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Nonlinear dielectric response in glass formers: Restoring forces and avoided spin-glass criticality
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Experimental measurements of nonlinear dielectric response in glass formers like supercooled glycerol or
propylene carbonate have been interpreted as providing evidence for a growing thermodynamic length scale
when lowering temperature. A heuristic picture based on coherently flipping “superdipoles” with disordered
internal structure has been argued to capture the essence of the experimentally reported behavior, pointing
to the key role of effectively disordered interactions in structural glasses. We test these ideas by devising an
explicit one-dimensional model of interacting spins incorporating both the spin-glass spirit of the superdipole
argument and the necessary long-time decorrelation of structural disorder, encoded here in a slow dynamics
of the coupling constants. The frequency-dependent third-order response of the model qualitatively reproduces
the typical humped shape reported in experiments. The temperature dependence of the maximum value is also
qualitatively reproduced. In contrast, the humped shape of the third-order response is not reproduced by a
simple kinetically constrained spin model with noninteracting spins. To rationalize these results, we propose
a two-length-scale scenario by distinguishing between the characteristic length of dynamical heterogeneities and
a rigidity length that accounts for the local tendency of spins to flip coherently as a block, in the presence of
interactions. We show that both length scales are identical in the kinetically constrained spin model, while they
have significantly different dynamics in the model of interacting spins.
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I. INTRODUCTION

Understanding the origin of the very fast increase of the
relaxation time τα of molecular glass formers over a moderate
temperature range remains a challenging task for condensed
matter physics [1,2]. As a consequence the glass transition
temperature Tg is merely defined by τα (Tg) = 100s. Experi-
mentally, the glass transition has been studied by a vast range
of techniques [3], ranging from nuclear magnetic resonance
[4] to dielectric spectroscopy [5], neutron diffraction [6,7],
optical techniques [8–11], and even atomic force microscopy
[12]. As each technique specifically probes some degrees
of freedom, comparing the experimental results is of great
interest; see, e.g., [13]. This comparison reveals that all of
them are well coupled, apart from one exception which is
physically understood [13,14]. Indeed, upon cooling, they ex-
hibit a similar characteristic timescale, called the α relaxation
time, which governs, e.g., both dielectric spectra—probing
rotation of molecules—and viscosity behavior—probing the
mechanical response of molecules. Furthermore, it has been
gradually established [1,2] that, in supercooled liquids, relax-
ation happens through groups of molecules whose dynamics
is correlated: at a given instant, some of these groups are
much faster than others, hence their name “dynamical het-
erogeneities” (DH). Yet, despite the impressive number of
experimental studies characterizing the glass transition, the
origin of this extremely fast viscous slow down and of DH’s
remains debated [1,2], and opposite theories—either static or
dynamic—claim to account for the phenomenology of glass
formers.

According to static theories [15,16] formation of glasses
is primarily driven by the emergence of growing static

correlations, capturing the idea of “amorphous order,” namely,
nonperiodic molecular configurations with low free energy. In
this view, the material gradually solidifies as these low-energy
local molecular packings become harder to relax or to per-
turb when temperature decreases. In dynamic theories instead
[17,18], structural information plays little role, and emphasis
is placed on the existence of local mobile defects that can
relax the entire configuration. This view is captured by sim-
ple kinetically constrained models (KCMs) [19], where the
rarefaction of diffusive localized defects at low temperature
is introduced as a minimal ingredient. In this approach, DHs
emerge because a single defect has to relax many molecules as
it moves, thus building spatial correlations between relaxation
events.

Given the ability of KCMs to account for the main ob-
served dynamical features of real glass formers [20], do we
really need the complex notion of amorphous ordering, which
is imported from the field of spin glasses in high dimensions,
to get a realistic theory of the molecular glass transition
[21]? Despite the considerable number of numerical works
highlighting the presence of amorphous ordering in model
glass formers (see, e.g., [22,23]), the question remains vividly
debated, as shown by recent works [24] and [25] whose titles
express opposed views on this central question. This con-
troversy comes from the fact that we do not have a single
experimental observable whose behavior is unanimously as-
cribed to the growth of amorphous order upon cooling. Nearly
two decades ago, it was argued [26] that, on general grounds,
the jump of the specific heat around Tg was not consistent
with KCM models; but this was contested, a few months
later, by elaborating a refined KCM [27] showing a behavior
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reasonably consistent with experiments. This paper is devoted
to another observable, namely, the nonlinear dielectric suscep-
tibility, which, in the last decade, has been argued to provide
evidence for amorphous ordering, as we now explain.

Experimental measurements of nonlinear dielectric re-
sponse in glass formers like supercooled glycerol or propylene
carbonate have been consistently reported by several groups
since 2010 [28–32]. The experimental behavior was found
consistent with a theoretical prediction [33,34] inspired by the
amorphous ordering occurring in spin glasses, and adapted
to the realm of molecular glass formers (where the config-
urational entropy is nonzero). Because in spin glasses, the
presence of amorphous order is evidenced by the divergence
of the nonlinear (magnetic) susceptibility at the critical tem-
perature TSG, the idea guiding the prediction of Refs. [33,34]
was to use the nonlinear (dielectric) susceptibility as a probe
of amorphous order in molecular liquids.

The main experimental outcomes were twofold: first, it was
found that nonlinear responses of third order, χ3 [28–31], and
of fifth order, χ5 [35], have a characteristic humped shape
when plotted as a function of frequency, and, second, that
their maximum value grows when temperature is lowered,
or pressure increased [31]. Because this anomalous increase
upon cooling is reminiscent of the spin-glass behavior, it was
interpreted as a measure of a dynamical length scale �NonLin

directly revealing the growth of amorphous order in the glass
former upon cooling. This interpretation was reinforced by
showing that one accounts for the dramatic increase of relax-
ation time provided the free energy barrier grows typically as
a power law of �NonLin [28–31]. From these measurements, a
heuristic picture inspired by spin-glass physics has emerged
[36,37], namely, the idea that global relaxation results from
the coherent relaxation of “rigid superdipoles” having a size
approximately equal to �NonLin. Quite importantly, these su-
perdipoles have a disordered and essentially frozen internal
structure in terms of the microscopic dipoles, and their relax-
ation as rigid blocks is key to rationalize the experimentally
observed behavior of the nonlinear response as a function
of frequency and temperature [32,38], including work done
previously in another perspective [39–41]. This is why, it
was finally argued [35,42], that such a coherent relaxation of
superdipoles of increasing size (when temperature is lowered)
implies that thermodynamic aspects play an important role in
the relaxation of glass formers. As a consequence of this line
of thought, KCMs are not expected to be sufficient to account
for the nonlinear responses of supercooled liquids, despite
their ability to account for DHs at zero applied field. However,
no consensus has been reached yet in the glass community
regarding this issue [43,44], and, furthermore, recent exten-
sive numerical simulations of low-temperature model glass
formers indicate that dynamic facilitation could still play a
major role close to Tg [45,46].

This lack of consensus is partly due to the fact that non-
linear responses are notoriously difficult to evaluate, up to the
point that explicit calculations are possible only in oversimpli-
fied frameworks, such as phenomenological models [36,37],
or simplified models where the mechanism leading to a super-
cooled state plays no direct role [47–50]. Moving to the theo-
ries accounting for the glass transition in itself, whatever the
viewpoint adopted about the importance of thermodynamics

aspects, the proposed theoretical reasonings mostly rely on
general and plausible arguments [38,42,44] and not on fully
explicit calculations. Although quite successful in terms of
comparison with the experimental data [28,35,44], these gen-
eral arguments leave a number of important questions open,
such as: Which type of interactions between microscopic
dipoles could generate an emerging phenomenology in terms
of superdipoles with disordered but rigid internal structure?
Can a notion of “amorphous order” be consistently charac-
terized in an explicit model out of the superdipole picture?
How can these superdipoles melt in the long-time regime to
recover a trivial nonlinear response at very low frequency, and
thereby reproduce the humped shape of nonlinear responses
(in particular the third order one)?

