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Characterizing the conditions for indefinite growth in open chemical reaction networks
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The thermodynamic and dynamical conditions necessary to observe indefinite growth in homogeneous open
chemical reaction networks (CRNs) satisfying mass action kinetics are presented in Srinivas et al. [Phys. Rev.
Lett. 132, 268001 (2024)]. Unimolecular CRNs can accumulate only equilibrium concentrations of species
while multimolecular CRNs are needed to produce indefinite growth with nonequilibrium concentrations.
Within multimolecular CRNs, pseudo-unimolecular CRNs produce nonequilibrium concentrations with zero
efficiencies. Nonequilibrium growth with efficiencies greater than zero requires dynamically nonlinear CRNs.
In this paper, we provide a detailed analysis supporting these results. Mathematical proofs are provided for
growth in unimolecular and pseudo-unimolecular CRNs. For multimolecular CRNs, four models displaying
very distinctive topological properties are extensively studied, both numerically and partly analytically.
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I. INTRODUCTION

Open chemical reaction networks (CRNs) are known to ex-
hibit rich dynamical behaviors such as nonequilibrium steady
states [1], chemical oscillations [2], chaotic dynamics [3],
kinetic noninvertibility [4], patterns [5–7], and waves [8,9].
Recent progress in nonequilibrium thermodynamics of open
CRNs [10–16] nowadays allows one to characterize the ener-
getics of these complex dynamics. In this work, we study the
dynamics and energetics of indefinite chemical growth in open
CRNs: an indefinite increase in the concentrations of species.
Understanding under which conditions open CRNs can grow
by extracting matter and energy from the surroundings is
an important question with direct relevance for bioenergetics
[17–19] but also for the emergence of chemical complex-
ity and life itself [20–22]. The literature on this topic has
focused on the dynamics of CRNs made of irreversible reac-
tions which prevent a consistent thermodynamics description
[23–28]. Recently, it was proven numerically that under cer-
tain chemosttating conditions, fully reversible open CRNs can
undergo growth [16]. Building on this work, in a companion
paper [29], we argued that growth needs an influx of species
into the system at a constant rate and that growth with the
accumulation of nonequilibrium concentrations of species is
possible only in open multimolecular CRNs. In this paper, we
not only provide extensive analytical and numerical support
for these results in a self-contained way, but we also extend
their scope by both considering additional multimolecular
CRNs and deriving semianalytical results characterizing the
dynamics and thermodynamics of growth in multimolecular
CRNs by means of timescale separation techniques.
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The plan of the paper is as follows. In Sec. II we define
the dynamics and thermodynamics of open CRNs, as well
as different chemostatting mechanisms (resp. concentration,
flux and mixed control) and indefinite growth. In Sec. III
we consider unimolecular CRNs. We prove that they grow
only under flux control and that their concentrations always
remain close to equilibrium values, implying a vanishing
dissipation and an optimal efficiency of growth tending to
one. In Sec. IV we turn to pseudo-unimolecular CRNs, i.e.,
a subclass of multimolecular CRNs displaying linear dynam-
ics. We find that similarly to unimolecular CRNs, they can
grow only under flux control, but unlike them, concentra-
tions can be far from equilibrium. As a result, the dissipation
scales extensively in time, and the efficiency of growth goes
to zero. In Sec. V we consider four multimolecular CRNs
displaying nonlinear dynamics. Each of them has different
topological properties and is studied (numerically and partly
analytically) under the three chemosttating procedures. We
find that growing multimolecular CRNs can show striking
differences in the growth dynamics compared to unimolecular
and pseudo-unimolecular CRNs. Their growing concentra-
tions scale nonlinearly with time, and growth regimes depend
on their initial concentrations. Furthermore, we find that
multimolecular CRNs can grow with nonequilibrium con-
centrations under flux control and mixed control with an
efficiency strictly between zero and one. Conclusions are
drawn in Sec. VI.

II. CHEMICAL REACTION NETWORKS

A. Dynamics

We consider CRNs in ideal dilute solutions. The chemical
species, labeled α ∈ Z , are interconverted via elementary [30],
reversible, mass-balanced chemical reactions ρ of the form

ν+ρ · α
+ρ−⇀↽−−ρ

ν−ρ · α. (1)
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Here α = (. . . , α, . . . )T and ν+ρ = (. . . , να,+ρ, . . . )T [resp.
ν−ρ = (. . . , να,−ρ, . . . )T] is the vector collecting the stoichio-
metric coefficients of the forward +ρ (resp. backward −ρ)
reaction. The topology of CRNs is encoded in the stoichiomet-
ric matrix S whose columns are given by Sρ = ν−ρ − ν+ρ .

We consider open CRNs: some species are chemostatted,
namely, they are exchanged with the surroundings. Hence, the
concentrations of the chemical species z = (. . . , [α], . . . )T

evolve according to the following rate equation:

dt z = S j(z) + I(z). (2)

The vector I(z) = (. . . , Iα, . . . ) accounts for the chemostat-
ting procedure by collecting the net fluxes (influx minus
outflux) of each species α between the CRN and the surround-
ings; S j(z) accounts for the change of concentrations due to
the chemical reactions. The vector j(z) = (. . . , jρ (z), . . . )T

collects the reaction currents, which are given by the differ-
ence between the forward and the backward fluxes, jρ (z) =
j+ρ (z) − j−ρ (z), satisfying mass action kinetics:

j±ρ (z) = k±ρ

∏
α∈Z

[α]να,±ρ ≡ k±ρzν±ρ , (3)

where we introduce the notation ab = �ia
bi
i . We can partition

the set of species Z into the disjoint subsets of internal X
and chemostatted species Y whose concentrations are given
by x and y, respectively. By definition, the concentrations of
the internal species change only due to the reactions, while
the concentrations of chemostatted species change due to the
reactions and the chemostatting procedure. By applying the
same splitting to the stoichiometric matrix

S =
(
SX

SY

)
, (4)

the rate equation (2) can be rewritten as

dt x = SX j(z), (5)

dt y = SY j(z) + IY (z), (6)

where the vector IY (z) is the restriction of the vector I(z)
to the set of chemostatted species Y . We consider three
chemostatting procedures: flux control, mixed control, and
concentration control. Under flux control, the influx/outflux
of species is constant,

IY (z) = Ĩ. (7)

This can be achieved, for instance, with enzyme-mediated
exchange reactions whose net rate is a constant in the limit of
large concentrations of substrate [31]. Under mixed control,
the influx is constant, while the outflux is proportional to the
concentration,

IY (z) = −D̃y + Ĩ, (8)

where the matrix D̃, called the extraction matrix, is a diagonal
matrix with entries being the extraction rates {ke

α} with α ∈ Y
and Ĩ � 0. This can be achieved, for instance, in continuous
flow stirred tank reactors (CSTR) [32,33] and in continuous
culture setups [34]. Under concentration control, the concen-
tration of the Y species is held constant, implying

IY (z) = −SY j(z). (9)

This can be achieved by using, for instance, batch control [35]
or large concentrations of the Y species such that any effect of
the reactions is negligible.

Steady state. Note that the rate equation (2) can admit
two kinds of steady states: equilibrium steady states zeq that
satisfy j(zeq) = 0 and nonequilibrium steady states zss that
satisfy j(zss) �= 0, but SX j(zss ) = 0 and SY j(zss) + IY (zss) =
0. Closed CRNs always relax towards an equilibrium steady
state. Open CRNs, if they relax towards a steady state, gener-
ally reach a nonequilibrium steady state.

Coarse-grained dynamics. When a timescale separation
arises between the dynamics of the concentrations of the in-
ternal species x and the dynamics of chemostatted species y,
the former quickly relax to a steady state xss(y) (if it exists)
determined by y. The reaction currents are then given by

j̄(y) ≡ j(xss(y), y), (10)

namely, the steady-state current of Eq. (5): SX j̄(y) = 0. Equa-
tion (6) can then be coarse-grained [36,37] into a closed
dynamical equation for the chemostatted species:

dt y = SY j̄(y) + IY (y). (11)

In Sec. V we will make use of this timescale separation in
growing multimolecular CRNs and compare the solutions of
the rate equation (6), y(t ), with that of the coarse-grained rate
equation (11), ycg(t ).

B. Conservation laws

The linearly independent left null eigenvectors of the sto-
ichiometric matrix, �λ · S = 0, are called conservation laws:
they identify parts of (or entire) molecules, called moieties,
that are preserved by the reactions. Indeed, their concentra-
tions, defined as Lλ = �λ · z, would be conserved if CRNs
were closed, i.e., dt Lλ = �λ · dt z = 0 [using Eq. (2) with
I(z) = 0]. Since we consider CRNs with all mass-balanced
chemical reactions, there is always a conservation law, called
the mass conservation law and denoted �m, which involves all
the species: �m = (. . . , 	m

α , . . . ) with 	m
α � 1. The correspond-

ing concentration,

Lm = �m · z, (12)

is the mass density. In open CRNs, some moieties are
exchanged with the surroundings, and their corresponding
concentrations are not conserved anymore:

dt L
λ =

∑
α∈Y

	λ
α Iα �= 0, (13)

where we used Eq. (2) and the definition of conservation laws.
This happens when 	λ

α �= 0 for at least one α ∈ Y . The corre-
sponding conservation laws are said to be broken and labeled
{�λb} hereafter. In open CRNs, the mass conservation law is
always broken. On the other hand, the concentrations of some
moieties might still be conserved, dt Lλ = 0, which happens
when 	λ

α = 0 for all α ∈ Y . The corresponding conservation
laws are said to be unbroken and labeled {�λu} hereafter.

Note that the representation (or set) of the conservation
laws {�λ} is not unique. Different representations identify
different moieties.
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C. Thermodynamics

The theory of nonequilibrium thermodynamics of CRNs
is based on two assumptions. First, all the degrees of free-
dom, except for the concentrations, are at equilibrium [13,15]
(the temperature T is set by the solvent, and the solution is
assumed incompressible). Thus, all the thermodynamic quan-
tities have the same form as in equilibrium thermodynamics
but are evaluated at nonequilibrium concentrations. The (vec-
tor of) chemical potentials, μ = (. . . , μα, . . . )T, reads

μ = μ0 + RT ln(z), (14)

where μ0 = (. . . , μ0
α, . . . )T is the vector of standard chemical

potentials and ln(z) = (. . . , ln([α]), . . . )T. Second, the local
detailed balance assumption establishes a correspondence be-
tween dynamics and thermodynamics according to

RT ln

(
k+ρ

k−ρ

)
= −μ0 · Sρ. (15)

In this framework, the second law reads [13]

T 
̇ = ẇc − dt G � 0. (16)

Here G(z) is the Gibbs free energy

G(z) = μ · z − RT ||z||, (17)

where || • || denotes the 1-norm of a vector, and hence ||z|| =∑
α∈Z [α]. 
̇ is the entropy production rate (EPR),

T 
̇ = −μ · S j(z) = RT
∑

ρ

jρ (z) ln

(
j+ρ (z)

j−ρ (z)

)
� 0, (18)

quantifying the dissipated free energy, and ẇc is the chemical
work rate,

ẇc =
∑
α∈Y

μαIα, (19)

accounting for the free energy supplied from the surroundings
via the chemostats.

In this paper we exploit the decomposition of the chemical
work rate into two contributions: the moiety work rate ẇm

quantifying the energetic cost supplied to change the con-
centrations of the exchanged moieties in the CRN, and the
nonconservative work rate ẇnc accounting for the energetic
cost to drive currents across the CRN. This splitting is ob-
tained by first recognizing that chemostatting a species does
not always break a conservation law [12,13,15]. Thus, we
divide the set of chemostatted species Y into the set of species
Yp ⊆ Y that break conservation laws, called potential species,
and the remaining species Yf = Y \ Yp, called force species.
With this identification, we can associate a moiety to a single
Yp species so that the moiety work rate has the form

ẇm = μYp
· dt m, (20)

where μYp
is the vector of chemical potentials of the Yp species

and m is the concentration vector of the corresponding ex-
changed moieties. The latter is given by

m = (
Lb

Yp

)−1
Lbz, (21)

where we introduce the matrix Lb whose rows are the broken
conservation laws and the matrix Lb

Yp
that is the (invertible)

submatrix of Lb with only the columns corresponding to the
Yp species. Indeed, m quantifies the concentration of the moi-
eties defined by a specific representation of the conservation
laws where Lb

Yp
is the identity matrix, namely, a represen-

tation where each potential species carries only one specific
moiety [16].

On the other hand, the force species carry moieties that are
already carried by the potential species. This leads to an en-
ergetic cost for chemostatting different species that carry the
same moiety [15,16] which is captured by the nonconservative
work rate ẇnc = ẇc − ẇm,

ẇnc = (
μY − μYp

(
Lb

Yp

)−1
Lb

Y

) · IY ≡ FY · IY , (22)

where we used Eqs. (19), (20), and (21). We emphasize that,
although the summation in Eq. (22) is over all the Y species,
since the submatrix of (Lb

Yp
)
−1
Lb

Y for the Yp species is the
identity matrix, the entries of the vector FY (also called non-
conservative force) are zero for all the potential species Yp.
Thus, ẇnc = 0 if only the potential species were chemostatted.
However, the entries of the vector FY for the force species Yf

are given by the differences between the chemical potentials
of species carrying the same moiety and thus ẇnc �= 0 when
the force species are chemostatted.

By combining Eq. (20) and (22) with (16), the second law
becomes

T 
̇ = ẇnc + ẇm − dt G � 0. (23)

Note that, in closed CRNs, ẇc = ẇm = ẇnc = 0, implying
dt G = −T 
̇ � 0. Thus, the Gibbs free energy monotonously
decreases and can be shown to act as a Lyapunov function
[13]. At equilibrium, dt G = T 
̇ = 0. In open CRNs, at a
nonequilibrium steady state, the terms dt G and ẇm in Eq. (23)
vanish as they contain total time derivatives while the constant
EPR is balanced by the nonconservative work rate, T 
̇ =
ẇnc > 0.

D. Growth

We define growth as a limiting state of CRNs with un-
bounded concentrations: limt→∞ ‖z(t ) − z(0)‖ = ∞. When
CRNs grow, also the mass density Lm in Eq. (12) and the
Gibbs free energy G(z) in Eq. (17) are unbounded by def-
inition. The converse is also true. If the mass density Lm

and the Gibbs free energy G(z) are unbounded, then there
is at least one species whose concentration is unbounded.
Indeed, if all the concentrations are bounded from above by
some constant M, [α](t ) � M ∀α, then Lm(t ) � |Z|M and
G(z)/RT � CM ln(M ), where |Z| is the number of species
and C is a constant.

We are now in the position to make three general state-
ments about growth for any CRN based on the chemostatting
procedure.

First, closed CRNs cannot grow since the mass density is
conserved.

Second, we consider CRNs under mixed control such that
the extraction rates of all species are finite while the constant
influx Ĩ is arbitrary and may act only on a subset of species.
Continuous-flow Stirred Tank Reactors (CSTR) constitute a
special case where all extraction rates are the same [33,38].
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Then

dt L
m = −�m · D̃z + �m · Ĩ,

= −
∑
α∈Z

ke
α	m

α [α] +
∑
β∈Z

	m
β Ĩβ,

(24)

where we used Eqs. (13) and (8). Let ke be the smallest
extraction rate, then

dt L
m � −keLm + �m · Ĩ, (25)

which implies

Lm(t ) � Lm(0)e−ket + (�m · Ĩ)
(1 − e−ket )

ke
. (26)

Thus, the mass density is bounded in time.
Third, flux control always leads to growth when �m

Y · Ĩ > 0,
namely, when the net influx of species is larger than the net
outflux. Indeed, the evolution equation for the mass density
becomes dt Lm = �m

Y · Ĩ, which leads to the divergence of the
mass density linearly in time. Consequently, the concentra-
tions can grow at most linearly in time.

III. UNIMOLECULAR CRNS

CRNs are said to be unimolecular when they are exclu-
sively composed of reactions of the form α −⇀↽− β. Each vector
ν+ρ (resp. ν−ρ) in Eq. (1) has only one nonzero entry, which
is equal to +1, corresponding to the reactant (resp. product)
of reaction ρ. Unimolecular CRNs can thus be represented
as graphs by mapping species into nodes and reactions into
edges. Without loss of generality, we assume that the graphs
have a single connected component. Physically, this means
that for any two species α and β, there is a sequence of re-
actions connecting them. This assumption is not restrictive as
different components correspond to independent unimolecular
CRNs. The stoichiometric matrix S becomes the incidence
matrix of the graph and admits only one conservation law, or
equivalently one moiety, namely, the mass conservation law
�m with 	m

α = 1 ∀α ∈ Z .

