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It is expected that conformal symmetry is an emergent property of many systems at their critical point. This
imposes strong constraints on the critical behavior of a given system. Taking them into account in theoretical
approaches can lead to a better understanding of the critical physics or improve approximation schemes.
However, within the framework of the nonperturbative or functional renormalization group and, in particular,
of one of its most used approximation schemes, the derivative expansion (DE), nontrivial constraints apply only
from third order [usually denoted 0(3%)], at least in the usual formulation of the DE that includes correlation
functions involving only the order parameter. In this work we implement conformal constraints on a generalized
DE including composite operators and show that new constraints already appear at second order of the DE [or
0(d%)]. We show how these constraints can be used to fix nonphysical regulator parameters.
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I. INTRODUCTION

The renormalization group a la Wilson [1,2] has been the
theoretical framework for quantitatively describing critical
phenomena as well as the presence of scale invariance and
universality near critical points. Almost simultaneously with
Wilson’s original work, Polyakov and Migdal [3,4] conjec-
tured that conformal invariance holds at criticality and not
just scale invariance. This assumption allowed researchers to
fully classify critical phenomena in two dimensions [5,6]. In
recent years the theoretical study of a significant number of
critical systems has made considerable progress. In addition
to an important advance in traditional methods such as the €
expansion (in which the order €’ has recently been reached
[7-11]) or Monte Carlo simulations [12-14], two methodolo-
gies with less history made notable progress. One is known as
the Conformal Bootstrap, which, using conformal invariance,
operator product expansion, and unitarity, gives very stringent
bounds on several exponents (and other critical parameters)
in various models [15-18]. The other one is the Functional
or Non-Perturbative Renormalization Group (FRG) [19-23].
It is interesting to observe that these two methodologies are
nothing but, on one side, the modern version of Wilson renor-
malization group and, on the other side, of Polyakov and
Migdal conformal symmetry analysis.

FRG-related methods, although at the heart of Wilson’s
initial ideas, were quickly overtaken as mainstream methods
by a perturbative version of the Renormalization Group (RG)
[24-26]. The reason for this was the success of the € expan-
sion for the understanding of the Ising universality class and,
more generally, of O(N) models [1,25,26]. Only very recently,
functional methods managed to catch up and surpass perturba-
tive methods in accuracy in such models. Moreover, the FRG
has shown a versatility for the formulation of nonperturbative
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approximations allowing one to study various problems that
are clearly beyond the scope of perturbation theory. Just
to mention some examples, it has been applied with great
success to the study of the Random Field Ising model (sponta-
neous supersymmetry breaking and the associated breaking of
dimensional reduction in a nontrivial dimension) [27,28], the
Kardar-Parisi-Zhang equation in dimensions larger than one
(identification of the strong coupling fixed point) [29-31], the
glassy phase of crystalline membranes [32], systems showing
different critical exponents in their high- and low-temperature
phases [33], the phase diagram of reaction-diffusion systems
[34,35], the calculation of nonuniversal critical temperatures
of spin systems [36], the calculation of bound states masses in
3D Ising model near criticality [37], etc. For a recent review
on the FRG including other examples of application, see [23];
for a pedagogical presentation of the method, see [22].

In a similar way, methods based on conformal invariance,
long before the relatively recent advances based on the Con-
formal Bootstrap [15,17,18,38], allowed the development of
an entire branch of mathematical physics oriented towards the
study of 2D conformal models [5], starting from the seminal
work [6].

The previous discussion highlights the fact that the various
methods based on the RG (in their perturbative or nonpertur-
bative variants), as well as the methods based on conformal
invariance, have a long history. Paradoxically, however, there
has been little dialogue between the two methodologies. From
the viewpoint of methods based on the RG, the reason is
clear: when implementing an approximation scheme in such a
context, the existence of a critical point is expressed by the
existence of a fixed point of the RG equations. Since only
analytic and globally well-defined solutions of the fixed point
equation are physically acceptable, this generically leads to a
discrete set of isolated fixed points. These fixed points rigidly
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determine the associated critical (or multicritical) properties
without ever using conformal invariance. From this perspec-
tive, conformal invariance appears as superfluous. At the level
of exact equations, once dilatation invariance is imposed,
the conformal symmetry should be fulfilled automatically
[38,39]. However, because of unavoidable approximations,
the conformal symmetry is, in practice, broken. It is ex-
pected that good approximation schemes would yield a small
breaking of conformal symmetry. The reasons why confor-
mal methods have failed to take advantage of the RG are
symmetric. Both in the case of 2D exact solutions and in
the context of the Conformal Bootstrap, once the method in
question has been employed, the solution is what it is and
there is no room left to exploit the RG. Obviously, exceptions
to this situation must be noted, notably for studying the renor-
malization flow between two conformal fixed points (see, for
example, [40]), but such exceptions only confirm the rule that
only one family of methods is used to study the fixed points
themselves.

For some years now, we have been studying the link be-
tween conformal invariance and FRG. In this context, it is
natural (as for scale invariance) to analyze an infrared regu-
larized version of conformal invariance which includes as a
particular case the usual conformal invariance (in the limit
where the infrared regulator vanishes). Initial studies have
focused on trying to prove conformal invariance by exploiting
the FRG equations plus specific properties of particular mod-
els [39,41]. More recently, some of the authors performed a
first analysis showing one way to exploit conformal invariance
in the Ising universality class in the context of the FRG [42].
This study relied on the widely used derivative expansion
(DE), which consists of projecting the Gibbs free energy on
a functional form including terms with a given number of
derivatives or less (see Sec. IV for more details). Equivalently,
the DE can be seen as a systematic expansion of the proper
vertices regularized at small wave numbers. DE has been
studied in great detail, and an apparent convergence has been
shown with the order of magnitude of successive terms being
controlled by a parameter of the order of ~1/4 [43—45]. In
Refs. [43—45] only correlation functions of the local order
parameter were analyzed. For these correlation functions it
was first observed that conformal invariance is automatically
satisfied at the fixed point at first and second order of that
approximation scheme. The first nontrivial consequence of
conformal invariance appears in the third order of the DE
where all terms including four derivatives in the free energy
are included.

The first purpose of this paper is to generalize our previ-
ous work [42] by studying correlation functions that involve
composite operators. These correlation functions play an
important physical role. They contain, in particular, the in-
formation concerning the various perturbations around the
fixed point such as, for example, the critical exponents v or
w. In fact, considering composite operators in the context of
FRG is quite natural since they play a very important role
in the conformal bootstrap program. This being said, even if
studying such correlation functions in the context of FRG is
not new at all [20,23,46], applications are rather scarce in the
context of statistical mechanics (see, however, [47,48]).