In this paper we evaluate the nonlinear response in explicit
model glass formers with many microscopic degrees of free-
dom, where glassiness emerges directly from the collective
dynamics. We consider here minimal models retaining only
polarization degrees of freedom, and not translational degrees
of freedom. Our focus is thus specifically on the analysis
of the nonlinear response to an external field coupled to the
polarization degrees of freedom, and not on the mechanical
properties of glass formers. For the sake of simplicity, we re-
strict ourselves to one-dimensional models where polarization
degrees of freedom are described as Ising spins. This minimal
setting is aimed to determine robust qualitative features of
the nonlinear response that could be shared by more realistic
glassy models. Our goal is in particular to investigate the role
of a putative amorphous order in the humped shape of the
nonlinear response.

More in detail, we propose two explicit one-dimensional
models, which both cannot have any long-range thermody-
namic order at finite temperature. Our two models differ
only about the importance of interactions between effec-
tive degrees of freedom, and we compare their nonlinear
responses in frequency and temperature. On one side we de-
vise an explicit one-dimensional model of interacting spins
incorporating both the spin-glass spirit of the superdipole
argument, and the necessary long-time decorrelation of struc-
tural disorder, encoded here in a slow dynamics of the
coupling constants between neighboring spins. We find that
the frequency-dependent third-order response of the model
qualitatively reproduces the typical humped shape reported
in experiments, and that the static third-order response is that
of noninteracting spins. The temperature dependence of the
maximum value is also qualitatively reproduced. We com-
pare step by step these results with those obtained with our
second model, which is a simple kinetically constrained spin
model inspired by the Fredrickson-Andersen model. We find
that the cubic response of the kinetically constrained model
monotonically decreases as a function of frequency. These
results are rationalized through a two-length scale scenario,
which distinguishes between the characteristic length of dy-
namical heterogeneities and a rigidity length, which monitors
the effect of interactions. Our results indicate that both length
scales are identical in the kinetically constrained spin model,
while they have significantly different dynamics in the model
of interacting spins. These results provide some quantitative
evidence in favor of the important role played by the growth
of amorphous order in glass formers upon cooling.
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II. STOCHASTIC SPIN MODELS

A. Disordered spin model with slowly evolving couplings

1. Spin dynamics

We consider a one-dimensional spin model with N spins
Si = ±1 (i = 1, . . . , N), with periodic boundary conditions
(SN+1 ≡ S1). An external field E (t ), playing the role of the
electric field in the experiment, is applied. Neighboring spins
Si and Si+1 on the lattice interact via a link-dependent coupling
constant Ji,i+1. The time-dependent Hamiltonian of the model
reads

H (t ) = −
N∑

i=1

Ji,i+1SiSi+1 − E (t )
N∑

i=1

Si. (1)

The stochastic dynamics is constrained by the detailed balance
property, valid for a static field E (t ) = E0. More specifically,
spins are assumed to obey a stochastic reversal dynamics
satisfying detailed balance with respect to the equilibrium dis-
tribution associated with the Hamiltonian H (corresponding to
a static field E0), Peq ∝ e−βH , where β = 1/kBT is the inverse
temperature. The probability per unit time to flip a spin is
chosen according to the Glauber rate

W (−Si|Si ) = ν0

1 + eβ�HS
i

, (2)

where �HS
i is the energy change induced by the reversal of the

spin Si, and where ν0 is the characteristic attempt frequency of
the spin dynamics. We further assume that the definition (2)
of the transition rates remains valid for a time-dependent field
E (t ), leading to time-dependent transition rates: this is well
justified (see, e.g., Chap. 14 of Ref. [51]) in our case where
the frequency of the field is much smaller than ν0.

2. Coupling dynamics

In the form (1), the Hamiltonian is very similar to that
of a spin-glass model. This spin-glass-like form of the
Hamiltonian is motivated by the standard heuristic argument
describing a dielectric glass former as a set of superdipoles,
each one being made of frozen and disordered arrangement
of electric dipoles [36] (see also Sec. V A). This phenomeno-
logical argument, deeply rooted in the spin-glass physics,
predicts a divergence of the nonlinear dielectric responses
when a rigidity length, characterizing the size of superdipoles,
increases. The argument also correctly predicts the absence of
divergence for the linear dielectric response.

In spite of this qualitative success, one of the difficulties
with the above heuristic argument is that it does not describe
how the nonlinear dielectric response becomes small again
at very low frequencies. Intuitively, this is the regime where
the disorder inside the superdipoles unfreezes due to, e.g.,
the fact that molecules are anisotropic objects which mutual
interaction depends onto their relative orientation; for exam-
ple the dipole-dipole interaction changes its sign depending
on the angle between two molecular dipoles. Therefore as the
system relaxes, the mutual orientations of molecules changes
and their interactions are modified and may even change sign.
Assuming that couplings Ji,i+1 in our model play a role similar
to the interactions between molecules—which is implicit in
Eq. (1)—and are thus key to the glass transition, the couplings

Ji,i+1 would also be expected to change their sign in the long
run. To include this effect explicitly in the model, we assume
that the coupling constants Ji,i+1 are not completely frozen
but have a slow dynamics, on a timescale much longer than
the timescale of the spin dynamics (see also [52] for a closely
related model in the context of neural networks). For simplic-
ity, we choose bivalued coupling constants Ji,i+1 = ±J0, and
assume a stochastic reversal dynamics Ji,i+1 → −Ji,i+1 with
a transition rate satisfying detailed balance with respect to
the equilibrium distribution Peq. The probability per unit time
to reverse the sign of the coupling constant Ji,i+1 is assumed
to be

W (−Ji,i+1|Ji,i+1) = ν1

1 + eβ�HJ
i,i+1

, (3)

where �HJ
i,i+1 is the energy change induced by the reversal of

the coupling constant Ji,i+1, and where ν1 is the characteristic
attempt frequency of the dynamics. As we expect coupling
constants to evolve on much larger timescales than the spins,
we assume that ν1 � ν0, so that the coupling constants appear
as essentially frozen on the timescale of the spin dynamics.

In the following, we assume that the characteristic fre-
quency ν1 depends on temperature according to an Arrhenius
law,

ν1(T ) = ν0 e−B/T , (4)

where B is a typical energy barrier for rearrangements. This
choice takes into account, at a qualitative level, the thermally
activated nature of rearrangements, thereby inducing at low
temperature T a timescale separation between the fast spin
dynamics and the slow coupling dynamics.

It is important to note that the slowdown of the relax-
ation time of the spin dynamics does not result from the
Arrhenius form of the timescale τ1 = 1/ν1 defined in Eq. (4),
but rather from the spin dynamics itself that slows when
lowering temperature, due to interactions between spins. If
one would freeze the disordered couplings (i.e., ν1 = 0) and
thus consider a spin-glass model, the relaxation time would
also increase when lowering temperature, and eventually di-
verge when T → 0. Hence the role of the phenomenological
activated frequency ν1 introduced in Eq. (4) is to provide
a mechanism for the unfreezing of the disorder on long
timescale, to recover effectively noninteracting spins at equi-
librium (i.e., in the infinite time limit), consistently with
experimental results. In the following, we use in numerical
simulations the value B = 3J0, which ensures that rearrange-
ments are slow enough to let the glassy dynamics unfold, but
fast enough to see a decorrelation at low frequency in the
nonlinear response (see Sec. IV).

