion I j (z) ≡ Re[I j (z)] is monotonicity with respect to variable
z. Plugging zi ∈ B ⊂ Sb, we get I j (zi) = 0. Based on the

monotonicity, we could obtain that if and only if z ∈ B ⊂ Sb,
the equation I j (z) = 0 holds. Since I1,2(zi) = 0 and �1,2(zi) =
0, zi ∈ B, we cannot directly justify whether or not solutions
are stable. Then, we turn to consider the limit

lim
z→zi∈B

�1,2(z)

I1,2(z)
= �′

1,2(zi)(z − zi ) + O[(z − zi )2]

I ′
1,2(zi )(z − zi ) + O[(z − zi )2]

= �i

�i
,

(45)
since �′

2(z) = −�′
1(z) and I ′

1(z) = −I ′
2(z). By Eq. (45),

the perturbed function p(ξ, η) (40) at branch points
could be expressed as p(ξ, η) = [ p̂1 j (ξ )eiIj (zi )(ξ+�iη/�i ) +
p̂∗

2 j (ξ )e−iI j (zi )(ξ+�∗
i η/�∗

i )]ei(ωξ+κη), zi ∈ B. Thus, combining
with the definition of baseband MI and baseband MS [55,56],
we obtain the following results. At branch points zi ∈ B, when
I (zi) → 0, �(zi ) → 0, and �i/�i ∈ C\R, elliptic function
solutions are baseband modulationally unstable. Conversely,
when I (zi ) → 0, �(zi ) → 0, and �i/�i ∈ R, elliptic function
solutions are baseband modulationally stable. In summary, the
MI and MS, and baseband MI and MS, of elliptic function
solutions for the INS equations are summarized as follows:

(i) If zi ∈ Sb defined in Eq. (43) exists, such that � j (zi) ∈
C\R and I j (zi) �= 0, the elliptic function solutions are mod-
ulationally unstable; for any z ∈ Sb, if � j (z) ∈ R, I j (z) �= 0,
the elliptic function solutions are modulationally stable.

(ii) If zi ∈ B and �i/�i ∈ C\R with I j (zi ) → 0, � j (zi) →
0, the elliptic function solutions are baseband modulationally
unstable; if zi ∈ B, �i/�i ∈ R with I j (zi) → 0, � j (zi ) → 0,
the elliptic function solutions are baseband modulationally
stable.

The stability of INS equations

Before delving into the stability of elliptic function solu-
tions for the INS equations, we are going to calculate some
parameters that are useful in the stability analysis. For zi ∈ B,
i = 1, 2, 3, 4, parameters ŷi = y′(zi)/(2iK ) defined in Eq. (34)
could be expressed by d1,2,3 as

ŷ1,2 = α2
(
d2

1 ± d2d3
)
(d3 ∓ d2) ± iα2d1(d3 ∓ d2)2, (46)

and ŷ3,4 = −ŷ∗
1,2; parameters λi = λ(zi) defined in Eq. (34)

are

λ1,2 = ±αd1/2 + iα(d3 ∓ d2)/2, (47)

λ3,4 = λ∗
1,2; parameters �i defined in Eq. (42) could be written

as

�1,2 = −αd1(d2 ∓ d3) − iα
(
d2

1 ± d2d3 − E/K
)
, (48)

and �3,4 = −�∗
1,2. The detailed calculation process of

Eqs. (46)–(48) is provided in Appendix B. Based on them,
we are going to study the stability of three representative INS
equations: the NLS equation (10), the mKdV equation (13),
and the SG equation (15).

For the NLS equation (10), the perturbed functions of el-
liptic function solutions (29) have the form p(ξ, η) in Eq. (40)
and the linearized NLS equation is converted into

Lp =
[

1
2∂2

ξ + 2|q|2 − n1 q2

−(q∗)2 − 1
2∂2

ξ − 2|q|2 + n2

]
p = �p,

(49)
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where n1,2 = κ + ω2/2 ∓ iω∂ξ . By the stationary zero cur-
vature equation (17), the Lax pair (9), and the coordinate
transformation (28), we get

iσ3Loff
η + 1

2 Loff
ξξ + 2Q2Loff − QLoff Q = 0,

which implies that L12 and L21 satisfy the linearized NLS
equation (49). By the symmetry of U(λ; Q) and V(λ; Q),
the matrix function L could be expressed by the matrix
function �: L = �σ3(iσ2)��(iσ2)/2 with L12 = �11�12 and
L21 = −�21�22. Thus, two linearly independent solutions
p1,2 are expressed in Eq. (44) and the related eigenvalues
are �1,2(z) = ±2y(z). Since y(zi ) = 0, zi ∈ B, we obtain
�1,2(zi ) = 0. Subsequently, we need to study parameters �i

and �i defined in Eq. (42). By the definition of functions
�1,2(z) in Eq. (37), we obtain �′

1,2(zi) = 4iKŷi. Since �i =
�′

1(zi )/(4iK ), we get

�1,2 = ŷ1,2 = α2(d3 ∓ d2)
[(

d2
1 ± d2d3

) ± id1(d2 ∓ d3)
]
,

(50)

�3,4 = −�∗
1,2. By parameters �i provided in (48), we get

that when l satisfying (k2 − 1)K + (d2
1 + d2d3)E = 0 with

�1/�1 = α(d2
1 + d2d3)/d1 ∈ R, we would obtain �1/�1 ∈

C\R, which implies that elliptic function solutions of the
NLS equation are baseband modulationally stable. Except for
the above conditions, elliptic function solutions of the NLS
equation are baseband modulationally unstable since �i/�i ∈
C\R, i = 1, 2.

The linearized mKdV equation (13) could be expressed as

Lp =
[

iL1 0
0 iL2

]
p = �p, (51)

with L1,2 = (6u2 − s)(±iω + ∂ξ ) + (±iω + ∂ξ )3 + 12uuξ .
Together with the stationary zero curvature equation (17), the
Lax pair (12), and the transformation (28), we get

Loff
η + Loff

ξξξ + 6Q2Loff
ξ + 6Q[Qξ , Loff ] − sLoff

ξ = 0.

Then, we obtain eigenvectors p1,2 (44) of the operator L (51)
and the corresponding eigenvalues �1,2(z) = ±8λ(z)y(z) of
the operator L. Since �1,2(zi) = 0, zi ∈ B, i = 1, 2, 3, 4, we
consider the limit (45). By Eqs. (46) and (47), we gain

�1,2 = ±2α3d1d3(d1 ± id3)2 ∈ C\(iR ∪ R), l = 0,

�1,2 = ±2iα3(d3 ∓ d2)2d2d3 ∈ iR, l = −iτ/4, (52)

�3,4 = −�∗
1,2, and

�1,2 = ±αd1d3 − iα
(
d2

1 − E/K
) ∈ C\(iR ∪ R), l = 0,

�1,2 = iα(E/K ∓ d2d3) ∈ iR, l = −iτ/4, (53)

�3,4 = −�∗
1,2 by Eq. (48), which implies �i/�i ∈ C\R

when l = 0 and �i/�i ∈ R when l = −iτ/4. Thus, cn-type
solutions (l = 0) correspond to baseband MI and dn-type
solutions (l = −iτ/4) are baseband modulationally stable.

The linearized SG equation (15) could be expressed as

∂ξη p − s∂2
ξ p + cos(v)p = 0, (54)

with the perturbed functions v(ξ ) + εp(ξ, η). Combined with
the Lax pair (14) of the SG equation, it is easy to verify
that the function �2

11 + �2
21 satisfies the above equation.

Then, the function p(ξ, η) could be expressed as (40) with
p1,2(ξ ) defined in Eq. (44) and the corresponding eigenvalues

are �1,2(z) = ±2sy(z)/λ(z), which also satisfy �1,2(zi ) = 0,
zi ∈ B. By parameters �i and �i, in Eqs. (46) and (47), and
the definition of parameters �i defined in Eq. (42), we obtain

�1,2 = 2sα

(
d2

1 ± d2d3
)
(d3 ∓ d2) ± id1(d3 ∓ d2)2

±d1 + i(d3 ∓ d2)
,

�3,4 = −�∗
1,2. When l = 0 (d2 = 0) or l = −iτ/4 (d1 = 0),

parameters �i are simplified as

�1,2 = ±2αsd1d3 ∈ R, l = 0,

�1,2 = ∓2iαsd2d3 ∈ iR, l = −iτ/4, (55)

�3,4 = −�∗
1,2 and parameters �i are expressed in Eq. (53).

It can be readily deduced that if l = 0, then � j/� j ∈ C\R;
if l = −iτ/4, then � j/� j ∈ R. Therefore, rotational wave
solutions (l = −iτ/4) of the SG equation are baseband mod-
ulationally stable, while librational wave solutions (l = 0) of
the SG equation are baseband modulationally unstable.

IV. RATIONAL-ELLIPTIC-LOCALIZED
WAVE SOLUTIONS

It is well known that RWs on plane wave backgrounds
could be expressed in the rational form with respect to tem-
poral and spatial variables. In this context, our objective is
to construct eRWs expressed in a rational form, akin to RWs.
First, in view of the Darboux-Bäcklund transformation, multi-
elliptic-localized wave solutions of the INS equations are
expressed in theta functions. Second, building upon the sym-
metry of solutions � at branch points zi ∈ B, we rewrite the
multi-elliptic-localized wave solutions. Taking into account
the limit of these solutions as ε → 0, we proceed to con-
struct the higher-order elliptic-localized wave solutions for
INS equations. Finally, we illustrate elliptic-localized wave
solutions of the NLS equation (10), the mKdV equation (13),
and the SG equation (15) in Fig. 2. These solutions not only
encompass eRW solutions, but also include elliptic-soliton
and elliptic-breather solutions.

A. Elliptic-localized wave solutions

As is known to all, the Darboux transformation allows us
to generate a new Lax pair,

�
[1]
ξ = U(λ; Q[1] )�[1], �[1] := T[1]�, (56)

where T[1] = T[1](ξ, η; λ). Based on the SU(2) symmetry (8)
and twist symmetry (11) of matrices U(λ; Q) and V(λ; Q), the
matrix �(ξ, η; λ) satisfies equations �(ξ, η; λ)�†(ξ, η; λ∗) =
I2 and �(ξ, η; λ)��(ξ, η; −λ) = I2. In accordance with
Eq. (56), the Darboux matrix T[1](ξ, η; λ) satisfies

T[1](ξ, η; λ)[T[1](ξ, η; λ∗)]† = I2,

T[1](ξ, η; λ)[T[1](ξ, η; −λ)]� = I2.