Our second purpose is to make use of this formalism
to improve the accuracy of approximate FRG calculations.
Approximations, be they implemented in a perturbative or
nonperturbative framework, induce the breaking of many ex-
act properties and as a consequence make physical quantities
depend on the implementation of the approximate calcula-
tions. For instance, the critical exponents at one loop differ
whether they are computed in the € expansion (setting € = 1
at the end of the calculation) or at fixed dimensionind = 3 (in
the massive zero momentum scheme for instance). Moreover,
even at large orders, the perturbative calculation of critical
exponents in d = 3 needs to be supplemented by resummation
techniques (Padé-Borel for instance) that unavoidably involve
arbitrary parameters that must be fixed by one way or another,
and the dependence of the exponents on these parameters is
in general not small. Thus physical predictions have spurious
dependencies on nonphysical parameters. In the context of the
FRG, a similar phenomenon occurs: while physical quantities
(such as critical temperatures or exponents) should not depend
on the choice of the coarse-graining procedure (regulating
function), approximations induce a spurious dependence on
this choice that must be fixed. This dependence has been
studied rather extensively by the FRG community; see, for in-
stance [23], Sec. 2.3.2. We show in this article that conformal
invariance can help us choosing the regulating function and
thus eliminating the arbitrariness induced by implementing
the DE.

In fact, by considering correlation functions that include
only the local order parameter, conformal invariance only
gives rise to nontrivial consequences at third order [O(d%)]
of the DE [42]. Such order has been employed only rarely in
the literature and only for O(N) models, which significantly
reduces the impact of the use of conformal invariance. In the
present work, we show that in correlation functions including
composite operators nontrivial information coming from con-
formal invariance is obtained from the second order [0(8?%)] of
such an approximation scheme. At odds with the third order,
the second order has been applied in an enormous diversity
of systems [23], which qualitatively broadens the domain of
application of conformal invariance in this context.

The article is organized as follows. We first quickly recall
the basics of FRG and discuss how composite operators are
treated in this formalism. We then derive the Ward identi-
ties associated with the invariance under dilatations, which
can be expressed as a fixed point of the RG transformation.
Following the same path, we derive the Ward identity for
conformal invariance in this framework. We then implement
the dilatation and conformal Ward identities in a specific
truncation, namely, the DE at order O(d%). We show that
conformal invariance is not automatically realized at the fixed
point of the FRG equation because of the approximation
scheme considered and study the dependence of this spuri-
ous breaking of conformal Ward identity with the regulating
function. This naturally leads to a criterion for choosing the
regulator, which was coined the Principle of Maximal Con-
formality (PMC) in [42]. We compare this criterion to the
more widely used Principle of Minimal Sensitivity (PMS) and
show that the two are compatible for the critical exponents v
and w.
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II. THE FUNCTIONAL RENORMALIZATION GROUP
IN THE PRESENCE OF A SOURCE
FOR COMPOSITE OPERATORS

In a nutshell, the FRG is a framework which allows to
incorporate progressively rapid fluctuations from microscopic
to macroscopic scales in the computation of a Gibbs free en-
ergy. This is done by adding to the action S a scale-dependent
term ASy that regulates infrared fluctuations (with respect to
the momentum scale k) keeping fast fluctuations unaltered.
We present here the method in the case of a scalar field with
Z, symmetry, but generalizing to more complex theories is
straightforward. It is convenient to take this regulating term in
the form of a masslike term, quadratic in the fields [49]:

1
ASile]l = E/ PRk (x, y)p(y), (D

where fx = [ d’x. The regulator Ry is chosen to be invariant
under translations and rotations, which means that its Fourier
transform is just a function of ¢>. For dimensional reasons
one usually writes the regulator in direct space and in Fourier
space as'

Ri(x,y) = aZk* r(k*|x — y|%),
Ri(q?) = aZik*r(q* KP), 2)

factorizing the overall scale of the regulator o and a field
renormalization factor Z;. For the regulating term to behave
properly, we impose that the regulating function r decreases
faster than any power law for large arguments and tends to 1
for g < k.

The canonical approach in the FRG, since its development
three decades ago [19-21], relies on adding this regulating
term to the action in the functional integral in the presence
of a source for the field. One can consider the same approach
but also in the presence of a source K (x) for a local composite
operator [20,23,46-48,50] that we denote O(x):

MUK _ / Do SWI-ASUYI+[JWeW+[ KWOW (3

Unless otherwise stated, average values will be taken with
respect to this measure, in the presence of sources J and K.
It is implicitly assumed throughout this article that the theory
has been regularized somehow in the ultraviolet and we call
A the ultraviolet cutoff.

A generic local scalar composite operator can be expressed
as a linear combination of scaling operators, which are local
eigenperturbations of the RG flow around the fixed point.
Since the fixed point of the RG flow corresponds to a scale-
invariant theory, these operators are also eigenvectors of the
dilatation transformation. They can therefore be classified ac-
cording to their scaling dimension as well as their parity under
Z, transformations. The product of two such operators can
also be expressed in that base, a procedure known as the Op-
erator Product Expansion (OPE) [51,52]. For example, under

"Notice that we employ the same symbol for the regulator R;
and its Fourier transform. We employ the same criterion for the
dimensionless counterpart r.

this assumption, a generic Z,-symmetric composite operator
O(x) can be written as

O(x) ~ 125 (k) + g )Z7 (k) + . ... 4)

A. An example: The ¢?(x) operator

Consider, for the sake of clarity, the operator O(x) =
©*(x). The operator (p,%(x) in Eq. (4) is chosen such that
(p3) = 0 and similarly for all other dilatation eigenvectors for

any k (except the identity). In this case, Zg ’ (k) can be fixed as

Zgz (k) = (@* (X)) s=k=o0 (5)

which is x-independent due to translation invariance. With the
definition given in Eq. (4) applied to this operator, we have
that

(OO0 ea=k=0 ~ (Z0) (0} )0 ), _xo

-1 -1
N—ZDWZ’ fOI'A << |.X'—y| <<k ,S, (6)

where the ¢ subscript means that we are referring to the
connected correlation function and ~ stands for the leading
behavior in the critical regime, corresponding to |x — y| much
larger than the microscopic length scale (e.g., lattice spacing
~A~") and much smaller than both the correlation length and
k™', the infrared scale provided by the regulator introduced
in Eq. (2). The last identity fixes the normalization of the
operator ¢3. Equation (6) means that, generically, and up
to a normalization, all composite operators with the same
symmetry properties as the ¢2(x) operator have the same con-
nected correlation functions at long distances. In particular,
for connected correlation functions, the operators ¢* and @3
are proportional at long distances. The only exception to this
rule is the case where Z;’)z vanishes. In this case, the first irrel-
evant operator cannot be neglected and must be considered, as
discussed below.