B. Kinetically constrained model

We wish to compare the above model of interacting spins
with stochastic couplings to a simple kinetically constrained
model (KCM). As a minimal KCM, we consider a sim-
ple extension of the Fredrickson-Andersen (FA) model [19]
that includes spin variables on top of the usual mobility
excitations. KCM with two local variables have been previ-
ously considered in other contexts, like ion mobility in glasses
[53]. In the usual FA model, mobility excitations are the only
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degrees of freedom (so that kinetic constraints only affect
mobility excitations themselves), while in our model mobility
excitations may couple to other physical degrees of freedom.
More explicitly, we introduce local facilitation variables ni =
0 or 1 on each site i, where ni = 1 corresponds to the presence
of a mobility excitation on site i. As in the FA model, mobil-
ity excitations are assumed to be noninteracting, and thus to
contribute to the Hamiltonian through a term proportional to∑

i ni. The generalized Hamiltonian then reads

H̃ = −E (t )
N∑

i=1

Si + K
N∑

i=1

ni, (5)

with the external field E (t ) and a characteristic energy K
of mobility excitations. A spin Si can be flipped only when
ni = 1, which leads to a slowdown of the dynamics at low
temperature, because mobility excitations become rare due to
their energetic cost. The transition rate for spin reversal reads

W (−Si|Si ) = ν0 ni

1 + eβ�H̃S
i

, (6)

where �H̃S
i = 2ESi is the variation of the Hamiltonian H̃

defined in Eq. (5) associated with the transition Si → −Si.
Here again, we assume the transition rates to be slowly time-
dependent due to the field E (t ). As for the dynamics of
mobility excitations, we follow the standard rules of the FA
model. The local variable ni can change its value only if at
least one of the neighboring variables ni−1 or ni+1 is equal
to 1. On a coarse-grained scale, this kinetic constraint on the
dynamics of the variables ni leads to an effective diffusion
of mobility excitations [19]. To fulfill detailed balance with
respect to the Hamiltonian (5), and to take into account ki-
netic constraints on the dynamics of mobility excitations, we
choose the following form for the transition rate from ni to
n′

i = 1 − ni:

W (1 − ni|ni ) = ν0

1 + eβ�H̃n
i

θ (ni−1 + ni+1), (7)

where θ (x) is the Heaviside function, θ (x) = 1 if x > 0 and
θ (x) = 0 otherwise; �H̃n

i = K (1 − 2ni ) is the variation of
the Hamiltonian H̃ defined in Eq. (5) associated with the
transition ni → 1 − ni.

III. STATIC THIRD-ORDER RESPONSE

A. General expression of cubic responses

We first consider a generic spin model at equilibrium, with
a Hamiltonian H , which is a function of N spin variables {Si}
and possibly of other variables present in the system. Spins are
coupled to a static external field E0, so that the Hamiltonian
takes the form

H = H0 − E0

∑
i

Si, (8)

where H0 is the Hamiltonian in the absence of external field
(E0 = 0). We assume that H0 is invariant by global spin
reversal {Si} → {−Si}. The free energy density is defined by

f = − 1

βN
ln Z, (9)

where Z = ∑
C e−βH (C) is the partition function; C is a

short-hand notation for the list of all microscopic variables,
including the N spins Si. The average magnetization 〈m〉,
where m = 1

N

∑N
i=1 Si, is given by

〈m〉 = − ∂ f

∂E0
. (10)

Static linear and nonlinear responses are obtained by expand-
ing 〈m〉 for small E0,

〈m〉 = χ s
1E0 + χ s

3E3
0 + · · · , (11)

where we have kept terms only up to third order, and used the
spin-reversal symmetry to eliminate even terms in E0 in the
expansion. This leads in particular to a definition of a static
cubic response as

χ s
3 = 1

6

∂3〈m〉
∂E3

0

. (12)

An alternative expression of the cubic response is obtained by
considering a field E0 + ε and evaluating the linear response
to the tiny contribution ε � E0, in the presence of the small
field E0. Here one considers the linear response

χ s
lin(E0) = ∂〈m〉

∂E0
(13)

and expands it to quadratic order in E0,

χ s
lin(E0) = χ s

1 + χ s
21E2

0 + · · · , (14)

which defines the cubic response χ s
21. Using Eqs. (11) and

(13), we obtain

χ s
lin = χ s

1 + 3χ s
3E2

0 + · · · (15)

One thus has the simple relation between the cubic responses
χ s

3 and χ s
21:

χ s
21 = 3χ s

3. (16)

As we will see below in Sec. IV, the static response χ s
21

corresponds to the zero-frequency limit of the dynamic cubic
response considered in this paper, and we thus focus on χ s

21
rather than on χ s

3 in the following.
From Eqs. (12) and (16) we have

χ s
21 = 1

2

∂3〈m〉
∂E3

0

. (17)

Using Eq. (10), we eventually end up with

χ s
21 = −1

2

∂4 f

∂E4
0

. (18)

This general expression of the static third-order response χ s
21

can now be applied to the two spin models introduced in
Sec. II.

B. Spin model with stochastic couplings

We consider the spin model with stochastic couplings de-
fined in Sec. II A, with a static external field E (t ) = E0. Using
the expression (1) of the Hamiltonian H , the partition function
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reads

Z =
∑

{Si},{Ji,i+1}
eβ

∑N
i=1 Ji,i+1SiSi+1+βE0

∑N
i=1 Si , (19)

and it can be determined for instance using a standard trans-
fer matrix technique. However, a simpler calculation can be
performed using a change of summation variable. Defining
σi = Ji,i+1SiSi+1/J0, the partition function takes the simpler
form

Z =
∑

{Si},{σi}
eβJ0

∑N
i=1 σi+βE0

∑N
i=1 Si , (20)

which now effectively involves only noninteracting degrees
of freedom (the sum is performed over all values Si = ±1 and
σi = ±1 for i = 1, . . . , N). One thus finds

Z = [4(cosh βJ0) cosh(βE0)]N . (21)

The free energy density defined in Eq. (9) then reads

f (β, E0) = fint (β ) + fid (β, E0), (22)

where

fint (β ) = − 1

β
ln[2 cosh(βJ0)] (23)

is the contribution to the free energy density resulting from
(annealed) random interactions between spins, and

fid(β, E0) = − 1

β
ln[2 cosh(βE0)] (24)

is the free energy density of the ideal spin gas. Hence at
static level, interactions between spins are decoupled from the
external field, in the sense that their respective contribution to
the free energy density is additive. Equations (10), (11), and
(18) then lead to simple expressions for the static linear and
third-order responses, respectively,

χ s
1 = β, χ s

21 = −β3, (25)

which are nothing but the linear and third-order responses of
an ideal spin gas, i.e., a paramagnetic system of noninteract-
ing spins. The linear response exhibits a moderate increase,
∝ 1/T , when lowering temperature, in qualitative agreement
with experiments. Note that only fid(β, E0) contributes to the
response χ s

21, because only this contribution to the free energy
density depends on the field E0.