Subsequently, the Darboux matrix is divided into the follow-
ing two cases. If matrices U(λ; Q) and V(λ; Q) just satisfy the
SU(2) symmetry, the Darboux matrix could be expressed as

T1 = I2 − λ1 − λ∗
1

λ − λ∗
1

ψ1ψ
†
1

ψ
†
1 ψ1

, ψ1 := �(ξ, η; λ1)c1,

where ci = [ci1 ci2]�, λ1 ≡ λ(z1) ∈ C\R, zi /∈ B, I2 is the
2 × 2 identity matrix, and � is defined in Eq. (36). If matrices
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FIG. 2. (a) The eRW of the NLS equation with the maxi-
mum 1.875: l = 0, z1 = −i(1 + τ )/4, α = 5/4, k = 3/4, h(z1) =
0. (b) The eRW of the NLS equation with the maximum 2.113:
z1 = −i(1 − τ )/4, l = −7τ i/32, α = 5/4, k = 19/20, h(z1) = 0.
(c) The elliptic soliton of the mKdV equation: k = 9/10, α = 1,
z1 = −i(1 + τ )/4, l = −iτ/4, h(z1) = 0. (d) The elliptic soliton of
the SG equation: k = 4/5, α = 2, z1 = −i(1 − τ )/4, l = −iτ/4,
h(z1) = 0.

U(λ; Q) and V(λ; Q) satisfy both the SU(2) symmetry and
twist symmetry, the Darboux matrix would be divided into
two cases:

TP
1 = I2 − λ1 − λ∗

1

λ − λ∗
1

ψ1ψ
†
1

ψ
†
1 ψ1

, λ1 ∈ iR, ψ1ψ
†
1 = (ψ1ψ

†
1 )�,

and

TC
1 = I2 − [ψ1 ψ∗

1 ]M−1
2 (λI2 − D2)−1

[
ψ

†
1

ψ�
1

]
,

M2 =
⎡
⎣ ψ

†
1 ψ1

λ1−λ∗
1

ψ
†
1 ψ∗

1
−λ∗

1−λ∗
1

ψ�
1 ψ1

λ1+λ1

ψ�
1 ψ∗

1
−λ∗

1+λ1

⎤
⎦,

where λ1 ∈ C\(iR ∪ R), D2 = diag(λ∗
1,−λ1).

Based on the elementary Darboux transformation T1, TP
1 ,

and TC
1 , we can iterate them to derive multiorder transforma-

tions, collectively referred to as the multifold Darboux matrix,

T[n] = TJ
nTJ

n−1 · · · TJ
2TJ

1

= I2 − XmM−1
m (λIm − Dm)−1X†

m, (57)

where J = P, C,∅, n � m � 2n, and

Xm = [ψ1 ψ2 · · · ψm], Dm = diag(λ∗
1, · · · , λ∗

m),

Mm =
(

ψ
†
i ψ j

λ j − λ∗
i

)
1�i, j�m

. (58)

For the NLS equation (10), we choose J = ∅, whereas for
the mKdV equation (13) and the SG equation (15), we
select J = P or C. Upon reviewing the Darboux matrix T[n]

as defined in Eq. (57) and combining it with the Bäcklund

transformation, we can obtain an n-order elliptic-localized
solution after an iteration. Let the numbers of matrices TP

i and
TC

i provided in Eq. (57) be denoted as m1 and m2. The values
of n = m1 + m2 and m = m1 + 2m2 hinge on the selection of
the number of Darboux matrices TP

1 and TC
1 . If T[n] is obtained

by multiplying Ti, the values of n and m satisfy the condition
n = m.

Based on the definition of the Darboux matrix, we deduce
the matrix

U(λ; Q[n] ) = T[n]
ξ (T[n] )−1 + T[n] U(λ; Q)(T[n] )−1.

By the Sherman-Morrison-Woodbury-type matrix identity, the
new solution could be written as

Q[n]
12 = det(Q12Mm − 2X†

m,2Xm,1)

Qm−1
12 det (Mm)

, (59)

where Q12 is the (1,2) element of Q and Xm,i is the i row
of Xm defined in Eq. (58). Combined with Eqs. (29), (36),
and (59), the multi-elliptic-localized wave solutions of INS
equations could be written in theta functions as

Q[n]
12 = iγ

(
ϑ4(α̂ξ )

ϑ2(α̂ξ + 2il )

)m−1 det(P̂ )

det(Ĥ)
ei(ωξ+κη), (60)

where matrices P̂ and Ĥ are both m × m matrices, whose
(i, j) elements are given by P̂i j = P̂ (z∗

i , z j ), Ĥi j = Ĥ(z∗
i , z j ),

and

P̂ (z∗, z) = c†E†

[
ϑ2[i(z∗−z+2l )+α̂ξ ]r

−ϑ1[i(z∗−z)]r∗
ϑ4[i(z∗+z+2l )+α̂ξ ]

−ϑ3[i(z∗+z)]rr∗

ϑ4[α̂ξ−i(z∗z−2l )]rr∗
ϑ3[i(−z∗−z)]

ϑ2[i(z−z∗+2l )+α̂ξ ]r∗
ϑ1[i(z−z∗ )]r

]
Ec,

Ĥ(z∗, z) = c†E†

[−ϑ4[i(z∗−z)+α̂ξ ]
ϑ1[i(z∗−z)]

ϑ2[i(z∗+z)+α̂ξ ]
ϑ3[i(z∗+z)]

ϑ2[−i(z∗+z)+α̂ξ ]
ϑ3[−i(z∗+z)]

ϑ4[i(z−z∗ )+α̂ξ ]
ϑ1[i(z−z∗ )]

]
Ec, (61)

where zi, z j ∈ S\B, c = [c1, c2]�, c1,2 ∈ C; r = r(z) =
ϑ2[i(z + l )]/ϑ4[i(z − l )]; and the matrix E is defined in
Eq. (36).

B. Rational-elliptic-localized wave solutions

The solution (60) with different parameters can manifest
diverse dynamic behaviors, including multi-elliptic-breathers,
multi-elliptic-solitons, and multi-elliptic-soliton-breathers, as
vividly illustrated in [44–47]. Therefore, a detailed presenta-
tion of these variations will not be reiterated here. It is worth
noting that precisely at the branch points, the elliptic-localized
wave solutions of INS equations cannot be directly obtained
using Eq. (60).

At the branch point zi ∈ B, functions λ(z) and y(z) satisfy
the symmetric

λ(zi + ε) = λ(zi − ε), y(zi + ε) = −y(zi − ε), ε ∈ C.

(62)
Building upon the aforementioned symmetry of functions y(z)
and λ(z), at the neighborhood of branch points, functions
P̂ (z∗, z) and Ĥ(z∗, z) could be expressed as the quadratic
form,

Ĥ(ẑ∗
i , ẑ j ) = 4�

†
i H(z∗

i , z j )� j, P̂ (ẑ∗
i , ẑ j ) = 4�

†
i P(z∗

i , z j )� j,
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H(z∗
i , z j ) =

⎡
⎢⎣H[1,1](z∗

i , z j ) H[1,3](z∗
i , z j ) · · ·

H[3,1](z∗
i , z j ) H[3,3](z∗

i , z j ) · · ·
...

...
. . .

⎤
⎥⎦,

P(z∗
i , z j ) =

⎡
⎢⎣P [1,1](z∗

i , z j ) P [1,3](z∗
i , z j ) · · ·

P [3,1](z∗
i , z j ) P [3,3](z∗

i , z j ) · · ·
...

...
. . .

⎤
⎥⎦, (63)

where � j = [ε j ε3
j ε5

j · · ·]�, ẑi = zi + εi, εi, j are in the
neighborhood of origin, and

P (z∗, z) = |E1(z)|2 ϑ2[i(z∗ − z + 2l ) + α̂ξ ]r(z)

ϑ1[i(z∗ − z)]r(z∗)
,

H(z∗, z) = |E1(z)|2 ϑ4[i(z∗ − z) + α̂ξ ]

ϑ1[i(z∗ − z)]
,

P [Ni,Nj ](z∗
i , z j ) = dNi+NjP (z∗, z)

Ni!Nj!dz∗Ni dzNj

∣∣∣∣
z∗=z∗

i ,z=z j

,

H[Ni,Nj ](z∗
i , z j ) = dNi+NjH(z∗, z)

Ni!Nj!dz∗Ni dzNj

∣∣∣∣
z∗=z∗

i ,z=z j

, (64)

with E1(z) = exp[iW1(z)ξ + iV1(z)η + h(z)]. The function
h(z) is a polynomial function about z. The function r = r(z)
defined in Eq. (61) could be expressed as

r(z) = ri + 2iKriRi(z − zi ) + O[(z − zi )
2], (65)

where R1,2 = −(d3 ∓ d2) − i(ω/α ∓ d1), R3,4 = −R∗
1,2, and

ri = r(zi) with zi ∈ B. Appendix B provides details of the
relevant formulas.

Combining with Eqs. (60) and (63), we could rewrite the
elliptic-localized wave solutions as

Q[1]
12 = iγ

4�
†
i P(z∗

i , zi )�i

4�
†
i H(z∗

i , zi )�i

ei(ωξ+κη), zi ∈ B,

where εi ∈ C is a small parameter; �i = [εi, ε
3
i , · · · ]�; matri-

ces P(z∗
i , zi ) and H(z∗

i , zi ) are defined in Eq. (63); H(z∗, z)
and E1(z) are defined in Eq. (64); and r(z) = ϑ2[i(z +
l )]/ϑ4[i(z − l )]. The rational-elliptic-localized solution could
be expressed as

Q̂(1)
i = lim

εi→0
Q[1]

12 = iγ
P [1,1](z∗

i , zi )

H[1,1](z∗
i , zi )

ei(ωξ+κη), zi ∈ B. (66)

Together with Eqs. (63) and (64), a rational-elliptic-localized
solution of INS equations could be written as

Q̂(1)
i = iγ

ϑ2(2il + α̂ξ − 1/2)

ϑ4(α̂ξ − 1/2)

(
1 + Pi

Hi

)
ei(ωξ+κη), (67)

where i = 1, 2, Pi = 2Ê i
i ( f1 − iRi

i − g1) − 2iRr
i Ê r

i + f2 −
g2 − (Rr

i )2 − g2
1 + ( f1 − iRi

i )
2, Hi = (Ê r

i )2 + (Ê i
i + g1)2 +

g2, g1 = Z (K + αξ ), g2 = dn2(K + αξ ), f1 = Z (4ilK +
αξ + iK ′) − Z (K + iK ′), f2 = dn2(4ilK + αξ + iK ′), Ê i

i= �i
i ξ + �i

iη, and Ê r
i = �r

i ξ + �r
i η; parameters Ri are

defined in Eq. (65); �i and �i are defined in Eq. (42);
and superscripts r and i represent the real and imaginary
parts of the parameters, respectively. Since R3,4 = −R∗

1,2,

�3,4 = −�∗
1,2, and �3,4 = −�∗

1,2, we get Q̂(1)
3,4 = Q̂(1)

1,2. The
detailed calculation process is provided in Appendix C.