Now the singular part of the specific heat is related to
WIJ, K] = WizolJ, K] by Cing. 8%W and behaves accord-
ing to the power law

Csing. (&8 |T - Tc|7av (7)

which defines the critical exponent ¢, not to be confused
with the parameter « introduced in Eq. (2). This power law
can be extracted from correlation functions for the composite
operator in the following way. Reintroducing the temperature
dependence in the definition of the free energy, Eq. (3), we
conclude that a derivative with respect to 7 yields the integral
over space of the Hamiltonian (or Euclidean action) density,
which behaves according to Eq. (4) and is therefore dominated
by ¢2(x), up to an uninteresting additive constant. Since
2 2 82w
(" " ()e = SKG)KG) ®)

and using the first equivalence in Eq. (6), we conclude that
f (©* ()* ) egmk=0 ~ |T — T.| ™. 9)
e

Now, due to translation invariance, one of the space integrals
contributes to a volume factor while the other contributes as
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g972P2 Using the scaling behavior £ ~ |T — T,|™" and the
scaling law o = 2 — vd we conclude that

1
Dy =d— —. (10)
Vv
This equation implies that g3(x) is nothing but the most rel-
evant even and nontrivial eigenperturbation of the dilatation
operator around the fixed point as was stated initially.

B. The FRG flow equation and fixed point perturbations

Returning to the functional integral (3) in the general case
of a composite operator O and taking the modified Legendre
transform to the free energy Wi [J, K] with respect to J defines
the scale-dependent effective action I';[¢, K] as

Lil¢, K1 = =WilJ, K] — ASi[9] + /J(x)¢(x). (1)

This unusual definition of the Legendre transform, with the
subtraction of the regulating term, ensures that I';[¢, K] inter-
polates between the bare action at scale k = A, I'r—p[¢p, K] =
Slp] + fXK(x)O(x) and the effective action at k =0, i.e.,
k=0 = I'[¢, K]. Also, ¢(x) is defined, starting from Eq. (3),
as

Wi

8J(x)

where the differentiation with respect to J(x) is taken at con-
stant K. Deriving (11) with respect to K we obtain

Wi 8T
SK(y)  SK(y)'

In the previous equation, the differentiations are performed at
fixed J in the left-hand side and at fixed ¢ in the right-hand
side. In the following, we make no explicit reference to the
variable that are kept constant under differentiation when this
is the expected one. Another thing to keep in mind is that when
working with the effective action I'y[¢, K], the two-point
function of the composite operator O is related to derivatives
of I'y in a nontrivial way [47,48]. To be specific, it can be
easily verified that

= (p))sx = ¢(x), 12)

13)

82w, 8T
(OO = SK(x)S;((y) = _SK(x)S;((y)

+/ —Szrk Gk(w,z)—azrk ,

2w 0K (x)é¢p(w) S¢(2)8K(y)
(14)

where the propagator G (x, y) is as usual:
2 2 -1

PO, = 5 J(i)f{’;(y) - ( . ¢§; +Rk>m. (15)

For completeness and, in the same manner, we can express the
correlation function (¢ (x)O(y)). in terms of derivatives of the
effective average action:

_ W [ 8h

(p()OM))e = SI)OK() /ZSJ(x) 8¢(2)8K (y)
— [G 0Tk (16)
L Y Sk ()

As previously stated, the idea behind the FRG is to progres-
sively integrate fluctuations from scale k = A to k = 0. It can
be shown (see, for example, [22]), that the equation governing
the evolution of I'; reads

1
anie. K1 =5 [ ARG, (D)
Xy
where 0; = k.
When analyzing the critical properties of the system we
must first consider dimensionless variables in order to find a
fixed point of Eq. (17). To this end, we introduce

X =kx,
$E) = 2k p(v),
R(%) = kPo~ K (x), (18)

where the tilde means that the variables are dimensionless and
renormalized and where the running anomalous dimension
is given by 0,Z; = —niZ;. At the fixed point, n; = 7, the
anomalous dimension of the field, yielding the usual scaling
dimension of the field, D, = (d — 2+ 1n)/2.

The dimensionless version of Eq. (17) is

oIy
S (%)

- / K(x)(x'0, + Do)

8,146, K] = f ®B, + D))

8T
SK(%)

((d+2—n)r(x -3

x5y

1
+ EO[
+ 1% = 317 (1% = FDIGK (X, ). (19)

At a fixed point I'*, the RG flow vanishes: 9, [q~>, K1=0.As
discussed below, the fixed point constraint can be interpreted
as an invariance under dilatation regularized in the infrared.

C. Eigenperturbations of flow equations around the fixed point

Let us now recall how the scaling operators are usually
obtained, without making reference to the source K (see, for
example, [39]). Consider the fixed point of the flow equa-
tion, expressed in terms of dimensionless variables r*[¢] =
r* [qg, K = 0]. Let us consider a small perturbation around this
fixed point

Ti] = T*[@] + vl o], (20)

where T'*[@] is a t-independent solution of Eq. (19) with
K =0 and y;[4] is small. From now on, we consider only
dimensionless quantities, and, consequently, for notation sim-
plicity we omit the tilde notation. At leading order, the flow
equation for yx[¢] is linear and reads

dvild] + f Yl x1(Dy + x,9,)0(x)

1o
= ETr[RkGy,jz)[gb]G], 21

where a matrix notation has been adopted and the trace de-
notes an integral over the volume.

A technical point must be explained here. In the previous
equation and in the rest of the article, we choose a particular
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renormalization scheme where 7 is fixed to its fixed point
value, n;, = n, Vk. This implies that the renormalization factor
Z; in Eq. (18) is Z,Epresem) = (k/A)™". In a more standard
scheme, 7n; evolves all along the flow and becomes 1 only
asymptotically when k£ — 0. We then call the renormalization
factor Z; = Z,Emndard). We now show that both schemes are
acceptable and can be explicitly related at least in the vicinity
of a fixed point by changing the normalization of the ¢ field
which is immaterial.

The renormalization group flow for dimensionful quanti-
ties does not depend on the renormalization condition of the
dimensionless field. Going from one dimensionless flow to
another then corresponds to making the reparametrization

(present)

1/2
¢(present)(x) — (W) ¢(standard)(x)_ (22)
k

Since a reparametrization of the dimensionless field cannot
change observables, the present choice is admissible, which
proves that setting 1y to its fixed point value is also admissible.

It should be pointed out, however, that the reparametriza-
tion in Eq. (22) can become singular far from the fixed point,
making this scheme unsuitable for studying global flow prop-
erties. It is suitable only for studying the neighborhood of
the fixed point. It has been successfully employed in the DE
context in the past (see, for example, [53,54]). In fact, as
will be discussed below, from a numerical point of view, this
scheme (implemented together with the analytical expression
for the equation for eigenperturbation, instead of determining
it by numerically perturbing the flow equation), is much more
stable and precise than the standard one.

Since Eq. (21) is linear in y;[¢] and has no explicit ¢
dependency, the set of solutions forms a vector space, one
basis of which shows an exponential dependence on ¢:

(roile] = exp(rit)yil#], (23)

where 7;[¢] is t-independent and fulfills the equation

1 .
ETr[RkG?,-@[as]G] - / PV x1(Dy, + x,0,)0 = Aiild].
(24)

This equation can be seen as an eigenvalue problem because it
is a linear equation in the functional y;[¢] and its derivatives.
The left-hand side of the above equation is usually called the
stability matrix. In most cases, one requires the eigenvectors
7:[¢] to be smooth in ¢, and this condition implies that the
eigenvalue spectrum is discrete.