A. Dynamics of closed unimolecular CRNs

For unimolecular CRNs, mass action kinetics [Eq. (3)]
implies that the reaction currents are linear functions of the
concentrations, j(z) = �z, where the entries of the matrix �

are of the form

�ρ,α =
⎧⎨
⎩

k+ρ if να,+ρ = 1
−k−ρ if να,−ρ = 1
0 else

. (27)

Thus, for closed unimolecular CRNs, Eq. (2) becomes

dt z = W z, (28)

with W = S� being an irreducible rate matrix [39]. Indeed,
the off-diagonal elements of W read

Wα,β =
∑

ρ

W (ρ)
α,β

=
∑

ρ

⎧⎨
⎩

k+ρ if να,−ρ = 1 and νβ,+ρ = 1
k−ρ if να,+ρ = 1 and νβ,−ρ = 1
0 else

, (29)

where we accounted for (possibly) multiple reactions inter-
converting the same species, while the diagonal elements are
given by

Wα,α = −
∑
β �=α

Wβ,α. (30)

From the Perron-Frobenius theorem [39,40], W admits one
zero eigenvalue while all the other eigenvalues have negative
real parts. Because of the local detailed balance condition
Eq. (15), all {W (ρ)} matrices, and consequently W too, are
detailed balanced: the eigenvector corresponding to the zero
eigenvalue πeq = (. . . , π eq

α , . . . )T satisfies

Wα,βπ
eq
β = Wβ,απ eq

α (31)

and must be of the form

πeq = exp
(− μ0

RT

)
∑

α∈Z exp −μ0
α

RT

. (32)

The equilibrium steady state of Eq. (28) can be written as

zeq = Lm(0)πeq = (. . . , [α]eq(Lm(0)), . . . )T, (33)

since the mass density is a conserved moiety, where we also
introduced the function [α]eq(Lm(0)) ≡ Lm(0)π eq

α to stress
that the equilibrium concentration [α]eq is a function of the
mass density Lm(0).

B. Dynamics of open unimolecular CRNs

For open unimolecular CRNs under any chemostatting pro-
cedure, Eq. (2) can be recast in the form

dt a = Va + Īa, (34)

where a is the vector of the dynamical variables, V is an
appropriately chosen (real) matrix, and Īa is a constant vector.
For the case of flux (resp. mixed) control, Eq. (34) follows
from Eq. (7) [resp. Eq. (8)] along with mapping the vector
of concentrations z into a, the detailed balanced rate matrix
W (resp. the matrix difference W − D) into V and Ĩ into Īa.
Here, the matrix D has elements Dα,α′ = δα,α′ke

α if α, α′ ∈ Y
and zero otherwise. To show that Eq. (34) can also represent
concentration control [defined in (9)], we write Eqs. (5) and
(6) for the internal species and chemostatted species as

dt x = WXX x + WXY y, (35)

dt y = WY X x + WYY y + IY (x, y) = 0, (36)

where the matrices {WXX ,WXY ,WY X ,WYY } result from ap-
plying the splitting Z = X ∪ Y to W . Since the concentrations
y are constant, only the concentrations x are dynamical vari-
ables. By introducing the new detailed-balanced rate matrix
Ŵ with off-diagonal entries

Ŵα,β = Wα,β, (37)

with α, β ∈ X and diagonal entries Ŵα,α = −∑
β∈X Ŵβ,α ,

the rate equation (35) becomes

dt x = Ŵ x − Dx + Ī, (38)
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with the diagonal matrix D and constant vector Ī given by

D = Ŵ − WXX , (39)

Ī = WXY y. (40)

We further assume without loss of generality that Ŵ is ir-
reducible [if not, different blocks of Ŵ would decouple in
Eq. (38) and evolve independently]. Finally, by mapping x
into a, Ŵ − D into V and Ī into Īa, Eq. (38) takes the form
of Eq. (34).

C. No growth under mixed and concentration control

The dynamics of open unimolecular CRNs under mixed
control (resp. concentration control) is given by Eq. (34) with
V = W − D (resp. Ŵ − D), a = z (resp. a = x) and Īa = Ĩ
(resp. Īa = Ī). In this case, we prove in Appendix A that all the
eigenvalues of the matrix V have negative real parts, which
also implies that V is invertible. Then, at long times, a(t )
relaxes to the steady state −V−1Īa, as shown in Appendix B 1.
We thus conclude that unimolecular CRNs, under mixed or
concentration control, cannot grow.

D. Growth under flux control

1. Dynamics

The dynamics of open unimolecular CRNs under flux con-
trol is given by Eq. (34) with V = W , a = z, and Īa = Ĩ. We
solve Eq. (34) in the basis of eigenvectors of W (as detailed
balanced rate matrices are diagonalizable [39]) by introducing
the invertible matrix of eigenvectors P such that

P−1WP = �, (41)

where �α,β = δα,βλα with δα,β being the Kronecker delta and
{λα} being the eigenvalues of W . From the Perron-Frobenius
theorem [40], W has a unique zero eigenvalue, λ1 = 0 and
the other eigenvalues satisfy λα < 0 for α �= 1. Furthermore,
Pα,1 = π

eq
α [given in Eq. (32)], and P−1

1,α = 1. Then, by defin-
ing the vector u = P−1z, Eq. (34) becomes

dt u = �u + P−1Ĩ, (42)

whose solution componentwise reads

u1(t ) = Lm(t ) = Lm(0) +
(∑

α∈Z

Ĩα

)
t, (43)

uα (t ) = uα (0)eλαt +
(

(P−1Ĩ)α
−λα

)
(1 − eλαt ). (44)

Hence, the concentrations z = Pu in the long-time limit read

[α](t ) = Pα,1Lm(t ) +
∑
β>1

Pα,β

(
(P−1Ĩ)β

−λβ

)
, (45a)

= π eq
α Lm(t ) + cα (Ĩ), (45b)

where we collected all the time-independent contributions into
cα (Ĩ), and used Eq. (33) to identify π

eq
α Lm(t ) as the equilib-

rium concentration [α]eq(Lm(t )) of the corresponding closed
CRN with mass density Lm(t ). Equations (43) and (33) show

that the mass density, as well as the equilibrium concentra-
tions [α]eq(Lm(t )), grow linearly in time. This, together with
Eq. (45b), implies that also the instantaneous concentrations
[α](t ) grow linearly in time. Indeed, the relative (resp. ab-
solute) difference between [α](t ) and [α]eq(Lm(t )) decreases
in time (resp. is constant). Thus, we call this type of growth
equilibrium growth.

We now examine the reaction currents of equilibrium

growth. Let us denote the current of the reaction β
+ρ−⇀↽− α as

jρ . Then, by using Eqs. (45b) and (31), in the long-time limit,
the current reads

jρ (t ) = W (ρ)
α,β [β](t ) − W (ρ)

β,α[α](t )

= W (ρ)
α,βcβ (Ĩ) − W (ρ)

β,αcα (Ĩ) ≡ Jρ. (46)

Notice that while the concentrations grow linearly in time
close to their equilibrium value, the reaction currents become
constant and do not vanish because the difference cα (Ĩ) =
[α](t ) − [α]eq(Lm(t )) is constant.

2. Thermodynamics

We now analyze the energetics of equilibrium growth at
long times using the two formulations of the second laws
given in Eqs. (16) and (23), respectively. We start by consid-
ering the chemical potentials. By using Eqs. (45b) and (32) in
Eq. (14), the chemical potentials read

μα (t ) = RT ln(Lm(t )) − RT ln

⎛
⎝∑

β∈Z

e
−μ0

β

RT

⎞
⎠

+ RT ln

(
1 + cα

π
eq
α Lm(t )

)
, (47)

which grows logarithmically in time. This allows us to write
the vector of chemical potentials as

μ =
⎡
⎣RT ln(Lm(t )) − RT ln

⎛
⎝∑

β∈Z

e
−μ0

β

RT

⎞
⎠
⎤
⎦�m

+ RT
1

Lm(t )

(
c

πeq

)
, (48)

by using ln(1 + x) ≈ x for x  1 and introducing the vector
c/πeq = (. . . , cα/π

eq
α , . . . )T. Thus, by plugging Eq. (48) and

Eq. (46) into Eq. (18) and using �m · S = 0, the EPR becomes

T 
̇ = −RT

(
c

πeq
· SJ

)
1

Lm(t )
= O(t−1), (49)

with J ≡ ( . . . , Jρ, . . . )
T
. Physically, Eq. (49) shows a mono-

tonic decay of the EPR in time, which results from the
decreasing relative difference between the instantaneous
concentrations [α](t ) and the equilibrium concentrations
[α]eq(Lm(t )) [see Eq. (45b)]. On the other hand, by using
Eq. (48) in Eq. (19) and Eq. (17), the chemical work rate and
the rate of change of the Gibbs free energy can be expressed
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using �m · dt z = �m · Ĩ as

ẇc =
⎡
⎣RT ln(Lm(t )) − RT ln

⎛
⎝∑

β∈Z

e
−μ0

β

RT

⎞
⎠
⎤
⎦(�m · Ĩ)

+ RT
( c
πeq

· Ĩ
) 1

Lm(t )
= O(ln(t )), (50)

dt G =
⎡
⎣RT ln(Lm(t )) − RT ln

⎛
⎝∑

β∈Z

e
−μ0

β

RT

⎞
⎠
⎤
⎦(�m · Ĩ)

+ RT

(
c

πeq
· dt z

)
1

Lm(t )
= O(ln(t )), (51)

showing a logarithmic increase in the long-time limit. Note
that the EPR in Eq. (49), the chemical work in Eq. (50), and
the time derivative of the Gibbs free energy in Eq. (51) satisfy
the second law (16). Indeed,

ẇc − dt G = RT

(
c

πeq
· (Ĩ − dt z)

)
1

Lm(t )
= T 
̇. (52)

This physically means that the chemical work is fully con-
verted into the Gibbs free energy in the long-time limit when
the EPR vanishes. Thus, the efficiency of growth, defined in
analogy with Ref. [41] as the ratio between the free energy
stored in the system and the chemical work,

η = dt G

ẇc
, (53)

goes to one in the long-time limit, and therefore equilibrium
growth becomes a thermodynamically reversible process.

We now turn to the formulation of the second law given
in Eq. (23). Since unimolecular CRNs have only one moi-
ety, namely, the mass density, they admit only one potential
species (hereafter labeled p). Therefore, the moiety work rate
(20) and the nonconservative work rate (22) become

ẇm =
[

RT ln(Lm(t )) − RT ln

⎛
⎝∑

β∈Z

e
−μ0

β

RT

⎞
⎠]

(�m · Ĩ)

+ RT
cp

π
eq
p Lm(t )

(�m · Ĩ) = O(ln(t )), (54)

ẇnc = RT

[∑
α∈Y

(
cα

π
eq
α

− cp

π
eq
p

)
Ĩα

]
1

Lm(t )
= O(t−1), (55)

where we used Eq. (48) together with the fact that Lb
Yp

in
Eq. (21) is the scalar 1.

This allows us to stress two main points. First, the differ-
ence between ẇm − dt G [obtained using Eqs. (54) and (51)]
is of order O(t−1) implying that all the moiety work done to
change the mass density is stored in the Gibbs free energy
in the long-time limit. In the same limit, ẇm and dt G grow
logarithmically in time:

dt G ∼ ẇm = O(ln(t )). (56)

Second, the nonconservative work rate (55), namely, the
amount of free energy spent to keep CRNs out of equilibrium,
decreases in time at the same rate as the EPR (49):

T 
̇ ∼ ẇnc = O(t−1), (57)

in agreement with the interpretation of this process as equilib-
rium growth.

E. Summary

From a dynamical standpoint, growth in open unimolecular
CRNs can occur only under flux control. In this case, the mass
density increases linearly in time; the instantaneous concen-
trations approach the equilibrium steady-state concentrations
defined by the growing mass density [see Eq. (45b)]; all con-
centrations scale linearly in time.

From a thermodynamic standpoint, the work done in in-
creasing the mass density and the change in free energy scale
similarly in time [see Eq. (56)], while the EPR as well as
the nonconservative work monotonically decay [see Eq. (57)].
Thus, the efficiency of growth (53) goes to one at long
times, implying that growth is a thermodynamically reversible
process.

IV. PSEUDO-UNIMOLECULAR CRNS

Open CRNs are here said to be pseudo-unimolecular when
two conditions are satisfied. First, the set of species Z can be
divided into the subsets Z = Zl ∪ Yh such that every reaction
is of the form

α +
∑
γ∈Yh

γ νγ ,+ρ

+ρ−⇀↽−−ρ
β +

∑
γ∈Yh

γ νγ ,−ρ, (58)

for some α and β in Zl . Second, the species Yh undergo
concentration control while the Zl species can be internal or
chemostatted.

From a topological standpoint, pseudo-unimolecular CRNs
can be represented as graphs (like unimolecular CRNs) by
mapping only the Zl species into nodes and reactions into
edges. The corresponding incidence matrix is given by the
substoiochiometric matrix Sl obtained by applying the split-
ting Z = Zl ∪ Yh to S, i.e., S = (Sl ,Sh)T. Notice that this
implies that (1) pseudo-unimolecular CRNs always admit the
conservation law �ml with 	ml

α = 1 for α ∈ Zl and 	ml
α = 0

for α ∈ Yh, representing the mass conservation law for the
Zl species, and (2) �ml is the only conservation law with null
entries for the Yh species. Thus, the matrix L whose rows are
the conservation laws can always be written as

L =
(

�ml

L̃

)
=

( Zl Yh

�ml
l 0

L̃l L̃h

)
. (59)

Note that there is at least one conservation law involving the
Yh species, i.e., the mass conservation law of the whole CRN.
Furthermore, the conservation laws involving the Yh species
are always broken since the Yh species undergo concentration
control.

From a dynamical standpoint, mass action kinetics (3)
implies that the reaction currents are linear functions of
the concentrations zl = (. . . , [α], . . . )T

α∈Zl
since the constant

concentrations yh = (. . . , [α], . . . )T
α∈Yh

can be absorbed (i.e.,
hidden) in the kinetic constants. Indeed, the reaction currents
j can be written as j = �zl with the yh-dependent entries of
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the matrix � reading

�ρ,α =

⎧⎪⎪⎨
⎪⎪⎩

k̄+ρ ≡ k+ρ

∏
β∈Yh

[β]νβ,+ρ if να,+ρ = 1,

−k̄−ρ ≡ −k−ρ

∏
β∈Yh

[β]νβ,−ρ if να,−ρ = 1,

0 else.

(60)

We thus call the species Zl and Yh dynamically linear and
hidden, respectively.

A. Pseudo-closed setup

When all the Zl species are internal, the rate equation (2)
for the concentrations zl becomes

dt zl = W zl , (61)

where W ≡ Sl� is an irreducible rate matrix whose off-
diagonal elements are given by Eq. (29) after replacing the
kinetic constants {k±ρ} with {k̄±ρ} defined in Eq. (60). Since
Eq. (61) is similar to the rate equation (28) of closed uni-
molecular CRNs, we call this setup pseudo-closed. However,
W in Eq. (61) is, in general, nondetailed balanced due to
the contribution of the hidden species in {k̄±ρ} unlike W in
Eq. (28). We consider hereafter only nondetailed balanced rate
matrices W as the case of detail balanced rate matrices W is
mathematically equivalent to unimolecular CRNs and is thus
already examined in Sec. III A.