The above elliptic-localized wave solutions (67) exhibit
two different dynamic behaviors. One of them corresponds
to the eRW solution, and the other manifests as the elliptic-
soliton solution, as depicted in Fig. 2. The above rational-eRW
solutions are consistent with solutions provided in articles
[37–42,47] with different forms. The elliptic-localized wave
solutions we provided are expressed in the quadratic poly-
nomial form (67) with respect to ξ and η variables, which
is greatly similar to the form of rational-RWs on plane
wave backgrounds. Drawing upon this analogy, we can ex-
plore additional properties of these solutions by extending
methods from plane wave backgrounds to elliptic function
backgrounds. As |ξ | + |η| → ∞, both solutions Q̂(1)

1 and Q̂(1)
2

would degenerate into

Q̂(1)
1,2 → iγ

ϑ2(2il + α̂ξ − 1/2)

ϑ4(α̂ξ − 1/2)
ei(ωξ+κη),

which could be seen as a shift ξ → ξ − 1/(2α̂) and a phase
transformation eiω/(2α̂) on the elliptic function solution (29).
Solutions Q̂(1)

1,2 attain their maximum value at the zero point,
with the maximum value being |Q12(0, 0)| + 2λi

1,2 = | −
iαkcn(4ilK )/dn(4ilK )| + α(d3 ∓ d2) = α(2d3 ∓ d2).

Considering the NLS equation (10), on the cn-type back-
grounds (l = 0), we get ω = 0, d1 = −k′ = −√

1 − k2, d2 =
0, d3 = k. By Eq. (A10), the rational-eRW solution could be
simplified as

Q̂(1)
i = iαkcn(αξ − K )

(
1 + Pi

Hi

)
eiκη, i = 1, 2,

where Pi and Hi are defined in Eq. (67) with parameters l =
ω = d2 = 0, d1 = −k′ = −√

1 − k2, and d3 = k. As |ξ | +
|η| → ∞, solutions Q̂(1)

1,2 both degenerate into the cn-type
solution: iαkcn(αξ − K )eiκη. As k → 0, solutions degenerate
into zero. On dn-type backgrounds (l = −iτ/4) with ω = α̂π ,
d1 = 0, d2 = k′, d3 = 1, combined with Eqs. (A9) and (A10),
the rational-eRW solution (67) is simplified as

Q̂(1)
i = iαdn(αξ − K )

(
1 + Pi

Hi

)
eiκη, i = 1, 2,

where Pi and Hi are defined in Eq. (67) with parameters
l = −iτ/4, ω = α̂π , d1 = 0, d2 = k′, and d3 = 1. As k → 0,
combined with the definition of complete elliptic integrals in
Definition 2, the limits of K and E satisfy limk→0 E/K = 1,
limk→0 ω/α= limk→0 π/(2K )=1, limk→0 f2 = limk→0 dn2

(αξ )=1, limk→0 g2 = 1, limk→0 g1 = limk→0 Z (K + αξ ) =
0, and limk→0 f1 = limk→0 Z (αξ ) − iπ/K + iπ/(2K ) = −i
by Eqs. (A4), (A12), and (A14). Then, the above two solutions
degenerate into

lim
k→0

Q̂(1)
1

(A4)				
(A14)

iαeiα2η,

lim
k→0

Q̂(1)
2

(A4)				
(A14)

iα

(
1 − 8iα2η + 4

(2α2η)2 + 1 + (2αξ )2

)
eiα2η.

Thus, as k → 0, rational-eRWs on dn-type backgrounds could
degenerate into rational-RWs or plane waves.

Consider the rational-elliptic-localized wave solutions of
the mKdV equation (13). Plugging l = −iτ/4 into Eq. (67),
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the solution could be simplified as

Q̂(1)
i

(A10)				 iαdn(αξ − K )

(
1 + Pi(

Ê i
i + g1

)2 + g2

)
, (68)

where i = 1, 2, Pi = 2Ê i
i ( f1 + iω/α − g1) + f2 − g2 −

(1 ∓ k′)2 − g2
1 + ( f1 + iω/α)2, Ê i

1,2 = α(E/K ∓ k′)ξ−2α3k′

(1 ∓ k′)2η, Ê r
1,2 = 0, and f1,2, g1,2 are defined in Eq. (67).

It is easy to get that along trajectories Ê i
1,2 = const, the

solution evolves periodically with period 2K/α. As |ξ | → ∞,
solutions Q̂(1)

1,2 would degenerate into dn-type solutions,
iαdn(αξ − K ). For the SG equation (15) with l = −iτ/4,
the solution (67) could also be simplified in Eq. (68) with
Ê i

1,2 = α(E/K ∓ k′)ξ ∓ 2αsk′η. It is easy to find that along
lines Ê i

1,2 = const, the solution evolves periodically. As
|ξ | → ∞, we show rotational wave solutions defined in
[40,83].

Then, we provide some examples to illustrate the dynamic
behaviors of these rational-elliptic-localized wave solutions
and depict them in Fig. 2. Figures 2(a) and 2(b) show two so-
lutions of the NLS equation on elliptic function backgrounds.
Figure 2(a) exhibits the localization of the RW on the cn-type
background, called the rational-eRW solution. Figure 2(b)
illustrates the localization of the RW on the nontrivial phase
solution background, also referred to as the rational-eRW
solution. Figures 2(c) and 2(d) show the solutions of the
mKdV equation and the SG equation, respectively. Figure 2(c)
exhibits the soliton localization on the dn-type background,
denoted as the rational-elliptic-soliton solution. Figure 2(d)
portrays the soliton localization on the rotational wave back-
ground, also termed the rational-elliptic-soliton solution.

V. MI-eRW CORRESPONDENCE

On the plane wave background, the MI and baseband
MI are crucial mechanisms to study the exciting conditions
of RWs and the existence of RWs [55–59]. We aim to ex-
tend this mechanism to the elliptic function background and
quantitatively elucidate the relationship between the dynamic
behaviors of these solutions and the baseband MI and MS of
elliptic function solutions [55,56]. In this section, we illustrate
a pair of parameters, (�i, �i ), i = 1, 2, that establishes a quan-
titative connection between the baseband MI and MS analysis
and dynamic behaviors of elliptic-localized wave solutions.

The pair of parameters (�i, �i ) serves a dual purpose in
both investigating the stability of elliptic function solutions
for INS equations and the derivation of dynamic behaviors for
elliptic-localized wave solutions. As discussed in Sec. III, the
ratio of �i to �i offers insights into the stability of the sys-
tem. To be precise, if �i/�i ∈ C\R, i = 1, 2, elliptic function
solutions of INS equations are the baseband modulationally
unstable; and if �i/�i ∈ R, i = 1, 2, elliptic function solu-
tions of INS equations are the baseband modulationally stable.

Additionally, the pair of parameters, (�i, �i ), plays a sig-
nificant role in deriving the polynomials Ê i

i = �i
iξ + �i

iη and
Ê r

i = �r
i ξ + �r

i η in the rational form of elliptic-localized
wave solutions (67), which are closely connected to eRW
solutions. When �i = �i = 0, the solution (67) becomes a
periodic function since both polynomials are zero, indicat-
ing Ê i

i = Ê r
i = 0. However, if this condition is not satisfied,

let us assume, without loss of generality, that the parame-
ter Ê i

i �= 0 with (ξ, η) ∈ R2. We will examine the dynamics
of the solution (67) along trajectories where Ê i

i ≡ C, ex-
pressed as Q̂(1)

i (ξ, η; Ê i
i ≡ C), where C represents a constant.

Conversely, if Ê i
i ≡ 0, we analyze the solution (67) along

trajectories where Ê r
i ≡ C.

Functions f1,2, g1,2, and ϑ2,4(·) defined in Eq. (67) are
all 2K/α periodic with respect to the variable ξ . It can be
inferred that these functions remain bounded for ξ ∈ R. The
excitation of eRW is contingent upon the polynomial form
Ê r

i with (ξ, η) ∈ R2. The existence of the polynomial form
occurs when either �r

i �= 0 or �r
i �= 0. Consequently, elliptic-

localized wave solutions (67) exhibit the localized wave as
eRWs. In the special case where �r

i = 0 and �r
i = 0 (i.e.,

Ê r
i ≡ 0), it is straightforward to observe that the solution

Q̂(1)
i (ξ, η; Ê i

i ≡ C) becomes periodic along all trajectories,
Ê i

i ≡ C. Therefore, when solutions (67) are baseband mod-
ulationally stable, they can be characterized as elliptic-soliton
solutions.

In summary, when �i/�i ∈ R, we derive Ê r
i = 0 or Ê i

i =
0, considering the linear independence of �i and �i. On the
other hand, when �i/�i ∈ C\R, we deduce Ê r

i �= 0 and Ê i
i �=

0. Building upon the aforementioned investigations, the pair
(�i, �i ) establishes a quantitative relationship between base-
band MI and MS and the dynamic behaviors of eRWs/elliptic
solitons.