It is worth mentioning that Eqgs. (21) and (24) are not valid
only for scalar or translation invariant perturbations but for
any small perturbation around the fixed point. In particular,
these could be perturbations transforming as a vector or as
a tensor under space rotations, and they could even be space
in-homogeneous. Moreover, they do not need to be invariant
under the internal symmetries of the fixed point. Let us point
out, however, that (21) and (24) being linear, the elements of
the basis of solutions can be classified in multiplets according
to the symmetries of the fixed point. For example, if the fixed
point is Z, symmetric the solutions are even or odd under this
symmetry. In the same way, one can require any element of the

basis of solutions to have a definite tensor structure (assuming
the fixed point being translation and rotational invariant).

D. The derivative expansion

An exact solution to Eq. (17) is generally out of reach, and
some approximation is needed to make the calculations feasi-
ble. The most used approximation scheme in the framework of
the FRG is the DE which, in a nutshell, consists in truncating
the momentum dependence of the vertices up to the power
s. This is usually referred to as the order O(d*) of the DE.
The rationale behind this approximation is that we are mainly
interested in the long-distance properties of the theory and
expanding the vertices at small momenta seems reasonable.
In fact, there is now much evidence that this is a very accurate
and precise approximation scheme for Z, and O(N )-invariant
models (see, for example, [43-46,55,56]). Moreover, it has
been proven to be an extremely robust approximation in a
large variety of problems as mentioned in the Introduction (for
more examples, see [23]).

For the Ising universality class analyzed in this article, we
use the DE at O(3?%) that we now describe in some detail.

The first level of approximation is called Local Potential
Approximation (LPA) and it corresponds to the order O(3°).
It consists in taking as ansatz for the effective action the
potential plus an unrenormalized kinetic term:

1
Lilo] = / [E(qu)z + Uk(d))}, (25)

with Ui (¢) an even function. At O(3?), Tx[¢] is approximated
by

rigl = [ [@(W + Uk<¢)], 6)
where now both U (¢) and Z;(¢) are even functions.

The FRG equations have a dressed one-loop structure
where all propagators are regularized in the infrared by the
regulator R;(q), Egs. (1) and (3), ensuring the smoothness
of the vertices as functions of momenta and the existence
of the DE. In addition, the RG flow equations of Uy and Z;
involve 0,R;(q) in Fourier space, Eq. (17), which implies that
the integral over the internal momentum is dominated by the
momentum range g < k due to the rapid decay of the regulator
profile with g. The reason for the success of the DE is strongly
related to this decoupling of low and high momenta (with
respect to the regulator scale k).

Out of criticality, the first pole in the p*> complex plane
of the function I'®(p, m) = F,({zz)o(p, m) is located at either
p? = 4m? or p* = 9m® depending on whether the system is
in the broken or symmetric phase, with m the renormalized
mass, that is, the inverse of the correlation length. Therefore,
an expansion of ['\> (p, m) in powers of p?/m? must have
a radius of convergence of order 4 — 9. Since for k # 0O the
presence of the regulator acts as a mass term for small mo-
menta, which are effectively decoupled from large momenta
in flow equations even at criticality, it is expected that the
DE converges with a radius of convergence in p?/k* of the
order of 4-9. Moreover, loop integrals being dominated in
flow equations by the range ¢*> < k%, one can estimate that
successive orders of the DE are suppressed by a factor A =~
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1/9-1/4 [43]. This estimate is confirmed by an empirical
analysis of the Ising and O(N) universality classes [43—45].
More recently, this was improved by taking into account the
dependence of A on the regulator profile [57].

It is worth emphasizing that the DE is a low-momentum
expansion performed in the presence of the regulator, so
that the critical physics is recovered in the momentum range
k < p < A. However, universal and nonuniversal quantities
defined at zero momenta such as critical exponents can also
be obtained in the range of validity of the DE, that is, p < k
[46].

In previous studies [43,44], it has been shown that the
convergence of DE can be improved by tuning the overall
scale of the regulator, that is, the parameter o in Eq. (2)
(and more generally by changing the profile of the regulating
function) according to a criterion known as the Principle of
Minimal Sensitivity (PMS). The PMS states that since any
physical quantity QO should be independent of the shape of the
regulator, a property which is violated by any approximation
scheme, the optimal choice for & corresponds to ooy Such that
dQ/da = 0 for o = ogp.

Later, an alternative criterion for fixing regulator parame-
ters was discussed in the context of conformal symmetry [42]
at order O(3*) of the DE for the Ising universality class. It
was proposed to fix « in such a way that conformal symmetry
is best verified, which is the exact physical scenario (see, for
example, [15,39]). This criterion was denoted “Principle of
Maximal Conformality” (PMC). It was shown there that both
criteria turn out to be generally equivalent.

This correlation between PMS and PMC was later ex-
plained [57], or at the very least inferred, to be a consequence
of the fact that, given a family of regulators, the expansion
parameter A of the DE, which depends on the actual family
of regulator chosen, becomes the smallest possible for some
values of «. This happens due to an interplay between two
opposing effects where the regulator finds an optimal zone
behaving like a typical massive theory, favored by small val-
ues of o, and the momenta contributing to the flows being
small compared to this mass, favored by large values of «.
This implies an enhancement in the quality of the DE and,
consequently, a lessening of the dependence of quantities with
the regulator scale «.

III. SCALE AND CONFORMAL SYMMETRY WITHIN
THE FUNCTIONAL RENORMALIZATION GROUP

A. Ward identities for dilatation and conformal invariance

In this section we derive the Ward identities for dilatation
and conformal transformations in the presence of a source for
a composite operator. The variations of the field under these
transformations read

Sdil Qo(x) = e(xuau + DW)QO(.X),
Sconf P(X) = eu(xzau — 2x,x,0, — 2x,Dy)p(x). 27
In this study we restrict ourselves to a particular class of

composite operators O(x), usually denoted as primary, which
transform in the same way as the field itself, except for the

value of its dimension:
84i1 O(x) = €(x,,0,, + Do)O(x).
Scont O(x) = eu(xzau — 2x,%,0, — 2x,Dp)O(x).  (28)
As usual (see, e.g., [39,42,58-60]), one can derive the

following modified Ward identities for dilatation:

/ [T @)Dy + 2,8, (x)

— K (Do + 2,800V x)]
1 . _
= / Rix = )T +Re) ), (29)
X,y

and for special conformal transformations

/[FIEI’O)(X)(XZBM - zxﬂxvav - ZXMD¢)¢(X)

X

— K ()%, — 2x,x,8, — 2x, Do)V ()]

1 . -1
=3 / @+ yORG =Y + R, (30)
X,y
where
F,E”’m)(xl, XYL s V)
8n+mrk
- (31
8¢(X1) e 3¢(xn)8K(yl) e 8K(ym)
and
(2d — 2D, + 2x*32 )Ri(x*) = 3, Ri (). (32)

Notice that the Ward identity for dilatation modified by the
presence of the regulator is nothing but the fixed point equa-
tion obtained by setting 9,I'x[¢, K] = 0 in Eq. (19).

