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Random sequential adsorption with correlated defects : A series expansion approach
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The random sequential adsorption (RSA) problem holds crucial theoretical and practical significance, serving
as a pivotal framework for understanding and optimizing particle packing in various scientific and technological
applications. Here the problem of the one-dimensional RSA of k-mers onto a substrate with correlated defects
controlled by uniform and power-law distributions is theoretically investigated: the coverage fraction is obtained
as a function of the density of defects and several scaling laws are examined. The results are compared with
extensive Monte Carlo simulations and more traditional methods based on master equations. Emphasis is given
in elucidating the scaling behavior of the fluctuations of the coverage fraction. The phenomenon of universality
breaking and the issues of conventional Gaussian fluctuations and the Lévy type fluctuations from a simple
perspective, relying on the central limit theorem, are also addressed.
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I. INTRODUCTION

Random sequential adsorption (RSA) has garnered sig-
nificant interest in the study of complex systems, with
applications spanning a diverse range of fields from surface
physics to molecular biology [1–3]. In classical RSA [4],
particles are added sequentially and irreversibly to a sub-
strate without allowing overlap, resulting in the formation
of ordered and highly compact structures. The dynamics of
adsorption ceases when the system reaches the jammed state
characterized by the maximum coverage of the surface where
no more objects can be accommodated.

The jamming coverage is found to be dependent on the
geometry of the substrate, the shape and size of the adsorbed
objects, and also on the underlying dynamics of the adsorption
[5–12]. However, intriguingly, the critical behavior of the sys-
tem associated with the jamming transition point is observed
to be universal. This implies that it is defined by a universal
exponent ν, which governs the size scaling of the transition
zone width σ , or standard deviation of jamming coverage.
Specifically, σ scales with the linear size L of the substrate in
a spatial dimension D as σ ∼ L−1/ν , where ν = 2/D [13,14].

Although the effect of particle properties (such as shape,
size, and orientation) on the kinetics of adsorption has been
extensively studied in the past, the influence of substrate het-
erogeneities has remained largely unexplored. Interestingly, in
numerous real-world systems, the presence of defects on the
substrate can profoundly influence the adsorption dynamics
and jammed properties. These substrate heterogeneities can
significantly alter the adsorption process, leading to nontrivial
behaviors that are not captured by traditional models. The
only extensively explored case in the literature is when the
defects are randomly placed without any spatial correlation
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[15–20]. Even in this scenario, the universality associated with
the critical exponent ν still holds true.

Striking examples of the effect that a structured substrate
with defects can have on the dynamic and saturation proper-
ties of the RSA model were previously studied [21,22]. These
works depart from the tradition of considering only spatially
uncorrelated defects. In [22], it is shown that a deterministic
organization of the defects leads to an unexpected efficiency
effect on the coverage fraction. On the other hand, in [21], it is
demonstrated that considering a spatial correlation following
a power-law leads to a breakdown of the universality of the
exponent ν.

In this study, we explore the problem of RSA while con-
sidering spatial correlation among defects. To address this,
we propose introducing correlation by assuming that defect
placement follows a one-dimensional and unidirectional ran-
dom walk. We consider two cases: one where the step size
follows a uniform distribution and another where the step
size follows a power-law distribution. Finally, we offer an
explanation for the universality breaking problem discussed
earlier by delving into the scaling behavior of coverage frac-
tion fluctuations. Our findings suggest that our system falls
within a class of complex systems where a transition between
Gaussian and Lévy statistics emerge [23–25].

II. THEORETICAL FRAMEWORK

The one-dimensional RSA problem involving random spa-
tial uncorrelated defects was analytically addressed in [16],
while the two-dimensional counterpart was tackled through
Monte Carlo simulations [18,19,21,22,26,27]. The analyti-
cal solution for the 1D scenario leverages the notion that
random defects within a substrate can be interpreted as a
Markov chain, thus permitting the utilization of the same
rate equations as those used for the original RSA problem.
This solution, governing the deposition of defects, forms the
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FIG. 1. Adsorption of first k-mer.

foundation for establishing an initial condition for the sub-
sequent determination of the appropriate solution for k-mers
adsorption [16]. The ultimate expression for the coverage
fraction θ in relation to the initial density of defects θ0 is
derived through the equation

θ (k, θ0) = k(1 − θ0)k
∫ 1

0
e−2

∑k−1
i=1

(1−xi )(1−θ0 )i

i dx. (1)