Indeed, the baseband MS not only corresponds to elliptic-
soliton solutions, but also maintains a significant connection
with elliptic-breather solutions. However, the explicit expres-
sion of the elliptic-localized solution (67) does not manifest
elliptic breathers. When the following two conditions hold, we
would obtain the elliptic-breather solutions. First, the spec-
tral parameter λi employed in constructing solutions must
be complex numbers, that is, λi ≡ λ(zi ) ∈ C\(iR ∪ R), zi ∈
B. Second, the related elliptic function solutions of INS
equations need to be baseband MS. Unfortunately, rational-
elliptic-breather solutions for the NLS equation, the mKdV
equation, and the SG equation were not obtained. This restric-
tion arises from the fact that when λi ∈ C\(iR ∪ R), elliptic
function solutions on the associated backgrounds yield base-
band MI solutions that fail to satisfy the second condition.
In summary, the concealed correspondence between elliptic-
localized wave solutions and the MS and MI analysis results
can be summarized as follows:

(1) MI and eRWs correspondence. If the elliptic function
solutions of the INS equations correspond to baseband MI,
it implies that there exists a pair of parameters ,(�i, �i ),
satisfying �i/�i ∈ C\R, indicating that Ê r

i �= 0 and Ê i
i �= 0,

(ξ, η) ∈ R2. Therefore, the solution (67) expressed in a ra-
tional form represents the presence of eRWs. Conversely,
if the solution (67) exhibits eRWs, it must be expressed in
terms of polynomials, i.e., Ê r

i �= 0 and Ê i
i �= 0, which further

implies that �i/�i ∈ C\R due to the linear independence of
the parameters �i and �i. Hence, it becomes evident that the
related elliptic function solutions correspond to baseband MI.

(2) MS and elliptic-soliton correspondence. When the
elliptic function solutions of the INS equations are base-
band modulationally stable (meaning �i/�i ∈ R, i = 1, 2),
equations Ê r

i ≡ 0 or Ê i
i ≡ 0 are satisfied due to the linear
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FIG. 3. (a),(b) Second-order (separated-type) and fifth-order
(polymeric-type) eRW solutions of the NLS equation (10) with pa-
rameters α = 1, k = 0.94, z1 = −i(1 − τ )/4, l = −9iτ/40, c12 = 0,
and (a) h(z1) = 300(1 + i

√
3)z2

1 and (b) h(z1) = 0. (c) The eRW of
the mKdV equation (13) with k = 2/3, α = 2, z1,2 = −i(1 ± τ )/4.
(d) The eRW of the SG equation (15) with k = 4/5, α = 2, z1,2 =
−i(1 ± τ )/4, and h(z1) = 0.

independence of �i and �i. Along the trajectories where Ê i
i ≡

C or Ê r
i ≡ C, the solution evolves periodically, signifying

that the elliptic-localized wave solutions (67) represent elliptic
solitons. Conversely, if solutions represent elliptic solitons, it
indicates that they correspond to baseband MS.

(3) MS and elliptic-breather correspondence. When the
elliptic function solutions of the INS equations correspond
to baseband MS, the pair of parameters, (�i, �i ), satisfy
�i/�i ∈ R. Due to the linear independence of �i and �i, we
can deduce Ê r

i ≡ 0 or Ê i
i ≡ 0. Under these conditions, the

elliptic-localized wave solutions with parameters λi ≡ λ(zi) ∈
C\(iR ∪ R), zi ∈ B, exhibit elliptic breathers. The reverse is
also true.

Applying the aforementioned results to the INS equa-
tions, we elucidate the dynamic behaviors of elliptic-localized
wave solutions under different cases. For the NLS equation,
parameters (�i, �i ) presented in Eqs. (48) and (50) fulfill
the condition �i/�i ∈ C\R for any l ∈ [0,−iτ/4]. Some
examples in Fig. 2 vividly exhibit the aforementioned corre-
spondence. The evolution directions of these elliptic-localized
waves align with trajectories Ê i

i ≡ 0 depicted in Fig. 2, in-
dicated by white dashed lines. The baseband MI of elliptic
function solutions [�i/�i ∈ C\R in Eq. (50)] indicates that
solutions (67) correspond to rational-eRWs, as illustrated in
Figs. 2(a) and 2(b). When (k2 − 1)K + (d2

1 + d2d3)E = 0
with �1/�1 = α(d2

1 + d2d3)/d1 ∈ R, the solution (67) is a
rational-soliton solution. For the mKdV equation, the pa-
rameters (�i, �i ) discussed in Eqs. (52) and (53) satisfy
the condition �i/�i ∈ C\R for l = 0 and �i/�i ∈ R for
l = −iτ/4. Consequently, on dn-type backgrounds, the solu-
tions correspond to elliptic-soliton solutions, as depicted in
Fig. 2(c). On the other hand, on cn-type backgrounds, the
solutions represent eRW solutions, as shown in Fig. 3(c).

Concerning the SG equation, the parameters (�i, �i ) de-
scribed in Eqs. (53) and (55) meet the condition �i/�i ∈
C\R for l = 0, and �i/�i ∈ R for l = −iτ/4. As a result,
on rotational wave backgrounds, the solutions correspond
to elliptic-soliton solutions, as demonstrated in Fig. 2(d).
Conversely, on librational wave backgrounds, the solutions
represent eRWs, as shown in Fig. 3(d). It is important to note
that we were unable to obtain elliptic-breather solutions for
the NLS equation (10), the mKdV equation (13), and the
SG equation (15), since, for any parameters (�i,�i ) satis-
fying �i/�i ∈ R, the related spectral parameter λi satisfies
λi ∈ iR, i.e., λi /∈ C\(R ∪ iR), which do not satisfy the MS
and elliptic-breathers correspondence.

The aforementioned correspondence can also be extended
to the higher-order elliptic-localized wave solutions. In the
upcoming section, we will construct the higher-order elliptic-
localized wave solutions of the INS equations in a rational
form and utilize the established correspondence between the
solutions and stability analysis.

VI. MULTI-HIGHER-ORDER eRW SOLUTIONS

By extending the method of constructing the solution (67)
to higher-order cases, the multi-higher-order [(N1, N2)-order]
elliptic-localized wave solutions of INS equations could also
be expressed in the rational form as follows:

Q̂(N1,N2 )

= iγJ N−1
det

(
PN1×N1 (z∗

1, z1) PN1×N2 (z∗
1, z2)

PN2×N1 (z∗
2, z1) PN2×N2 (z∗

2, z2)

)

det

(
HN1×N1 (z∗

1, z1) HN1×N2 (z∗
1, z2)

HN2×N1 (z∗
2, z1) HN2×N2 (z∗

2, z2)

)ei(ωξ+κη),

(69)

where J=ϑ4(α̂ξ )/ϑ2(α̂ξ+ 2il ), N=N1+ N2, HNi×Nj (z
∗
i , z j ),

and PNi×Nj (z
∗
i , z j ) are the first Ni row and Nj column ma-

trices, H(z∗
i , z j ) and P(z∗

i , z j ), respectively; parameters γ , κ

are defined in Eq. (23), and the (a, b) element of matri-
ces HNi×Nj (z

∗
i , z j ) and PNi×Nj (z

∗
i , z j ) is H[Na,Nb](z∗

i , z j ) and
P [Na,Nb](z∗

i , z j ), expressed as

H[Na,Nb](z∗
i , z j ) = (

E[Na]
i

)†
G[Na,Nb]

i, j E[Nb]
j ,

P [Na,Nb](z∗
i , z j ) = (

E[Na]
i

)†(
R[Na]†

i

)−1
F[Na,Nb]

i, j R[Nb]
j E[Nb]

j ;

and matrices F[Na,Nb]
i, j , G[Na,Nb]

i, j , R[Nb]
j , and E[Nb]

j are defined
in Eq. (D2). The detailed calculation process is provided in
Appendix D.

Since the function E1(z) represents an exponential func-
tion, its differentiation with respect to the parameter z
generates a polynomial form involving variables ξ and η.
The differentials of functions F (z∗, z) and G(z∗, z) exhibit
elliptic functions with respect to ξ . The function r(z) remains
independent of ξ and η. In summary, the solution Q̂(N1,N2 ) is
expressed in a rational form in terms of ξ and η. Consequently,
we provide the multi-higher-order rational-elliptic-localized
wave solutions (69) expressed in higher-order polynomials
with respect to ξ and η for the INS equations. Some multi-
higher-order eRW solutions of INS equations are shown in
Fig. 3.
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Figure 3(a) illustrates a second-order eRW of the separated
type composed of three eRWs, analogous to RWs on plane
wave backgrounds. In Fig. 3(b), a fifth-order eRW of the
polymeric type is depicted, reaching a maximum value of
7.674 at the origin. The (1,1)-eRW solutions of the mKdV
equation on cn-type backgrounds and the SG equation on
librational wave backgrounds are presented in Figs. 3(c)
and 3(d), respectively, both satisfying the baseband MI
mechanism.

VII. CONCLUSIONS

We report the rational-elliptic-localized wave solutions of
the INS equations in the polynomial form using a system-
atic method. These solutions are expressed as polynomials
involving temporal and spatial variables, establishing a close
relationship between eRWs and RWs in INS equations. Com-
bining this method with the modified squared wave function
approach, we unveil a quantitative correspondence between
MI and eRWs through the parameters (�i, �i ), i = 1, 2.
We also demonstrate that the MI of elliptic function solu-
tions leads to rational-form solutions exhibiting eRWs with
�i/�i ∈ C\R and exhibiting elliptic solitons with �i/�i ∈
R. The MS of elliptic function solutions results in rational-
form solutions displaying elliptic solitons or elliptic breathers.
Furthermore, the higher-order eRW solutions are also ex-
pressed in the rational form with respect to variables ξ

and η, which have never been reported on elliptic function
backgrounds.

This research offers a valuable avenue for a profound
understanding of eRW phenomena within intricate dynamics
[84–86]. It reveals an inherent connection between MI and
eRW solutions, as well as MS and solutions resembling ellip-
tic solitons and elliptic breathers. The theoretical foundations,
encompassing the existence of eRWs, the conditions for ex-
citing eRWs, and the correspondence principle for eRWs, are
then established. These foundations provide support for defin-
ing the observational conditions of eRWs on elliptic function
backgrounds in physical experiments. Drawing from these
principles, one can emulate the setup of physical experiments,
as demonstrated in hydrodynamical and optical experiments
[54], to observe eRWs [87–90]. Moreover, this methodology
is applicable for generating eRWs and conducting stability
analyses for other integrable equations [91,92].
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APPENDIX A: THE DEFINITIONS AND PROPERTIES
OF ELLIPTIC FUNCTIONS

Definition 1. Jacobi elliptic functions [[81], p. 18]. The
inverse function of

u(y, k) =
∫ y

0

dt√
(1 − t2)(1 − k2t2)

is defined by y = sn(u, k) or, briefly, y = sn(u). Functions
cn(u, k) and dn(u, k) are defined by cn(u, k) =

√
1 − y2 and

dn(u, k) =
√

1 − k2y2, with cn(0, k) = 1 and dn(0, k) = 1.
These three functions are called Jacobi elliptic functions and
k is the modulus. The complementary modulus is denoted by
k′ = √

1 − k2.
We just consider the modulus k within the range (0,1) since

the modulus k in the interval (1,∞) can be transformed into
the range (0,1) through reciprocal modulus transformation
formulas [[81], p. 38]. Specifically, when k = 0, elliptic func-
tions sn(u), cn(u), and dn(u) degenerate into trigonometric
functions sin(u), cos(u), and 1, respectively. Similarly, when
k = 1, elliptic functions degenerate into hyperbolic functions
tanh(u), sech(u), and sech(u), respectively.