The Ward identity for scale invariance shows two important
structural properties that we call triangular structures for rea-
sons that we make clear below. Let us discuss the first one. The
Ward identity for '™ evaluated at K = 0 does not depend
on I'™-™ with m > 0. More generally, the Ward identity for
r®m at K =0 does not depend on ') with m' > m.
The same applies to the Ward identity for conformal trans-
formations. This first triangular structure proves very useful
in actual calculations. In particular, for studying the vertices
™D it is enough to include K(x) linearly in the effective
action. This is not an approximation because higher orders in
K do not have any impact on lower orders.

B. Relation between composite operators and eigenvectors
of the stability matrix

The standard way of computing the critical exponent v in
perturbation theory relies on introducing the composite oper-
ator ¢3. In contrast, v is in general obtained by diagonalizing
the stability matrix, (24), that naively does not involve com-
posite operators. The two approaches are actually equivalent,
as we recall now.

Let us define

(33)

fr ]—/ o
"= sk

K=0
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One can deduce the dilatation Ward identity for I'[¢] by
differentiating Eq. (29) with respect to K (y;):

f D (39 )(Dy + 1,8,06.(0)
— K@)(Do +x,8,)T "G x, y1)
— (Do +y1, 3TV Gy
1 .
- ETr[chl",?’“(; y1)G]. (34)

By evaluating this expression at K = 0 and integrating it over
y1 we obtain the dilatation equation for I'[¢]:

/ TV Dy + x,8,)0(x)

o1
— (Do —d)I' = ETr[RkGF(z)G]. (35)

By comparing Eq. (35) with Eq. (24) we conclude that
['[¢] is an eigenperturbation of I'; around the fixed point
with Ao = Do — d. Here Lo is the eigenvalue of the stability
matrix associated with [* = fx O(x). It is a particularly simple
perturbation, because it is a scalar under isometries. Let us
notice that Egs. (35) and (24) are identical only if the renor-
malization scheme where n; = 1 has been chosen, a choice
which is always possible close to the fixed point as explained
below Eq. (21).

Equation (35) implies that, when considering a small trans-
lational and rotational invariant perturbation of I'; around the
fixed point solution, one obtains the spectrum of standard
scalar perturbations of the fixed point, which is decoupled
from perturbations that are inhomogeneous. This corresponds
to the fact that vertices ' (at zero K) with zero mo-
mentum associated to K or, equivalently, x-independent K
perturbations, do not depend on those vertices at nonzero K
momentum.

Let us note that there are two trivial perturbations that can
be considered. The first one consists simply in a perturbation
proportional to the identity O(x) = 1. In that case, Dy = 0,
or, equivalently, Ay = —d [see Eq. (24)]. The second one
corresponds to the most relevant odd local operator, which is
nothing but O(x) = ¢(x). In that case, consistently, Dp = D,,
or, equivalently, A, = —(d +2 — n)/2.

Even eigenperturbations are, in a sense, more standard
perturbations because they have the same symmetry group as
the fixed point. In particular, if we focus on the most rele-
vant eigenperturbation, one has that A, = —v = Dy, —d
in agreement with Eq. (10). In a similar way, if we consider
the first irrelevant even operator that we will denote as O®,
one extracts the correction to scaling exponent w = Ape =
Dopo —d.

Equation (35) for f‘[d)] is the first equation in a tower of
equations with a triangular structure for the following gener-
alization:

8T

. x,L” m (36)

By lb] = / o

These functionals are tensors not necessarily translational
invariant. In some particular cases, however, they can be
translational invariant, and some contractions of them can be

K=0

scalars, as we discuss below. The important point is that we
can deduce their dilatation Ward identities in the same way as
for I'[¢], which leads to

/ IO DDy +1,8)¢(x) — Do —d — )y, .,

= %Tr[RkGf(z) Gl. (37)

Moy

One observes that f‘mwﬂn [¢] is a tensor eigenperturbation of
the fixed point with eigenvalue Dy — d — r. Equation (37)
reveals a second triangular structure because it relates [* ver-
tices with the same number of p indices. For r = 0, this
corresponds to the well-known fact that homogeneous (that
is, x-independent) eigenperturbations are decoupled from in-
homogeneous ones.

One can make the same analysis for the Ward identity
for special conformal transformations. In that case, however,
the different f‘,“___,,m are coupled. For example, taking one
derivative with respect to K(y) and then evaluating at K = 0
and integrating over y leads to the equation

/f“(”(x)(xzaﬂ — 2x,%,8y — 2D,x,)p(x) + 2(Do — d)I',

X

_1o 5 ~ro
5 Tr(R:,.GI'G], (38)

where we introduced the definition Ry, as the matrix notation
for the function (x, + yu)Rk(x — ). One observes that the
equation for I involves also f‘ﬂ. In general, the equation for
f‘mmun includes also f‘m___,w,.

Despite the fact that the conformal identity mixes differ-
ent IA‘,LIMM one can see that the structure presented implies,
a priori, an infinite set of linear constraints (one for each
eigenperturbation). This infinite set of constraints suggests
that most of those identities are somehow redundant, but, for
the moment, it is not obvious how.

IV. THE DERIVATIVE EXPANSION
WITH COMPOSITE OPERATORS

In the presence of a composite operator for a scalar oper-
ator with Z, symmetry, one can extend our usual procedure
for the DE. Following the general discussion presented in
Sec. 111, the most general ansatz at order O(3%) including up
to linear terms in K (x) is

1
Lil¢. K] = [{Uo(¢) + E[Zo(fﬁ)](am)2 + K(x)Ui1(9)

K(x)

t+—2Z (#)(3,6) — Y(¢)32K(X)}- (39)

As a consequence of the first triangular property discussed in
Sec. IIT A, terms of higher degree in K do not appear in the RG
flows of the five functions involved in the ansatz (39). This is
why they have not been included in (39).

Following the general strategy described in Sec. IID, we
can derive the flow equations for the five functions appearing
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in Eq. (39). The flow equation for the dimensionless poten-
tial Up(¢) can be obtained from the Eq. (19) evaluated in a
uniform field. One obtains, as usual,

3 Uo(¢) + dUo(¢) — ¢D,Uy(9) = %/Rk(CI)G(CI)- (40)
q

In practice, it is more convenient to work with the derivative
of this equation with respect to ¢, obtaining a constraint for
Ug(@)-

The flow of Zy(¢) can be obtained, as usual, from the flow
equation for '>%(p), taking a derivative with respect to p?
and then setting p = 0. One then obtains

3 Zo(¢) — (2Dy + 2 — d)Zo(¢) — Dy Zy(9)

1 r.
. Rk<q>62<q>{za’<¢>
q

2
—2[U(¢) + ¢*Z) ()T [G/(qz) + 2%G”(q2>]

8
- quza@)[u(;”w) + @ Z($)IG (g%

1
- 2G<q2)zs<¢>[2v(;”<¢> + qué(¢)<2 + 3)} }
1)

These flow equations for Uy(¢) and Zy(¢) are the standard
ones (those without the composite operator source; see, for
example, [23]). As mentioned before, these equations become
the dilatation Ward identities at the fixed point in the presence
of an infrared regulator that, consistently with the first triangu-
lar property described at the end of Sec. IIT A, do not involve
the functions U;, Z;, and Y.

