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Self-learning physical reservoir computer
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A self-learning physical reservoir computer is demonstrated using an adaptive oscillator. Whereas physical
reservoir computing repurposes the dynamics of a physical system for computation through machine learning,
adaptive oscillators can innately learn and store information in plastic dynamic states. The adaptive state(s) can
be used directly as physical node(s), but these plastic states can also be used to self-learn the optimal reservoir
parameters for more complex tasks requiring virtual nodes from the base oscillator. Both this self-learning
property for reconfigurable computing and the morphable logic gate property of the adaptive oscillator make
this an ideal candidate for a multipurpose neuromorphic processor.
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I. INTRODUCTION

Physical reservoir computers (PRCs) are a subset of neu-
romorphic computers that repurpose the nonlinear dynamics
of a physical system for computation [1–6]. PRCs were a nat-
ural progression of nonphysical reservoir computers, which
are deep neural networks that have hidden layers with un-
trained weights. Growing from echo state networks [7] and
liquid state machines [8], reservoir computing has several
advantages, including lower training costs and robustness to
overfitting. Notably, PRCs differ from traditional Turing ma-
chines, as the information storage is not static. PRCs have
been employed for a wide variety of tasks, including wake
word recognition [9], digit recognition [6,9–11], image recog-
nition [12,13], time series prediction [2,6,14–19], and logic
operations [20–24]. PRCs have been created from optoelec-
tronics [13], soft robots [25–29], tensegrities [30,31], the
Duffing oscillator array [20,20,32], quantum systems [33–35],
and limit cycle oscillators [9,36,37].

While PRCs employ machine learning to unlock their com-
putational ability, adaptive oscillators (AOs) have an innate
ability to both learn and store information in dynamic plastic
states. AOs are inherently a subset of nonlinear oscillators.
Although relatively little work has explored these oscillators,
they have many potential applications such as central pattern
generators [38–41], robotic locomotion [42–44], medical gait
analyzers [45], and analog signal analyzers [46,47]. The Hopf
AO has been implemented as various circuits [48–50], and
its frequency analysis capabilities were benchmarked with
a range of tasks. When the base oscillator is a pendulum,
it was recently found that adaptive oscillators can learn a
resonance condition, which is not the external forcing fre-
quency [51,52]. Importantly, this resonance tracking can be
utilized for energy-harvesting purposes, without the need for
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digital frequency analysis. It should be noted that plasticity at
the synaptic level is often incorporated into spiking neural net-
works, with a comprehensive review of this topic provided by
Ref. [53]. However, this type of plasticity has not previously
been implemented for physical reservoir computing.

Work on the Hopf PRC provided insights into construct-
ing a robust reservoir computer utilizing resonance, Arnold
tongues [54,55], and synchronization [24,36,37]. However, it
also poses a significant challenge, as these resonance condi-
tions require rather precise frequencies. For Arnold tongues,
robustness is gained at the cost of an amplified signal, which
increases the required energy.

In this paper, an architecture of a PRC is presented which
uses an AO as the reservoir. Notably, the AO itself is a
neuromorphic computer that only uses dynamics for memory
storage and learning. The PRC composed of an AO exhibits
self-learning, which increases its own power as a PRC without
any programming. It should be noted that other self-learning
has been recently demonstrated, such as a Hamiltonian echo
backpropagation technique [56]. The method presented in this
paper uses the AO’s intrinsic dynamic learning to optimize
the PRC’s computational ability. Further, this AO PRC has
no synapses, so the oscillator’s adaptive states are the only
source of plasticity for this system, and only one of the oscil-
lator’s states is used for creating virtual nodes. This form of
self-learning provides enhanced robustness and reconfigura-
bility. Specifically, this reservoir-level self-learning unlocks
the potential of the PRC to be used for applications with a
wide range of frequencies and sampling rates. In this paper,
examples of the PRC’s self-learning property are highlighted
using broadband time series data with a wide range of sam-
pling rates.