Definition 2. Complete elliptic integrals [[81], p. 9]. The
elliptic integrals,

K ≡ K (k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

,

E ≡ E (k) =
∫ π

2

0

√
1 − k2 sin2 θ dθ, (A1)

are called the first and second complete elliptic integrals,
respectively. The parameter K ′ is defined as K ′ ≡ K (k′).
The normal elliptic integral of the second kind is E (u) =∫ u

0 dn2(v)dv. When u = K , the normal elliptic integral would
convert into the complete elliptic integral.

Hence, the aforementioned elliptic functions are not inde-
pendent, giving rise to various formulas. Here are some useful
formulas:

(i) The shift formulas of elliptic functions [[81], p. 22]:

sn(u + 2mK + 2inK ′) = (−1)msn(u),

cn(u + 2mK + 2inK ′) = (−1)m+ncn(u),

dn(u + 2mK + 2inK ′) = (−1)ndn(u),

dn(u + K + iK ′) = ik′sn(u)/cn(u),

sn(u + iK ′) = 1/[ksn(u)],

cn(u + iK ′) = −idn(u)/[ksn(u)],

dn(u + iK ′) = −icn(u)/sn(u). (A2)

(ii) The addition formulas of elliptic functions [[81], p. 23]:

sn(u − v) = sn(u)cn(v)dn(v) − sn(v)cn(u)dn(u)

1 − k2sn2(u)sn2(v)
,

sn(u + v)sn(u − v) = sn2(u) − sn2(v)

1 − k2sn2(u)sn2(v)
. (A3)

(iii) The approximation formulas of elliptic functions [[81],
p. 24]:

cn(u, k) ≈ cos(u) + k2 sin(u)[u − sin(u) cos(u)]/4,

dn(u, k) ≈ 1 − k2 sin2(u)/2, k 
 1. (A4)
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(iv) The derivative formulas of elliptic functions [[81],
pp. 284–285]:

sn′(z) = cn(z)dn(z), cn′(z) = −sn(z)dn(z),

dn′(z) = −k2cn(z)sn(z). (A5)

(v) The double and half arguments of elliptic functions
[[81], p. 24]:

sn(2u) = 2sn(u)cn(u)dn(u)

1 − k2sn4(u)
,

cn(2u) = cn2(u) − sn2(u)dn2(u)

1 − k2sn4(u)
,

dn(2u) = dn2(u) − k2sn2(u)cn2(u)

1 − k2sn4(u)
,

sn2(u) = 1 − cn(2u)

1 + dn(2u)
,

cn2(u) = dn(2u) + cn(2u)

1 + dn(2u)
,

dn2(u) = dn(2u) + cn(2u)

1 + cn(2u)
. (A6)

Combining with Eq. (A6), we obtain

1 − cn(2u)

sn(2u)
(A6)				 1 − k2sn4(u) − cn2(u) + sn2(u)dn2(u)

2sn(u)cn(u)dn(u)

= sn(u)dn(u)

cn(u)
, (A7)

by which we get

scd(u)
(A6)				
(A7)

[1 − cn(2u)][dn(2u) + cn(2u)]

sn(2u)[1 + dn(2u)]
. (A8)

Definition 3. Theta functions [[93], p. 302]. The theta func-
tions are defined as follows:

ϑ1(u, eiπτ ) := �

[
1
1

]
(u, τ ), ϑ2(u, eiπτ ) := �

[
1
0

]
(u, τ ),

ϑ3(u, eiπτ ) := �

[
0
0

]
(u, τ ), ϑ4(u, eiπτ ) := �

[
0
1

]
(u, τ ),

where τ = iK ′/K , parameters K and K ′ are defined in Defini-
tion 2, and

�

[
ε

ε′

]
(u, τ ) =

+∞∑
n=−∞

exp

{
2π i

[
1

2

(
n + ε

2

)2
τ

+
(

n + ε

2

)(
z + ε′

2

)]}
.

Typically, we omit the parameter eiπτ and express theta
functions as ϑi(u) ≡ ϑi(u, eiπτ ). The mentioned theta func-
tions are not independent. Below are transformation formulas
[[94], p. 86] that are useful in the subsequent discussion:

ϑ3(z) = ϑ1[z + (1 + τ )/2]eiτπ/4+izπ ,

ϑ2(z) = ϑ4[z + (1 + τ )/2]eiτπ/4+izπ ,

ϑ4(z) = iϑ2[z + (1 + τ )/2]eiτπ/4+izπ ,

ϑ1(z) = −iϑ3[z + (1 + τ )/2]eiτπ/4+izπ ,

ϑ2(z) = ϑ3(z + τ/2)eiτπ/4+izπ ,

ϑ1(z) = −iϑ4(z + τ/2)eiτπ/4+izπ ,

ϑ3(z) = ϑ2(z + τ/2)eiτπ/4+izπ . (A9)

The transformation formulas connecting elliptic function so-
lutions and theta functions are

cn(2uK ) = ϑ4ϑ2(u)

ϑ2ϑ4(u)
, dn(2uK ) = ϑ4ϑ3(u)

ϑ3ϑ4(u)
, k = ϑ2

2

ϑ2
3

,

(A10)

where ϑi ≡ ϑi(0), i = 1, 2, 3, 4.
Definition 4. Zeta function [[81], p. 33]. The Zeta function

Z (u) ≡ Z (u, k) is defined by

Z (u) =
∫ u

0
[dn2(v) − E/K]dv = E (u) − Eu/K,

Z (u) = ϑ ′
4[u/(2K )]/ϑ4[u/(2K )], (A11)

where functions K and E are the first and second complete
elliptic integrals defined in Eq. (A1); E (u) is the normal
elliptic integral of the second kind defined in Definition 2.
It is noteworthy that the two equations mentioned above are
equivalent.

Here are some shift and transformation formulas for the
Zeta function:

(i) The addition formulas of the Zeta function [[81],
p. 33–34]:

Z (u + iK ′) = Z (u) + cn(u)dn(u)/sn(u) − iπ/(2K ),

Z (u + 2iK ′) = Z (u) − iπ/K,

Z (u ± v) = Z (u) ± Z (v) ∓ k2sn(u)sn(v)sn(u ± v). (A12)

(ii) The derivative formulas of theta functions are derived
by Eqs. (A9) and (A11):

ln[ϑ1(z)]z = 2K

[
Z (2zK − K ) + cn(2zK )

sn(2zK )dn(2zK )

]
,

ln[ϑ2(z)]z = 2K

[
Z (2zK ) − sn(2zK )dn(2zK )

cn(2zK )

]
,

ln[ϑ4(z)]z = 2KZ (2zK ), ln[ϑ3(z)]z = 2KZ (2zK + K ).
(A13)

(iii) As k → 0, the limit of the Zeta function satisfies

lim
k→0

Z (u, k) = lim
k→0

E (u, k) − Eu/K = 0, (A14)

based on the definition of function E (u) in Definition 2.
By studying zeros and poles of elliptic functions, we could

obtain the following formulas [46]:

k2[sn2(2uK ) − sn2(2vK )] = ϑ2
2 ϑ2

4 ϑ1(u − v)ϑ1(u + v)

ϑ2
3 ϑ2

4 (u)ϑ2
4 (v)

,

∫ x

0

scd(2vK )d (2uK )

sn2(2uK ) − sn2(2vK )
= 1

2
ln

(
ϑ1(v − x)

ϑ1(v + x)

)
+ xZ (2vK ),

(A15)

where scd(u) is defined in Eq. (34).
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APPENDIX B: PROOFS OF EQS. (38), (46)–(48), (62), (63) AND (65)

Proof of Eq. (38). Combined with Eq. (A12), the function W2(z) satisfies

W2(z) − iαZ (Kl )
(A12)				λ + α̂π − iαZ (iK ′ − zl ) − iαk2sn(iK ′ − zl )sn(iK ′ − Kl − zl )sn(Kl )

(A12)				
(A2)

λ + iαZ (zl ) + iαcn(zl )dn(zl )/sn(zl ) − iαsn(Kl )/[sn(zl )sn(Kl + zl )]. (B1)

And then, we get

W2(z) − iαZ (Kl ) + W1(z)
(37)				
(B1)

2λ + iα
cn(zl )dn(zl )

sn(zl )
− iα

sn(Kl )

sn(zl )sn(Kl + zl )

(34)				 iα

(
scd(zl ) − scd(Kl )

sn2(Kl ) − sn2(zl )
+ cn(zl )dn(zl )

sn(zl )
− sn(Kl )

sn(zl )sn(Kl + zl )

)

= iα

(
sn(Kl )[cn(zl )dn(zl )sn(Kl ) − cn(Kl )dn(Kl )sn(zl )]

(sn2(Kl ) − sn2(zl ))sn(zl )
− sn(Kl )

sn(zl )sn(Kl + zl )

)

(A3)				 iα

(
sn(Kl )sn(Kl − zl )

sn(Kl − zl )sn(Kl + zl )sn(zl )
− sn(Kl )

sn(zl )sn(Kl + zl )

)
= 0.