C. Kinetically constrained spin model

For the kinetically constrained spin model introduced in
Sec. II B, considered here with a static field E (t ) = E0, the
partition function defined by the Hamiltonian H̃ given in
Eq. (5) reads as

Zkc =
∑

{Si},{ni}
eβE0

∑N
i=1 Si−βK

∑N
i=1 ni . (26)

The spins Si and mobility excitations ni are noninteracting
variables in the Hamiltonian H̃ , so that the partition function
simply factorizes as

Zkc = [4(cosh βK ) cosh(βE0)]N . (27)

The free energy density again takes an additive form

fkc(β, E0) = fmob(β ) + fid(β, E0), (28)

where

fmob(β ) = − 1

β
ln[2 cosh(βK )] (29)

is the free energy contribution of mobility excitations, and
where the ideal spin gas contribution fid(β, E0) has the same
expression as in Eq. (24). Hence, one also finds for the ki-
netically constrained model that the linear and third-order
static responses are given by the ideal spin gas responses
χ s

1 = β and χ s
21 = −β3, respectively, as in Eq. (25). Note that

this result was expected since spins are noninteracting in the
present model.

IV. DYNAMIC THIRD-ORDER RESPONSE

Our goal is to evaluate the third-order (dielectric) response
of the polarization (i.e., magnetization in the spin language)
to a time-dependent external field E (t ) oscillating at (angular)
frequency ω. Here again, there are several ways to define a
third-order response. For instance, one may consider either
the response to the field at frequency ω or at frequency 3ω.
The response at frequency ω can itself be divided into two
distinct response functions. As in the static case, we focus
here on the simplest third-order response function, called
χ21(ω), which consists in looking at the third-order response
at frequency ω when applying a field E (t ) = E0 + ε cos(ωt ),
in the limit where both the static component E0 and the am-
plitude ε are small, with the further assumption that ε � E0.
The third-order response χ21(ω), which has been measured
experimentally [54], is linear in ε and quadratic in E0, yielding
an overall third-order response in the field amplitude. It has
been shown that all types of third-order responses behave in
a similar way [38,54], and it is thus legitimate to focus on a
specific type of response.

A. Fluctuation-dissipation relation

The advantage of the third-order response function χ21(ω)
is that it consists in a linear response to the oscillating con-
tribution of the field. In other words, it is the correction at
order E2

0 to the linear response χ (ω, E0) of the polarization at
frequency ω,

χ21(ω) = 1

2

∂2χ

∂E2
0

(ω, E0 = 0). (30)

Interestingly, the linear response χ (ω, E0) in the presence
of a static field E0 can be expressed in terms of the equi-
librium correlation function of the magnetization using the
fluctuation-dissipation theorem (FDT) since we are deal-
ing with a close-to-equilibrium situation. We first formulate
the FDT in the time domain before moving to the fre-
quency domain. Let us define the (normalized) equilibrium
two-time correlation function of the magnetization, m(t ) =
N−1 ∑N

i=1 Si(t ), as

C(t, E0) = N
(〈m(t )m(0)〉E0 − 〈m〉2

E0

)
, (31)
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where the notation 〈· · · 〉E0 indicates an average over the equi-
librium dynamics under a static field E0. The FDT then reads

χ (t, E0) = −βθ (t )
∂C

∂t
(t, E0), (32)

where χ (t, E0) is the impulse response [i.e., the linear re-
sponse of 〈m(t )〉E0 to a Dirac delta in ε(t ) for a field E (t ) =
E0 + ε(t )], and θ (t ) is the Heaviside function which accounts
for the causality condition.

In practice, we may thus use the following procedure to de-
termine numerically the third-order response χ21(ω). One first
determines the equilibrium spin correlation function C(t, E0)
in the time domain for different small values of the static
field E0, and then take its Fourier-Laplace transform Ĉ(ω, E0),
defined as

Ĉ(ω, E0) =
∫ ∞

0
dt eiωt C(t, E0). (33)

In Fourier space, the FDT (32) reads

χ (ω, E0) = βC(t = 0, E0) + βiω Ĉ(ω, E0). (34)

Note that we consider here both the real and imaginary parts
of the Fourier transform of the fluctuation-dissipation relation
(32), while standard forms of the fluctuation-dissipation rela-
tion in Fourier space usually include only the imaginary part
of Eq. (34), corresponding to the loss modulus.

Setting E0 = 0 in Eq. (34), one gets the linear response
function χ1(ω),

χ1(ω) = βC(0, 0) + βiω Ĉ(ω, 0). (35)

The third-order response function χ21(ω) is obtained by
applying the definition (30) to the fluctuation-dissipation re-
lation (34), yielding

χ21(ω) = β

2

∂2C

∂E2
0

(0, 0) + 1

2
βiω

∂2Ĉ

∂E2
0

(ω, 0). (36)

Note that in practice, one needs to determine numerically the
correlation function with high accuracy in order to evaluate
the second derivative of the correlation function with respect
to E0. An advantage of the method described here is that only
static fields are applied in the simulations.

B. Spin model with stochastic couplings

We have determined numerically both the linear and the
third-order response functions χ1(ω) and χ21(ω) using ki-
netic Monte Carlo simulations of the spin model defined by
Eqs. (1), (2), and (3). To obtain the frequency-dependent
response functions χ1(ω) and χ21(ω) over a broad range
of frequencies, we first perform accurate fits of the time-
dependent correlation function C(t, E0) for E0 = 0 and for a
small, nonzero value E0. Fits of C(t, E0) are constrained to
take the known equilibrium value

C(0, E0) = N
(〈m2〉E0 − 〈m〉2

E0

)
, (37)

which is computed from the second derivative of the free
energy (22) with respect to the field. The linear response func-
tion is evaluated from C(t, 0) using Eq. (35). The third-order

FIG. 1. Modulus of the linear response χ1(ω) as a function of
the angular frequency ω, for different values of temperature (same
color code on both panels). (a) Spin model with stochastic couplings
for T = 0.40, 0.42, 0.45, 0.50, from top to bottom at low ω (J0 = 1,
B = 3). Inset: relaxation time τα = 2π/ωα vs temperature T , where
ωα is the angular frequency at which the imaginary part χ ′′

1 (ω)
is maximum. (b) Kinetically constrained spin model for T = 0.35,
0.40, 0.45, 0.50, from top to bottom at low ω (K = 1). Inset: τα vs
T . In both cases, the response function decays monotonously with
frequency. System size: N = 103 for (a) and (b).

response is obtained from Eq. (36), using the approximation

∂2C

∂E2
0

(t, 0) ≈ 2

E2
0

[C(t, E0) − C(t, 0)], (38)

which holds since C(t, E0) is an even function of E0. The
modulus |χ1(ω)| of the linear response is plotted in Fig. 1(a)
for several temperature values. The modulus |χ21(ω)| of the
third-order response is plotted in Fig. 2 for different values of
the temperature T (we set kB = 1). At a qualitative level, the
response function is seen to have the typical humped shape
reported in experiments.

Simulations have been performed using a moderate system
size N = 103, and averaging over 105 independent runs, to get

FIG. 2. Modulus of the third-order response χ21(ω) for differ-
ent values of temperature (T = 0.40, 0.42, 0.45, 0.50, from top to
bottom) in the spin model with stochastic couplings, exhibiting a
pronounced peak whose height increases when decreasing temper-
ature, while peak frequency decreases with temperature. Parameters:
J0 = 1, B = 3, N = 103. The third-order response is obtained from
the time correlation C(t, E0) − C(t, 0) evaluated for E0 = 0.04.
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FIG. 3. Modulus |X21(ω)| of the rescaled third-order response in
the spin model with stochastic couplings, as a function of the rescaled
frequency ω/ωα (T ), for different values of temperature (T = 0.40,
0.42, 0.45, 0.50, from top to bottom; same data as Fig. 2). The peak
value increases when decreasing temperature.

accurate data. This procedure has been found to yield cleaner
data than simulations of a larger system averaged over a lower
number of runs. We checked that the system size considered
remains much larger than the rigidity length (see Sec. V).