This AO PRC uses time multiplexing to perform different
tasks. Notably, this same AO can also be used as a morphable
logic gate without the need for multiplexing [57]. Thus, this
AO can be used as both a self-learning reconfigurable PRC
and a multiplexing-free morphable logic gate. These two
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abilities make it an ideal candidate for a multipurpose neu-
romorphic processor.

II. ADAPTIVE OSCILLATOR PHYSICAL
RESERVOIR COMPUTER EQUATIONS

Based on the classical Hopf oscillator [48], the Hopf-based
three-state AO is described as follows [48–50,58]:

ẋ = (μ − (x2 + y2))x − ωy + a( f (t )),

ẏ = (μ − (x2 + y2))y + ωx,

ω̇ = −k( f (t ))y. (1)

Here, f (t ) is a normalized, time-varying external force
acting on the adaptive oscillator. This AO has a Hopf oscillator
as its base (e.g., x and y). In the classical Hopf oscillator
model, the Hopf oscillator has a constant resonance parameter,
ω0, while the AO in Eq. (1) has a dynamic frequency state,
ω. When this AO is forced with a sinusoid, such as sin (�t ),
the ω state will converge to �. Appendix A discusses the
nonexistence of limit cycles for adaptive oscillators.

The AO given by Eq. (1) is used as a PRC in this paper. As
the ω state innately learns and stores vibratory information,
the AO is implemented as a self-learning PRC that leverages
reservoir-level learning to better exploit the reservoir com-
puting architecture. The AO is further modified to inject the
external force into the limit cycle radius term, such that

ẋ = (μ f (t ) − (x2 + y2))x − ωy + a( f (t )),

ẏ = (μ f (t ) − (x2 + y2))y + ωx,

ω̇ = −k( f (t ))y. (2)

f (t ) is a continuous function, which is constructed from a
discrete function, h(z), and a sinusoid. First, g is a continuous
function, which is equal to a value of h for a length of time
equal to the pseudoperiod, Tp. Tp is an arbitrary length of time,
which is used to also define a pseudoperiod as ωp = 2π

Tp
. The

continuous function, g(t ), is defined as

g(t ) = h(zn) for (n)Tp � t < (n + 1)Tp, n ∈ Z+. (3)

Thus, g(t ) holds the value of h(zn) for a single pseudo-
period. For logic tasks, h(z) is composed of a random series
of −1 (e.g., “False”) and +1 (e.g., “True”) values. For time
series tasks, h(z) is a normalized time series. The forcing
function, f (t ), is g(t ) multiplied by a sinusoid of frequency �.
During each pseudoperiod, virtual nodes are collected from
the y state and a ridge regression is applied for training. In
this paper, a regularization penalty of 0.001 was used for the
ridge regression, 80% of the data was used for training, and
the remaining 20% was used for testing.

Effectively, this PRC undergoes two types of learning. The
first type of learning is self-learning, which is a property of the
adaptive oscillator itself. Self-learning in this context means
that the adaptive oscillator learns frequency information from
the time-varying signal, f (t ), which increases the efficacy of
the PRC to compute different tasks. This is quite important as
different signals have a wide range of timescales and sampling
rates. Without self-learning, the PRC would only work for
narrow bands of timescales, as exhibited in Sec. IV. Said
another way, this PRC capitalizes on the adaptive oscillator’s

innate ability to learn certain properties of signals to increase
its efficacy as a PRC with reprogrammability.

The second type of learning used in this PRC architecture
is ridge regression. Ridge regression is a commonly used
method to obtain a set of weights for PRCs (a more thorough
description of the ridge regression may be found in Ref. [59]),
and it is often chosen because of its simplicity. The ridge
regression is used to find a set of weights that minimize the
error between the dot product of the virtual nodes and weights
and some desired output (e.g., a prediction of a future value, a
logic gate, speech recognition, etc.). Thus, the ridge regression
is used to reprogram the PRC for different tasks.