Equation (61) together with the Perron-Frobenius theorem
[40] implies that zl always reaches a steady state (as W
admits one zero eigenvalue while all the other eigenvalues
have negative real parts) and, therefore, pseudo-unimolecular
CRNs in the pseudo-closed setup cannot grow. By denoting
the eigenvector of W corresponding to the zero eigenvalue by
π = (. . . , πα, . . . )T

α∈Zl
, the steady state of Eq. (61) reads

zss
l = Lml (0)π = (. . . , [α]ss(Lml (0)), . . . )T, (62)

with Lml (0) = �ml
l · zl . Unlike zeq in Eq. (33), zss

l is a nonequi-
librium steady state since W is not detailed balanced. The
corresponding steady-state reaction currents, labeled jss

ρ for
the ρ reaction interconverting β into α, are given by

jss
ρ = W (ρ)

α,β [β]ss − W (ρ)
β,α[α]ss = Lml (0) j̄ρ, (63)

where we used Eq. (62) and defined j̄ρ ≡ W (ρ)
α,βπβ − W (ρ)

β,απα .
We now briefly discuss the thermodynamics of the

nonequilibrium steady state zss in Eq. (62) as it will be
also used in Sec. IV B. By plugging Eq. (63) in Eq. (18)
and using Sl jss = W zss

l = 0 [with jss = (. . . , jss
ρ , . . . )T =

Lml (0) j̄], the steady-state EPR reads

T 
̇ss = −Lml (0)μhS
h j̄, (64)

where μh is the vector of chemical potentials of the hid-
den species. By identifying the potential hidden species Yph

and the force hidden species Yf h (as explained in general
in Sec. II C), and by applying this splitting to the matrix of
broken conservation laws in Eq. (59), L̃ = (L̃l , L̃ f h, L̃ph),
and to the vector of chemical potentials, μh = (μ f h,μph)T,
the nonconservative work rate (22) reads

ẇss
nc = −Lml (0)(μh − μph(L̃ph)−1L̃h) · (Sh j̄)

= −Lml (0) (Fh · Sh j̄), (65)

where we also used IYh = −Lml (0)Sh j̄ and Eq. (63). Equa-
tion (65) defines the nonconservative forces Fh. Finally, note
that ẇss

nc = T 
̇ss in agreement with the second law (23) (this
can be directly verified by using L̃h · Sh j̄ = −L̃l · Sl j̄ = 0),
which implies that Fh · Sh j̄ = μhS

h j̄.

B. Fully open setup

We now consider the case where some of the Zl species
are chemostatted. The set Zl splits into the internal Xl and
chemostatted Yl dynamically linear species.

From a topological standpoint, chemostatting the Zl

species breaks the conservation law �ml . Thus, the set of
potential Yp (resp. force Yf ) species includes both dynam-
ically linear and hidden species, i.e., Yp = Ypl ∪ Yph (resp.
Yf = Yf l ∪ Yf h). The corresponding broken conservation laws
and moieties are derived in Appendix C.

1. Dynamics

The rate equation (61) for fully open pseudo-unimolecular
CRNs under any chemostatting procedure can be written in
the form of Eq. (34). For flux control (resp. mixed control),
Eq. (34) follows from the definition in Eq. (7) [resp. Eq. (8)],
and by mapping the vector of dynamically linear concentra-
tions zl into a, the nondetailed balanced rate matrix W (resp.
the matrix difference W − D) into V , and Ĩ into Īa.

Furthermore, by following the same reasoning as in
Sec. III B, Eq. (34) can also represent concentration control
by mapping x into a, Ŵ − D into V , and Ī into Īa. We
emphasize that the key difference between the dynamics (and
thermodynamics) of open unimolecular CRNs and fully open
pseudo-unimolecular CRNs is that the matrices W and Ŵ are
detailed balanced in the former case and nondetailed balanced
in the latter case [see the discussion below Eq. (61)].

2. No growth under mixed and concentration control

The dynamics of fully open pseudo-unimolecular CRNs
under mixed control (resp. concentration control) is given by
Eq. (34) with V = W − D (resp. V =Ŵ − D), a = zl (resp.
a = xl ), and Īa = Ĩ (resp. Īa = Ī). According to Appendix A,
all the eigenvalues of V have negative real parts and V is
invertible. Thus, in the long-time limit, the vector a(t ) relaxes
to the steady state −V−1Īa (see Appendix B 1) implying that
open pseudo-unimolecular CRNs do not grow if the dynam-
ically linear species are chemostatted via mixed control or
concentration control, similarly to unimolecular CRNs under
mixed and concentration control (see Sec. III C).

3. Growth under flux control

The dynamics of fully open pseudo-unimolecular CRNs
under flux control is given by Eq. (34) with V = W , a =
z, and Īa = Ĩ. We assume here for simplicity that W is
diagonalizable, but the same dynamic and thermodynamic
behavior emerges even for nondiagonalizable W as shown
in Appendix B 2. By exactly following the same approach
as in Sec. III D 1, we obtain that the mass density of the
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dynamically linear species Lml (t ) reads

Lml (t ) = Lml (0) +
⎛
⎝∑

α∈Zl

Ĩα

⎞
⎠t, (66)

which is of the form of Eq. (43), and that the concentrations
in the long-time limit read

[α](t ) = Pα,1Lml (t ) +
∑
β>1

Pα,β

(
(P−1Ĩ)β

−λβ

)
, (67a)

= παLml (t ) + cα (Ĩ), (67b)

where P is the invertible matrix of eigenvectors of W writ-
ten by ordering the eigenvalues as λ1 = 0 and Re(λα ) <

0 for α > 1, and the convention Pα,1 = πα and P−1
α,1 = 1.

The time-independent contributions on the right-hand side
of Eq. (67a) are collected in cα (Ĩ) in Eq. (67b). By using
Eq. (62), we identify παLml (t ) as the nonequilibrium steady
state [α]ss(Lml (t )) of the corresponding pseudo-closed CRN
with mass density Lml (t ). Equations (66) and (62) show that
the mass density of the dynamically linear species, Lml (t ),
as well as the steady-state concentrations [α]ss(Lml (t )) grow
linearly in time. This together with Eq. (67b) implies that the
instantaneous concentrations [α](t ) also grow linearly in time.
Since the relative (resp. absolute) difference between [α](t )
and the nonequilibrium steady state [α]ss(Lml (t )) decreases in
time (resp. is constant) [see Eq. (67b)], we call this type of
growth nonequilibrium growth.

We now examine the corresponding reaction currents. By
replacing the steady-state concentrations in Eq. (63) with the
concentrations in Eq. (67b), the reaction current jρ (t ) in the
long-time limit reads

jρ (t ) = j̄ρLml (t ) + (
W (ρ)

αβ cβ − W (ρ)
βα cα

)
= j̄ρLml (t ) + Jρ = O(t ), (68)

where Jρ ≡ W (ρ)
αβ cβ − W (ρ)

βα cα . We note that in nonequilib-
rium growth both the dynamically linear concentrations and
reaction currents grow linearly in time in contrast to equilib-
rium growth where only the former grow in time [compare
Eqs. (67b) and (68) with Eqs. (45b) and (46), respectively].

4. Thermodynamics under flux control

We now analyze the thermodynamics of nonequilibrium
growth. In the long-time limit, by using Eq. (67b) in Eq. (14),
the chemical potentials of the dynamically linear species are
given by

μα = RT ln(Lml (t )) + RT ln
(
παe

μ0
α

RT
)

+ RT ln

(
1 + cα

παLml (t )

)
(69)

and are logarithmically increasing in time. The corresponding
vector of chemical potentials μl reads

μl = RT ln(Lml (t ))�ml
l + RT ln

(
π exp

μ0

RT

)

+ RT
1

Lml (t )

( c
π

)
, (70)

where we used ln(1 + x) ≈ x for x  1, and intro-
duced ln(π exp (μ0/RT )) = (. . . , ln(πα exp(μ0

α/RT )), . . . )T

and c/π = (. . . , cα/πα, . . . )T. On the other hand, the chem-
ical potentials of the hidden species μh are constant as their
concentrations are kept fixed.

By plugging Eqs. (70) and (68) into Eq. (18) and using
Sl j = W zl = W c [see Eq. (67b)], we find that the EPR at
long times can be written as

T 
̇ =
=T 
̇ss (Lml (t ))︷ ︸︸ ︷

Lml (t )(−μhS
h j̄) −μhS

hJ

− RT ln

(
π exp

μ0

RT

)
· W c = O(t ), (71)

where J = ( . . . , Jρ, . . . )
T
, and we used Eq. (64) to identify

the leading order term on the right-hand side as the steady-
state EPR to which the corresponding pseudo-closed CRN
with mass density Lml (t ) would relax. Equation (71) implies
that nonequilibrium growth is a dissipative process with a
monotonically increasing EPR resulting from the growing
mass density of the dynamically linear species in Eq. (66).

By putting Eq. (70), IYl = Ĩ and IYh = −Sh j in Eq. (19),
we find that the chemical work rate increases linearly in the
long-time limit:

ẇc =

=ẇh︷ ︸︸ ︷
Lml (t )(−μhS

h j̄) − μhS
hJ

+

=ẇl︷ ︸︸ ︷
RT ln(Lml (t ))

(
�ml

l · Ĩ
) + RT ln

(
π exp

μ0

RT

)
· Ĩ

= O(t ), (72)

where we also split the chemical work rate into the hidden
work rate ẇh ≡ μh · IYh and the linear work rate ẇl ≡ μl · Ĩ.
The hidden (resp. linear) work rate quantifies the contribu-
tion of the chemostatted hidden (resp. linear) species to the
total chemical work rate. Furthermore, by using Eq. (70) and
dt yh = 0 in Eq. (17), we find that dt G increases logarithmi-
cally in the long-time limit:

dt G = RT ln(Lml (t ))
(
�ml

l · Ĩ
)

+ RT ln

(
π exp

μ0

RT

)
· dt zl = O(ln(t )), (73)

where we used �ml
l · Ĩ = �ml

l · dt zl [see Eqs. (67b) and (66)].
Thus, by using Eqs. (73) and (72) in Eq. (53), we find that the
efficiency of nonequilibrium growth Eq. (53) goes to zero in
the long-time limit,

lim
t→∞ η = lim

t→∞
RT ln(Lml (t ))

Lml (t )
= 0, (74)

implying that nonequilibrium growth is a thermodynamically
irreversible process in contrast to equilibrium growth (see
Sec. III D 2).

We now turn to the moiety work in Eq. (20) and the non-
conservative work in Eq. (22). Substituting Eqs. (69) and (C3)
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in Eq. (20), the moiety work rate reads

ẇm = RT ln(Lml (t ))
(
�ml

l · Ĩ
)

+ RT ln

(
πpl exp

μ0
pl

RT

)(
�ml

l · Ĩ
)

+ μph · (LX πX + L f lπ f l )
(
�ml

l · Ĩ
) = O(ln(t )), (75)

where we used dt x = πX (�ml
l · Ĩ) and dt y f l = π f l (�

ml
l · Ĩ)

from Eq. (67b) and the matrices LX , L f l given in Eq. (C3).
Note that the leading order term in Eq. (75) is identical to the
leading order terms of both ẇl in Eq. (72) and dt G in Eq. (73).
Namely,

ẇl ∼ ẇm ∼ dt G = O(ln(t )), (76)

which implies that the linear work, as well as the moiety
work, is mainly converted into free energy. This results from
the fact that the concentrations of the Yh species are constant
in time, and, therefore, they do not contribute to dt G [see
Eq. (17)]. Only the concentrations of the dynamically linear
species contribute to dt G, implying that the linear work is
mainly converted into free energy. Similarly, as the leading
order contribution to ẇm is the work done in changing Lml (t )
[see Eq. (75)], which does not involve any Yh species, the
moiety work rate and the linear work rate scale similarly in
time.

By using Eq. (C1) and Eq. (C2b), the nonconservative
forces defined in Eq. (22) become

FY =
(Ypl Yf l Yph Yf h

0 μ f l − μpl
(
	ml

pl

)−1
�ml

f l − μph · L f l 0 Fh

)
,

(77)

where Fh was defined in Eq. (65). By using Eqs. (68), (69),
and (77) in Eq. (22), the nonconservative work rate reads

ẇnc =
=ẇss

nc(Lml (t ))︷ ︸︸ ︷
−Lml (t ) (Fh · Sh j̄) −Fh · ShJ

+
(

RT ln

(
π f l

πpl
exp

μ0
f l − μ0

pl

RT

)
− μph · L f l

)
· Ĩ

= O(t ), (78)

where

RT ln(π f l/πpl exp
[(

μ0
f l − μ0

pl )
/

RT
)]

= (. . . , RT ln
(
πα/πpl exp

[(
μ0

α − μ0
pl

)/
RT

])
, . . . )T

(79)

for α ∈ Yf l , and we used Eq. (65) to identify ẇss
nc(Lml (t )),

namely, the nonconservative work at the steady state to which
the corresponding pseudo-closed pseudo-unimolecular CRN
with mass density Lml (t ) would relax. Note that the leading
order terms of ẇnc in Eq. (78), the EPR in Eqs. (71) and ẇh in
Eq. (72) are equal, namely,

ẇh ∼ ẇnc ∼ T 
̇ = O(t ), (80)

which implies that the hidden work, as well as the nonconser-
vative work rate, is mainly dissipated.

C. Summary

From a dynamical standpoint, growth in fully open pseudo-
unimolecular CRNs resembles growth in unimolecular CRNs.
Like in unimolecular CRNs, it can occur only under flux con-
trol; the mass density (of dynamically linear species) increases
linearly in time; the instantaneous concentrations approach
the steady-state concentrations defined by the growing mass
density [compare Eqs. (67b) and (45b)]; and the concentra-
tions of all (dynamically linear) species scale linearly in time.
However, the steady state is a nonequilibrium (resp. equilib-
rium) one for pseudo-unimolecular CRNs (resp. unimolecular
CRNs).

From a thermodynamic standpoint, the work done in in-
creasing the mass density and the change in free energy
scale similarly in time like in unimolecular CRNs [compare
Eqs. (76) and (56)]. Furthermore, the nonconservative work
and the EPR scale similarly in time like in unimolecular CRNs
[compare Eqs. (80) and (57)]. However, pseudo-unimolecular
CRNs grow out of equilibrium with the EPR linearly increas-
ing in time [see Eq. (71)], whereas unimolecular CRNs grow
close to equilibrium with the EPR monotonically decaying in
time [see Eq. (49)].

Unlike for unimolecular CRNs, the efficiency of growth
(74) goes to zero for pseudo-unimolecular CRNs, implying
that growth is a thermodynamically irreversible process.

V. MULTIMOLECULAR CRNS

CRNs are said to be multimolecular when at least one
chemical reaction involves two or more species that do not
undergo concentration control. Because of mass action ki-
netics (3), the corresponding rate equation (2) is nonlinear
and does not admit in general analytical solutions. Hence, we
will focus on the four multimolecular CRNs defined in Fig. 1
and use both analytical methods and numerical simulations
to investigate growth under the three different chemostat-
ting procedures. These CRNs have been chosen because of
their different topological properties. The Autocatalytic CRN
has one conservation law corresponding to the mass density,
Lm = [E] + 2[E∗] + [S] + 2[P]. The Michaelis Menten CRN
and the Cyclic Michaelis Menten CRN have two conservation
laws corresponding to the total concentration of the enzyme
LE = [E] + [ES] and total concentration of the substrate LS =
[ES] + [S] + [P]. The Minimal Metabolic CRN has three con-
servation laws corresponding to the total concentration of
enzyme, LE = [E] + [EF] + [EW] + [E∗], the total concen-
tration of fuel, LF = [EF] + [EW] + [E∗] + [F] + [W], and
the total concentration of substrate, LS = [E∗] + [S] + [P].

For all numerical simulations in the following, we rescale
time, concentrations, energy and time, respectively by 1/k+1,
k+1/k+3, RT k2

+1/k+3 for the Autocatalytic CRN and by
1/k−1, k−1/k+1, RT k2

−1/k+1 for the Michaelis Menten, the
Cyclic Michaelis Menten, and the Minimal Metabolic CRNs.
Furthermore, we disregard initial transients and focus on long-
time dynamics only.

A. No growth under concentration control

A widely accepted conjecture in the mathematical litera-
ture states that the rate equation (2) of any weakly reversible
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FIG. 1. The CRNs studied in Sec. V, their stoichiometric matrices (with the horizontal line splitting S into SX and SY ), and their
conservation laws. (Row 1) The Autocatalytic CRN represents the interconversion of the substrate S into the product P promoted by the
autocatalytic reaction between the enzymes E and E∗. (Row 2) The Michaelis Menten CRN represents the interconversion of the substrate S
into the product P promoted by the enzymes E and ES. (Row 3) The Cyclic Michaelis Menten CRN represents the same enzymatic mechanism
as the Michaelis Menten CRN, but also includes a reaction directly interconverting S into P. (Row 4) The Minimal Metabolic CRN represents
the enzymatic interconversion of the substrate S into the product P powered by the interconversion of the fuel F into the waste W and promoted
by the enzymes E, EF, EW, and E∗.