To investigate the effect of temperature, we define a
rescaled third-order response X21(ω) = T 3χ21(ω) that nor-
malizes the response χ21(ω) by the static third-order response
of noninteracting dipoles, which is equal to 1/T 3 in the
present model [see Eq. (25)] –or proportional to 1/T 3 in ex-
periments. Any temperature dependence of the curve X21(ω)
is thus expected to be due to interactions. We have plotted
X21(ω) in Fig. 3 as a function of the rescaled frequency
ω/ωα (T ), where ωα (T ) is the value of ω for which the loss
modulus χ ′′

1 (ω), that is, the imaginary part of the linear re-
sponse function, is maximal (τα = 2π/ωα is the relaxation
time). We observe that in this rescaled representation, the
peak value still increases when decreasing temperature, in
qualitative agreement with experimental results [28]. Note
that to obtain these results, one needs to take into account
an increased timescale separation between spin and coupling
dynamics when temperature is lowered, as accounted for by
the Arrhenius law in Eq. (4).

C. Kinetically constrained spin model

We have also evaluated the dynamic linear and cubic re-
sponses χ1(ω) and χ21(ω) in the kinetically constrained spin
model defined in Sec. II B. The same fitting protocol as the
one described in Sec. IV B is used. The modulus |χ1(ω)| of
the linear response is plotted in Fig. 1(b) and is observed
to monotonously decrease with frequency as expected. The
modulus |χ21(ω)| of the cubic response is plotted in Fig. 4. We
see that contrary to the model of interacting spins, no peak is
observed and |χ21(ω)| decreases monotonically as a function
of the frequency ω. The curves approximately collapse to a
master curve when rescaled by 1/T 3, up to a simultaneous
rescaling of frequency into ω/ωα (T ). The corresponding plot

FIG. 4. Modulus |χ21(ω)| of the third-order response for dif-
ferent values of temperature (T = 0.35, 0.40, 0.45, 0.50, from top
to bottom) in the kinetically constrained spin model. No peak is
observed, and |χ21(ω)| decreases monotonically with frequency. In-
set: corresponding rescaled response |X21(ω)| vs rescaled frequency
ω/ωα (T ). Parameters: K = 1, N = 103. The third-order response is
obtained from C(t, E0 ) − C(t, 0) evaluated for E0 = 0.13, 0.15, 0.18,
0.20 at temperature T = 0.35, 0.40, 0.45, 0.50, respectively.

of the rescaled response |X21(ω)| = T 3|χ21(ω)| vs ω/ωα (T )
is displayed in the inset of Fig. 4.

Summarizing Sec. IV, we have found that the two models
studied have the same behavior for the linear response |χ1(ω)|,
but differ considerably in the shape of |χ21(ω)|, although they
have the same trivial static responses χ1(0) and χ21(0). At
a qualitative level, only the model with slowly rearranging,
spin-glass-like couplings is consistent with the experimental
behavior reported in supercooled liquids. This shows in par-
ticular that a model with local facilitation as the only physical
ingredient fails to reproduce the peaked shape of the third-
order response. In the next section we look for a scenario
capturing more in depth the source of this difference between
the two models.

V. A TWO-LENGTH-SCALE SCENARIO

As explained in the Introduction, nonlinear dielectric re-
sponses are mostly used as experimental tools to probe the
presence of a dynamic length �NonLin in glass formers. Nu-
merically, more direct measures of dynamical length can be
performed. We argue below in favor of a two-length scale sce-
nario in the dynamics of the glassy spin model with stochastic
couplings. This scenario allows us to evidence the key role
played by interactions to generate a dynamic rigidity length
that becomes significantly larger than the dynamic length
scale characterizing dynamical heterogeneities. We start by
recalling the heuristic “superdipole” argument, which is use-
ful to grasp the physical picture behind the humped shape of
the cubic response.

A. Superdipole picture

1. Physical motivation

Obtaining the humped shape of the cubic response is non-
trivial in the sense that it requires two important ingredients
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of the model, namely, the presence of interactions between
spins and the timescale separation between the dynamics of
the spins and that of the couplings. In the absence of inter-
actions (J0 = 0), the model reduces to a paramagnetic spin
model (or ideal spin gas) also in the dynamical regime, and
|χ21(ω)| is expected to be a decreasing function of ω, with
a low-frequency plateau value equal to 1/T 3, in agreement
with the static results of Sec. III [see Eq. (25)]. Including
interactions with nonzero quenched couplings Ji,i+1 leads to
the emergence of a rigidity length, that grows when decreasing
temperature, as discussed below.

Heuristically, and as long as the frequency is not too low,
the system may be thought of as an ideal gas of superdipoles,
as mentioned above, where superdipoles are composed of
typically Ncorr (T ) neighboring spins with an essentially frozen
disordered structure. Hence χ21(ω) is expected to remain a de-
creasing function of ω, but now with a higher low-frequency
plateau value (see below). To get the humped shape, one thus
needs to take into account the slow dynamics of the coupling
constants, on a timescale much larger than the one of the
spin dynamics. In this low-frequency regime, the third-order
response thus goes from the high plateau value ∝ Ncorr (T )/T 3

down to the ideal gas nonlinear response equal to 1/T 3.
In its simplest version, the superdipole argument as-

sumes that the N spins can be divided into groups of Ncorr

neighboring spins that flip simultaneously, and thus con-
stitute a superdipole (or “superspin”). Interactions between
superdipoles are neglected. To formulate the argument in a
quantitative way, it is thus useful to first evaluate the dynamic
response of noninteracting spins.

2. Dynamic response of noninteracting spins

For later generalization to the superdipole case, it is conve-
nient to assume that the spins take values Si = ±μ, where μ

is the dipolar moment. The transition rate for spin reversal is
given by

W (−Si|Si ) = ν0

1 + e2βμESi
. (39)

For noninteracting spins, the dynamic response can be eval-
uated from the study of a single spin S (where S is any of
the spins Si). Due to the absence of (both static and dynamic)
correlations between different spins, the equilibrium magne-
tization correlation C(t, E ) defined in Eq. (31) boils down to
the single-spin two-time correlation

CS (t, E0) = 〈S(t )S(0)〉E0 − 〈S〉2
E0

. (40)

For the two-state stochastic process defined by the transition
rate (39), the time-dependent solution of the master equa-
tion can be written explicitly. The correlation CS (t, E ) is
obtained as

CS (t, E ) = μ2[1 − tanh2(βμE )]e−ν0t . (41)

One then obtains from Eqs. (33) and (34),

χ (ω, E ) = μ2β

1 − iωτ
[1 − tanh2(βμE )], (42)

with τ = ν−1
0 . This respectively leads for the linear and cubic

responses to

χ1(ω) = μ2β

1 − iωτ
, χ21(ω) = − μ4β3

1 − iωτ
. (43)

Static results of Sec. III are recovered in the limit ω → 0,
for μ = 1. The moduli of the linear and cubic responses are
decreasing functions of the frequency,

|χ1(ω)| = μ2β√
1 + (ωτ )2

, |χ21(ω)| = μ4β3√
1 + (ωτ )2

. (44)

Expanding more generally χ (ω, E ) in powers of E ,

χ (ω, E ) =
∞∑

n=0

χ2n,1(ω)E2n (45)

with χ0,1 ≡ χ1, one finds in the same way that

|χ2n,1(ω)| ∝ μ2+2nβ1+2n√
1 + (ωτ )2

(46)

is a decreasing function of ω.