III. SELF-LEARNING BENCHMARK TASKS

Notably, physical systems oscillate at considerably differ-
ent timescales, which necessitates vastly different sampling
rates. For instance, the human heart is commonly monitored
with a smart watch, and the heart’s range is often between
40 and 140 beats per minute [60]. With this low frequency,
heart data can be sampled at a relatively low rate. On the
other hand, human speech has information content in the
range from approximately 100 Hz to 3000 Hz (with higher
harmonics being mostly only useful in a musical context) [61].
Thus, speech requires a substantially higher sampling rate
to preserve information. As the computational ability of the
PRC is dependent on the resonance frequency of the PRC’s
oscillator (as discussed in Ref. [36]), different sampling rates
necessitate a modified resonance frequency. To highlight the
self-learning of the AO PRC, the results for several benchmark
tasks are shown in this section, which includes heart, speech,
and chaotic time-series prediction tasks, with an image pro-
cessing benchmark provided in Appendix C.

A. Heart ECG prediction

A recording of a heart ECG signal [62] from Phys-
ioNet [63] is used in this section to perform a prediction task.
This recording had a sampling rate of 1000 Hz, but was down-
sampled to 250 Hz. This slower frequency preserves much of
the major features of the time history, but this more modest
sampling rate could be more easily managed by wearables.
A time series of 1600 seconds was used for training and 400
seconds for testing.

By setting the pseudoperiod equal to this sampling rate and
choosing � = 2ωp, the resonance frequency of the AO adapts
to the � value. This allows the AO PRC to perform real-time
processing on the heart data. An example of this is shown in
Fig. 1.

B. Speech prediction

The spoken digit data set is composed of multiple indi-
viduals saying single digit numbers, which are recorded at a
sampling rate of 8000 Hz [64]. This sampling rate is a popular
choice, as it is high enough to preserve information content of
human speech, but low enough to allow for faster processing
for voice recognition tasks. A time series of 80 seconds was
used for training, and 20 seconds for testing.

Following the same procedure as discussed for the heart
ECG data set, the pseudoperiod is set to the sampling rate
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FIG. 1. AO PRC performs one-step-ahead heart ECG signal pre-
diction task (left), with the fast Fourier transform of the signal for
reference (right). The RMSE for the test portion of this task was
0.00086, while the RMSE of the baseline (i.e., assuming a prediction
equal to the average value of the signal) was 0.02104. Here, μ = 100,
k = 100, a = 100, and N = 200.

and � = 2ωp. The resonance frequency of the AO adapts to
the � value. This allows the AO PRC to perform real-time
processing on the audio data. An example of this is shown in
Fig. 2.

C. Lorenz chaotic time series prediction

The Lorenz time series is a classical chaotic time series.
The Lorenz system is given below, which was simulated with
the parameters σ = 10, ρ = 28, and β = 8

3 :

ȧ = σ (b − a),

ḃ = a(ρ − c) − b,

ċ = ab − βc. (4)

Following the same procedure as before, the Lorenz time
series prediction task is shown in Fig. 3. A time series of 160
units was used for training and 40 units for testing.

IV. PARAMETRIC STUDIES

In this section, an exclusive OR (XOR) task will be used as
a benchmark to quantify the behavior of both the Hopf PRC
and AO PRC. For logical tasks, the most relevant metric is a
modified version of Shannon’s information rate. Comparing

FIG. 2. AO PRC performs one-step-ahead speech prediction task
(left), with the fast Fourier transform of the signal for reference
(right). The RMSE for the test portion of this task was 0.00966, while
the RMSE of the baseline (i.e., assuming a prediction equal to the
average value of the signal) was 0.05838. Here, μ = 100, k = 100,
a = 100, and N = 200.