Thus, we obtain −W1(z) = W2(z) − iαZ (Kl ) = W2(z) − ω, which implies W ′
2 (z) = −W ′

1 (z). �
Proof of Eq. (46). Differentiating y(z) in Eq. (33) with respect to z gives

y′(z)
(A5)				 iα2k2K

[
scd(zl ) − scd(zl + Kl + iK ′)

]
(A8)				
(A2)

iα2k2K
( [1 − cn(2zl )][dn(2zl ) + cn(2zl )]

sn(2zl )[1 + dn(2zl )]
+ [1 + cn(2zl + 2Kl )][cn(2zl + 2Kl ) + dn(2zl + 2Kl )]

sn(2zl + 2Kl )[1 − dn(2zl + 2Kl )]

)
. (B2)

Substituting z = z1 into zl = 2i(z − l )K , we get 2zl1 = 4i(z1 − l )K = −Kl + 2K + iK ′ and 2zl1 + 2Kl = Kl + 2K + iK ′. Then,
plugging z1 into Eq. (B2), we get

ŷ1 = y′(z1)

2iK
(A2)				 α2k2

(
[ksn(Kl ) + idn(Kl )][idn(Kl ) − ikcn(Kl )]

ksn(Kl ) + ikcn(Kl )

)
(23)				 α2(d3 − id1)(d2 + id1)(d3 − d2). (B3)

Similarly, we get ŷi, i = 2, 3, 4. Thus, we obtain Eq. (46). �
Proof of Eq. (47). Combined with Eqs. (23), (B2), (B3), (A2), and (A6), the following equations hold:

scd(zl1 )
(B2)				
(B3)

[1 − cn(Kl + iK ′)][cn(Kl + iK ′) − dn(Kl + iK ′)]
k2sn(Kl + iK ′)[1 − dn(Kl + iK ′)]

(B3)				 (d3 − id1)(d2 + id1)(d3 − d2)

k2
,

sn2(zl1 )
(A6)				 1 − cn(zl1 )

1 + dn(zl1 )
(A2)				 ksn(Kl ) + idn(Kl )

ksn(Kl ) + ikcn(Kl )
(A2)				
(23)

(d3 − id1)(d3 − d2)

k2
, (B4)

where zl1 = 2i(z1 − l )K . Plugging z = z1 into Eq. (34) and combining with Eq. (B4), we obtain

λ1 = λ(z1)
(34)				
(B4)

iα

2

(d3 − id1)(d2 + id1)(d3 − d2) − id1d2d3

d2
3 − (d3 − id1)(d3 − d2)

= α
d1 + i(d3 − d2)

2
.

Similarly, we obtain parameters λ2,3,4 and get Eq. (47). �
Proof of Eq. (48). By Eqs. (A6), (A11), and (37), the following equations hold:

I ′
1(z)

(A11)				
(A6)

4Kα

(
cn(2zl ) + dn(2zl )

1 + cn(2zl )
− E

K

)
.

Substituting z = zi, i = 1, 2, 3, 4, into the above equations, we obtain

�1 = I ′
1(z1)

4iK
(A2)				 −iα

(−idn(Kl ) + ikcn(Kl )

ksn(Kl ) − idn(Kl )
− E

K

)
= −iα

[
(id1 + d2)(d3 − id1) − E

K

]
.

As above, we could obtain parameters �i, i = 2, 3, 4 expressed in Eq. (48). �
Proof of Eq. (62). Plugging z = z1 + ε = −i(1 + τ )/4 + ε into Eq. (34), we get

y(z1 + ε) = α2k2{sn2[2i(z1 + ε)K − 2ilK] − sn2[−2i(z1 + ε)K − 2ilK + K + iK ′]}/4

= α2k2{sn2[(K + iK ′)/2 − 2ilK + 2iεK] − sn2[(K + iK ′)/2 − 2ilK − 2iεK]}/4,
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which implies y(z1 + ε) = −y(z1 − ε). Then, we consider the symmetry of λ(z). By [47], when l ∈ [0,−iτ/4), the spectral
parameter λ(z) with z = z1 + ε could be rewritten as

λ(z1 + ε) = α{ik2sn(Kl )cn(Kl ) − dn[2i(z1 + ε − l )K]dn[iK ′ + K − 2i(z1 + ε + l )K]}/[2dn(Kl )]

= α{ik2sn(Kl )cn(Kl ) − dn[(K + iK ′)/2 − 2ilK + 2iεK]dn[(K + iK ′)/2 − 2ilK − 2iεK]}/[2dn(Kl )],

which means λ(z1 + ε) = λ(z1 − ε). When l = −iτ/4, the function λ(z) satisfies

λ(z1 + ε) = iαk2sn[2i(z1 + ε − l )K]cn[2i(z1 + ε − l )K]

2dn[2i(z1 + ε − l )K]
= iαk2sn(K/2 + 2iεK )cn(K/2 + 2iεK )

2dn(K/2 + 2iεK )

(A2)				 − iαk2sn(−K/2 + 2iεK )cn(−K/2 + 2iεK )

2dn(−K/2 + 2iεK )
= λ(z1 − ε).

In summary, we obtain that symmetries of functions λ(z) and y(z) hold at the branch point z1 = −i(1 + τ )/4. In the same way,
we could obtain Eq. (62) at branch points z2,3,4. �

Proof of Eq. (63). Based on the conformal map λ(z), the function y(z), and symmetries (62), the fundamental solution � in
Eq. (30) could be rewritten as

�[ξ, η; λ(ẑi)]
(62)				 �[ξ, η; λ(zi + εi )] =

[
e+

1 (zi) e−
1 (zi)

b+
1 (zi )e+

1 (zi) b−
1 (zi )e−

1 (zi)

][
eθ+

1 (zi ) 0
0 eθ−

1 (zi )

]
, (B5)

where ẑi = zi + εi ∈ S, zi ∈ B, εi ∈ C; the function θ1(z) is defined in Eq. (31); and e±
1 (zi ) := e1(zi ± εi ), b±

1 (zi) := b1(zi ± εi ),
θ±

1 (zi ) := θ1(zi ± εi ), y±(zi ) := y(zi ± εi ), and λ±(zi ) := λ(zi ± εi ). Functions b1(z), e1(z), and β1,2(z) are defined as

b1(z) =
√

[�(ξ ) − β2(z)][λ(z) + μ]

[�(ξ ) − β1(z)][λ(z) − μ]
,

e1(z) = √
�(ξ ) − β1(z), β1,2(z) = 2λ2(z) + α2(d2

3 + d2
2 − d2

1 )/2 ∓ 2y(z), and functions �(ξ ) and μ are defined in Eqs. (30) and
(21). Based on the definition of functions λ(z) and y(z), it is easy to obtain

λ∗(z) = λ(z∗), y∗(z) = y(z∗), β∗
1,2(z) = β1,2(z∗),

where d1,2,3 ∈ R are defined in Eq. (23). Furthermore, we obtain

�∗(ξ ) = k2α2[sn2(K − 4ilK ) − sn2(αξ )] = k2α2[sn2(−K − 4ilK ) − sn2(αξ )] = �(ξ ),

which implies

e∗
1(z) = √

�∗(ξ ) − β∗
1 (z) =

√
�(ξ ) − β1(z∗) = e1(z∗), b2(z∗) = b∗

1(z) =
√

[�(ξ ) − β2(z∗)][λ(z∗) − μ]

[�(ξ ) − β1(z∗)][λ(z∗) + μ]
,

and θ∗
1 (z) = −θ1(z∗) with θ1(z) defined in Eq. (31). Then, we get

�[ξ, η; λ(z∗
i + ε∗

i )] = {�[ξ, η; λ(zi + εi )]}† =
[

e−θ+
1 (z∗

i ) 0
0 e−θ−

1 (z∗
i )

][
e+

1 (z∗
i ) b+

2 (z∗
i )e+

1 (z∗
i )

e−
1 (z∗

i ) b−
2 (z∗

i )e−
1 (z∗

i )

]
, (B6)

where e±
1 (z∗

i ) := e1(z∗
i ± ε∗

i ), b±
2 (z∗

i ) := b2(z∗
i ± ε∗

i ), and θ±
1 (z∗

i ) := θ1(z∗
i ± ε∗

i ). Since parameters ci1 and ci2 are arbitrary, we
assume that ci1 = exp[h+(zi )] and ci2 = − exp[h−(zi)] satisfy c∗

i1 = exp[h+(z∗
i )] and c∗

i2 = − exp[h−(z∗
i )] with h±(zi) = h(zi ±

ε), where h(z) is a polynomial function about variable z. Combined with the Darboux-Bäcklund transformation, Ĥ(z∗, z) could
be expressed as

Ĥ(ẑ∗
i , ẑ j ) = ϑ4(α̂ξ )

2iγϑ3(2il )

c†
i {�[ξ, η; λ(ẑi)]}†�[ξ, η; λ(ẑ j )]c j

λ(ẑ j ) − λ(ẑ∗
i )

(B6)				 ϑ4(α̂ξ )

2iγϑ3(2il )

c†
i �[ξ, η; λ(ẑ∗

i )]�[ξ, η; λ(ẑ j )]c j

λ(ẑ j ) − λ(ẑ∗
i )

(B6)				
(B5)

ϑ4(α̂ξ )

2iγϑ3(2il )

⎡
⎣ 2∑

a,b=1

(−1)a+bĤab(ẑ∗
i , ẑ j )

⎤
⎦,

where ẑ j = z j + ε j , ẑ∗
i = z∗

i + ε∗
i , and

Ĥ1m(ẑ∗
i , ẑ j ) = e−θ+

1 (z∗
i )+h+(z∗

i )+θ±
1 (z j )+h±(z j )

e+
1 (z∗

i )e±
1 (z j )[1 + b+

2 (z∗
i )b±

1 (z j )]

λ±(z j ) − λ+(z∗
i )

,

Ĥ2m(ẑ∗
i , ẑ j ) = e−θ−

1 (z∗
i )+h−(z∗

i )+θ±
1 (z j )+h±(z j )

e−
1 (z∗

i )e±
1 (z j )[1 + b−

2 (z∗
i )b±

1 (z j )]

λ±(z j ) − λ−(z∗
i )

,
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m = 1, 2 (m = 1 and m = 2 correspond to “+” and “−”, respectively). As ε j → 0, we get e+
1 (z j ) = e−

1 (z j ), b+
1,2(z j ) =

b−
1,2(z j ), θ+

1 (z j ) = θ−
1 (z j ), h+(z j ) = h−(z j ), z j ∈ B. As ε∗

i → 0, we could obtain similar conclusions. Thus, we know

limε∗
i ,ε j→0 Ĥ(ẑ∗

i , ẑ j ) = Ĥ(z∗
i , z j ) = 0. The same as above, the function P̂ (z∗, z) is expressed as

P̂ (ẑ∗
i , ẑ j ) = ϑ4(α̂ξ )

2iγϑ3(2il )

(
qc†

i {�[ξ, η; λ(ẑi)]}†�[ξ, η; λ(ẑ j )]c j

2[λ(ẑ j ) − λ(ẑ∗
i )]

− c†
i {�[ξ, η; λ(ẑi)]}†

[
0 0
1 0

]
�[ξ, η; λ(ẑ j )]c j

)

= ϑ4(α̂ξ )

2iγϑ3(2il )

(
qc†

i �[ξ, η; λ(ẑ∗
i )]�[ξ, η; λ(ẑ j )]c j

2[λ(ẑ j ) − λ(ẑ∗
i )]