CRN under concentration control (with fluxes satisfying mass
action kinetics) admits solutions with bounded concentrations
only [42]. Namely, weakly reversible (as well as reversible)
CRNs under concentration control cannot grow. The physical
explanation is based on mass action kinetics: once sufficiently
large concentrations are reached, the reactions will preferen-
tially occur in the direction consuming the chemical species
(for every possible fixed concentration of the chemostatted
species) preventing growth. However, the conjecture has been
formally proven only for specific subclasses of CRNs [42–44].

We now show that the conjecture holds for the Autocat-
alytic CRN in Fig. 1 (which does not belong to the subclasses
of CRNs for which the conjecture has been formally proven).
The other three CRNs are pseudo-unimolecular CRNs under
concentration control and, consequently, do not grow based
on the results of Sec. IV A.

We start by showing the existence of a steady state for any
concentration of the chemostatted species S and P. According
to Eq. (5), the concentrations of the internal species [E] and
[E∗] follow

dt [E] = k̄+1 + 2k+3[E][E∗] − k−1[E] − 2k−3[E]3, (81a)

dt [E
∗] = k̄+2 + k−3[E]3 − k+3[E∗][E] − k−2[E∗], (81b)

where we introduced the effective kinetic constants k̄+1 ≡
k+1[S] and k̄+2 ≡ k+2[P] since [S] and [P] are constant in
time. Correspondingly, the mass density Lm = [E] + 2[E∗] +

[S] + 2[P] follows

dt L
m = k̄+1 − k−1[E] + 2k̄+2 − 2k−2[E∗]. (82)

This implies that the steady-state concentrations [E]ss and
[E∗]ss satisfy

[E∗]ss = k̄+1 + 2k̄+2

2k−2
− k−1

2k−2
[E]ss. (83)

By substituting Eq. (83) into Eq. (81b), we obtain the cubic
equation

h([E]ss) ≡ [E]3
ss +

(
k−1k+3

2k−2k−3

)
[E]2

ss

+
(

k−1k−2 − k̄+1k+3 − 2k̄+2k+3

2k−2k−3

)
[E]ss − k̄+1

2k−3

= 0, (84)

which admits a unique positive root, i.e., there is a unique
steady-state concentration [E]ss, because of the Descartes rule
of sign [45]. Furthermore, the steady-state concentration [E]ss

satisfies

0 < [E]ss <
k̄+1 + 2k̄+2

k−1
, (85)

since h(0) < 0 and h((k̄+1 + 2k̄+2)/k−1) > 0. This, together
with Eq. (83), implies that [E∗]ss > 0 and, therefore, the
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(a)

(b)

FIG. 2. Dynamics of the Autocatalytic CRN in Fig. 1 under
concentration control. Evolution of (a) concentrations for the specific
initial condition [E](0) = 1.7 and [E∗](0) = 1.4 and (b) mass density
for 30 randomly selected initial conditions. Here k±1 = k±2 = k±3 =
1, [S](0) = 10, and [P](0) = 3.1.

Autocatalytic CRN has a well-defined steady state for every
value of [S] and [P].

We then analyze the stability of the steady state. By using
Eqs. (81a) and (81b), the Jacobian matrix J of the steady state
reads

J =
(

2k+3[E∗]ss − k−1 − 6k−3[E]2
ss 2k+3[E]ss

3k−3[E]2
ss − k+3[E∗]ss −k−2 − k+3[E]ss

)
.

(86)

Its determinant and trace can be written as

det(J ) = 4k−2k−3[E]3
ss + k−1k+3[E]2

ss + k̄+1k−2

[E]ss
> 0, (87a)

tr(J ) = −
(

4k−3[E]2
ss + k+3[E]ss + k−2 + k̄+1

[E]ss

)
< 0.

(87b)

This implies that J has only negative eigenvalues, and, there-
fore, the steady state is always locally stable for any values of
[S] and [P].

Finally, we numerically compute the dynamics of the au-
tocalytic CRN. Figure 2(a) shows the typical evolution the
concentrations [E] and [E∗]: after a transient, they reach
steady state. Figure 2(b) shows the typical evolution of the

(a)

(b)

FIG. 3. Dynamics of the Autocatalytic CRN under flux control.
Evolution of (a) concentrations for the initial condition [E](0) = 1.3,
[E∗] = 0.1, [F] = 1.9, and [W] = 0.4 and (b) relative difference,
‖z(t ) − zeq(t )‖/‖zeq(t )‖, where the equilibrium is defined as the
steady state to which the CRN would relax if it was closed and
with mass density Lm(t ), and, in the inset, [E](t ) and [E]eq(t ). Here
k±1 = k±2 = k±3 = 1, IS = 1.0, and IP = −0.1.

mass density for different initial conditions. Like the concen-
trations, the mass density relaxes towards a constant value.
We stress that the same behavior is observed for different
values of the kinetic constants and of the concentrations of
the chemostatted species.

B. Growth under flux control

Flux control always leads to growth when �m · Ĩ > 0, as
already discussed in Sec. II D. In this subsection, we analyze
the dynamics and thermodynamics of growth for the CRNs in
Fig. 1 and compare them with the growth of unimolecular and
pseudo-unimolecular CRNs examined in Secs. III D 1, IV B 3,
and IV B 4, respectively.

1. Autocatalytic CRN

We consider the Autocatalytic CRN in Fig. 1 when S is in-
jected with flux IS > 0 and P is extracted with flux IP < 0 such
that the mass density grows at the rate dt Lm = IS + 2IP > 0
[according to Eq. (13)]. Figure 3(a) shows a typical evolution
of the concentrations, while Fig. 3(b) compares it to the evolu-
tion of the equilibrium state to which the CRN would relax if
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it was closed and with mass density Lm(t ), labeled zeq(Lm(t )).
At long times, we observe the following behavior. First, all
the concentrations grow. Second, the concentrations grow at
different rates, in contrast to what happens in unimolecu-
lar and pseudo-unimolecular CRNs under flux control [see
Eqs. (45b) and (67b)]. In particular, [E](t ) ∼ [S](t ) = O(

√
t )

and [E∗](t ) ∼ [P](t ) = O(t ). Finally, the concentrations z(t )
evolve close to the corresponding equilibrium concentrations
zeq(Lm(t )) similarly to unimolecular CRNs [see Eq. (45b)].
Indeed, the relative difference ‖z(t ) − zeq(t )‖/‖zeq(t )‖ de-
creases in time. Hence, the Autocatalytic CRN under flux
control undergoes equilibrium growth similar to unimolecular
CRNs under flux control (see Sec. III D).

This specific dynamics can be explained in terms of a
timescale separation between the slowly evolving mass den-
sity and the rapidly evolving concentrations of the chemical
species. On the one hand, the former increases at the con-
stant rate dt Lm = IS + 2IP > 0. On the other hand, the latter
evolves also because of the chemical reactions whose fluxes,
according to mass-action kinetics (3), increase when the con-
centrations increase. Hence, on a timescale in which the
mass density Lm remains almost constant, the concentrations
z can dramatically change and relax towards the equilibrium
zeq(Lm(t )). This can be captured mathematically by the ansatz

z(t ) = zeq(Lm(t )) + c(t ), (88)

with |cα (t )|  [α]eq(Lm(t )), resembling Eq. (45b).
The ansatz (88) allows us to predict the rate of growth

of the concentrations observed in Fig. 3. Indeed, according
to mass action kinetics (3), the equilibrium concentrations
zeq(Lm(t )) must satisfy

[E]eq(t ) = k+1

k−1
[S]eq(t ) =

√
k+3k+2

k−2k−3
[P]eq(t )

=
√

k+3

k−3
[E∗]eq(t ), (89)

which, together with �m · zeq(Lm(t )) = Lm(t ), leads to

[E]2
eq(t ) + [E]eq

⎛
⎝ 1 + k−1

k+1

2k−3

k+3
+ 2k−2k−3

k+2k+3

⎞
⎠

︸ ︷︷ ︸
=a1

−
⎛
⎝ Lm(t )

2k−3

k+3
+ 2k−2k−3

k+2k+3

⎞
⎠

︸ ︷︷ ︸
=a2(t )

= 0, (90)

and therefore,

[E]eq(t ) =
√(a1

2

)2
+ a2(t ) −

(a1

2

)
. (91)

Since a2(t ) ∝ Lm(t ) = O(t ), from Eqs. (89) and (91), we
obtain that [E]eq(t ) ∼ [S]eq(t ) = O(

√
t ) while [P]eq(t ) ∼

[E∗]eq(t ) = O(t ).
We now examine the corresponding thermodynamics. We

start by considering the EPR (18), dt G (17), and chemical
work rate (19) whose typical evolution is shown in Fig. 4(a).

(a)

(b)

FIG. 4. Thermodynamics of the Autocatalytic CRN under flux
control during the dynamics in Fig. 3. Evolution of (a) EPR, dt G,
chemical work rate, and efficiency of growth and (b) EPR, dt G,
nonconservative work rate, and the moiety work rate. Here μ0

E = 1,
μ0

E∗ = 2, μ0
S = 1, μ0

P = 2.

At long times, the EPR continuously decreases until it van-
ishes. On the other hand, dt G and the chemical work increase
in time, and they coincide in the long-time limit. This means
that the chemical work is fully converted into Gibbs free
energy at long times, and the efficiency of growth, defined
as in Eq. (53), goes to one [see the inset in Fig. 4(a)]. We
then turn to the nonconservative work rate and the moiety
work rate, defined in Eqs. (22) and (20), respectively. Their
typical evolution is shown in Fig. 4(b) (when S is chosen as the
potential species): in the long-time limit, the nonconservative
work vanishes, and the moiety work rate balances the increase
of Gibbs free energy.

This specific behavior of the thermodynamic quantities
is similar to unimolecular CRNs under flux control (see
Sec. III D) and is consistent with the previous observation of
equilibrium growth. It can further be explained with the ansatz
(88). Indeed, by using Eq. (88) with ||c(t )||  ||zeq(Lm(t ))||
in Eq. (14), the chemical potentials μ(t ) read

μ(t ) ≈ μeq(t ) + RT
c(t )

zeq(Lm(t ))
= O(ln(t )), (92)

where c(t )/zeq(Lm(t )) = (. . . , cα (t )/[α]eq(Lm(t )), . . . )T

and μeq(t ) = μ̄(t )�m with μ̄(t ) = μ0
E + RT ln([E]eq(t )) =

O(ln(t )). Then, by plugging Eq. (92) in Eq. (18), the EPR
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becomes

T 
̇ = −RT
c(t )

zeq(Lm(t ))
· S j

≈ −RT
c(t )

zeq(Lm(t ))
· (dt zeq − Ĩ), (93)

where we used Eq. (2) and dt z ≈ dt zeq. At long times, EPR
in Eq. (93) vanishes since (1) dt zeq approaches a constant
value [see Eqs. (89) and (91)] and (2) |cα (t )|  [α]eq(Lm(t )).
Furthermore, by plugging Eq. (92) in Eqs. (17) and (19) and
using |cα (t )|  [α]eq(Lm(t )), dt G and the chemical work rate
read

dt G = μ̄(t )(�m · Ĩ) + RT
c(t )

zeq(Lm(t ))
· (Ĩ+S j) = O(ln(t )),

(94)

ẇc = μ̄(t )(�m · Ĩ) + RT
c(t )

zeq(Lm(t ))
· Ĩ = O(ln(t )), (95)

implying dt G ≈ ẇc and η → 1 in agreement with Fig. 4(a).
Similarly, by using Eq. (92) in Eqs. (20) and (22), the

nonconservative work rate and the moiety work rate read

ẇm = μSdt L
m = μ̄(t )(�m · Ĩ) + RT

cS(t )

[S]eq(Lm(t ))
(�m · Ĩ)

= O(ln(t )), (96)

ẇnc = (μP − 2μS)IP

= RT

(
cP(t )

[P]eq(Lm(t ))
− 2cS(t )

[S]eq(Lm(t ))

)
IP, (97)

implying that over long times

T 
̇ ≈ ẇnc ≈ 0, dt G ≈ ẇm = O(ln(t )). (98)

2. Michaelis Menten CRN

We consider the Michaelis Menten CRN in Fig. 1 when the
species S is injected with flux IS > 0 and P is extracted with
flux IP < 0 such that the moiety concentration LS grows at rate
dt LS = IS + IP > 0.

This chemostatting procedure has three main conse-
quences. First, the conservation law �E is unbroken, implying
that the concentrations [E] and [ES] are bounded. Second,
as LS grows, (at least one of) the concentrations [S] and [P]
must grow as well. Consequently, only a subset of species can
grow in the Michaelis Menten CRN under flux control unlike
unimolecular CRNs (Sec. III D), pseudo-unimolecular CRNs
(Sec. IV B 3), and the Autocatalytic CRN (Sec. V B 1) under
flux control. Third, in the long-time limit, when the concen-
trations [S] and [P] are much larger than the concentrations
[E] and [ES], a timescale separation emerges between the
evolution of the chemostatted concentrations and the internal
concentrations, which allows us to coarse-grain the dynamics
of the internal concentrations as discussed in Sec. II A.

We show a typical trajectory of the concentrations in
Fig. 5(a) and compare the dynamics of the actual concen-
trations [S] and [P] with the coarse-grained dynamics [S]cg

and [P]cg obtained solving Eq. (11) in Fig. 5(b). We note
that [S] and [P] grow linearly in time, [ES] saturates to a
constant value, while [E] decreases in time. Furthermore, the

(a)

(b)

FIG. 5. Dynamics of the Michaelis Menten CRN under flux
control. Evolution of (a) concentrations and (b) relative difference,
given by ‖y(t ) − ycg(t )‖/‖ycg(t )‖, between the concentrations y(t ) =
([S](t ), [P](t ))T and the coarse-grained concentrations ycg(t ) =
([S]cg(t ), [P]cg(t ))T [given by Eq. (11)], and comparison between
the concentrations and the coarse-grained concentrations in the in-
set. Here [E](0) = 1.3, [ES](0) = 0.1, [S](0) = 1.9, [P](0) = 0.4,
IS = 1.0, IP = −0.1, and k±1 = k±2 = 1.

relative difference between the vectors y(t ) = ([S](t ), [P](t ))T

and ycg(t ) = ([S]cg(t ), [P]cg(t ))T eventually decreases in time.
We now use the coarse-grained dynamics discussed in

Sec. II A to determine (1) the growth rate of [S] and [P] and
(2) the evolution of [E] and [ES] in the long-time limit.

First, by using the diagrammatic method [46] as done in
Refs. [36,47], Eq. (11) for the Michaelis Menten CRN reads

dt [S]cg − IS = −LE(0)

[
k+1k+2[S]cg − k−1k−2[P]cg

k−1 + k+2 + k+1[S]cg + k−2[P]cg

]
= IP − dt [P]cg. (99)

This, together with the ansatz [S]cg = vSt + cS and
[P]cg = vPt + cP (with constants cS and cP) as well as
the approximation dt LS = IS + IP � vS + vP (valid as long as
timescale separation holds, dt [ES] � 0), leads to the quadratic
equation

vS = IS − LE(0)
(k+1k+2 + k−1k−2)vS − k−1k−2(IS + IP)

(k+1 − k−2)vS + k−2(IS + IP)
,

(100)
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once the terms of order O(1/t ) are neglected. Equation (100) admits the following solution:

vS = k−2IP + (2k−2 − k+1)IS + LE(0)(k+1k+2 + k−1k−2)

2(k−2 − k+1)
+

√√√√√√√√√
k−2(IS + IP)[IS + k−1LE(0)]

k+1 − k−2

+
[

k−2IP + (2k−2 − k+1)IS + LE(0)(k+1k+2 + k−1k−2)

2(k−2 − k+1)

]2

,

(101)

which implies that the growth rates vS and vP depend on the
value of LE(0). This dependence results from the fact that the
interconversion of S into P is mediated by the enzymes whose
concentrations [E] and [ES] are bounded by LE(0).

Second, in the coarse-grained dynamics, the concentrations
of the internal species [E] and [ES] quickly relax to the steady
state determined by [S] and [P] which, according to the dia-
grammatic method [46], read

[E]ss = (k−1 + k+2)LE(0)

k−1 + k+2 + k+1[S]cg + k−2[P]cg
, (102a)

[ES]ss = [E]ss

(
k+1[S]cg + k−2[P]cg

k−1 + k+2

)
. (102b)

Equations (102a) and (102b), together with [S] ∼ vSt and
[P] ∼ vPt , lead to the scaling [E] = O(t−1) and [ES] = O(1)
observed in Fig. 5(a).