FIG. 3. AO PRC performs one-step-ahead Lorenz chaotic time
series prediction (left), with the fast Fourier transform of the signal
for reference (right). The RMSE for the test portion of this task was
0.04665, while the RMSE of the baseline (i.e., assuming a prediction
equal to the average value of the signal) was 0.43561. Here, μ = 100,
k = 100, a = 100, and N = 200.

this to the original work [65], the correct output of the logical
task acts as the sent signal, and the predicted output of the task
from the PRC acts as the received signal. The information rate,
IR, is a function of H (x), the Shannon entropy, and Hy(x), the
conditional entropy. The amount of information in a signal
is calculated from the Shannon entropy, which sets an upper
limit on the information rate such that IR = H (x) − Hy(x).
The probability of an incorrect bit is given by the conditional
entropy. A detailed explanation of this modified Shannon’s
information rate is provided in Ref. [36]. For the XOR task
considered here, the PRC works perfectly as a logic gate when
IR = 1.0.

An example of the XOR task prediction is shown for ref-
erence in Fig. 4. A series of 3200 units was used for training
and 800 units for testing.

By focusing on a set forcing frequency, �, a computational
Arnold tongue may be seen [36]. This behavior is shown in
Fig. 5. The Hopf PRC is highly susceptible to mistuning of
the static ω0 term. The computational Arnold tongue suggests
that this may be partially compensated by increasing the gain.
However, this comes at the price of increasing the energy
expenditure required by the Hopf PRC.

Next, the behavior of three different cases for ω0 are com-
pared to the behavior of the AO in Fig. 6. When ω0 = ωp

1
2

,

the Hopf PRC has poor performance for most values of
ωp

�
, although it has perfect performance at ωp

�
= 1

2 . When
ω0 = ωp

�
, it has nominal performance at several Farey

FIG. 4. The AO PRC calculates the exclusive OR task (XOR).
The modified Shannon’s information rate for the test portion of this
task was equal to 1, while the IR of the baseline (i.e., assuming a
prediction equal to the average value of the signal) was 0. Here, μ =
100, k = 100, a = 100, and N = 100.
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FIG. 5. Using an XOR task as a benchmark of the Hopf PRC,
a computational Arnold tongue is shown at ωp

ω
= 1

2 . This compu-
tational Arnold tongue tapers down as a decreases. Thus, a small
mistuning of the resonance value will require a larger amount of
power as compensation. Here, μ = 3, ωp = 20π , and � = 40π .

sequence ratios. However, a very small mistuning (here,
1%) can cause a drastic degradation of the performance.
Meanwhile, the initial condition for the ω state of the
AO was set to a 5% error for the starting value. How-
ever, unlike the case of 1% error for the Hopf PRC, the
AO PRC learns the correct frequency, and the AO PRC
has perfect performance for several Farey sequence num-
bers. This points to the practical advantage of leveraging
self-learning to provide robustness to physical reservoir
computing.

To highlight the AO PRC’s self-learning ability, it was
compared with the Hopf PRC in Fig. 7. For this comparison,
the pseudofrequency was varied over an arbitrary range of
frequencies, and � was set equal to 2ωp to match the res-
onance condition shown in Fig. 6. Both ω0 (for the Hopf
oscillator) and ω (for the adaptive oscillator) were set equal
to 0.80�, which is a 20% error from a resonance condition.
The Hopf oscillator has a narrow region of good performance.

FIG. 6. The effects of the static resonance, ω0, on the com-
putational ability of the Hopf PRC are compared to the dynamic
resonance, ω. When ω0 = ωp

1
2

, the Hopf PRC has good performance

when ωp

�
= 1

2 . When ω0 = ωp

�
, the overall performance is fairly low,

but maximums coincide with several Farey sequence ratios. When
ω0 = .99 ωp

�
, this very small mistuning (here, 1%) causes a drastic

degradation of the performance. Meanwhile, the initial condition for
the ω state of the AO was set to .95 ωp

�
, which is a 5% error for the

starting value of ω. However, the AO learns the correct frequency,
so it has high performance at several Farey sequence numbers. Here,
μ = 5, a = 5, k = 25, and ωp = 20π .

FIG. 7. The effect of self-learning of the AO PRC is highlighted.
To show this, the pseudofrequency, ωp, was varied, and the forcing
frequency was set as � = 2ωp to match the resonance condition
shown in previous figures. The initial condition for the ω state of
the AO and the static resonance parameter, ω0, of the Hopf oscillator
were both set to 0.80�. The Hopf PRC (left) only works for small
values of ωp, while the AO PRC (right) works for a wide range of
frequencies. Here, a = 10, k = 10, and � = 2ωp.