3. Dynamic response of noninteracting superdipoles

In the superdipole picture, one assumes that interactions
make spins move coherently as blocks of Ncorr spins. Yet
each block of spin has a disordered internal structure due to
the glassy nature of the system. One is thus led to consider
superdipoles with a dielectric moment μ ≈ N1/2

corr μ0, with μ0

the individual dielectric moment. Since the dynamic response
is evaluated as a density with respect to the number of spins
(and not of superdipoles), it has to be further normalized by
Ncorr. One ends up with

∣∣χ sd
2n,1(ω)

∣∣ ∝ (
√

Ncorr μ0)2+2nβ1+2n

Ncorr

√
1 + (ωτ )2

∝ Nn
corr√

1 + (ωτ )2
, (47)

where the superscript “sd” stands for “superdipoles.” The
experimentally observed humped shape of the third and fifth
order nonlinear responses suggests that at very low frequency,
Ncorr should actually be an increasing function of ω, that satu-
rates to a finite value at higher frequencies. This is consistent
with the fact that correlations are weak or even absent at
equilibrium. Assuming a slow enough increase of Ncorr (ω), the
above calculation still approximately applies, and one finds

∣∣χ sd
2n,1(ω)

∣∣ ∝ Ncorr (ω)n√
1 + (ωτ )2

, (48)

which reproduces the typical humped shape of nonlinear re-
sponses. Consistently with experiments, one finds that the
linear response is independent of Ncorr, and that for large
Ncorr, the nonlinear responses become larger when their order
2n + 1 is increased.

The spin models considered in this work offer an inter-
esting opportunity to assess and substantiate the superdipole
picture. The latter assumes that blocks of spins move co-
herently, which can be interpreted as a local rigidity of the
spin dynamics. We introduce below a tool to characterize the
local rigidity of the spin dynamics, and we apply it to both
the interacting spin model with slowly rearranging couplings
introduced in Sec. II A, and to the KCM defined in Sec. II B.

064156-8



NONLINEAR DIELECTRIC RESPONSE IN GLASS … PHYSICAL REVIEW E 109, 064156 (2024)

B. Dynamical rigidity length

In order to assess the validity of the superdipole picture,
we need to test whether spins effectively move as rigid blocks,
whose size needs to be determined. This task is complicated
by the fact that the spin structure is disordered, and no spatial
order is visible. To test the superdipole hypothesis whereby
spins flip as rigid blocks, we need to check whether, in a given
time window, spins separated by a distance r have flipped the
same number of times. However, note that the superdipole as-
sumption may be too stringent. In practice, spins in our model
move one by one, but may tend on a coarse-grained timescale
to behave as spin blocks, or superdipoles. In particular, spins
may at some point flip randomly, and swiftly flip back to the
block configuration (which we interpret below as the presence
of restoring forces; see Sec. VI A 2). Such short excursions out
of the block behavior change the number of flips with respect
to the pure superdipole behavior, but mostly do not change
the parity of the number of flips. With this aim in mind, we in-
troduce the local overlap variable qi(t ) = Si(t )Si(0) between
the values of spin Si at t = 0 and t . The local overlap qi(t )
measures the parity of the number of flips in the time interval
[0, t]. Hence, in spite of the presence of a disordered spin
structure, the overlaps qi(t ) and qi+r (t ) have the same value
if spins Si and Si+r flip simultaneously, as in the superdipole
picture where blocks of spins simultaneously flip. They keep
the same parity if only short excursions occur, as discussed
above. In contrast, if the flips of spins Si and Si+r are not
strongly correlated, the values of the overlaps qi(t ) and qi+r (t )
tend to decorrelate after the first flips. The spatial correlation
of the local overlap variables qi(t ) and qi+r (t ) is thus a way
to determine the size of spin domains which effectively move
as a block, which is equivalent to the superdipole size Ncorr in
the present one-dimensional setting. Therefore, we define the
four-point correlation gq

4(r, t ) as the spatial correlation of the
two-time local overlap variable qi(t ):

gq
4(r, t ) = 〈〈qi(t )qi+r (t )〉i − 〈qi(t )〉i〈qi+r (t )〉i

〉
tr , (49)

where 〈· · · 〉i denotes a spatial average over site i, and 〈. . . 〉tr

stands for an ensemble average over stochastic trajectories
and initial conditions. The associated four-point susceptibility
χ

q
4 (t ) then reads

χ
q
4 (t ) =

∑
r

gq
4(r, t ). (50)

In the present one-dimensional context, we define a rigidity
length ξrig by normalizing χ

q
4 (t ) by gq

4(0, t ) as

ξrig(t ) = χ
q
4 (t )

gq
4(0, t )

. (51)

As discussed above, the length ξrig(t ) characterizes how, on
a timescale t , spins effectively move as blocks of size ξrig(t ).
We call it the “dynamical rigidity length” ξrig(t ) rather than
Ncorr first to emphasize that it is a length, but also to outline
its interpretation in terms of a local rigidity of the dynamics,
an idea which is less clearly conveyed by the term “correlated
volume” associated with Ncorr.

C. Dynamical heterogeneities

We now aim at determining a correlation length ξdh of
dynamical heterogeneities that can be quantitatively compared
to the rigidity length ξrig. Here we do not want to characterize
the potential rigidity of the spin dynamics, but rather the fact
that over a given time window [0, t], some spatial domains
have relaxed while others have not moved. The characteristic
size of these domains is the dynamical heterogeneity length
ξdh. Dynamical heterogeneities in spin models can be charac-
terized by introducing a local persistence variable φi(t ) that
satisfies φi(0) = 1 and keeps the value φi(t ) = 1 as long as
the spin Si does not flip. A standard choice is then to assign
the value 0 to the persistence variable after the first spin
flip, whatever the later spin value (see, e.g., [55,56]). Here,
to remain as close as possible to the overlap variable qi(t )
defined in Sec. V B, we instead assume that at each flip of
spin Si, φi(t ) is randomly assigned a value ±1, with equal
probability. In this way, φi(t ) takes values ±1 similarly to
qi(t ), but correlations with the value Si(0) are lost after the first
spin flip. The randomization of the sign of φi(t ) after the first
flip precisely gets rid of the information on the rigidity or not
of the dynamics, so as to focus on the spatially heterogeneous
character of the relaxation dynamics.

We define the four-point correlation function gφ

4 (r, t )
as the spatial correlation function of the two-time
variables φi(t ),

gφ

4 (r, t ) = 〈〈φi(t )φi+r (t )〉i − 〈φi(t )〉i〈φi+r (t )〉i
〉
tr, (52)

with the same notations for averages as in Eq. (49). The
corresponding four-point susceptibility χ

φ

4 (t ) reads as

χ
φ

4 (t ) =
∑

r

gφ

4 (r, t ). (53)

The correlation length ξdh characterizing dynamical het-
erogeneities is then defined by normalizing χ

φ

4 (t ) by
gφ

4 (0, t ) as

ξdh(t ) = χ
φ

4 (t )

gφ

4 (0, t )
. (54)

D. Numerical results

1. Spin model with stochastic couplings

We have evaluated numerically the correlation lengths
ξrig(t ) and ξdh(t ) in the spin model with random couplings
defined in Sec. II A. These two length scales are plotted in
Fig. 5 for different values of temperature T .