− c†
i �[ξ, η; λ(ẑ∗

i )]

[
0 0
1 0

]
�[ξ, η; λ(ẑ j )]c j

)
,

and also satisfies limε∗
i ,ε j→0 P̂ (ẑ∗

i , ẑ j ) = P̂ (z∗
i , z j ) = 0, z∗

i ∈ B, z j ∈ B. Consider Taylor expansions of functions Ĥ(ẑ∗
i , ẑ j )

and P̂ (ẑ∗
i , ẑ j ) at branch points zi, j as εi and ε j at the neighborhood of origin. Based on the definition of func-

tions �[ξ, η; λ(z∗)] in Eq. (B6), the Taylor expansion of the function �[ξ, η; λ(z∗)] has similar properties of
�[ξ, η; λ(z)], since �[ξ, η; λ(z∗)] = ∑∞

j=0 �[ j][ξ, η; λ(z∗
i )](z∗ − z∗

i ) j and {�[ξ, η; λ(z)]}† = ∑∞
j=0{�[ j][ξ, η; λ(zi )]}†(z∗ − z∗

i ) j

with {�[ j][ξ, η; λ(zi )]}† = �[ j][ξ, η; λ(z∗
i )]. Combined with the definition of functions Ĥab(z∗

i , z j ), a, b = 1, 2, it is easy to obtain

Ĥ(ẑ∗
i , ẑ j ) =

∞∑
m,n=0

2∑
a,b=1

ϑ4(α̂ξ )Ĥ[m,n]
ab (z∗

i , z j )εn
j (ε∗

i )m

(−1)a+b2iγϑ3(2il )
, Ĥ[m,n]

ab (z∗
i , z j ) = dm+nĤab(z∗, z)

m!n!dz∗mdzn

∣∣∣∣∣
z∗=z∗

i ,z=z j

.

We obtain Ĥ[m,n]
11 (z∗

i , z j ) = (−1)n+mĤ[m,n]
22 (z∗

i , z j ) = (−1)nĤ[m,n]
12 (z∗

i , z j ) = (−1)mĤ[m,n]
21 (z∗

i , z j ). Therefore, only when n and m
are both odd numbers, Ĥ[m,n]

11 (z∗
i , z j ) = −Ĥ[m,n]

12 (z∗
i , z j ) = −Ĥ[m,n]

21 (z∗
i , z j ) = Ĥ[m,n]

22 (z∗
i , z j ) �= 0. As εi, j → 0, we get

Ĥ(z∗
i + ε∗

i , z j + ε j ) = ϑ4(α̂ξ )

2iγϑ3(2il )

∞∑
m,n=0

4Ĥ[2m−1,2n−1]
11 (z∗

i , z j )ε
2n−1
j (ε∗

i )2m−1.

Together with the definition of the function Ĥ(z∗, z), we get Ĥ(ẑ∗
i , ẑ j ) = 4H(ẑ∗

i , ẑ j ) in Eq. (63). The function P̂ (z∗, z) could also
be expressed in the same way. �

Proof of Eq. (65). By the derivative formulas of theta functions (A13) and the addition formulas of elliptic functions (A7) and
(A12), we get

ln [r(z)]z
(A13)				 2iK

[
Z (zl + 4ilK ) − Z (zl ) − sn(zl + 4ilK )dn(zl + 4ilK )

cn(zl + 4ilK )

]

(A12)				
(A7)

iK

[
Z (2zl + 8ilK ) − Z (2zl ) − [1 − cn(2zl + 8ilK )][1 + dn(2zl + 8ilK )]

sn(2zl + 8ilK )
− k2 1 − cn(2zl )

1 + dn(2zl )
sn(2zl )

]
.

Plugging z = zi, i = 1, 2, 3, 4, into the above equation and combining with addition formulas of the Zeta function (A12) and
shift formulas of elliptic functions (A2), we get

ln[r(z)]z|z=z1

(A2)				
(A12)

iK

[
Z (iK ′ + Kl ) − Z (iK ′ − Kl ) − 2

[1 − cn(iK ′ + Kl )][1 + dn(iK ′ + Kl )]

sn(iK ′ + Kl )

]

(A2)				 iK

[
2Z (Kl ) + 2

cn(Kl )dn(Kl )

sn(Kl )
− 2

[ksn(Kl ) + idn(Kl )][ksn(Kl ) − ikcn(Kl )]

ksn(Kl )

]
(23)				 2iK[d2 − d3 + i(d1 − ω/α)].

Then, we get r′(z1) = 2iKr1R1, where R1 = d2 − d3 + i(d1 − ω/α). Similarly, we could obtain Ri, i = 2, 3, 4. �

APPENDIX C: ELLIPTIC-LOCALIZED WAVE SOLUTION OF INS EQUATIONS [PROOF OF EQ. (67)]

For ease of representation, we introduce the following functions to represent elements of the matrices provided in P (z∗, z)
and H(z∗, z). Define functions G(z∗, z) and F (z∗, z) as follows:

G(z∗, z) = ϑ4[i(z∗ − z) + α̂ξ ]

ϑ1[i(z∗ − z)]
, F (z∗, z) = ϑ2[i(z∗ − z + 2l ) + α̂ξ ]

ϑ1[i(z∗ + z)]
. (C1)

By the derivative formulas of theta functions (A13) and the Zeta function (A11), differentiating G(z∗, z) with respect to z, we get

Ĝ1(z∗, z) := −{ln [G(z∗, z)]}z = {ln [G(z∗, z)]}z∗
(A13)				 2iK{Z (ẑ + αξ ) − Z (ẑ − K ) − cn(ẑ)/[sn(ẑ)dn(ẑ)]},

Ĝ2(z∗, z) := {ln [G(z∗, z)]}zz
(A5)				
(A11)

(2iK )2

[
dn2(ẑ + α̂ξ ) − dn2(ẑ − K ) − k2sn2(ẑ)cn2(ẑ) − dn2(ẑ)

sn2(ẑ)dn2(ẑ)

]
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(A2)				 (2iK )2

[
dn2(ẑ + α̂ξ ) + k′2 sn2(−ẑ − iK ′)

cn2(−ẑ − iK ′)
− dn2(ẑ + iK ′)

cn2(ẑ + iK ′)
+ k2sn2(ẑ + iK ′)

]

= (2iK )2[dn2(ẑ + α̂ξ ) − dn2(ẑ + iK ′)], (C2)

where ẑ = 2i(z∗ − z)K . Similarly, we obtain

F̂1(z∗, z) := −{ln [F (z∗, z)]}z = {ln [F (z∗, z)]}z∗
(A13)				 2iK[Z (ẑ + Kl + αξ + iK ′) − Z (ẑ + iK ′)],

F̂2(z∗, z) := {ln [F (z∗, z)]}zz
(A11)				 (2iK )2[dn2(ẑ + Kl + αξ + iK ′) − dn2(ẑ + iK ′)]. (C3)

By Eq. (66), to obtain the exact expression of the solution Q̂(1)
i , we need to get the expression of P [1,1](z∗

i , zi ) and H[1,1](z∗
i , zi ).

Together with Eqs. (37), (42), (65), (C2), (C3), and h(z) = 0, functions H[1,1](z∗
i , zi ) and P [1,1](z∗

i , zi ) are rewritten as

H[1,1](z∗
i , zi ) = [

E [1]∗
1 (zi ) E [0]∗

1 (zi )
][ G(z∗

i , zi ) G[0,1](z∗
i , zi )

G[1,0](z∗
i , zi ) G[1,1](z∗

i , zi )

][
E [1]

1 (zi )

E [0]
1 (zi )

]

(37),(42)						
(C2)

|E1(zi )|2G(z∗
i , zi )[2iK (iÊ∗

i ) 1]

[
1 −Ĝ1(z∗

i , zi )
Ĝ1(z∗

i , zi ) −[
Ĝ2

1(z∗
i , zi ) + Ĝ2(z∗

i , zi )
]][

2iK (iÊi)
1

]

= −(2iK )2|E1(zi )|2G(z∗
i , zi )[−iÊ∗

i 1]

[
1 −g1(z∗

i , zi )
−g1(z∗

i , zi ) g2
1(z∗

i , zi ) + g2(z∗
i , zi )

][
iÊi

1

]
,

P [1,1](z∗
i , zi ) = [

E [1]∗
1 (zi) E [0]∗

1 (zi )
][[(r∗

i )−1][0] 0

[(r∗
i )−1][1] [(r∗

i )−1][0]

][
F (z∗

i , zi ) F [0,1](z∗
i , zi )

F [1,0](z∗
i , zi ) F [1,1](z∗

i , zi )

][
r[0]

i r[1]
i

0 r[0]
i

][
E [1]

1 (zi)

E [0]
1 (zi)

]

(37),(42)						
(65)

|E1(zi)|2ri

r∗
i

[2iK (iÊ∗
i ) 1]

[
1 0

2iKR∗
i 1

][
F (z∗

i , zi ) F [0,1](z∗
i , zi )

F [1,0](z∗
i , zi ) F [1,1](z∗

i , zi )

][
1 2iKRi

0 1

][
2iK (iÊi )

1

]

(C3)				 (2iK )2|E1(zi )|2r(zi)F (z∗
i , zi )

−r(z∗
i )

[−iÊ∗
i 1]

[
1 0

−R∗
i 1

][
1 − f1(z∗

i , zi )
− f1(z∗

i , zi ) f 2
1 (z∗

i , zi ) + f2(z∗
i , zi )

][
1 Ri

0 1

][
iÊi

1

]
,

where Êi = �iξ + �iη, g1(z∗
i , zi ) = Ĝ1(z∗

i , zi )/(2iK ), g2(z∗
i , zi ) = Ĝ2(z∗

i , zi )/(2iK )2, f1(z∗
i , zi ) = F̂1(z∗

i , zi )/(2iK ), f2(z∗
i , zi ) =

F̂2(z∗
i , zi )/(2iK )2, and

F [p,q](z∗
i , zi ) = dq+pF (z∗, z)

p!q!dzqd (z∗)p

∣∣∣∣
z=z j ,z∗=z∗

i

, G[p,q](z∗
i , zi ) = dq+pG(z∗, z)

p!q!dzqd (z∗)p

∣∣∣∣
z=z j ,z∗=z∗

i

,

E [q]
n (z j ) = dqEn(z)

q!dzq

∣∣∣∣
z=z j

, r[q]
j = dqr(z)

q!dzq

∣∣∣∣
z=z j

,
( 1

r∗
j

)[q]
= dq(r∗(z))−1

q!dzq

∣∣∣∣
z=z j

.