The challenge of describing the RSA problem with cor-
related defects using a methodology grounded in master
equations stems from the intrinsic characteristics of the
stochastic processes employed to place defects within the
substrate while accounting for correlations. The conventional
methods based on master equations assume that both the ad-
sorption of defects and particles are encompassed within the
same theoretical framework, treating adsorption as a Poisson
process in which all substrate sites possess equal probability
for adsorption. Consequently, any solution aiming to address
the adsorption issue in the presence of correlated defects must
possess the capability to distinctly separate the process of
defect adsorption from particle adsorption. In the forthcoming
sections, we outline the fundamental principles of our model
tailored to address random sequential adsorption in the con-
text of spatial correlated defects.

In one dimension, the presence of defects can be conceptu-
alized as the fragmentation of the substrate. In this scenario,
the gap between two adjacent defects forms an empty space
or “fragment” where the posterior adsorption of k-mers takes
place independently from other fragments. To holistically ad-
dress the problem, two key aspects must be addressed: (i)
the determination of the average number of k-mers that can
be deposited within a finite fragment devoid of defects, and
(ii) the distribution of fragment sizes. The recursive approach
introduced subsequently represents a promising methodology
to address the first aspect.

To derive the recurrence equation, suppose that we have
a finite one-dimensional substrate, with L � k sites, where k-
mers can be absorbed. The first k-mer can be randomly placed
in the first L − k + 1 sites, after which its position is fixed, and
any overlap of k-mers is prohibited. Therefore, when the first
k-mer is adsorbed, two independent gaps appear with i and
L − k − i sites, respectively, as seen in Fig 1.

Let ak
L be the expected number of k-mers, on average,

that can eventually occupy a chain of L initially empty sites,
after the adsorption of the first k-mer occupying positions
i + 1, . . . , i + k. The expectation will be the sum of the ex-
pectations of the three intervals now created, namely 〈ak

i +
ak

k + ak
L−i−k〉i. Taking the average over all possible values of i

(with uniform distribution), and considering that the first and
last intervals are symmetric, we finally have

ak
L = 1 + 2

L − k + 1

L−k+1∑
i=1

ak
i , (2)

which can be written in recursive form as [22]

(L + 1)ak
L+k − Lak

L+k−1 − 2ak
L = 1. (3)

To solve this recurrence equation we can apply the Z
transform on both sides of (3), then we obtain an ordinary
differential equation for X (z) = Z[ak

L] = ∑∞
L=0 ak

Lz−L [28]:

dX

dz
+ (k − 1)zk − zk−1(k − 1) + 2

zk (z − 1)
X = − 1

zk−1(z − 1)2
, (4)

whose general solution, after some algebraic manipulation, is
given by

X (z) =
exp

[
−2

∑k−1
i=1

zi−2

i

]
zk−3(z − 1)2

×
⎡
⎣C −

[∫
exp

(
2

k−1∑
i=1

x2−i

i

)
dx

]
x= 1

z

⎤
⎦. (5)

For example, for dimers (k = 2), the integral in (5) can be
explicitly calculated, leading to

X (z) = 1

2

z

(z − 1)2
+ C

z exp
(− 2

z

)
(z − 1)2

. (6)

Applying the inverse Z transform and using the initial
condition ak=2

L=2 = 1, we get

ak=2
L = Z−1[X (z)] = L

2
− (−1)L+12L−1

2(L − 1)!
×

× �(L − 1)2F0

(
2, 1 − L; ;

1

2

)
, (7)

where 2F0(·) is the generalized hypergeometric function and
�(·) is the Heaviside step function, with the convention
�(0) = 1/2.

Now, the key point lies in determining the distribution of
fragment sizes arising from defects present within the sub-
strate. This task is specific for each spatial distribution of
defects, rendering the effectiveness of the proposed method
contingent on the ability to derive this distribution function
from the defect arrangement.