Lowering temperature, the timescale separation between
spin dynamics and coupling dynamics is increased, i.e.,
ν1(T )/ν0 � 1. In this regime, the rigidity length ξrig(t ) be-
comes much larger than the characteristic length ξdh(t ) of
dynamical heterogeneities for times t � τα , and its maxi-
mum shifts to larger times with respect to that of ξdh(t ). We
note in particular that ξrig(t ) still takes appreciable values in
a time regime when ξdh(t ) has already relaxed to a value
close to unity. These results indicate that after their first flip,
spins continue to effectively move as spin blocks of size
∼ξrig over an appreciable time window, until these blocks
eventually melt, and rigidity is lost. This transient rigidity
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FIG. 5. Dynamic lengths ξdh characterizing dynamical hetero-
geneities (dashed line) and ξrig characterizing cooperative effects
(full line) as a function of time t in the spin model with stochastic
couplings, for different values of temperature T . Note that the Y -axis
scale changes from one panel to the other to enhance readability.
At low temperature, ξrig(t ) becomes much larger than ξdh(t ) for
t � τα , showing that interactions play the role of a restoring force
(see Sec. VI A 2) when couplings change very slowly. Parameters:
J0 = 1, B = 3, N = 103.

precisely results from the presence of interactions between
spins, which yield a preferred disordered configuration of
the block (up to a flip of the block). The rigidity length
ξrig(t ) originates from the spin-glass correlation length that
would develop under the effect of quenched disorder, but can
only partially unfold due to the slow rearrangements of the
coupling constants.

2. Kinetically constrained spin model

To compare these results with the basic facilitation picture,
we plot in Fig. 6 the characteristic lengths ξrig(t ) and ξdh(t )
for the KCM defined in Sec. II B, for different temperature
values. We observe that in this case ξrig remains almost iden-
tical to ξdh, meaning that glassy relaxation is dominated here

FIG. 6. Dynamic lengths ξdh (dashed line) and ξrig (full line) as
a function of time t in the kinetically constrained spin model, for
different values of temperature T . Parameters: K = 1, N = 103.

by dynamical heterogeneities. This means that no dynamical
rigidity is present in the model, consistent with the fact that
spins are noninteracting. Even though spins might seemingly
move as blocks due to dynamical heterogeneities, rigidity is
essentially lost after a flip as no interactions are present to
select a preferred disordered configuration whose memory
would be kept over several flips. The reason why the rigidity
length ξrig is bounded from below by the dynamical hetero-
geneity length ξdh is that dynamical rigidity can be assessed
only once spins have moved (an immobile block of spins is
trivially rigid).

VI. DISCUSSION

A. On our main results

1. Avoided spin-glass criticality

We have seen in Sec. V D that for the model of inter-
acting spins with slowly rearranging couplings, cooperative
effects resulting from interactions between spins dominate
over purely dynamical heterogeneities in a broad time regime,
potentially extending over one decade or more after the relax-
ation time τα . Although cooperative effects are also dynamical
here, in the sense that no static spatial correlations are present
in the model as discussed in Sec. III, this dynamical coopera-
tivity keeps track of the underlying critical spin-glass physics,
which only partly unfolds due to the slow rearrangements of
the coupling constants. One might thus speak of an avoided
spin-glass transition due to slow rearrangements.

The dynamical rigidity length ξrig is indeed rooted in
the spin-glass transition that would occur in the system for
quenched random couplings. In the absence of rearrangements
of the couplings, a static spin-glass correlation length would
develop. Slow coupling rearrangements suppress static corre-
lations, and turn this static correlation length into the purely
dynamic length ξrig.

2. Landscape picture and restoring forces

We can get a better understanding of this avoided spin-
glass transition by using the so-called free energy landscape
picture [21]. In our first model where spin interactions play
a significant role, there is a high probability that the initial
state corresponds to one of the lowest energy states, since
the system spans most of its time in these preferred con-
figurations. Imagine now that one of the spins Si0 suddenly
flips: this increases the total energy, and as a result there is
a high probability that the spin Si0 flips back to its original
value to recover the initial low energy. Such a back and
forth event is due to the couplings to the neighboring spins
which corresponds to restoring forces towards the lowest
energy states [42]. Let us consider the free energy land-
scape [21] where the free energy is plotted as a function of
an index enumerating the 2N possible configurations of the
spins. According to thermodynamic theories [15,16,57], in
supercooled liquids, this landscape is extremely complicated
[21], with many low-energy states separated by high barri-
ers. Starting “downhill” (i.e., in a low-energy state), another
metastable configuration can be reached only by a thermal
jump over the surrounding barriers: such successful jumps
are extremely rare, their fraction is as small as 1/(ν0τα ) � 1.
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In other words, most of the thermal attempts of the system
to escape its low-energy state are unsuccessful, because the
landscape drives the system back to its original configura-
tion: this amounts to the restoring forces alluded to above.
Eventually, the memory of the initial configuration is lost
when the slow evolution of the couplings makes the original
configuration not so low in energy, favoring the transition to
a new low-energy configuration. In our second model, where
interactions between spin are absent, such landscape-driven
restoring forces cannot exist, and therefore we expect that ξrig

captures only the characteristic length scale ξdh of dynamical
heterogeneities.

3. Multiple length scales at play

It is important to note that no static length is present in
the model of interacting spins considered here. Numerically,
one finds that both ξdh and ξrig go to 1 in the long-time
limit (i.e., the lattice spacing, analogous to a molecular size).
Analytically, one finds that at equilibrium, all degrees of free-
dom (spins and couplings) are fully decorrelated; see Sec. III.
Hence a point-to-set length evaluated on the spin degrees of
freedom would be equal to 1. These results on the present
simple model of interacting spins are actually consistent with
experimental results on the cubic dielectric response, which
recover the ideal gas response in the limit of vanishing fre-
quency. However, note that in more realistic glass models
describing interacting particles, the point-to-set length ξPTS

characterizing the nontrivial correlations of particle positions
is found to be larger than particle size [22]. This indicates
that the relation between the usual point-to-set length based
on particle positions and the peak of the nonlinear response
of the polarization is at best indirect and would deserve fur-
ther investigations. Our results show in particular that a peak
in the frequency-dependent nonlinear response of the polar-
ization, with a qualitatively correct temperature dependence,
can be obtained in a model with no associated point-to-set
length.

4. Purely dynamic nature of rigidity

Overall our work illustrates explicitly that the qualita-
tive behavior of nonlinear responses—in temperature and
frequency—changes drastically depending on the presence or
absence of interactions between effective degrees of freedom
for glass formation. In the framework of the simple spin mod-
els studied here, this effect has been traced back to the fact
that cubic responses are actually not sensitive to dynamical
correlation effects (characterized by ξdh) but rather to dynam-
ical rigidity effects (characterized by ξrig). One may expect
that the same effect carries over to nonlinear responses of
higher order. Therefore we interpret the experimental length
�NonLin(T ) mentioned in the Introduction as being identical to
ξrig(T ), consistently with empirical observations [28–31,35].
Physically, such rigidity effects only exist if interaction terms
in the Hamiltonian explicitly make some spin configurations
being preferred with respect to other spin configurations, as
long as coupling constants have not yet rearranged, i.e., over
a long but finite timescale. In that case only, the system has
some finite rigidity, i.e., when perturbed by the field, the sys-
tem will react as a whole (i.e., a superdipole), unless the field

frequency is too small, in which case the superdipoles melt.
Interestingly, recent extensive numerical simulations of glass
models at low temperature have shown that dynamic facilita-
tion is at play in the late relaxation stage, for times much larger
than the characteristic relaxation time τα [45,46]. One may
thus wonder whether the eventual melting of superdipoles
in our model may involve some type of effective dynamic
facilitation, whereby coherent domains could progressively
rearrange through, e.g., diffusion of their boundaries. Whether
dynamic facilitation is involved or not in this late-stage relax-
ation, the mere existence of superdipoles for a time window
extending significantly beyond τα is a clear sign of the key
role played by interactions.