The adaptive oscillator, on the other hand, is able to learn the
correct resonance condition. This self-learning allows the AO
PRC to function effectively.

V. FIELD-PROGRAMMABLE ANALOG
ARRAY EXPERIMENT

In this section, an analog circuit is constructed on a
field-programmable analog array (FPAA) to experimentally
validate the AO PRC. FPAAs are the analog counterpart to
field-programmable gate arrays, and they use a switched-
capacitor technology [66]. Due to their reconfigurability [67],
FPAAs have been used to study the Lorenz system [68,69],
neuron models [70], chaotic oscillators [71–74], and four-state
AO [50].

FIG. 8. The experimental field-programmable analog array cir-
cuit schematic is shown here. Three FPAA AN231E04 chips
(Anadigm, Paso Robles, CA) were used, which are designated as
FPAA1, FPAA2, and FPAA3. The external forcing function, f (t ),
is sent to the FPAA from MATLAB via a National Instruments 9263
module.
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FIG. 9. An example of the response of the FPAA circuit. On the
top, a portion of the time history of x (black line) is plotted with f (t )
(green dashed line). On the bottom, the ω state (black line) is plotted
with the � value (green dashed) for reference. For this example, the
information rate was calculated to be 0.99. Here, μ = 3, a = 0.15,
k = 0.05, N = 100, ωp = 400 Hz, and � = 800 Hz.

In the circuit shown in Fig. 8, the limit cycle’s radius is
r =

√
x2 + y2. This circuit used three of the four AN231E04

chips on an Anadigm QuadApex board. The external signal,
f (t ), was generated in MATLAB and sent to FPAA2 via a
National Instruments 9263 module. The x, y, and ω states were
collected back to MATLAB via a National Instruments 9201
module. In this circuit, several configurable analog modules
(CAMs) were used. These included summation, multiplica-
tion, integration, sample-and-hold (represented by Z−1), and
DC voltage CAMs (represented by a circle with a ± symbol
inside).

An example of a response of the AO PRC is shown in
Fig. 9. For the XOR task, the circuit performed with a mod-
ified information rate of 0.99. The response for this set of
parameters is representative over the operational range of the
circuit.

In Fig. 10, the operational range of the FPAA circuit is ex-
plored for a set of parameter values. It should be noted that the
operational range can be increased by optimizing the circuit
design and implementing it as a printed circuit board, but that
is beyond the scope of the current paper. The experimental AO
PRC has near ideal performance from approximately 20 Hz
to almost 490 Hz. This provides both robustness to mistuned

FIG. 10. The operational range of the FPAA circuit is shown
here. As physical circuits have limiting constraints not present in the
idealized model, the physical circuit has a reduced operational range.
The FPAA circuit has near ideal performance over the range from
approximately 20 Hz to 490 Hz. Here, μ = 3, a = 0.15, k = 0.05,
N = 100, ωp = 400 Hz, and � = 800 Hz.

frequencies of the oscillator through self-learning. Moreover,
the response of the PRC has degraded performance outside
this region, as compared to the steep drop in performance for
the Hopf PRC. In real-world scenarios, this would provide a
further degree of robustness. For each of the values of ωp, a
time series of 1600 units was used for training and 400 units
for testing.

VI. DISCUSSION

In this paper, an AO is proposed as the base of a PRC.
By leveraging the AO’s intrinsic ability to learn and store
information in plastic states, this PRC exhibits self-learning.
This provides robustness to frequency mistuning, which is a
severe limitation for limit cycle-based PRCs. Self-learning
allows the AO PRC to be used for real-time processing of
various signals without modifying the system.