Therefore, the average number of k-mers that can be de-
posited on a substrate of L sites initially occupied by a density
θ0 of defects, M(θ0, L, k), will be the sum over all possible
values of the fragment size η of the product between the the
average number of k-mers that can eventually be deposited on
a fragment with η sites (ak

η) times the number of fragments of
type η, i.e., nη, so,

M(θ0, L, k) =
∑

η

nηak
η, (8)

or, in terms of the probability distributions P(η),

M(θ0, L, k) = N
∑

η

P(η)ak
η, (9)

where N = θ0L represents the total number of fragments. This
is valid only in the limit L → ∞. Additionally, note that the
number of fragments can differ by −1, 0, or +1 from the
number of defects, depending on whether the first and/or last
site of the lattice is defected.
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Indeed, it’s apparent that Eq. (9) presents a broader formu-
lation compared to (1), which is exclusively applicable to a
random and uncorrelated defect distribution. Ultimately, the
coverage fraction, defined as kM/L, can be expressed as

θ (θ0, L, k) = kθ0

∑
η

P(η)ak
η. (10)

Note that we only have a closed form of (10) for dimers.
However, the numerical solution of (10) for k > 2, using
recurrence (3), is much more efficient than the Monte Carlo
simulation, which would be the traditional way to solve the
problem of RSA with correlated defects.

III. RESULTS

In this section we test Eq. (10) for different types of
distribution of defects, including random (uncorrelated) dis-
tribution [to compare with (1)], power law, and uniform
distribution of the size of fragments.

A. Random (uncorrelated) defects

In this initial example of our proposed method, our ob-
jective is to demonstrate the applicability of model (10) to
a well-known scenario. Specifically, for the case of a ran-
dom defect distribution, computing P(η) is straightforward.
Placing defects randomly within the substrate can be linked
to a Bernoulli process, where p represents the probability of
success (defect presence) and q = 1 − p is the probability of
failure (site being unoccupied). It is not difficult to conclude
that p = θ0. In this context,

P(η) = θ0(1 − θ0)...(1 − θ0)θ0 = θ2
0 (1 − θ0)η. (11)

Equation (10) imposes that P(η) is marginally normalized
in η with 1

θ0
being the normalization factor. When L is suf-

ficiently large we can neglect the boundary effect, and the
expression for the coverage fraction is written as

θ (θ0, L, k) = kθ2
0

∞∑
η=0

(1 − θ0)ηak
η. (12)

To prove the validity of (12), in Fig. 2 we show a compari-
son between the graphs of Eqs. (1) and (12), the first being the
standard model for the treatment of the RSA problem with
random defects. For the case of k = 2, the solid blue line
(filled circles) in Fig. 2, we have used the closed form solution
for ak=2

η obtained in (7).
The correspondence between the results depicted in Fig. 2

should not come as a surprise. It is evident that (12) consti-
tutes the Z transform of the sequence ak

η, multiplied by the
factor kθ2

0 , where the parameter z = 1
1−θ0

. For instance, we
can verify that under these conditions and for specific case of
dimers (k = 2), the equation (6) reduces to

X

(
z = 1

1 − θ0

)
= (1 − θ0)[1 − exp (−2(1 − θ0))], (13)

which is consistent with [16]. The reader can easily verify that
for any k, (12) reduces to (1) under these considerations.

Although our model (12) does not add considerable advan-
tage or predict new phenomena, in the specific case of the
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FIG. 2. Comparison of the results of the numerical solution (us-
ing the trapezoidal method) of (1) (symbols) and (12) (solid lines)
for different values of k.

random distribution of defects, the mathematical structure is
certainly much simpler and more intuitive than the dynamic
approach in terms of master equations. Consider that in model
(12) finite size effects are present; this could be considered as
a disadvantage with respect to the analysis from the kinetic
point of view of adsorption, Eq. (1). However, we must re-
member that the latter only describes infinitely large systems,
whereas real systems are finite.

B. Spatially correlated defects

Suppose that the defects are placed on the substrate in a
manner where the positions xi are determined by

xi = xi−1 + r, xi < L. (14)

Here r is a random variable with a given probability dis-
tribution Q(r) over the closed interval [rmin, rmax]. We will
consider that r � 1 and x0 = 0. This represents the problem of
a one-dimensional random walker (unidirectional) with a step
size distribution Q(r). We will also consider that the discrete
count i ends for a given i f such that xi f � L. The defec-
tive substrate resulting from the application of the stochastic
process (14) is where the deposition of the k-mers will take
place. For the deposition of k-mers, we will consider hard wall
boundary conditions.