The flow equations for the functions U;, Z;, and Y are given
in Appendix A. Because of the second triangular property
discussed in Sec. III B, the fixed-point equations for U;, Z; do
not depend on Y. This implies that, if one is interested in only
the invariance under dilatations, one obtains a closed subset of
functions by considering Uy(¢), Zo(¢), U, (¢), and Z;(¢).

Let us now discuss the information that can be extracted
from conformal invariance. In Appendix B, it is proven that
conformal Ward identity applied to F,ﬁz"o)( p; ¢) does not have
more information than dilatation Ward identity applied to this
same vertex.> Notice that this result is trivially satisfied at
¢ =0 and k£ = 0, but it is not so for k # 0 and ¢ # 0. The
conformal Ward identity for the vertex F,El’l)( p;¢) leads to a
nontrivial constraint at order O(3?) that reads

CL(¢) = Cr(9), (42)

where

CL(¢) = (4Do — 4 —2d)Y'(¢) — 2¢DyZ1(¢) (43)

’In this work, we use the usual strategy (sometimes called full
ansatz) of keeping, in a given diagram, all terms generated by the
truncation, at odds with the strict DE where one keeps only terms
involving up to two powers of the momenta [in general up to order
n if one considers the O(9")], may they be internal or external; see
[43].

3This result can be easily generalized to O(N )-invariant models.

and

Cr(9)
_ / Rk<q>GZ<q2>{Z{ é) - (@)
q

2+4d
d

x |:3Z6(¢)U1//(¢)+Zl (¢)< q226(¢>)+U6”(¢))]

_ i ZG//( 2)(U///( ZZ/ U// 2Z
796 @)Wy () + 42N (9) + 4°Z1())

1+d
_ 2G’(q2)[U{'(¢)<U6”(¢) + %qzza«p))

3+d_,, 4+d ,_,
U@+ —— qzzow))]}. (44)

+4°Z; (¢)<

This identity now couples the function Y to the others.

Note that in the absence of a source for composite op-
erators, it is necessary to go to order O(3*) to get the first
nontrivial constraint from conformal symmetry; see [42]. The
fact that in the presence of composite operators the first
conformal constraint appears already at order O(d?) enlarges
considerably the relevance of this symmetry as for the DE
because the O(3*) is very cumbersome and has been imple-
mented only in O(N) models unlike O(3?) [23].

A. Results

We now show how the regulator can be chosen by impos-
ing that the breaking of conformal invariance is as small as
possible, that is, by imposing the PMC. In the following we
restrict ourselves to the exponential regulator,

Ri(q) = ak®Z; exp(—q* /K?), (45)

and we fix the overall scale o by the PMC.

We start by looking for fixed point solutions and eigen-
perturbations of Egs. (40), (41), (A16), (A17), and (A18).
As discussed above, we find solutions only for a discrete
set of eigenvalues Dy, and we focus on the first three that
are associated with even perturbations O = (), 0P,
and O®. They correspond to the critical exponents, Dpa) =
Dy =d—v',Doo =d+ w,and Dps = d + w, where o
and w; control the nonanalytic leading corrections to scaling.

In Fig. 1 we show the typical Wilson-Fisher fixed point
solution of Egs. (40) and (41) in three dimensions.* At large
field, the right-hand sides of Egs. (40) and (41) are negligible,

“Physical quantities that are obtained in the limit k — 0, be they
universal (critical exponents, etc.) or not (critical temperatures, etc.)
should of course be independent of the renormalization scheme,
which means in our case of the regulator. There are, however, other
quantities that do depend on the renormalization scheme such as the
beta functions in perturbation theory or fixed point functions in FRG
such as Uy, Zy, U,, Z;, and Y. This dependence exists in the exact
regularized theory, that is, is not induced by approximations. This
is why fixed-point functions are shown for one given value of « for
illustrative purpose.
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0.97

FIG. 1. Typical solutions for the Wilson-Fisher fixed point using
the regulator given by Eq. (45) with ¢ = 2.

which allows us to find the fixed point behavior of these
functions in this limit:

Uy(9) ¢,>\>,1 Ay, @2 m/d=2+m) (46)
Zo(d) ¢,>;1 AZO¢—2n/(d—2+n)’ 47)

where we used that D, = (d — 2+ n)/2. The constants Ay,
and Ay, are not fixed by the large field behavior found above
but can be determined by solving Egs. (40) and (41) for all
values of the field. Now, as previously shown, conformal Ward
identity yields no new constraint for F,EZ’O).

The same argument applied to U[(¢), Zi(¢), and Y'(¢)
yields

U1 (¢) ¢,>;l AU1¢2DO/(d_2+n)’ (48)
Z1@) [z, Az gt lom I, (49)
Y(¢) ¢;1 AY¢2(D0—2)/(d—2+n)’ (50)

where once again, the constants Ay,, Az, and Ay are fixed?
by the low to intermediate field behavior that depends on the

SRecall that the global normalization of eigenperturbations is arbi-
trary, so only two ratios of these three constants are meaningful.

loop term. The conformal Ward identity (42) yields here a new
constraint because its expansion at large field implies that Az,
and Ay are not independent:

Az D2 = (Do —2)(2Do — d — 2)Ay. 51)

Observe that this constraint is exact and is not altered by
the next orders of the DE. However, since Az and Ay are
already fixed from dilatation identities, this constraint is not
exactly fulfilled, and the 1.h.s. of the conformal constraint (42)
behaves at large field as

Cr(¢) ¢(2Do—d—2—n)/(d—2+f7)’ (52)

which grows at large fields if Do —d = A > (2 —d + 1n)/2,
as is the case for all irrelevant eigenperturbations of the model
including, in particular, the first irrelevant eigenperturbation
associated with w. In the present model, the above inequality
is not fulfilled for the relevant even eigenperturbation, which
implies that the associated Ward identity tends to zero at large
fields. This brings the relevant eigenperturbation constraint
artificially to zero at large fields although it is just a matter of
a negative power dominating this regime. It is convenient, for
both the relevant and irrelevant eigenperturbations, to get rid
of this large field behavior by normalizing (42) appropriately.
We therefore define

24D, -De

2,0 TP 7O
f(p, @) =[CL(@) — Cr@®I(1 +¢°/p5) ™ ,  (53)

so that, by construction, the function f approaches a constant
at large field. In the previous equation, ¢ is the minimum
of the potential, Uj(¢o) = 0. We add this characteristic field
parameter so that the normalization factor tends to 1 at small
field. One can observe that when ¢ — 0 any dependence on
¢o disappears. However, by rescaling with the minimum of the
potential we obtain an approximate «-independent behavior at
large fields.