B. More general KCM

1. Local kinetic constraints alone are not enough

We have considered only a specific KCM, with a specific
way to introduce kinetic constraints for the spins, based on
a Kob-Andersen type of dynamics. Although we cannot for-
mally exclude the possibility that some other KCM which
includes spin degrees of freedom coupled to an external field
might have a peak in the nonlinear response χ21, our specific
kinetically constrained spin model precisely shows that the
presence of local kinetic constraints alone is not in itself suffi-
cient to reproduce the peaked shape of the nonlinear response.
Additional physical ingredients are needed, and we argue that
a key ingredient is the presence of amorphous order, which we
have characterized.

2. Plaquette model in an external field

The case of the plaquette model [17,18,58–60] is of interest
in this respect, as it suggests that the distinction between
models with interactions and models with kinetic constraints
may be blurred. Indeed, the plaquette model is a model of
interacting spins, but it can be mapped onto a model of
noninteracting degrees of freedom through the introduction
of effective plaquette variables. However, these two formula-
tions are no longer equivalent when it comes to coupling the
spins to an external field. In the plaquette model, the physical
variables are the interacting spins, and the plaquette variables
correspond to an effective reformulation of the dynamics. The
point is that the external field couples to the original spins,
and not directly to the plaquette effective variables. While the
dynamics of interacting spins can be mapped to the dynamics
of noninteracting plaquette variables with kinetic constraints,
the coupling of spins with an external field does not translate
into a similar simple coupling term of plaquette variables with
the external field. One rather has to express a given spin in
terms of plaquette variables, which is expected to yield a
complicated expression involving (potentially nonlocal) inter-
actions between plaquette variables. Hence, in the presence
of an external field, the plaquette formulation also includes
(complicated) interactions between plaquette variables, and
does not boil down to a simple model of noninteracting de-
grees of freedom with kinetic constraints.
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C. Connections with glass theories

1. Frustration-based scenario of the glass transition

It is of interest to briefly discuss our results in the per-
spective of existing glass theories. Our finding of an “avoided
spin-glass criticality” bears some resemblance with the so-
called Frustration Theory of the glass transition in which
geometric frustration prevents criticality to fully unfold [16].
In this scenario there is an avoided critical point T � –with
T � > Tg– around which the order develops only to some fi-
nite range. This yields an ever-flowing—though with highly
nontrivial correlations—liquid state, and thus an ideal-gas
response at zero frequency for nonlinear cubic responses.
Another possibility with which our findings are naturally
compatible is the unreachable critical point of Random First
Order Transition theory inspired from p-spin models [15,57].
According to the RFOT scenario, the static correlation length
scale is the point-to-set length ξPTS (see Ref. [22]), which
diverges at the Kauzmann temperature TK –where TK < Tg.
This yields, as well, an ideal gas response at zero frequency
for nonlinear cubic response, as anticipated in Ref. [33], be-
cause this length scale does not couple directly to a spatially
homogeneous external field, such as the one used in dielectric
experiments [32,42].

2. Key role of amorphous order

More generally, one may imagine other unknown scenarios
that would be compatible both with experimental measure-
ments of nonlinear responses and, at a qualitative level, with
the results we obtained on simple spin models. These sce-
narios should be such that (i) interactions between degrees
of freedom play a major role, favoring some configurations
which are not spatially periodic, and which are driven by
a critical point which cannot be crossed at equilibrium on
human timescales, and (ii) there is an ideal-gas response at
any order in the applied field at zero frequency, while, at
finite frequencies, qualitative differences arise between linear
and nonlinear responses. Denoting by “molecular amorphous
ordering” any scenario fulfilling points (i) and (ii), one of the
outcomes of this work is thus to better illustrate what the
nonlinear experiments teach us: namely, the fact that, upon
cooling, molecular amorphous order develops [32,35,42].
However, these experiments do not allow one to discrimi-
nate between some already existing scenarios of molecular
amorphous order, and it might be that they turn out to be
consistent with yet unexplored ones. Thus, we still have to
unveil the microscopic mechanism by which the amorphous
ordering—and the associated glass transition—takes place so
often in nature.

VII. CONCLUSION

We have performed a numerical determination of the non-
linear, third-order (dielectric) response to an external field in
model glass formers explicitly composed of a large number
of degrees of freedom, in our case, spins and couplings or
mobility excitations. We have shown that a model of interact-
ing spins with slowly rearranging coupling constants was able
to reproduce, at a qualitative level, the peaked shape of the
nonlinear response as a function of frequency, as well as the

temperature dependence of the nonlinear response rescaled
by the corresponding response of noninteracting spins. In
contrast, a simple model of noninteracting spins with local
kinetic constraints is not able to reproduce the peaked shape
of the nonlinear response. Although we cannot exclude that
other types of KCM might lead to a peaked shape of the
nonlinear response, this result indicates that local facilitation
alone, without interactions, is not able to generate the exper-
imentally reported humped shape of the nonlinear response,
whereas local facilitation is enough to generate dynamical
heterogeneities. Following previous works [33,34], we inter-
pret the humped shape of the nonlinear response as resulting
from a local rigidity of the spin dynamics, which involves
simultaneously rearranging regions. The heuristic superdipole
argument [36,37] takes this physical picture literally and con-
siders rigid blocks of spins that flip coherently, while having
a disordered internal structure. In our model of interacting
spins, we identify a dynamical rigidity length which quantifies
the effective size of coherently flipping spin blocks (i.e., spins
that flip together over a relatively short time window). Yet, at
odds with the superdipole argument, spin blocks melt at large
time due to the slow rearrangement of coupling constants,
which may also be viewed as a rearrangement of the local
free-energy landscape. This provides a useful characterization
of the notion of amorphous order. An important point is that
the rigidity of spin blocks can be assessed only after spins
have flipped (possibly several times), which is hindered by
dynamical heterogeneities of the glassy dynamics. Hence the
apparent rigidity length is bounded from below by the length
scale of dynamical heterogeneities, meaning that rigidity only
becomes visible when it exceeds the length of dynamical
heterogeneities.

On the methodological side, a further interest of our work
is to propose a relatively simple method to measure the
frequency dependence of cubic response in numerical simu-
lations without explicitly applying an ac field. This is made
possible by the use of a particular type of nonlinear response,
χ21(ω), which considers a tiny ac field on top of a small static
field E0, assuming the ac field to be much smaller than the
static one. The nonlinear response χ21(ω) has been shown ex-
perimentally to behave similarly to other cubic responses that
had been considered, like the nonlinear response at frequency
3ω [38,54]. The advantage of the cubic response χ21(ω) is that
it is linear in the ac field, so that the fluctuation-dissipation
theorem can be used to express the ac response in terms of a
correlation function of magnetization. Hence the nonlinear re-
sponse χ21(ω) is eventually expressed as the E2

0 correction to
the correlation function of magnetization. In practice, one thus
needs only to (carefully) evaluate in numerical simulations the
time-dependent correlation function of the magnetization in
the presence of a static field. This is much simpler than explic-
itly applying an ac field at angular frequency ω, measuring the
nonlinear response, and repeating the simulations for many
different values of ω ranging over several decades. This is
an important methodological step in the modeling of glasses,
which may foster further studies of nonlinear response in more
realistic model glass formers.

We focused here, for the sake of simplicity, on one-
dimensional models. Future work should try to characterize
the nonlinear response and the corresponding rigidity length
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in higher dimensions and in different types of models, to try
to confirm that the scenario put forward in this work is robust.
In the interacting spin model studied here, the temperature de-
pendence of the characteristic timescale of the rearrangement

dynamics of the couplings was put by hand [see Eq. (4)]. It
would be of interest to design more involved models in which
the slowdown of the coupling rearrangements would rather
emerge from the collective dynamics.
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