The defect density on the substrate is a random variable,
and its distribution function has a closed analytical form that
is very challenging to derive. Nevertheless, an estimate for
the mean value of the defect density can be obtained for a
sufficiently large L as

〈θ0〉 = 1

〈r〉 . (15)

Consequently, we rewrite Eq. (10) as

θ (θ0, L, k) = k〈θ0〉
∑

η

P(η)aη. (16)
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FIG. 3. Results for the coverage fraction as a function of density
of defects for the case of uniformly distributed defects. We compare
the results obtained from Eq. (19) (empty circles) and Monte Carlo
simulation (filled circles) for several values of k. The dashed straight
line connects the points where θ (k, 〈θ0〉) changes concavity.

1. Uniform distribution

Assume that Q(r) is a uniform distribution in the domain
r ∈ [2, rmax] that implies η ∈ [1, rmax − 1], so

Q(r) = 1

rmax
, (17)

leading to

〈r〉 = 1
2 (rmax + 1). (18)

Finally,

θ (θ0, L, k) = 2k

rmax(rmax + 1)

rmax−1∑
η=1

ak
η. (19)

In Fig. 3 we show the dependence between the cover-
age fraction and the mean density of defects obtained using
Eq. (19) and Monte Carlo simulation.

It is worth noting in Fig. 3 that, unlike the random case
(Fig. 2), the coverage fraction does not only decrease while
maintaining a concave behavior for all values of k and θ0.
At specific points, where 〈r〉 equals 2k, there is a noticeable
change in the slope of the curve θ (〈θ0〉). This transition results
in the curve exhibiting a convex behavior. These points can
be represented by the simple equation: θ (〈θ0〉) = 1

2 − 1
4 〈θ0〉

(dashed line in Fig. 3).

2. Power law distribution

If we assume a discrete power law distribution, then

Q(r) = r−α∑rmax
r=2 r−α

. (20)

The distribution (20) is known as generalized Zipf’s law
[29]. If the separation distance between two defects in a lattice
follows a Zipf’s law, it could indicate a long-range interaction
between the defects. Zipf’s law implies that short distances,
i.e., small r′s occur frequently, while large values of r are rare.
In the context of the interaction between defects in a lattice,
this suggests that some defects may be strongly correlated
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FIG. 4. Density of defects as a function of the exponent α for
various system sizes L (equation (21)). Inset: Plot of the exponent of
the scaling behavior θ0(α, L) ∼ L−γ for all values of α examined.

at long distances, which could be characteristic of long-
range interactions or nonlocal correlations among defects in
the lattice.

We will analyze the case in which r is in the interval
[2, rmax = L]. Note that in this case, η ∈ [1, L − 1], imply-
ing the original format of Zipf’s law where the frequency
f (η) ∼ η−1, with η being the rank of the variable and η = 1
for the most frequent outcome [29]. So, the density of defects
reads as

〈θ0〉 = 1

〈r〉 =
∑L

r=2 r−α∑L
r=2 r−α+1

. (21)

In Fig. 4, we present the plot of Eq. (21) for different values
of L.

An interesting observation from Fig. 4 is that when the
defects are arranged in this manner, a state change occurs.
It is noteworthy that for α < 2, the defect density is practi-
cally zero. However, for α > 2, there is a sudden jump in the
defect density. This behavior becomes more pronounced as L
increases. To analyze the scaling behavior, for different values
of α, we fit the model θ0(α, L) ∼ L−γ , and the results for the
dependence of γ vs α are shown in the inset of Fig. 4.

Because there is no close functional relationship between
exponent α and the density of defects, the coverage fraction
curves (Fig. 5) were obtained by varying α. Finally the cover-
age fraction is

θ (θ0, L, k) = k∑L
r=2 r−α+1

L∑
r=1

r−αak
r . (22)

Note in Fig. 5 that the functional relation θ (〈θ0〉) presents a
transition from convex for k = 2 to concave for k � 4, passing
through an almost linear dependence in the case of k = 3. It
is interesting to mention that in a previous work [22] we had
already observed a similar behavior, in which the adsorption
of dimers seems to have a completely different behavior com-
pared to the rest of the k-mers (k � 3) when varying the defect
density. In the case of [22], we found that the curve θ (〈θ0〉) for
dimers does not fit well together with the other curves (k � 3)
when performing a finite-size analysis with the curve collapse
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FIG. 5. Results for the coverage fraction as function of density
of defects for the case of a power law distribution. We compare
the results obtained with our model (empty circles) and with Monte
Carlo simulation (filled circles) for several values of k. We use a
lattice size L = 216.

method. In the current study, once again we have encountered
a case where the adsorption of dimers exhibits a distinctive
behavior.