We now turn to the corresponding thermodynamics. We
start by considering the EPR (18), dt G (17) and chemical
work rate (19), whose typical time evolution is plotted in
Fig. 6(a). At long times, on the one hand, the EPR relaxes to a
nonzero constant value, and, therefore, the Michaelis Menten
CRN under flux control grows out of equilibrium like pseudo-
unimolecular CRNs under flux control (see Sec. IV B 4). On
the other hand, the chemical work rate and dt G increase in
time approaching each other, and, consequently, the efficiency
of growth (53) approaches one unlike in pseudo-unimolecular
CRNs (see Sec. IV B 4). We then examine the nonconservative
work rate (22) and the moiety work rate (20) whose typical
evolution is shown in Fig. 6(b) (when S is chosen as the
potential species). At long times, the nonconservative work
saturates to a constant value while the moiety work rate in-
creases with time and scales like dt G.

This specific behavior of the thermodynamic quantities can
be explained using the coarse-grained dynamics described in
Sec. II A. By using the ansatz [S] = vSt + cS and [P] = vPt +
cP with Eq. (14) and neglecting terms of order O(1/t ), we first
recognize that in the long-time limit the chemical potentials of
S and P read

μα ≈ RT ln(t )	S
α + RT ln(vα ) + μ0

α = O(ln(t )). (103)

Then the EPR can be expressed (see Eq. (41) in Ref. [36]), as

T 
̇ = −(μP − μS) j̄1 = O(1), (104)

where, using Eq. (11), the ansatz [S] = vSt + cS and [P] =
vPt + cP, and Eq. (103),

j̄1 = IS − vS = O(1) (105)

and

μP − μS = (
μ0

P − μ0
S

) + RT ln

(
vP

vS

)
= O(1). (106)

Namely, we recover the constant (and positive) entropy pro-
duction rate in Figs. 6(a) and 6(b). By using Eq. (103), dt G
(17) and the chemical work rate (19) become

ẇc = RT ln(t )(dt L
S) + RT

∑
α∈Y

(
μ0

α + RT ln(vα )
)
Ĩα

= O(ln(t )), (107)

dt G = RT ln(t )(dt L
S) + RT

∑
α∈Y

(
μ0

α + RT ln(vα )
)
vα

= O(ln(t )), (108)

(a)

(b)

FIG. 6. Thermodynamics of the Michaelis Menten CRN under
flux control during the dynamics in Fig. 5. Evolution of (a) EPR, dt G,
chemical work rate, and efficiency of growth (inset) and (b) EPR,
dt G, nonconservative work rate, and moiety work rate. Here μ0

E = 1,
μ0

ES = 2, μ0
S = 1, μ0

P = 1.
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namely, they grow logarithmically in time in agreement with
Fig. 6(a). Crucially, the EPR in Eq. (104) is subleading with
respect to the chemical work in Eq. (107) and, consequently,
the efficiency of growth (53) approaches one even if the CRN
undergoes nonequilibrium growth.

We conclude by examining the moiety work rate and the
nonconservative work rate. Using Eq. (106) in Eqs.(20) and
(22), we obtain

ẇm = RT ln(t )(dt L
S ) + RT ln

(
vS exp

(
μ0

S

RT

))
dt L

S (109)

= O(ln(t )),

ẇnc = (μP − μS)IP = O(1), (110)

implying

dt G ∼ ẇm = O(ln(t )),

ẇnc ∼ T 
̇ = O(1), (111)

in the long-time limit. Note that the values predicted in
Eqs. (109) and (104) are shown in grey in Fig. 6(b) and are
consistent with the numerical simulations.

3. Cyclic Michaelis Menten CRN

We consider the Cyclic Michaelis Menten CRN in Fig. 1
when the species S is injected with flux IS > 0 and P is
extracted with flux IP < 0 such that the moiety concentration
LS grows at rate dt LS = IS + IP > 0.

From a dynamic point of view, the Cyclic Michaelis
Menten CRN and the Michaelis Menten CRN (Sec. V B 2)
have the same qualitative behavior. The concentrations [E]
and [ES] are bounded while [S] and [P] grow linearly in
time [see their typical evolution in Fig. 7(a)]. At long times,
because of a timescale separation between the chemostatted
and internal species, the evolution of y(t ) = ([S](t ), [P](t ))T

converges towards ycg(t ) = ([S]cg(t ), [P]cg(t ))T following
Eq. (11) [see the typical evolution in Fig. 7(b)].

We use the coarse-grained dynamics to understand the
long-time dynamics of the concentrations, as done in
Sec. V B 2. Using the diagrammatic method [46], Eq. (11) for
the Cyclic Michaelis Menten CRN reads

dt [S]cg + k+3[S]cg − k−3[P]cg − IS

= −LE(0)

[
k+1k+2[S]cg − k−1k−2[P]cg

k−1 + k+2 + k+1[S]cg + k−2[P]cg

]
= IP + k+3[S]cg − k−3[P]cg − dt [P]cg, (112)

which, together with the ansatz [S]cg = vSt + cS and [P]cg =
vPt + cP (with cS and cP some constant parameters), the
approximation dt LS = IS + IP � vS + vP (valid as long as
timescale separation holds, i.e., dt [ES] � 0), leads to

vS = [k−3(IS + IP) − (k+3 + k−3)vS]t

+ IS + (k−3cP − k+3cS)

− LE(0)
(k+1k+2 + k−1k−2)vS − k−1k−2(IS + IP)

(k+1 − k−2)vS + k−2(IS + IP)
.

(113)

(a)

(b)

FIG. 7. Dynamics of the Cyclic Michaelis Menten CRN under
flux control. Evolution of (a) concentrations and (b) relative dif-
ference ‖y(t ) − ycg(t )‖/‖ycg(t )‖, between the concentrations y(t ) =
([S](t ), [P](t ))T and the coarse-grained concentrations ycg(t ) =
([S]cg(t ), [P]cg(t ))T [given by Eq. (11)] and comparison between
the concentrations and the coarse-grained concentrations in the in-
set. Here [E](0) = 2.0, [ES](0) = 1.4, [S](0) = 3.1, [P](0) = 5.2,
IS = 0.45, IP = −0.10, and k±1 = 1, k+2 = k+3 = e0.25, k−2 = k−3 =
e−0.25.

For consistency, the term proportional to time on the right-
hand side of Eq. (113) must vanish. Hence,

vS = k−3

k+3 + k−3
(IS + IP), (114)

vP = k+3

k+3 + k−3
(IS + IP). (115)

We emphasize that unlike the Michaelis Menten CRN [see
Eq. (101)], the growth rates vS and vP are independent of
LE(0) because of the reaction directly interconverting S into
P. Finally, according to the diagrammatic method [46], [E]ss

and [ES]ss still follow Eq. (102) and, therefore, [E] = O(t−1)
and [ES] = O(1) [as observed in Figs. 7(a)].

The main difference between the Cyclic Michaelis Menten
CRN and the Michaelis Menten CRN (see Sec. V B 2) un-
der flux control concerns the thermodynamics of growth. We
start by considering the EPR (18), dt G (17) and chemical
work rate (19), whose typical time evolution is plotted in
Fig. 8(a). Like the Michaelis Menten CRN [see Fig. 6(a)],
the dt G and the chemical work increase in time and coincide
at long times, while the efficiency of growth (53) goes to
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(a)

(b)

FIG. 8. Thermodynamics of the Cyclic Michaelis Menten CRN
under flux control during the dynamics in Fig. 7. Evolution of
(a) EPR, dt G, chemical work rate, and efficiency of growth (inset)
and (b) EPR, dt G, nonconservative work rate, and moiety work rate.
Here μ0

E = 0.5, μ0
ES = 2, μ0

S = 1.5, μ0
P = 1.

one. Unlike the Michaelis Menten CRN, at long times, the
EPR continuously decreases to zero. This means that the
Cyclic Michaelis Menten CRN under flux control undergoes
equilibrium growth like unimolecular CRNs (Sec. III D) and
the Autocatalytic CRN (Sec. V B 1). We then examine the
nonconservative work rate (22) and the moiety work rate (20)
whose typical evolution is shown in Fig. 8(b) (when S is
chosen as the potential species). Like the Michaelis Menten
CRN [see Fig. 6(b)], the moiety work rate increases with time
and scales like dt G at long times. Unlike the Michaelis Menten
CRN, the nonconservative work decays like the EPR at long
times.

This specific behavior of the thermodynamic quantities can
be explained as a consequence of the timescale separation by
using the coarse-grained dynamics discussed in Sec II A. To
do so, we start by recognizing that in the long-time limit, the
chemical potentials of the chemostatted species read

μα = RT ln(t )	S
α + RT ln

(
vα exp

(
μ0

α

RT

))

+ RT ln

(
1 + cα

vαt

)
= O(ln(t )), (116)

where we used the ansatz [S] = vSt + cS and [P] = vPt + cP

in Eq. (14). Note that in Eq. (116) we did not neglect the
term of order O(1/t ) like in Eq. (103) because it explains the
decrease of the EPR seen in Figs. 8(a) and 8(b). Indeed, the
EPR [see Eq. (41) in Ref. [36]] can be expressed as

T 
̇ = −(μP − μS)( j̄1 + j̄3) = O(1/t ), (117)

where, by using Eq. (11) and the ansatz [S] = vSt + cS and
[P] = vPt + cP,

j̄1 + j̄3 = IS − vS = O(1), (118)

while, by using Eqs. (114), (115), and (116), the ap-
proximation ln(1 + x) ≈ 1 + x for x  1, together with
the local detailed balance (15) [implying vS exp(μ0

S/RT ) =
vP exp(μ0

P/RT )],

μP − μS = RT
1

t

(
cP

vP
− cS

vS

)
= O(1/t ). (119)

We now turn to the other thermodynamic quantities. By
using Eq. (116) and neglecting terms of order O(1/t ), the dt G
(17) and the chemical work rate (19) become

ẇc = RT ln(t )(dt L
S) + RT

∑
α∈Y

[
μ0

α + RT ln(vα )
]
Ĩα

= O(ln(t )), (120)

dt G = RT ln(t )(dt L
S) + RT

∑
α∈Y

[
μ0

α + RT ln(vα )
]
vα

= O(ln(t )), (121)

namely, they grow logarithmically in time, dt G ≈ ẇc, and
η → 1 in agreement with agreement with Fig. 8(b). Further-
more, by using Eq. (116), the moiety work rate (20) and the
nonconservative work rate (22) read

ẇm = RT ln(t )(dt L
S) + RT ln

(
vS exp

(
μ0

S

RT

))
dt L

S

= O(ln(t )), (122)

ẇnc ≈ RT
1

t

(
cP

vP
− cS

vS

)
IP = O(t−1), (123)

implying

dt G ∼ ẇm = O(ln(t )),

ẇnc ∼ T 
̇ = O(t−1), (124)

in the long-time limit.
Note that direct interconversion of S into P explains why

the Cyclic Michaelis Menten CRN grows close to equilibrium
unlike the Michaelis Menten CRN. On the one hand, the rate
of interconversion of S into P (via the enzymatic mechanism)
in the Michaelis Menten CRN is limited by the bounded
concentration [E] and [ES]. This prevents the equilibration
between the chemostatted species, i.e., it establishes a differ-
ence between the chemical potentials of S and P and creates
the nonconservative force (106). On the other hand, the rate
of the direct interconversion of S into P in Cyclic Michaelis
Menten CRN increases with the concentrations [S] and [P].
Their chemical potentials can thus rapidly equilibrate and the
nonconservative force (119) decreases in time.
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4. Minimal Metabolic CRN

The Minimal Metabolic CRN has already been numerically
studied in Ref. [16] when the species S and F are injected
at constant rates IS > 0 and IF > 0 such that that the moiety
concentrations LS and LF grow with rates dt LS = IS > 0 and
dt LF = IF > 0. Correspondingly, the concentrations [S], [P],
[F], and [W] grow and the EPR decays in time, implying that
the CRN grows close to equilibrium. This was explained by
noting that ẇnc = 0 at all times since the chemostatting pro-
cedure does not create nonconservative forces [see Eq. (22)].

Here we study the Minimal Metabolic CRN when the
species S and F are injected at constant rates IS > 0 and
IF > 0 while the species P and W are extracted at constant
rates IP < 0 and IW < 0 in such a way that the moiety con-
centrations LS and LF grow with rates dt LS = IS + IP > 0
and dt LF = IF + IW > 0. This chemostatting procedure has
four main consequences. First, it creates two nonconservative
forces [see Eq. (22)]. Second, the conservation law 	E is
unbroken, and, therefore, the concentrations [E], [ES], [EW]
and [E∗] are bounded. Third, as LS (resp. LF) grows, (at least
one of) the concentrations [S] and [P] (resp. [F] and [W]) must
grow as well. Finally, in the long-time limit, when the concen-
trations of the chemostatted species are much larger than the
concentrations of the internal species, a timescale separation
emerges between the evolution of the former and the latter
implying that the dynamics of the chemostatted species follow
the coarse-grained dynamics discussed in Sec. II A

We now show a typical evolution of the concentrations
of the chemostatted species in Fig. 9(a) and compare it
with the coarse-grained dynamics obtained from Eq. (11) in
Fig. 9(b). We note that concentrations [F] and [S] grow lin-
early in time while the concentrations [P] and [W] saturate
to constant values. Furthermore, the relative distance be-
tween the vectors y(t ) = ([F](t ), [W](t ), [S](t ), [P](t ))T and
ycg(t ) = ([F]cg(t ), [W]cg(t ), [S]cg(t ), [P]cg(t ))T increases ini-
tially and then decreases at long times.

We now turn to thermodynamics. The typical time evolu-
tion of the EPR (18), dt G (17) and chemical work rate (19) is
plotted in Fig. 10(a). The chemical work rate and dt G increase
in time. However, they do not coincide at long times, unlike
in the Autocatalytic CRN in Sec. V B 1, the Michaelis Menten
CRN in Sec. V B 2 and the Cyclic Michaelis Menten CRN in
Sec. V B 3, since the EPR increases in time too. Consequently,
the Minimal Metabolic CRN under flux control grows out of
equilibrium, like the Michaelis Menten CRN (see Sec. V B 2),
and the efficiency of growth (53), which is initially close to
one, decreases at long times, unlike the Michaelis Menten
CRN [see Fig. 6(a)].

We then examine the nonconservative work rate (22) and
the moiety work rate (20) whose typical evolution is shown in
Fig. 10(b) (when S and F are chosen as the potential species).
At long times, there is a splitting between the magnitudes
of the EPR and the nonconservative work rate on the one
hand and the moiety work rate and dt G on the other hand.
Furthermore,

dt G ∼ ẇm, ẇnc ∼ T 
̇ > 0, (125)

similar to the Autocatalytic CRN (98), the Michaelis Menten
CRN (111), and the Cyclic Michaelis Menten CRN, (124).

(a)

(b)

FIG. 9. Dynamics of the Minimal Metabolic CRN under flux
control. Evolution of (a) concentrations of the chemostatted
species [F](t ), [W](t ), [S](t ), and [P](t ) and (b) relative differ-
ence between the vectors y(t ) = ([F](t ), [W](t ), [S](t ), [P](t ))T and
ycg(t ) = ([F]cg(t ), [W]cg(t ), [S]cg(t ), [P]cg(t ))T [given by Eq. (11)],
and comparison between the concentrations [F](t ) and [P](t ) with
the coarse-grained concentrations [F]cg(t ) and [P]cg(t ) in the inset.
Here [E](0) = 1.5, [EF](0) = [EW](0) = [E∗](0) = 0.1, [F](0) =
[W](0) = 0.5, [S](0) = [P](0) = 1, IF = 2.8, IW = −0.1, IS = 2.0,
IP = −0.05 and k±1 = k−2 = k±3 = k±4 = k±5 = 2 while k+2 = 2e.

5. Summary

From a dynamical standpoint, growth in multimolecular
CRNs under flux control can significantly differ from uni-
molecular and pseudo-unimolecular CRNs. For instance, (1)
the concentrations of some species scale as O(

√
t ) in the

Autocatalytic CRN (see Sec. V B 1), while the concentrations
of all species scale as O(t ) in unimolecular and pseudo-
unimolecular CRNs and (2) the concentrations of only a
subset of species grow in the Michaelis Menten CRN (see
Sec. V B 2).