As was done in [42], instead of using the PMS one could
use conformal symmetry in order to eliminate the spurious
dependence of physical quantities, such as critical exponents,
on nonphysical parameters, such as «, defining the regulator.
The idea is to fix them to their value for which conformal sym-
metry is best verified. As in Ref. [42] we refer to this as the
Principle of Maximal Conformality (PMC). In the following,
we therefore study how the function f defined in (53) depends
on «. Note that its normalization is different from the one used
in Ref. [42].

1. Leading eigenperturbation and critical exponent v

We first consider the most relevant eigenperturbation, as-
sociated with the critical exponent v. The typical fixed point
solutions of the functions U;(¢), Z;(¢), and Y (¢) are shown
in Fig. 2, where the normalization is fixed by the condition
U/0)=1.

In Fig. 3 we show the dependence of the critical exponent
v with the overall scale of the regulator . We find that the
PMS occurs for o = 1.3 for which v = 0.6280. This is to
be compared with the very precise result of the Conformal
Bootstrap method v(®® = 0.629971(4) [17].

In Fig. 4 we show the behavior of the function f(¢, )
defined in Eq. (53) as a function of ¢ and «. It is striking
that the function tends to a quite small constant in the large
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0 1 2 3
FIG. 2. Typical solution for the leading eigenperturbation (asso-

ciated with the critical exponent v) at the Wilson-Fisher fixed point
using the regulator given by Eq. (45) with ¢ = 2.

field limit, which indicates that the exact constraint (51) is
reproduced with good accuracy.
We define o« ™M©)(¢) as the value of « that satisfies

1/ (@, ™ ($))] = min | f (. ). (54)

Note that this definition makes « ™M a ¢-dependent quantity
as seen in Fig. 4. We have checked that varying ¢ induces
a variation of «®™©X)(¢) in the range [1.9,2.65]. As seen
in Fig. 3, this leads to a variation of v and 7 respectively
of 0.1% and 3%, well below the error bars of the present

0.628

0.6275 |

0.627 |

0'62651

0.05|

0.048 |

0.046 |

FIG. 3. Critical exponents v and n as functions of the regulator
parameter o defined in Eq. (45). The PMS correspond to the local
extrema of the curves, which both occur for @ = 1.35(5).

approximation. We therefore implement the PMC at ¢ = 0 in
what follows.

In Fig. 4, «™© = 1.9 is marked with a dotted line which
is not too far from a{PMS) & 1.35 [for the regulator given in

FIG. 4. Contour plot of the function |f| = — f defined in Eq. (53)
as a function of the field ¢ (vertical axis) and « (horizontal axis) for
the eigenperturbation associated with v. The solid and dashed lines
correspond to the values of « which fulfill the PMS and PMC criteria,
respectively.
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equation (45)]. We obtain
VM9 ~0.6280,
VMO % 0.6278. (55)
These results imply that
pPMS) _ ,(PMC) ~ 0.0002 <« AvP, (56)

where Av® = 0.0027 is the error associated with the critical
exponent v computed at order O(32) of the DE; see [43,44].
This clearly shows that as was the case for order 0(8*) of the
DE discussed in [42], the PMS and PMC are also compatible
at order O(3?).

2. Eigenperturbation for the critical exponent o

The critical exponent w can be obtained as the eigenvalue
associated with the least irrelevant even eigenperturbations.
For this eigenperturbation, a typical solution for the functions
Ui(¢), Zi(¢), and Y (¢) are shown in Fig. 5, where we nor-
malize these functions with the condition U{'(0) = 1. Atlarge
fields, we observe a stronger increase of the function |U; | for
o than for v (see Fig. 2) which is expected because of the
asymptotic behavior given in Eq. (48).

In Fig. 6 we show the dependence of @ on « at order O(d?)
of the DE. The PMS leads to the value o = 1.45 for which
o = 0.8483. This is to be compared with the very precise re-
sult of the Conformal Bootstrap method »“®) = 0.82968(23)
[61]. In Fig. 7 we show the behavior of f(¢, ) for this first
irrelevant eigenperturbation. The function f saturates at large
values of ¢ to values that are still small but bigger than for the
perturbation associated with v. This indicates that, for the first
irrelevant perturbation, conformal invariance is less accurately
satisfied by the O(3?) approximation than for v. Nonetheless,
aregime in o occurs for which the conformal Ward identity is
still approximately satisfied, and we can observe a somewhat
similar behavior as in the case of the exponent v (compare
with Fig. 4).

As for v we apply the PMC, Eq. (54), at ¢ = 0, which
leads to o« ™M© = 2 45 and w = 0.8489. We have checked that
the variations of w induced by the variations of @ ™M@ are
again below error bars. Although now the values of o ("M%
and oPMO differ substantially, it is important to realize that
the two criteria lead to similar values of w:

™S = (.8483,
wPMO = 0.8489. (57)
As a consequence,
o™ _ ,PMS) — .0006 < Aw®, (58)

where Aw® = 0.055 is the error estimate of the calculation
of w at order O(8?) (see [44]).

3. Eigenperturbation associated with the critical exponent »,

Finally, we discuss the second irrelevant even eigen-
perturbation, associated with the critical exponent w,. We
emphasize two methodological points. First, we stress that
the most common method for deriving the critical exponents
consists in computing numerically the stability matrix (see the
discussion in Sec. IIC) and then computing the eigenvalues

0 1 2 3
FIG. 5. Typical solution for the least irrelevant eigenperturbation

(associated with the critical exponent w) at the Wilson-Fisher fixed
point using the regulator given by Eq. (45) with a = 2.

of this matrix. This approach is known to lead to more and
more noisy results when one considers more and more irrel-
evant operators. By comparing this method with the method
outlined in the present article where the critical exponents
are computed from the composite operators, we conclude that
the latter is more stable than the former in agreement with the
conclusions of [62]. It also agrees with the results which are
very stable numerically obtained long time ago by a similar
method, for example, in Ref. [53]. We found, in particular,
that the second method is much less sensitive to a change in
the grid size in ¢.
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0.852 |
3
0.85
0.848 ‘
1 2 3 4 5
o

FIG. 6. Critical exponent w as a function of the regulator param-
eter @ in Eq. (45). The PMS corresponds to the minimum of the curve
that occurs at @ = 1.45(5).