Recent work has shown that oscillator-based PRCs are
quite powerful. Their vibratory nature makes them well-suited
for audio recognition tasks. For instance, a Hopf-based PRC is
capable of separating wake words, even without the assistance
of a neural network [9]. As neural network-based reservoir
computing is usually too computationally intensive for edge
devices, the AO PRC could be used as a high performance
computer for edge devices. Moreover, the PRC only utilizes
a simple regression for training, which significantly reduces
training costs.

The same AO can also be used as a morphable logic
gate [57]. This allows the possibility for creating hardware
that acts simultaneously as an AI inference processor and a
general CPU. Highlighting the non-von-Neumann nature of
this architecture, the AO PRC has the dual roles of storing
information and providing computational power.
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APPENDIX A: NONEXISTENCE OF LIMIT CYCLES
FOR ADAPTIVE OSCILLATORS

The classical Hopf oscillator is presented first for
completeness:

ẋ = (μ − (x2 + y2))x − ω0y,

ẏ = (μ − (x2 + y2))y + ω0x. (A1)

The Hopf oscillator is a limit cycle oscillator. When μ is
positive, there is one unstable point, [0,0], while all other
parameter combinations of [x, y] will coalesce to a limit cycle.
A limit cycle is an isolated periodic solution, which has no
other periodic solutions close to it [75]. The Hopf oscillator
shown in Eq. (A1) has one limit cycle. It should be noted that
limit cycles require nonlinearity, and oscillators that exhibit
limit cycles are often called limit cycle oscillators.

In Eq. (1), f (t ) is a normalized, time-varying external
force that acts on the adaptive oscillator. This AO has a Hopf

064205-5



SHOUGAT, LI, AND PERKINS PHYSICAL REVIEW E 109, 064205 (2024)

FIG. 11. For an adaptive oscillator, two periodic orbits are shown
in the x − y − ω state space. They are separated by an amount, δ

(depicted in orange), in the ω direction. By varying δ, the two orbits
can be made arbitrarily close to each other, which shows that the AO
does not have limit cycles.

oscillator as its base (e.g., x and y). In Eq. (A1), the Hopf
oscillator has a constant resonance parameter, ω0, while the
AO in Eq. (1) has a dynamic frequency state, ω. When this
AO is forced with a sinusoid, such as sin (�t ), the ω state will
converge to �.

Interestingly, the AO shown in Eq. (1) is not a limit cycle
oscillator. This can be easily seen by choosing two sets of
initial conditions, [x0, y0, ω0] and [x0, y0, ω0 + δ], where the
first set of initial conditions are chosen to correspond to a
closed periodic orbit and δ > 0 is an arbitrary constant. For
any ε > 0, a δ can be chosen such that ε > δ > 0. This implies
that the second set of initial conditions is arbitrarily close
to the first set of initial conditions, so the AO cannot have
isolated periodic solutions. The only difference in the two
orbits described by these two sets of initial conditions is the
resonance frequency, which is governed by the ω state. In
the three-dimensional state space, x − y − ω, they are shifted
only an amount δ in the ω direction, as shown in Fig. 11. A
local stability analysis of the Hopf-based adaptive frequency
oscillator shows that the x and y states have a stable periodic
solution that oscillates with a frequency of ω, but ω itself is
neither stable nor unstable [48].

APPENDIX B: MODIFIED NYQUIST LIMIT FOR PRC

The PRC has poor performance at one-half the Nyquist
frequency (e.g., one quarter of the sampling frequency). In
Fig. 12, a sampling rate of 1000 samples per second was
chosen, and sinusoids of various frequencies were used as
the signal for the PRC. The minimal value occurs at half the
Nyquist frequency (e.g., one-quarter of the sampling rate).
Here, the ability is defined as abs(RMSE−RMSEbaseline )

RMSEbaseline
, where

RMSE is the root mean squared error of the one-step-ahead
prediction, and RMSEBaseline is the root mean squared error of
the sinusoid itself. Thus, the sampling rate should be chosen
to be sufficiently higher than the frequencies to be captured by
the PRC.

FIG. 12. For a one-step-ahead prediction of sinusoids of varying
frequencies, the PRC works poorly at one-half the Nyquist frequency
(green dashed line).