From a thermodynamic standpoint, some multimolecular
CRNs grow close to equilibrium (e.g., the Autocatalytic CRN
and the Cyclic Michaelis Menten CRN), while other multi-
molecular CRNs grow out of equilibrium (e.g., the Michaelis
Menten CRN and the Minimal Metabolic CRN). In the exam-
ples we considered, the presence of an unbroken conservation
law seems to be a necessary but not sufficient condition for
nonequilibrium growth. On the one hand, it can prevent the
equilibration of the chemostatted species and create noncon-
servative forces like in the Michaelis Menten CRN and the
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(a)

(b)

FIG. 10. Thermodynamics of the Minimal Metabolic CRN under
flux control during the dynamics in Fig. 9. Evolution of (a) EPR, dt G,
chemical work rate, and efficiency of growth (inset) and (b) EPR,
dt G, nonconservative work rate, and moiety work rate. Here μ0

E = 1,
μ0

EF = 3, μ0
EW = 2, μ0

E∗ = 4, μ0
F = 2, μ0

W = 1, μ0
S = 1, μ0

P = 2.

Minimal Metabolic CRN. On the other hand, if there are other
reaction pathways leading to equilibration, like the direct
interconversion of S into P in the Cyclic Michaelis Menten
CRN, the CRN grows at equilibrium (see discussion at the
end of Sec. V B 3).

C. Growth under mixed control

Unimolecular and pseudo-unimolecular CRNs cannot
grow under mixed control, as we proved in Sec. III C and
Sec. IV B 1, respectively. On the other hand, multimolecular
CRNs can grow under mixed control as proven in Ref. [16]
for the Minimal Metabolic CRN.

Here we first prove in general that the concentrations of
extracted chemostatted species are bounded for CRNs grow-
ing under mixed control with a monotonically increasing mass
density, dt Lm > 0. Indeed, from Eq. (24) and the definition of
mixed control, the mass density Lm follows

dt L
m = −	m

Y · D̃y + 	m
Y · Ĩ, (126)

which, together with dt Lm > 0, implies

[α] � 	m
Y · Ĩ

	m
α D̃α,α

, (127)

for every chemostatted species α such that D̃α,α > 0, i.e.,
every extracted chemostatted species. Note that this has the
obvious implication that Continuous-flow Stirred Tank Reac-
tors (CSTR) cannot grow as already proven in Sec. II D.

We now examine the specific dynamics and thermodynam-
ics of the multimolecular CRNs listed in Fig. 1 under mixed
control.

1. Autocatalytic CRN

Case I. We start by considering the Autocatalytic CRN
when S (resp. P) is injected with constant rate IS > 0 (resp.
IP > 0) and extracted with rate ke

S[S] (resp. ke
P[P]). We first

analytically prove that the Autocatalytic CRN cannot grow
with a monotonically increasing mass density, and we then
use numerical simulations to show that the mass density does
not grow.

Let us assume that the Autocatalytic CRN grows with
dt Lm > 0 which, according to Eq. (127), implies

[S], [P] � IS + IP

min
(
ke

S, ke
P

) . (128)

Hence, at least one of the concentrations [E] and [E∗] grows.
However, according to Eq. (2) and the definition of mixed
control, the evolution equation of [S],

dt [S] + (
k+1 + ke

S

)
[S] = k−1[E] + IS, (129)

has the formal solution

[S](t ) = [S](0)e−(k+1+ke
S )t + IS

k+1 + ke
S

(1 − e−(k+1+ke
S )t )

+ k−1

∫ t

0
ds[E](s)e−(k+1+ke

S )(t−s), (130)

implying that [E](t ) must also be bounded. By applying ex-
actly the same reasoning to the evolution equation of [P], we
find that [E∗] must be bounded too. Thus, the Autocatalytic
CRN does not grow with dt Lm > 0.

We now turn to numerical simulations. Figure 11 shows
that the mass density does not grow for different ini-
tial conditions and different values of the parameter I/k̃ ≡
max(IS, IP)/min(ke

S, ke
P), representing the ratio between influx

and outflux. Note that the Autocatalytic CRN does not grow
even for large I/k̃, namely, large influx rates.

Case II. We now consider the Autocatalytic CRN when S
is being injected with rate IS > 0 while P is extracted with rate
ke

P[P]. As for the previous case, we first analytically prove that
the Autocatalytic CRN cannot grow with a monotonically in-
creasing mass density, and then we use numerical simulations
to show that the mass density does not grow.

Let us assume that dt Lm > 0 which, according to Eq. (127),
implies

[P] � IS

ke
P

. (131)

Then the rate equation (2) for P under mixed control,

dt [P] + (
k+2 + ke

P

)
[P] = k−2[E∗], (132)
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(a) (b)

(d)(c)

FIG. 11. Evolution of the mass density of the atocatalytic CRN under mixed control where the species S and P have influx rates IS = 1.0
and IP = 1.5 and outflux rates ke

S[S] and ke
P[P] for 30 randomly chosen initial conditions and (a) I/k̃ = 750, (b) I/k̃ = 75, (c) I/k̃ = 15,

(d) I/k̃ = 0.75, where the parameter I/k̃ ≡ max{IS, IP}/min{ke
S, ke

P}. Here k±1 = k±2 = k±3 = 1 and ke
P = 2.0.

has the formal solution

[P](t ) = [P](0)e−(k+2+ke
P )t + k−2

∫ t

0
ds[E∗](s)e−(k+2+ke

P )(t−s),

(133)

which implies that [E∗] is bounded [according to the exact
same reasoning as below Eq. (130)]. Hence, only [S] and [E]
can grow. Let us consider the sum A = [S] + [E] which is
unbounded if the CRN grows. From Eq. (2) and the definition
of mixed control, A follows

dtA = IS + 2k+3[E][E∗] − 2k−3[E]3. (134)

By using now that [E∗] is bounded and assuming that dtA >

0, [E](t ) satisfies 2k−3[E]3 < IS + 2k+3[E][E∗] < IS + 2C[E]
(with C being a positive number such that C > k+3[E∗]), or,
equivalently, [E] is bounded. Finally, the rate equation (2) for
S satisfies

dt [S] + k+1[S] = k−1[E] + IS < C′, (135)

where C′ is an appropriately chosen positive number, with the
formal solution

[S](t ) � [S](0)e−k+1t + C′

k+1
(1 − e−k+1t ) < ∞, (136)

implying that [S] is also bounded. Thus, the Autocatalytic
CRN does not grow with dt Lm > 0 and dtA > 0.

We now turn to numerical simulations. Figure 12 shows
that the mass density does not grow for different initial

conditions and different values of the parameter I/k̃ = IS/ke
P.

Note that also in this case the Autocatalytic CRN does not
grow even for large I/k̃, namely, large influx rates.

2. Michaelis Menten CRN

We consider the Michaelis Menten CRN when the sub-
strate S is injected at the rate IS > 0 and the product P is
extracted at the rate ke

P[P].
Note that, as in Sec. V B 2, this chemostatting procedure

does not break the conservation law �E and the concentrations
[E] and [ES] are thus bounded. Furthermore, according to
Eq. (127), if the CRN grows with dt LS > 0, the concentration
[P] is bounded above by

[P] � IS

ke
P

. (137)

Hence, only the concentration [S] can grow.
Strikingly, as shown in Fig. 13, depending on the initial

conditions but independently of the value of ke
P, dt LS can

either vanish or reach a constant positive value. In the latter
case, the typical evolution of the concentrations is shown
in Fig. 14(a): [S] grows linearly in time, and [P] and [ES]
saturate to constant values, while [E] decreases in time. Note
that, as shown in Fig. 14(b), at long times, the evolution of
the concentrations [S] and [P] is well approximated by the
coarse-grained dynamics obtained solving Eq. (11).

When [S] grows, a timescale separation emerges between
the evolution of the concentrations [S] and [P], on the one
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(a)

(c)

(b)

(d)

FIG. 12. Evolution of the mass density of Autocatalytic CRN under mixed control when the species S has influx rate IS > 0 while P is
extracted with a rate ke

P[P] for 30 randomly chosen initial conditions is plotted and (a) I/k̃ = 500, (b) I/k̃ = 50, (c) I/k̃ = 10, (d) I/k̃ = 0.5,
where I/k̃ = IS/ke

P. Here k±1 = k±2 = k±3 = 1 and IS = 1.0.

hand, and the concentrations of the internal species, on the
other hand. Thus, following Sec. II A, we now use the coarse-
grained dynamics (11) to determine (1) when the Michaelis
Menten CRN grows, (2) the growth rate of [S], and (3) the
evolution of [P], [E], and [ES] in the long-time limit. By
using the diagrammatic method [46] as done in Refs. [36,47],
Eq. (11) for the Michaelis Menten CRN under mixed control
reads

dt [S] = IS − LE(0)

[
k+1k+2[S] − k−1k−2[P]

k−1 + k+2 + k+1[S] + k−2[P]

]
, (138)

dt [P] = LE(0)

[
k+1k+2[S] − k−1k−2[P]

k−1 + k+2 + k+1[S] + k−2[P]

]
− ke

P[P],

(139)

which, together with the ansatz [S] = vSt + cS (for some con-
stant parameters vS and cS) leads (in the long-time limit) to

vS = IS − k+2LE(0), (140)

dt [P] = k+2LE(0) − ke
P[P], (141)

by neglecting terms of order O(1/t ). Here k+2LE(0) repre-
sents the rate of interconversion of S into P in the long-time
limit. On the one hand, Eq. (140) implies that the concen-
tration [S] (and, correspondingly, the moiety LS) grows, i.e.,
vS > 0, if IS > k+2LE(0) independently of ke

P. This physi-
cally means that growth happens when S is injected faster
than its (enzyme-dependent) interconversion into P, which is

then extracted. Note that the numerical simulations shown
in Fig. 13(a) [resp. Fig. 13(b)] satisfy IS < k+2LE(0) [resp.
IS > k+2LE(0)]. On the other hand, Eq. (141) implies that
[P] reaches the limiting value k+2LE(0)/ke

P, consistent with
Eq. (137). Finally, according to the diagrammatic method
[46], [E]ss and [ES]ss still follow Eqs. (102a) and, therefore,
using Eqs. (140) and (141), [E] = O(t−1) and [ES] = O(1)
[as observed in Fig. 14(a)].

We now examine the thermodynamics of the Michaelis
Menten CRN under mixed control when IS > k+2LE(0). We
start by considering the EPR (18), dt G (17) and chemical work
rate (19), whose typical time evolution is plotted in Fig. 15(a).
The EPR increases in time implying the Michaelis Menten
CRN under mixed control grows out of equilibrium. The
chemical work rate and dt G increase in time at the same rate as
the EPR. Consequently, the efficiency of growth (53) saturates
to a value smaller than one [see the inset in Fig. 15(a)].
We then examine the nonconservative work rate (22) and the
moiety work rate (20) whose typical evolution is shown in
Fig. 15(b) (when S is chosen as the potential species). Both the
nonconservative work rate and the moiety work rate increase
with time. Crucially, at long times, there is a splitting between
the magnitudes of the EPR and the nonconservative work rate
on the one hand, and the moiety work rate and dt G on the
other hand.

We explain this behavior of the thermodynamic quantities
by using the coarse-grained dynamics (138) and (139) and
the ansatz [S] = vSt + cS. We start by recognizing that the
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(a)

(b)

FIG. 13. Evolution of dt LS for the Michaelis Menten CRN under
mixed control when S is injected at the constant rate IS = 1.0 and P is
extracted at the rate IP = −ke

P[P]. (a) Initial condition [E](0) = 0.3,
[ES](0) = 0.8, [S](0) = 1.9, and [P](0) = 0.4 and (b) initial con-
dition [E](0) = 0.3, [ES](0) = 0.1, [S](0) = 1.9, and [P](0) = 0.4.
Here k±1 = k±2 = 1.

chemical potential (14) of S and P in the long-time limit
read

μS = μ0
S + RT ln(vS) + RT ln(t ) = O(ln(t )), (142a)

μP = μ0
P + RT ln

(
k+2LE(0)

ke
P

)
= O(1), (142b)

respectively, by neglecting terms of order O(1/t ). Then the
EPR can be expressed, according to Ref. [36], as

T 
̇ = (μS − μP) j̄1 = O(ln(t )), (143)

where, by using Eq. (11), the ansatz [S] = vSt + cS, and
Eqs. (142a) and (142b),

j̄1 = k+2LE(0), (144)

and

μS − μP = (
μ0

S − μ0
P

) + RT ln

(
ke

PvS

k+2LE(0)

)
+ RT ln(t )

= O(ln(t )). (145)

Namely, we recover the positive increase in the entropy pro-
duction rate observed in Figs. 15(a) and 15(b). By using

(a)

(b)

FIG. 14. Dynamics of the Michaelis Menten CRN under mixed
control. Evolution of (a) concentrations and (b) relative differ-
ence, ‖y(t ) − ycg(t )‖/‖ycg(t )‖, between the concentrations y(t ) =
([S](t ), [P](t ))T and the coarse-grained concentrations ycg(t ) =
([S]cg(t ), [P]cg(t ))T [given by Eq. (11)] and comparison between the
concentrations and the coarse-grained concentrations in the inset.
Here [E](0) = 0.3, [ES]0 = 0.1, [S](0) = 1.9, [P](0) = 0.4, IS =
1.0, ke

P = 0.5, k±1 = k±2 = 1.

Eqs. (142a) and (142b), dt G (17) and the chemical work rate
(19) become

ẇc = RT ln(t )IS + [
μ0

SIS − μ0
Pk+2LE(0)

] + RT ln(vS)IS

− RT ln

(
k+2LE(0)

ke
P

)
k+2LE(0) = O(ln(t )), (146)

dt G = RT ln(t )vS + μ0
SvS + RT ln(vS)vS = O(ln(t )),

(147)

namely, they grow logarithmically in time like the EPR in
agreement with Fig. 15(a). Furthermore, plugging Eqs. (147)
and (146) into Eq. (53), the efficiency saturates in the long-
time limit to the value

η = 1 − k+2LE(0)

IS
= vS

IS
< 1, (148)

as shown in Fig. 15(a).
We conclude by examining the moiety work rate and the

nonconservative work rate. By using Eq. (142a) in Eqs. (20)
and (22), we obtain

ẇm = RT ln(t )vS + RT ln(vS)vS + μ0
SvS = O(ln(t )), (149)
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(a)

(b)

FIG. 15. Thermodynamics of the Michaelis Menten CRN under
mixed control under the dynamics in Fig. 14. Evolution of (a) EPR,
the chemical work rate, and dt G and efficiency of growth (inset) and
(b) EPR, moiety work rate, nonconservative work rate, and dt G. Here
μ0

E = 1, μ0
ES = 2, μ0

S = 1, μ0
P = 1.

ẇnc = RT ln(t ) j̄1 + (
μ0

S − μ0
P

)
j̄1

+ RT ln

(
ke

PvS

k+2LE(0)

)
j̄1 = O(ln(t )), (150)

implying

dt G ∼ ẇm = O(ln(t )),

ẇnc ∼ T 
̇ = O(ln(t )) (151)

in the long-time limit.

3. Cyclic Michaelis Menten CRN

We consider the Cyclic Michaelis Menten CRN under
mixed control when S is injected at the rate IS > 0 and P is
extracted at the rate ke

P[P]. As in the case of the Michaelis
Menten CRN under mixed control, Sec. V C 2, the conserva-
tion law �E is unbroken implying that the concentrations [E]
and [ES] are bounded in time. Furthermore, if the CRN grows
with dt LS > 0, Eq. (127) becomes

[P] � IS

ke
P

, (152)

namely, [P] is also bounded. Furthermore, by using Eqs. (2)
and (152) and [ES] � LE(0), [S] satisfies

dt [S] + k+3[S] � k−1LE(0) + IS

(
1 + k−3

ke
P

)
, (153)

implying that [S] is bounded too. We conclude that the Cyclic
Michaelis Menten CRN does not grow with dt LS > 0.

We now verify this result numerically. Figure 16 shows
the typical evolution of the moiety concentration LS for 30
different initial conditions and for four values of the parameter
I/k̃ = IS/ke

P (which represents the ratio of influx to outflux
rates). We see that the CRN always relaxes to a steady state,
even for large I/k̃, namely, large influx rates.

The direct interconversion of S into P is the reason why the
Cyclic Michaelis Menten CRN does not grow under mixed
control unlike the Michaelis Menten CRN (see Sec. V C 2).
On the one hand, in the Michaelis Menten CRN the rate of
interconversion of S into P (via the enzymatic mechanism) is
limited by k+2LE(0) [see discussion below Eq. (140)]. Hence,
when IS > k+2LE(0), S accumulates and the CRN grows. On
the other hand, the rate of the direct interconversion of S into
P in the Cyclic Michaelis Menten CRN increases with the
concentration [S], implying that S is rapidly interconverted
into P which is rapidly extracted as the concentrations [S]
increases. Hence, S cannot accumulate and the CRN does not
grow.