By Eq. (39), it is easy to obtain ẑ1,2 = 2i(z∗
1,2 − z1,2)K = −K and ẑ3,4 = 2i(z∗

3,4 − z3,4)K = K . Since functions g1,2(z∗
i , zi ) and

f1,2(z∗
i , zi ) are 2K-periodic functions, we obtain

g1 := g1(z∗
i , zi ) = Z (K + αξ ), f1 := f1(z∗

i , zi ) = Z (αξ + iK ′ + 4ilK ) − Z (K + iK ′),

g2 := g2(z∗
i , zi ) = dn2(K + αξ ), f2 := f2(z∗

i , zi ) = dn2(4ilK + iK ′ + αξ ) − dn2(K + iK ′),

i = 1, 2, 3, 4. Then, the solution Q̂(1)
i in Eq. (66) is rewritten as the rational form:

Q̂(1)
i = iγ

riF (z∗
i , zi )

r∗
i G(z∗

i , zi )

[−iÊ∗
i 1]

[
1 0

−R∗
i 1

][
1 − f1

− f1 f 2
1 + f2

][
1 Ri

0 1

][
iÊi

1

]
[−iÊ∗

i 1]
[

1 −g1

−g1 g2
1 + g2

][
iÊi

1

] ei(ωξ+κη)

= iγ
ϑ2(2il + α̂ξ − 1/2)

ϑ4(α̂ξ − 1/2)

(
Ê r

i − iRr
i

)2 + f2 + (
f1 + Ê i

i − iRi
i

)2

(
Ê r

i

)2 + g2 + (
g1 + Ê i

i

)2 ei(ωξ+κη)

= iγ
ϑ2(2il + α̂ξ − 1/2)

ϑ4(α̂ξ − 1/2)

(
1 + 2

(
f1 − iRi

i − g1
)
Ê i

i − 2iRr
i Ê r

i − (
Rr

i

)2 − g2 + (
f1 − iRi

i

)2 − g2
1 + f2(

Ê r
i

)2 + (
Ê i

i + g1
)2 + g2

)
ei(ωξ+κη),

where Ê r
i = �r

i ξ + �r
i η, Ê i

i = �i
iξ + �i

iη, zi ∈ B, and superscripts r and i represent the real and imaginary parts of the
parameters, respectively. Since �3,4 = −�∗

1,2, �3,4 = −�∗
1,2, and R3,4 = −R∗

1,2, we obtain Q̂(1)
1,2 = Q̂(1)

3,4. Then, we obtain exact
expressions of elliptic-localized wave solutions (67) for INS equations. �
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APPENDIX D: HIGHER-ORDER ELLIPTIC-LOCALIZED WAVE SOLUTIONS [PROOF OF EQ. (69)]

Together with Eqs. (61) and (63), the higher-order elliptic-localized wave solutions (60) of INS equations could be rewritten
as follows:

Q[N]
12 = iγJ N−1 det(P̂ )

det(Ĥ)
ei(ωξ+κη) = iγJ N−1 det(P̂)

det(Ĥ)
ei(ωξ+κη),

where J = ϑ4(α̂ξ )/ϑ2(α̂ξ + 2il ); P̂ and Ĥ are both N × N matrices; matrices P̂ and Ĥ are defined as

P̂ =
(

�†
1P(z∗

1, z1)�1 �†
1P(z∗

1, z2)�2

�†
2P(z∗

2, z1)�1 �†
2P(z∗

2, z2)�2

)
, Ĥ =

(
�†

1H(z∗
1, z1)�1 �†

1H(z∗
1, z2)�2

�†
2H(z∗

2, z1)�1 �†
2H(z∗

2, z2)�2

)
;

the (i, j) elements of them are P̂i, j and Ĥi, j defined in Eq. (61); matrices P(z∗
i , z j ) and H(z∗

i , z j ) are defined in Eq. (63); and

�i = [�i1 �i2 · · · �iNi ] with �i j = [εi j ε3
i j · · ·]�. Matrices H(z∗

i , z j ) and � j could be expressed by block matrices,

H(z∗
i , z j ) =

[
HNi×Nj (z

∗
i , z j ) HNi×∞(z∗

i , z j )
H∞×Nj (z

∗
i , z j ) H∞×∞(z∗

i , z j )

]
, � j =

[
�Nj×Nj

�∞×Nj

]
,

where the subscript Ni × Nj represents the dimension of related matrices. It is easy to obtain

�†
i H(z∗

i , z j )� j = [
�

†
Ni×Ni

�
†
∞×Ni

][HNi×Nj (z
∗
i , z j ) HNi×∞(z∗

i , z j )
H∞×Nj (z

∗
i , z j ) H∞×∞(z∗

i , z j )

][
�Nj×Nj

�∞×Nj

]

= �
†
Ni×Ni

HNi×Nj (z
∗
i , z j )�Nj×Nj + �

†
Ni×Ni

HNi×∞(z∗
i , z j )�∞×Nj

+ �
†
∞×Ni

H∞×Nj (z
∗
i , z j )�Nj×Nj + �

†
∞×Ni

H∞×∞(z∗
i , z j )�∞×Nj

= �
†
Ni×Ni

HNi×Nj (z
∗
i , z j )�Nj×Nj + o

[
(ε∗

im)2Ni , ε
2Nj

jn

]
. (D1)

Then, by Eq. (D1), we get

det(Ĥ) = det

(
�

†
N1×N1

HN1×N1 (z∗
1, z1)�N1×N1 + o

[
(ε∗

1m)2N1 , ε
2N1
1m

]
�

†
N1×N1

HN1×N2 (z∗
1, z2)�N2×N2 + o

[
(ε∗

1m)2N1 , ε
2N2
2n

]
�

†
N2×N2

HN2×N1 (z∗
2, z1)�N1×N1 + o

[
(ε∗

2n)2N2 , ε
2N1
1m

]
�

†
N2×N2

HN2×N2 (z∗
2, z2)�N2×N2 + o

[
(ε∗

2n)2N2 , ε
2N2
2n

]
)

= det

(
HN1×N1 (z∗

1, z1) + o(ε∗
1m, ε1m) HN1×N2 (z∗

1, z2) + o(ε∗
1m, ε2n)

HN2×N1 (z∗
2, z1) + o(ε∗

2n, ε1m) HN2×N2 (z∗
2, z2) + o(ε∗

2n, ε2n)

) 2∑
i=1

det
(
�Ni×Ni

)
det

(
�

†
Ni×Ni

)
.

Combined with the above equations, the solution Q[N]
12 (ξ, η) at branch points could be expressed as

Q̂(N1,N2 ) = lim
ε1m,ε2n→0

Q[N]
12 = lim

ε1m,ε2n→0
iγJ N−1 det(P̂)

det(Ĥ)
ei(ωξ+κη) = iγJ N−1

det

(
PN1×N1 (z∗

1, z1) PN1×N2 (z∗
1, z2)

PN2×N1 (z∗
2, z1) PN2×N2 (z∗

2, z2)

)

det

(
HN1×N1 (z∗

1, z1) HN1×N2 (z∗
1, z2)

HN2×N1 (z∗
2, z1) HN2×N2 (z∗

2, z2)

)ei(ωξ+κη).

Then, we are going to express them in the rational form with respect to ξ and η. Based on the definition of P (z∗, z), H(z∗, z) in
Eq. (64) and functions F (z∗, z) and G(z∗, z) in Eq. (C1), the following equations hold:

P [Ni,Nj ](z∗
i , z j )

(64)				
(C1)

dNi+Nj

Ni!Nj!dzNj dz∗Ni

E∗
1 (z)F (z∗, z)r(z)E1(z)

r(z∗)

∣∣∣∣
z∗=z∗

i ,z=z j

=
Ni∑

m=0

Nj∑
n=0

m∑
a=0

n∑
b=0

E [Ni−i−m]∗
1 (zi)[r

−1(z∗
i )][i]F [m,n]

i, j (z∗
i , z j )r

[ j](z j )E
[Nj− j−n]
1 (z j )

= E[Ni]†
i

(
R[Ni]†

i

)−1
F[Ni,Nj ]

i, j R[Nj ]
j E[Nj ]

j ,

H[Na,Nb](z∗
i , z j )

(64)				
(C1)

(
E[Na]

i

)†
G[Na,Nb]

i, j E[Nb]
j ,
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where R[Nj ]
j , E[Nj ]

j , G[Ni,Nj ]
i, j , and F[Ni,Nj ]

i, j are defined as

F[Na,Nb]
i, j =

⎡
⎢⎢⎢⎢⎣

F [0,0](z∗
i , z j ) F [0,1](z∗

i , z j ) · · · F [0,Nb](z∗
i , z j )

F [1,0](z∗
i , z j ) F [1,1](z∗

i , z j ) · · · F [1,Nb](z∗
i , z j )

...
...

. . .
...

F [Na,0](z∗
i , z j ) F [Na,1](z∗

i , z j ) · · · F [Na,Nb](z∗
i , z j )

⎤
⎥⎥⎥⎥⎦, R[Nb]

j =

⎡
⎢⎢⎢⎢⎣

r[0](z j ) r[1](z j ) · · · r[Nb](z j )

0 r[0](z j ) · · · r[Nb−1](z j )
...

...
. . .

...

0 0 · · · r[0](z j )

⎤
⎥⎥⎥⎥⎦,

G[Na,Nb]
i, j =

⎡
⎢⎢⎢⎢⎣

G[0,0](z∗
i , z j ) G[0,1](z∗

i , z j ) · · · G[0,Nb](z∗
i , z j )

G[1,0](z∗
i , z j ) G[1,1](z∗

i , z j ) · · · G[1,Nb](z∗
i , z j )

...
...

. . .
...

G[Na,0](z∗
i , z j ) G[Na,1](z∗

i , z j ) · · · G[Na,Nb](z∗
i , z j )

⎤
⎥⎥⎥⎥⎦, E[Nb]

j =

⎡
⎢⎢⎢⎢⎢⎣

E [1]
1 (z j ) E [3]

1 (z j ) · · · E [Nb]
1 (z j )

E [0]
1 (z j ) E [2]

1 (z j ) · · · E [Nb−1]
1 (z j )

...
...

. . .
...

0 0 · · · E [0]
1 (z j )

⎤
⎥⎥⎥⎥⎥⎦.

(D2)
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