C. Fluctuations

At this point, the reader can see that all fluctuations asso-
ciated with the coverage fraction are linked to the stochastic
behavior of defect placement on the substrate. This means
that we will assume, by hypothesis, that the fluctuations of
the coverage fraction exhibit the same scaling behavior of the
fluctuations of θ0.

To begin our approach, we want to calculate the probability
distribution P(N ) of the maximum number N of steps in the
walk such that in step N + 1 the walker exits the lattice.
Mathematically, we write

P(N ) = P(SN � L | SN+1 > L). (23)

This conditional probability can be written as

P(N ) = P(SN = L) +
rmax−1∑

i=1

rmax∑
j=i+1

P(SN = L − i)P(r = j).

(24)
In other words, we aim to calculate the probability that,

until the N th draw, the total sum SN is equal to or less than
L − i (i ∈ [0, rmax − 1]), and that in the (N + 1)th draw the
sum SN+1 exceeds L. To achieve this, we must consider, for
each L − i, all possible cases in which the next draw results in
a sum exceeding L. Since these are independent probabilities,
we simply take the product of each of them. Scale arguments
can be used to simplify (24), reducing it to

P(N ) ≈ P(SN = L). (25)

On the other hand, the moment generating function (mgf)
of the discrete random variable r is defined as the expected
value of the function etr [30]. If we sum the independent

random variables r1, r2, ..., rN , the mgf of the sum SN is

MSN (t ) =
[

rmax∑
r=1

etrQ(r)

]N

=
Nrmax∑
s=N

etsP(SN = s). (26)

For the case where Q(r) is uniform, we can identify in
Eq. (26) that

P(SN = L) = 1

rN
max

∑
k1+2k2+...+rmaxkrmax =L

(
N

k1, ..., krmax

)
. (27)

In other words, the probability of SN = L will be the
sum of all coefficients of the polynomial (26) whose vari-
able is (et )L, represented by the multinomial expansion
coefficient

( N
k1,...,krmax

)
satisfying the condition k1 + 2k2 +

. . . + rmaxkrmax = L. By employing some numerical algorithm,
P(SN = L) can be determined exactly, although as N in-
creases, the calculation becomes increasingly cumbersome.
However, Gaussian behavior emerges from the central limit
theorem (CLT), asserting that the sum of N random variables
{r} that are statistically independent, identically distributed,
with mean μr and with finite variance σr , converges (as N →
∞) to a normal (Gaussian) distribution with mean μSN =
Nμr and variance σ 2

SN
= Nσ 2

r . Consequently, the distribution
P(SN ) can be approximated as

P(SN ) = 1√
2πNσ 2

r

exp

[
−1

2

(SN − Nμr )2

Nσ 2
r

]
. (28)

Assuming the approximation (25) and rearranging some terms
in (28), we finally find that the probability distribution of the
density of defects θ0 = N/L is

P(θ0) = A√
2πLθ0σ 2

r

exp

[
−1

2

(θ0 − 1/μr )2

1
L θ0σ 2

r /μ2
r

]
, (29)

where the normalization constant A can be calculated, bearing
in mind that θ0 belongs to the interval [0,1]:

A = 2Lμ

2 − e
2Lμ

σ2 erfc
(√

L(μ+1)√
2σ

)
− erfc

(√
L(μ−1)√

2σ

) . (30)

Using the Mathematica software, it can be demonstrated
that, as the limit of L → ∞, the mean of distribution (29)
converges to 1/μr , consistent with the assumption made in
estimation (15). On the other hand, through an asymptotic
expansion of the variance of (29), it is established that it scales
inversely with L, thereby indicating that the standard devia-
tion of the density of defects, and consequently the standard
deviation of the coverage fraction of k-mers, exhibit a scaling
behavior of L−1/2. It would not be unwarranted to conjecture
that this universal behavior persists in all instances where the
step size distribution Q(r) remains within the validity bounds
of the CLT.

In Fig. 6, we present the results of numerical simulations,
displaying a log-log plot illustrating the scaling behavior of
the standard deviation of the coverage fraction σθ with respect
to the system size L.