4. Minimal Metabolic CRN

We consider the Minimal Metabolic CRN under mixed
control when the species S and F are injected at rates IS > 0
and IF > 0, respectively, while the species P and W are ex-
tracted at rates ke

P[P] and ke
W[W], respectively.

The Minimal Metabolic CRN under this chemostatting
procedure has also been studied numerically in Ref. [16].
It has been observed that depending on the values of the
parameters IS, IF, ke

P, and ke
W, the CRN either relaxes to

a nonequilibrium steady state or grows. From a dynamical
standpoint, only [S] and [F] grow while [P] and [W] saturate
to constant values. From a thermodynamic standpoint, when
the CRN grows, a positive increasing EPR balanced by ẇnc

was observed.
Here we recreate and explain the above observations when

the CRN grows. Figure 17(a) shows the typical evolution of
the chemostatted species: the concentrations [F] and [S] grow
while both [P] and [W] saturate. Furthermore, as in the case
of the Michaelis Menten CRN (see Sec. V C 2), at long times,
the chemostatted concentrations are well approximated by the
coarse-grained dynamics obtained from Eq. (11), as shown by
Fig. 17(b).

This can be explained by recognizing that the chemostat-
ting procedure does not break the conservation law �E (and the
concentrations [E], [ES], [EW], and [E∗] are bounded), while
it breaks the conservation laws �F and �S with the moiety
concentrations LS and LF following as dt LS = IS − ke

P[P] and
dt LF = IF − ke

W[W]. However,

[P], [W] � IS + IF

min
(
ke

P, ke
W

) , (154)
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(a) (b)

(c) (d)

FIG. 16. Evolution of LS of the Cyclic Michaelis Menten CRN under mixed control when the species S is injected at rate IS = 5.0 while
P is extracted at rate IP = −ke

P[P] for 30 randomly chosen initial conditions [consistent with LE(0) = 3.0] and (a) I/k̃ = 2500, (b) I/k̃ = 500,
(c) I/k̃ = 50, (d) I/k̃ = 0.5 where I/k̃ = IS/ke

P. Here k±1 = k±2 = k±3 = 1.

according to Eq. (127). Hence, only the concentrations [F] and
[S] can grow, as seen in Fig. 17(a). The condition for growth
has the same origin as in the Michaelis Menten CRN under
mixed control (see Sec. V C 2). The rate of enzyme-mediated
interconversion of F (resp. S) into W (resp. P) is bounded by
some function of LE(0). Thus, when IF (resp. IS) is larger than
this rate, F (resp. S) accumulates and the CRN grows.

We now examine the corresponding thermodynamics. The
typical evolution of the EPR (18), dt G (17) and chemical
work rate (19) are plotted in Fig. 18(a). All the quantities
increase with time, and consequently, the efficiency of growth
Eq. (53) saturates to a constant smaller than one [see in-
set in Fig. 18(a)], similar to the Michaelis Menten CRN in
Fig. 15(a).

Figure 18(b) shows the typical evolution of the nonconser-
vative work rate (22), the moiety work rate (20) along with
the EPR and dt G (when S and F are chosen as the potential
species): both the nonconservative work rate and moiety work
rate increase with time. Furthermore, we observe a splitting
between the magnitudes of the EPR and the nonconservative
work rate, on the one hand, and the moiety work rate and dt G,
on the other hand, implying that

dt G ∼ ẇm, ẇnc ∼ T 
̇ > 0, (155)

in the long-time limit. We note the similarity between the
thermodynamics of the Metabolic CRN in Figs. 18(a) and
18(b) and of the Michaelis Menten CRN in Figs. 15(a)
and 15(b).

5. Summary

From the results of Secs. V C 1–V C 4, we note the follow-
ing requirements for growth under mixed control.

First, from Eq. (127), the CRN needs at least one
chemostatted species that is solely injected (not extracted) to
grow. Second, by comparing the Autocatalytic CRN, which
does not grow under mixed control (see Sec. V C 1), with
both the Michaelis Menten CRN and the Minimal Metabolic
CRN, which grow under mixed control (see Secs. V C 2 and
V C 4), we expect that CRNs need to have at least one unbro-
ken conservation law to grow. Finally, given that the Cyclic
Michaelis Menten CRN does not grow under mixed control
(see Sec. V C 3), we expect that CRNs cannot have any reac-
tions interconverting only the chemostatted species to grow.

VI. CONCLUSIONS

We analyzed growth in open CRNs under three different
chemostatting procedures. A summary of our results is pro-
vided in Fig. 19.

We first showed the importance of the mass conservation
law in analyzing growth. By investigating the dynamics of
the mass density, we proved that no CRN can grow in a
Continuous-flow Stirred Tank Reactor setup while any CRN
can grow under flux control.

We then analyzed unimolecular and pseudo-unimolecular
CRNs. We proved that these CRNs cannot grow under concen-
tration and mixed control and grow only under flux control.
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(a)

(b)

FIG. 17. Dynamics of the Minimal Metabolic CRN under mixed
control when F and S are injected at rates IF = 1.2, IS = 2.5
and W and P are extracted at rates ke

W[W] and ke
P[P] with

ke
W = ke

P = 0.5. Evolution of (a) concentrations of the chemostatted
species [F](t ), [W](t ), [S](t ), and [P](t ) and (b) relative differ-
ence between the vectors y(t ) = ([F](t ), [W](t ), [S](t ), [P](t ))T and
ycg(t ) = ([S]cg(t ), [W]cg(t ), [S]cg(t ), [P]cg(t ))T [given by Eq. (11)],
and comparison between the concentrations [F](t ) and [P](t ) with
the coarse-grained concentrations [F]cg(t ) and [P]cg(t ) in the inset.
Here k±1 = k±2 = k±3 = k±4 = k±5 = 1, [E](0) = 0.12, [ES](0) =
0.68, [EW](0) = 0.6, [E∗](0) = 0.04, [F](0) = 0.12, [W](0) = 0.4,
[S](0) = 0.36, [P](0) = 0.72.

On one hand, unimolecular CRNs grow close to equilibrium.
We proved that the dissipation scales as O(1/t ) and that the
efficiency of free-energy conversion goes to one. On the other
hand, pseudo-unimolecular CRNs grow far from equilibrium.
We proved that the dissipation scales as O(t ) and that the
efficiency goes to zero.

We then studied four multimolecular CRNs with differ-
ent topological features. We verified numerically and via a
fixed point analysis the boundedness conjecture for the case
of the Autocatalytic CRN under concentration control. We
then analyzed growth under flux control. We showed that
multimolecular CRNs display different growth features com-
pared to unimolecular and pseudo-unimolecular CRNs. For
instance, some concentrations scale as O(

√
t ) in the Autocat-

alytic CRN and only a subset of concentrations grow in the
Michaelis Menten CRN. Furthermore, the Autocatalytic CRN
and the Cylic Michaelis Menten CRN grow at equilibrium,
while the Michaelis Menten CRN and the Minimal Metabolic

(a)

(b)

FIG. 18. Thermodynamics of the Metabolic CRN under mixed
control under the dynamics in Fig. 17. Evolution of (a) EPR, the
chemical work rate, and dt G and efficiency of growth (inset) and
(b) EPR, moiety work rate, nonconservative work rate, and dt G. Here
μ0

E = 1, μ0
EF = 2, μ0

EW = 2, μ0
E∗ = 3, μ0

F = 1, μ0
W = 1 μ0

S = 1, and
μ0

P = 1.

CRN grow out of equilibrium. We finally considered mixed
control and found that only the Michaelis Menten CRN and
the Minimal Metabolic CRN can grow. Strikingly, in both
CRNs, some initial conditions relax to steady states while
others grow. When they grow, both CRNs grow out of equi-
librium with efficiencies between zero and one.

The analysis of the four multimolecular CRNs suggests
the importance of unbroken conservation laws for nonequilib-
rium growth. Indeed, the presence of unbroken conservation
laws appears to be a necessary but not sufficient condition
leading to nonequilibrium growth. On the one hand, they can
prevent the equilibration between the chemostatted species
and, consequently, create nonconservative forces (like in the
Michaelis Menten CRN and the Minimal Metabolic CRN).
On the other hand, if there are no unbroken conservation laws
(like in the Autocatalytic CRN) or if there are reaction path-
ways not involving the unbroken conservation laws (like in
the Cyclic Michaelis Menten CRN), the chemostatted species
can equilibrate leading to equilibrium growth.

Our results on unimolecular and pseudo-unimolecular
CRNs rigorously support the considerations made in the com-
panion paper [29]. We also analyzed in much greater depth the
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FIG. 19. Long-time behavior of the concentrations, EPR, and efficiency under the three different chemostatting procedures for all
CRNs. Conditions in orange show no growth. Conditions in striped blue (resp. solid) show nonequilibrium (resp. equilibrium) growth. For
multimolecular CRNs, scalings of only a subset of concentrations are depicted. For cases where the exact scaling of the EPR is not known,
nonequilibrium (resp. equilibrium) growth is indicated by T 
̇ > 0 (resp. T 
̇ → 0).

Autocatalytic CRN and the Michaelis Menten CRN compared
to Ref. [29].

Our work could be extended in various directions. We
only considered time-independent chemostatting procedures
but time-dependent ones, which are experienced by many
biological systems [48,49], could lead to different results. Our
description of growing CRNs neglected volume effects which
could be added via an equation of state coupling volume and
concentrations as done, for instance, in Refs. [50,51]. Note
that the thermodynamic implications of these effects have
been analyzed in Refs. [52,53] only for the detailed balanced
CRNs that eventually relax to equilibrium. Autocatalysis did
not play an important role in our analysis of indefinite growth:
the Autocatalytic CRN we examined grows only under flux
control like the noncatalytic CRNs (see Sec. V B 1). This is
intriguing given the role that autocatalysis plays in finite-time
growth [54,55]. Our approach to growth considered a finite
number of species and reactions. Exploring chemical growth
in CRNs where the number of species can grow as the dy-
namics evolves, such as in polymerization [56,57], is certainly
very important.
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APPENDIX A: EIGENVALUES OF MATRIX V

The rate equation of unimolecular and pseudo-
unimolecular CRNs under mixed and concentration control
can be recast in the form of Eq. (34) (see Secs. III B and
IV B 1) where V = W − D with W being the rate matrix
and D being a nonegative diagonal matrix. In this appendix,

we prove that all the eigenvalues of V have negative real parts
under mixed and concentration control. The proof is split into
two parts.

First, we prove that V has no null eigenvalue. Since W is a
rate matrix, namely, Wα,β � 0 and Wα,α = −∑

β �=α Wβ,α <

0 [see Eqs. (29) and (30)] and D is a nonnegative diago-
nal matrix, then V is irreducible as W is irreducible, and∑

β �=α |Vβ,α| � |Vα,α| for all columns of V with a strict in-
equality for at least one α (where D is nonzero). Because
of these properties, V is an irreducible weakly diagonally
dominant matrix that is known to be nonsingular [58,59].
Hence, matrix V has no zero eigenvalues unlike W .

Second, we prove that V can only admit eigenvalues with
nonpositive real parts. To do so, we use Gershgorin’s theorem
[58], which states that the eigenvalues of V can always be
found in the union of disks in the complex plane defined as
follows. For every α, there is a disk centered on the neg-
ative real axis at Vα,α < 0 with radius

∑
β �=α |Vβ,α|. Since∑

β �=α |Vβ,α| � |Vα,α|, the disks are either fully contained in
the left half of the complex plane or can be (at most) tangential
to the origin. Therefore all eigenvalues of V have nonpositive
real parts.

The final implication of the two arguments is that all the
eigenvalues of V have negative real parts. Note that this proof
did not need W to be detailed balanced.

APPENDIX B: SOLUTIONS OF EQ. (34)

For unimolecular and pseudo-unimolecular CRNs, under
any chemostatting procedure, the rate equation Eq. (2) can
be recast in the general form of Eq. (34) (see Secs. III B and
IV B 1) where a is the vector of dynamical variables, V is an
appropriately chosen (real) matrix, and Īa is a constant vector.
Formally, the solution of Eq. (34) with the initial condition a0

is given by

a(t ) = eV t a0 +
∫ t

0
ds eV (t−s)Īa, (B1)
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where the integral on the right-hand side of Eq. (B1) satisfies

V

∫ t

0
ds eV (t−s) = eV t − 1. (B2)

The specific dynamical behavior described by the formal
solution (B1) depends on the spectral properties of V . First,
under mixed or concentration control, V is invertible since
all eigenvalues have negative real part (see Appendix A).
This implies that a(t ) relaxes to a steady state as we prove
in Appendix B 1. Second, under flux control, V coincides
with the rate matrix W and is therefore noninvertible with
a unique zero eigenvalue (see Secs. III B and IV B 1). If V
is diagonalizable (which is always the case if W is detailed
balanced), a(t ) will grow as shown in Secs. III D and IV B 3.
If V is nondiagonalizable (which is possible when W is
nondetailed balanced [60,61]), a(t ) still grows as we prove
in Appendix B 2.

1. Invertible case

We consider here the case of invertible V (corresponding
to unimolecular and pseudo-unimolecular CRNs under mixed
or concentration control). Since all the eigenvalues of V have
negative real parts (see Appendix A),

lim
t→∞ eV t a0 = 0, (B3)

for any initial condition a0 [62]. Since V is invertible, Eq. (B2)
implies that the general solution (B1) reduces to

a(t ) = eV t a0 + V−1(eV t − 1)Īa −−−→
t→∞ −V−1Īa, (B4)

where the second limit uses Eq. (B3). Hence, in the long-time
limit, a(t ) relaxes to the steady state −V−1Īa.

2. Noninvertible case

We consider here the case of noninvertible nondigaonaliz-
able V (corresponding to pseudo-unimolecular CRNs under
flux control). From the Perron-Frobenius theorem [40], its
largest eigenvalue is unique and equal to 0. The corresponding
right and left null eigenvectors will be denoted as π and
�m = (1, 1, . . . )T, respectively (as done in Sec. III A). All
other eigenvalues have negative real parts.

We start by converting V into its Jordan normal form by
means of the invertible matrix P of generalized eigenvectors
[62]:

� = P−1VP , (B5)

where the matrix � has the block diagonal form

� =

⎛
⎜⎜⎜⎜⎝

0
B2

. . .

Br−1

Br

⎞
⎟⎟⎟⎟⎠. (B6)

The block matrices Bk take the form

Bk =

⎛
⎜⎜⎜⎜⎝

λk 1
λk 1

. . .

λk 1
λk

⎞
⎟⎟⎟⎟⎠, (B7)

when the corresponding eigenvalue λk is real, and the form

Bk =

⎛
⎜⎜⎜⎜⎝

�k 12

�k 12
. . .