APPENDIX C: IMAGE PROCESSING BENCHMARK

Other than time-varying signals, the AO PRC is also capa-
ble of solving other tasks. The image processing capability of
the PRC is tested with the MNIST handwritten digit data set.
The images were first preprocessed by rescaling the pixel val-
ues to a range between 0 and 1. Subsequently, a downsampling
process was applied by performing a maximum pooling oper-
ation twice, resulting in a 7 × 7 pixel image. This 7 × 7 image
is flattened to a 1D vector and sent to the oscillator (i.e., the
pixels of the image were sent to the oscillator sequentially).
The response of the oscillator was then combined with a lo-
gistic regression using the SCIKIT-LEARN package from Python
for classification of images [11,76]. Unlike the other tasks,
this image recognition task only used ten virtual nodes for
each pixel. The confusion matrix provided in Fig. 13 shows
the reservoir’s performance for digit recognition. A value of 1
corresponds to a perfect prediction, while each column sums
to 1. A series of 8000 images was used for training and 2000
untrained images for testing.

APPENDIX D: COMPARISON WITH OTHER NETWORKS

There are different types of recurrent neural networks
(RNNs), and it is important to compare their performance

FIG. 13. The AO PRC is used for handwritten digit recognition.
The resulting confusion matrix is shown here.

064205-6



SELF-LEARNING PHYSICAL RESERVOIR COMPUTER PHYSICAL REVIEW E 109, 064205 (2024)

FIG. 14. Normalized mean squared error of the LSTM network
with various numbers of hidden units and training epochs. As the
number of units and epochs increases, the LSTM gains better perfor-
mance. The orange dashed lines correspond to the minimal number
of units (249 units) and epochs (151 epochs) that resulted in an error
less than that of the AO PRC’s NMSE of 2.4435 × 10−5.

with their complexity [77,78]. Here, the AO PRC is compared
with a long-short term memory (LSTM) neural network and a
fully connected leaky integrator echo state network (LESN),
which are two popular RNNs. A tenth-order nonlinear au-
toregressive moving average (NARMA) task was used as the
benchmark [37,79]. For this NARMA task, the AO PRC’s
normalized mean square error (NMSE) was 2.4435 × 10−5.

MATLAB’S DEEP LEARNING TOOLBOX was used to con-
struct and train the LSTM. The LSTM is constructed as a
sequence input layer, m LSTM layers, and a fully connected
layer. As the number of hidden units and training epochs is
increased, the LSTM has improved performance. The minimal
number of units and epochs necessary for the LSTM to meet
the AO PRC’s error was 249 units and 151 epochs, which is
shown in Fig. 14.

The leaky integrator echo state network is described in
detail in Ref. [79]. The ESN has n nodes, which are fully
connected. The random weights of the connections between

FIG. 15. Normalized mean squared error of the leaky integrator
ESN with various numbers of fully connected nodes, which is trained
with a ridge regression. As the number of nodes increases, the ESN
gains better performance. The orange dashed lines correspond to the
minimal number of nodes (31 nodes) that resulted in an error less
than that of the AO PRC’s NMSE of 2.4435 × 10−5.

these n nodes is left untrained, while only the output layer
is trained with a ridge regression (in the same manner used
for the AO PRC). The minimal number of nodes necessary
for the ESN to meet the AO PRC’s error was 31 nodes, which
is shown in Fig. 15.

The main advantage of the AO PRC is that it is an analog
system that can replace a relatively large portion of an ESN
or LSTM. As each node or unit has some complexity, these
must inherently take up physical space. Interconnects alone
become cumbersome in hardware (for instance, the 31 nodes
of the fully connected ESN has over 900 interconnects if con-
structed in hardware). In addition to performing as an analog
network, it can also be used as a morphable logic gate [57].
However, whereas other networks have standardized training
procedures, the AO PRC does not yet have a standardized
approach, while only the readout layer is trained. Moreover, it
is unclear whether the PRC would perform equally well for all
tasks, and so more comprehensive benchmarking is required.
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