Note that in both cases, we have considered that rmax � L,
then the number of steps needed to stop the stochastic process
(14) is considerably larger, causing the system to inevitably
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FIG. 6. Log-log plot illustrating the relationship between the
standard deviation of the coverage fraction σθ and the system size
L using Monte Carlo simulations, across various values of rmax for a
uniform distribution of defects (a) and α for the power-law distribu-
tion of defects (b), with a fixed value of k = 5. In case (b) we consider
rmax = 10. The symbols depict simulation data, while the solid lines
represent fits to a power-law model of the form σ = AL−1/ν . The
exponent ν has a mean value of 1.9983 and standard deviation of
0.0084 if we consider all fits.

fall into the attractor dominated by Gaussian fluctuations.
Consequently, as demonstrated in (29), this implies ν = 2.

At this point we remark that as the statistics of the sum of N
independent random variables r with power-law distribution
is described [23] by the α-stable Lévy distribution whose
probability distribution generally does not have a closed form.
Generally, the law of large numbers and the central limit
theorem may not be directly applicable in this case due to the
divergence of the variances. However, by ensuring a cutoff (fi-
nite value of rmax), a finite variance assumption is guaranteed,
and convergence to the Gaussian limit can be demonstrated,
even though this convergence may be relatively slow [23]. In
practical terms, there exists a crossover between Gaussian and
anomalous behavior (Lévy regime), which can be character-
ized by the parameter N+, representing the number of steps
required to transition from the Lévy regime to the Gaussian
regime. In [23], it is shown that the scaling relationship is
given by N+ ∼ rα

max.
Consider first the scenario where rmax is comparable to

the system size. The interpretation of the uniform case is
straightforward. In this situation, the walker is permitted to
take steps with a length comparable to the lattice size, and
as a result, it would reach the boundary with relatively few
steps. Consequently, there would be few or almost no defects
in the lattice, and thus, we approach the case of a defect-free
substrate where fluctuations scale with the universal behavior
(ν = 2) [13].

Let us now examine the scenario where Q(r) is given by
the Zipf’s law (20). In this situation, on one hand, small-step
lengths remain more probable, allowing the walker to take
many steps before reaching the boundary x = L. On the other
hand, the assumptions of the CLT are not satisfied because as
L → ∞, the variance of (20) also tends to ∞, leading to an
expectation of anomalous behavior in fluctuations.

In Fig. 7(a), we present a log-log plot illustrating the scal-
ing behavior of the standard deviation of the coverage fraction
(σθ ) with respect to the system size (L). In Fig. 7(b), the influ-
ence of the maximum step length rmax on the scale exponent
of fluctuations ν is presented. It can be observed that when
rmax = L, the number of steps required to halt the stochastic
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FIG. 7. (a) Log-log plot of the standard deviation of the coverage
fraction σθ (L) with respect to the system size L for different values
of α and for a fixed vale of k = 10. (b) Scale exponent ν of the
fluctuations (standard deviation) as a function of the exponent α,
considering cases where rmax = 10 � L and rmax = L.

process (14) is very small, specifically N < N+, placing the
system in the anomalous region where Levy-type fluctuations
dominate, leading to the breakdown of universality. Note in
Fig. 7 that for α = 1.5 and α > 4, ν = 2, and ν attains its
maximum value when α = 2.

IV. CONCLUSIONS

The significance of advancing the understanding of the
RSA model with correlated defects cannot be underestimated.
In addition to its general intrinsic theoretical interest for sta-
tistical physics and for the vast universe of Lévy statistics,
in particular, a correct explanation of this model enables
improvements in applications across various branches of tech-
nology. This is achieved by designing a well-structured defect
landscape, allowing the enhancement of specific properties in
a material for customized uses.

In this study, we explored the RSA model with corre-
lated defects with uniform and power law spatial distributions
through the introduction of a method that is more general than
the traditional approach based on master equations dynamics.
This method allowed us to elucidate the scaling behavior of
fluctuations of coverage fraction from a simple perspective,
relying on the CLT. This approach adds new insights into
phenomenon of universality breaking raised in [21]. It can be
concluded that any stochastic process of defect placement that
adheres to the assumptions of the CLT will exhibit conven-
tional fluctuations with a scale exponent ν = 2. Conversely,
if the process does not satisfy these assumptions, the fluctua-
tions will be of the Lévy type, that is, ν �= 2 and depending on
the microscopic details of the model.
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[8] M. Cieśla, G. Paja, and R. M. Ziff, Shapes for maximal cov-
erage for two-dimensional random sequential adsorption, Phys.
Chem. Chem. Phys. 17, 24376 (2015).

[9] W. Kasperek, P. Kubala, and M. Cieśla, Random sequential
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