�k 12

�k

⎞
⎟⎟⎟⎟⎠, (B8)

when the corresponding eigenvalue is complex λk = κk + ιωk .
Here 12 is the 2 × 2 identity matrix,

�k =
(

κk −ωk

ωk κk

)
, (B9)

and λk < 0 and κk < 0. Note that the matrix Bk in Eq. (B7)
[resp. Eq. (B8)] is invertible with all eigenvalues being λk

(resp. κk + ιωk).
We now make a linear transformation into the space of gen-

eralized eigenvectors u = P−1a. Correspondingly, Eq. (34)
becomes

dt u = �u + P−1Īa. (B10)

The first component u1(t ) grows linearly in time as

dt u1 = (P−1Īa)1 =
∑

m

(Īa)m, (B11)

where the second equality used the fact that the left null eigen-
vector �m = (1, 1, . . . )T is the first row of P−1. The remaining
components of u can be grouped into (sub)vectors uk such that
each (sub)vector evolves as

dt uk = Bkuk + (P−1Īa)k . (B12)

Note the similarity between Eqs. (B12) and (34). Furthermore,
since each Bk is invertible with all eigenvalues having nega-
tive real parts, the results of Appendix B 1 apply. Thus, the
components uk in Eq. (B12) relax to the values

uk (t ) −−−→
t→∞ −B−1

k (P−1Īa)k. (B13)

By combining Eqs. (B11) and (B13) with a = Pu(t ), at suffi-
ciently long times,

a(t ) = πu1(t ) +
∑
k>1

Pk
(−B−1

k ((P−1Īa)k )
)

︸ ︷︷ ︸
=c(I)

, (B14)

where we used the fact that the first column of P1 = π and Pk

refers to the (sub)matrix formed from the columns of P cor-
responding to the kth Jordan Block. By comparing Eqs. (B14)
and (67b), we observe that the only change due to the nondi-
agonalizability of V is in the form of the offset c(I). Hence,
in the long-time limit, a(t ) grows.
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APPENDIX C: BROKEN CONSERVATION LAWS IN FULLY
OPEN PSEUDO-UNIMOLECULAR CRNS

When one of the Zl species is chemostatted the conser-
vation law �ml is broken. Thus, the set of potential Yp (resp.
force Yf ) species includes both dynamically linear and hidden
species, i.e., Yp = Ypl ∪ Yph (resp. Yf = Yf l ∪ Yf h). As for uni-
molecular CRNs (see Sec. III D 2) the set Ypl includes only one
species. Hence, matrix L in Eq. (59) is equivalent to the matrix
Lb (introduced in Sec. II C) as it collects now only broken
conservation laws and can be written as

Lb =
⎛
⎝

X Ypl Yf l Yph Yf h

�ml
X 	ml

pl �ml
f l 0 0

L̃X �̃pl L̃ f l L̃ph L̃ f h

⎞
⎠. (C1)

From Eq. (C1), the matrix Lb
Yp

and its inverse [63] read

Lb
Yp

=
( Ypl Yph

	ml
pl 0

�̃pl L̃ph

)
, (C2a)

(
Lb

Yp

)−1 =
⎛
⎝

Ypl Yph(
	ml

pl

)−1
0

−(L̃ph)−1�̃pl
(
	ml

pl

)−1
(L̃ph)−1

⎞
⎠. (C2b)

By plugging Eqs. (C2b) and (C1) in Eq. (21), the concen-
tration vector of the moieties reads

m =

⎛
⎜⎝

X Ypl Yf l Yph Yf h(
	ml

pl

)−1
�ml

X 1
(
	ml

pl

)−1
�ml

f l 0 0

LX 0 L f l I L f h

⎞
⎟⎠ · z,

(C3)

with

LX = (L̃ph)−1
(
L̃X − (

	ml
pl

)−1
�̃pl�

ml
X

)
, (C4)

L f l = (L̃ph)−1
(
L̃ f l − (

	ml
pl

)−1
�̃pl�

ml
f l

)
, (C5)

L f h = (L̃ph)−1L̃ f h . (C6)

[1] P. Gaspard, Fluctuation theorem for nonequilibrium reactions,
J. Chem. Phys. 120, 8898 (2004).

[2] D. Andrieux and P. Gaspard, Fluctuation theorem and meso-
scopic chemical clocks, J. Chem. Phys. 128, 154506 (2008).

[3] P. Gaspard, Stochastic approach to entropy production in chem-
ical chaos, Chaos 30, 113103 (2020).

[4] S. G. Marehalli Srinivas, M. Polettini, M. Esposito, and F.
Avanzini, Deficiency, kinetic invertibility, and catalysis in
stochastic chemical reaction networks, J. Chem. Phys. 158,
204108 (2023).

[5] G. Falasco, R. Rao, and M. Esposito, Information thermo-
dynamics of turing patterns, Phys. Rev. Lett. 121, 108301
(2018).

[6] F. Avanzini, G. Falasco, and M. Esposito, Chemical cloaking,
Phys. Rev. E 101, 060102(R) (2020).

[7] T. Aslyamov, F. Avanzini, E. Fodor, and M. Esposito, Nonideal
reaction-diffusion systems: Multiple routes to instability, Phys.
Rev. Lett. 131, 138301 (2023).

[8] F. Avanzini, G. Falasco, and M. Esposito, Thermodynamics of
chemical waves, J. Chem. Phys. 151, 234103 (2019).

[9] P. Kumar and G. Gangopadhyay, Nonequilibrium thermody-
namics of glycolytic traveling wave: Benjamin-Feir instability,
Phys. Rev. E 104, 014221 (2021).

[10] H. Qian and D. A. Beard, Thermodynamics of stoichiometric
biochemical networks in living systems far from equilibrium,
Biophys. Chem. 114, 213 (2005).

[11] T. Schmiedl and U. Seifert, Stochastic thermodynamics of
chemical reaction networks, J. Chem. Phys. 126, 044101
(2007).

[12] M. Polettini and M. Esposito, Irreversible thermodynamics of
open chemical networks. I. emergent cycles and broken conser-
vation laws, J. Chem. Phys. 141, 024117 (2014).

[13] R. Rao and M. Esposito, Nonequilibrium thermodynamics of
chemical reaction networks: Wisdom from stochastic thermo-
dynamics, Phys. Rev. X 6, 041064 (2016).

[14] R. Rao and M. Esposito, Conservation laws and work fluctu-
ation relations in chemical reaction networks, J. Chem. Phys.
149, 245101 (2018).

[15] F. Avanzini, E. Penocchio, G. Falasco, and M. Esposito,
Nonequilibrium thermodynamics of non-ideal chemical reac-
tion networks, J. Chem. Phys. 154, 094114 (2021).

[16] F. Avanzini and M. Esposito, Thermodynamics of concentration
vs flux control in chemical reaction networks, J. Chem. Phys.
156, 014116 (2022).

[17] X. Yang, M. Heinemann, J. Howard, G. Huber, S. Iyer-Biswas,
G. L. Treut, M. Lynch, K. L. Montooth, D. J. Needleman,
S. Pigolotti et al., Physical bioenergetics: Energy fluxes, bud-
gets, and constraints in cells, Proc. Natl. Acad. Sci. USA 118,
e2026786118 (2021).

[18] J. J. Heijnen and J. P. Van Dijken, In search of a thermo-
dynamic description of biomass yields for the chemotrophic
growth of microorganisms, Biotechnol. Bioeng. 39, 833
(1992).

[19] D. Deamer and A. L. Weber, Bioenergetics and life’s origins,
Cold Spring Harbor Persp. Biol. 2, a004929 (2010).

[20] P. Adamski, M. Eleveld, A. Sood, Á. Kun, A. Szilágyi, T.
Czárán, E. Szathmáry, and S. Otto, From self-replication to
replicator systems en route to de novo life, Nat. Rev. Chem.
4, 386 (2020).

[21] P. L. Luisi, The Emergence of Life: From Chemical Origins
to Synthetic Biology (Cambridge University Press, New York,
2006).

[22] E. Smith and H. J. Morowitz, The Origin and Nature of Life
on Earth: The Emergence of the Fourth Geosphere (Cambridge
University Press, Cambridge, 2016).

[23] W.-H. Lin, E. Kussell, L.-S. Young, and C. Jacobs-Wagner,
Origin of exponential growth in nonlinear reaction networks,
Proc. Natl. Acad. Sci. USA 117, 27795 (2020).

[24] E. Szathmáry, Simple growth laws and selection consequences,
Trends Ecol. Evol. 6, 366 (1991).

064153-27

https://doi.org/10.1063/1.1688758
https://doi.org/10.1063/1.2894475
https://doi.org/10.1063/5.0025350
https://doi.org/10.1063/5.0147283
https://doi.org/10.1103/PhysRevLett.121.108301
https://doi.org/10.1103/PhysRevE.101.060102
https://doi.org/10.1103/PhysRevLett.131.138301
https://doi.org/10.1063/1.5126528
https://doi.org/10.1103/PhysRevE.104.014221
https://doi.org/10.1016/j.bpc.2004.12.001
https://doi.org/10.1063/1.2428297
https://doi.org/10.1063/1.4886396
https://doi.org/10.1103/PhysRevX.6.041064
https://doi.org/10.1063/1.5042253
https://doi.org/10.1063/5.0041225
https://doi.org/10.1063/5.0076134
https://doi.org/10.1073/pnas.2026786118
https://doi.org/10.1002/bit.260390806
https://doi.org/10.1101/cshperspect.a004929
https://doi.org/10.1038/s41570-020-0196-x
https://doi.org/10.1073/pnas.2013061117
https://doi.org/10.1016/0169-5347(91)90228-P


MAREHALLI SRINIVAS, AVANZINI, AND ESPOSITO PHYSICAL REVIEW E 109, 064153 (2024)

[25] P. R. Wills, S. A. Kauffman, B. M. Stadler, and P. F.
Stadler, Selection dynamics in autocatalytic systems: Templates
replicating through binary ligation, Bull. Math. Biol. 60, 1073
(1998).

[26] S. Iyer-Biswas, G. E. Crooks, N. F. Scherer, and A. R. Dinner,
Universality in stochastic exponential growth, Phys. Rev. Lett.
113, 028101 (2014).

[27] D. Angeli, P. D. Leenheer, and E. Sontag, Chemical networks
with inflows and outflows: A positive linear differential inclu-
sions approach, Biotech. Prog. 25, 632 (2009).

[28] P. Nandori and L.-S. Young, Growth and depletion in linear
stochastic reaction networks, Proc. Natl. Acad. Sci. USA 119,
e2214282119 (2022).

[29] S. G. M. Srinivas, F. Avanzini, and M. Esposito, companion
paper, Thermodynamics of growth in open chemical reaction
networks, Phys. Rev. Lett. 132, 268001 (2024).

[30] G. Svehla, Nomenclature of kinetic methods of analysis (IU-
PAC recommendations 1993), Pure Appl. Chem. 65, 2291
(1993).

[31] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics
(Wiley-Blackwell, Weinheim, 2004).

[32] R. Aris, Elementary Chemical Reactor Analysis (Butterworth-
Heinemann, Boston, 1989), pp. 156–228.

[33] K. Liu, A. Blokhuis, C. van Ewijk, A. Kiani, J. Wu, W. H.
Roos, and S. Otto, Light-driven eco-evolutionary dynam-
ics in a synthetic replicator system, Nat. Chem. 16, 79
(2024).

[34] Edited by U. van Stockar and L. A. M. van der Wielen, Bio-
thermodynamics: The Role of Thermodynamics in Biochemical
Engineering (EPFL Press, New York, 2013).

[35] A. Sorrenti, J. Leira-Iglesias, A. Sato, and T. M. Hermans,
Non-equilibrium steady states in supramolecular polymeriza-
tion, Nat. Commun. 8, 15899 (2017).

[36] F. Avanzini, G. Falasco, and M. Esposito, Thermodynamics of
non-elementary chemical reaction networks, New J. Phys. 22,
093040 (2020).

[37] F. Avanzini, N. Freitas, and M. Esposito, Circuit theory for
chemical reaction networks, Phys. Rev. X 13, 021041 (2023).

[38] A. Blokhuis, D. Lacoste, and P. Gaspard, Reaction kinetics
in open reactors and serial transfers between closed reactors,
J. Chem. Phys. 148, 144902 (2018).

[39] N. G. Van Kampen, Stochastic Processes in Physics and Chem-
istry (North Holland, 2007).

[40] T. Tomé and M. J. De Oliveira, Stochastic Dynamics and Ir-
reversibility, Graduate Texts in Physics (Springer International
Publishing, Cham, 2015), pp. 159–163.

[41] E. Penocchio, R. Rao, and M. Esposito, Thermodynamic ef-
ficiency in dissipative chemistry, Nat. Commun. 10, 3865
(2019).

[42] D. F. Anderson, Boundedness of trajectories for weakly re-
versible, single linkage class reaction systems, J. Math. Chem.
49, 2275 (2011).

[43] M. Feinberg, Foundations of Chemical Reaction Network The-
ory (Springer, Cham, 2019), pp. 79–80.

[44] M. Gopalkrishnan, E. Miller, and A. Shiu, A geometric ap-
proach to the global attractor conjecture, SIAM J. Appl. Dyn.
13, 758 (2014).

[45] B. E. Meserve, Fundamental Concepts of Algebra (Addison-
Wesley, Cambridge, MA, 1953), pp. 156–158.

[46] T. L. Hill, Studies in irreversible thermodynamics IV. Diagram-
matic representation of steady state fluxes for unimolecular
systems, J. Theor. Biol. 10, 442 (1966).

[47] A. Wachtel, R. Rao, and M. Esposito, Thermodynamically
consistent coarse graining of biocatalysts beyond Michaelis–
Menten, New J. Phys. 20, 042002 (2018).

[48] K. Eckel-Mahan and P. Sassone-Corsi, Metabolism and the
circadian clock converge, Physiol. Rev. 93, 107 (2013).

[49] M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and
universality of calcium signalling, Nat. Rev. Mol. Cell Biol. 1,
11 (2000).

[50] E. Bigan, J. Steyaert, and S. Douady, On necessary and suf-
ficient conditions for proto-cell stationary growth, Electron.
Notes Theor. Comput. Sci. 316, 3 (2015), 5th International
Workshop on Static Analysis and Systems Biology (SASB
2014).

[51] Y. Kondo and K. Kaneko, Growth states of catalytic reac-
tion networks exhibiting energy metabolism, Phys. Rev. E 84,
011927 (2011).

[52] Y. Sughiyama, A. Kamimura, D. Loutchko, and T. J. Kobayashi,
Chemical thermodynamics for growing systems, Phys. Rev.
Res. 4, 033191 (2022).

[53] A. Kamimura, Y. Sughiyama, and T. J. Kobayashi, Thermo-
dynamic and stoichiometric laws ruling the fates of growing
systems, Phys. Rev. Res. 6, 023173 (2024).

[54] J. Unterberger and P. Nghe, Stoechiometric and dynamical auto-
catalysis for diluted chemical reaction networks, J. Math. Biol.
85, 26 (2022).

[55] S. Sarkar and J. L. England, Design of conditions for self-
replication, Phys. Rev. E 100, 022414 (2019).

[56] R. Rao, D. Lacoste, and M. Esposito, Glucans monomer-
exchange dynamics as an open chemical network, J. Chem.
Phys. 143, 244903 (2015).

[57] A. Sharko, D. Livitz, S. De Piccoli, K. J. M. Bishop, and
T. M. Hermans, Insights into chemically fueled supramolecular
polymers, Chem. Rev. 122, 11759 (2022).

[58] R. Horn and C. Johnson, Matrix Analysis (Cambridge Univer-
sity Press, Cambridge, 2013).

[59] O. Taussky, A recurring theorem on determinants, Am. Math.
Month. 56, 672 (1949).

[60] D. Andrieux, Spectral signature of nonequilibrium conditions,
arXiv:1103.2243 [cond-mat.stat-mech].

[61] M. Polettini, Fisher information of Markovian decay modes,
Eur. Phys. J. B 87, 215 (2014).

[62] L. Perko, Differential Equations and Dynamical Systems
(Springer, New York, 2014).

[63] C. D. Meyer, Matrix Analysis and Applied Linear Algebra
(Society for Industrial and Applied Mathematics, Philadelphia,
2001), p. 123.

064153-28

https://doi.org/10.1016/S0092-8240(98)90003-9
https://doi.org/10.1103/PhysRevLett.113.028101
https://doi.org/10.1002/btpr.162
https://doi.org/10.1073/pnas.2214282119
https://doi.org/10.1103/PhysRevLett.132.268001
https://doi.org/10.1351/pac199365102291
https://doi.org/10.1038/s41557-023-01301-2
https://doi.org/10.1038/ncomms15899
https://doi.org/10.1088/1367-2630/abafea
https://doi.org/10.1103/PhysRevX.13.021041
https://doi.org/10.1063/1.5022697
https://doi.org/10.1038/s41467-019-11676-x
https://doi.org/10.1007/s10910-011-9886-4
https://doi.org/10.1137/130928170
https://doi.org/10.1016/0022-5193(66)90137-8
https://doi.org/10.1088/1367-2630/aab5c9
https://doi.org/10.1152/physrev.00016.2012
https://doi.org/10.1038/35036035
https://doi.org/10.1016/j.entcs.2015.06.007
https://doi.org/10.1103/PhysRevE.84.011927
https://doi.org/10.1103/PhysRevResearch.4.033191
https://doi.org/10.1103/PhysRevResearch.6.023173
https://doi.org/10.1007/s00285-022-01798-0
https://doi.org/10.1103/PhysRevE.100.022414
https://doi.org/10.1063/1.4938009
https://doi.org/10.1021/acs.chemrev.1c00958
https://doi.org/10.1080/00029890.1949.11990209
https://arxiv.org/abs/1103.2243
https://doi.org/10.1140/epjb/e2014-50142-1