For the w, eigenperturbation, the typical fixed point solu-
tions for the functions U (¢), Z;(¢), and Y (¢) have a similar
form than for previously discussed eigenperturbations for v
and w. Due to this similarity they do not bring new informa-
tion, and we do not present their corresponding plots here. Let
us comment, however, that once again the large ¢ behavior
is steeper than for more relevant eigenperturbations. In Fig. 8
the behavior of w, as a function of « is shown. One obtains
the value )" MS) — 1.79 to be compared with the conformal
bootstrap result [15] w, = 1.67(11). Unfortunately, we were
not able to employ the method introduced in [44] to estimate
error bars for this exponent. The reason is that the method
requires the comparison of estimates for an exponent at two
consecutive orders of the DE, but the quantity w, is spoiled
at order LPA. One can understand it in the following way: in
d = 4 the exponents can be obtained by dimensional analysis.
The leading relevant exponent is —2 (corresponding to v =
1/2). The second even eigenperturbation is marginal, giving
o = 0. The two next even perturbations are degenerate ind =
4 and correspond to the operators ¢® and ¢*(V¢)?, having

5
— ,PMS) 0.4
n -- ,(PMO)
0.35
0.3

FIG. 7. Contour plot of the function f (see the text) as a function
of the field ¢ (vertical axis) and « (horizontal axis) for the eigenper-
turbation associated with w. The solid and dashed lines correspond to
the values of « which fulfill the PMS and PMC criteria, respectively.

1.79

1.78 |

1.76

5 10 15
o}

FIG. 8. Critical exponent w, as a function of the regulator param-
eter « using the regulator given by Eq. (45).

exponent 2. Now, one of these can be constructed only with
derivatives, so only one of the two eigenperturbation is prop-
erly captured at order LPA. We verified numerically at order
0(3?) that one of them has exponent below 2 for d ~ 3 and
the other an exponent above 2. Only the most irrelevant is de-
scribed satisfactorily at order LPA, and it does not correspond
to ws.

Following the same line of arguments as for the other
perturbations, we now consider the function f(¢, o), which
is represented in Fig. 9. It tends to a bigger constant at large
fields, which shows that conformal invariance is not that well
retrieved for this perturbation.

Focusing on the behavior of f(¢ =0,«) (shown in
Fig. 10) to select the normalization constant, we observe that
there is not a PMC value but that the curve tends to flatten
at large values of «. This suggests to take larger values of
o as an optimum. At the same time, one must observe that
the dependence on o seems to be relatively mild and taking
very large values of « or values near to the PMS give results
that are probably compatible (even if, as explained before,
we do not have for the moment error bars for w,). In this

|

FIG. 9. Contour plot of the function f (see the text) as a function
of the field ¢ (vertical axis) and « (horizontal axis) for the eigenper-
turbation associated with w,. The solid line corresponds to the values
of o which fulfill the PMS criterion for the exponent ;.
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-0.2¢

0 5 10 15
«
FIG. 10. Plot of the function f(¢ = 0, @) (see the text) as a func-

tion of the regulator parameter o for the eigenperturbation associated
with @, and for the regulator given by Eq. (45).

sense, the estimate of a PMC in this case is not possible,
but this can be seen as the result of a relatively small depen-
dence on «. Additionally, it may be the case that the physics
related to @, is not adequately described to order O(d?),
this being the first order capable of calculating this quantity.
Therefore, we cannot rule out the possibility that the consid-
eration of a higher order of the DE allows us to use the PMC
criterion.

V. CONCLUSIONS

In this article we have considered the Ward identities
associated with conformal and dilatation symmetries in the
formalism of the NP-FRG for the Ising universality class. On
top of the field ¢, we have introduced sources for composite
operators and expanded the equations at order O(3%) of the
DE, which is a widely used approximation scheme. We have
shown that conformal invariance provides nontrivial informa-
tion as early as this order, unlike when only the ¢ field is
considered, where the order O(3*) is required to obtain new
information from conformal invariance.

Our numerical resolution of the system of equations shows
that, at the fixed point of the renormalization group (i.e., when
the Ward identity for dilatations is fulfilled), the Ward identity
for conformal invariance is violated. Since conformal trans-
formations are known to be realized at the critical point of the
Ising model, we can interpret the violation of the conformal
Ward identity as a consequence of our approximations. This
leads to a criterion for optimizing our results: we choose the
regulator leading to the smallest breaking of the conformal
Ward identity, a criterion called the principle of maximal
conformality.

We have tested this idea for the eigenperturbations asso-
ciated with the critical exponents v, w, and w;. In the first
two cases, the regulator that is retained by the principle of
maximal conformality is in good agreement with the one
selected by the the widely used principle of minimal sensi-
tivity. In the last eigenpertubation considered, corresponding
to the critical exponent w,, we find that the breaking of
conformal invariance is rather independent of the param-
eter o (at least in the family of regulators that we have

considered), which makes the criterion less selective and, in
a way, not very useful. In comparing the three perturbations,
we clearly see that the violations of conformal invariance are
bigger and bigger when we consider more and more irrelevant
perturbations.

This study represents a very significant progress over the
previous study that considered conformal invariance in the
NPRG formalism because it greatly extends the domain of
applicability of this methodology. Indeed, although in the
present study we have focused on the Ising universality class,
which provides an excellent benchmark, the 0(9?%) order of
the DE, given its relative simplicity, has been applied to a
huge variety of physical problems (see, e.g., [23]). In contrast,
higher orders of the DE have been able to be implemented
only in the simplest models corresponding to the Ising uni-
versality class [43,55] or O(N) models [44,45,63]. That is,
obtaining nontrivial information from conformal invariance at
order O(d?) of the DE then becomes a tool that can be widely
employed.

The present work opens a large number of perspectives.
The natural next step is to address the case of O(N) models,
which is currently under investigation by some of the authors.
While such models have already been abundantly analyzed in
the literature using FRG methods, they are a natural testing
arena for new methodologies such as those presented here. A
second natural extension of this work and one that we plan
to analyze in the future is to repeat the present analysis to
order O(8*). This allows us to address two different issues.
On the one hand, new constraints will surely appear whose
behavior deserves to be analyzed. On the other hand, it is
to be expected that the constraints coming from the special
conformal transformations appearing at order O(3%) will be
satisfied with better precision than in the present work. By
employing the methods used in [44] the analysis of the O(3%)
order would allow one to calculate error bars for the real-
ization of such conformal identities and determine whether
they are satisfied (within that margin of error). It should be
noted that this would be a test of the emergence of conformal
invariance at the critical point without imposing such sym-
metry. Another possible extension of the present work is to
apply it to different approximations schemes such as the one
considered in [64,65]. Last but not least, the present work
opens a more ambitious line of work tending to take advantage
of conformal invariance not only for the purpose of optimizing
an approximation (such as DE) but also including higher
order contributions thanks to the requirement of conformal
invariance.
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APPENDIX A: WARD IDENTITIES FOR VERTICES
FOR DILATION AND CONFORMAL INVARIANCE
IN PRESENCE OF A COMPOSITE OPERATORS

In this Appendix we obtain the expressions for the Ward
identities for dilatation and conformal invariance for different
vertices in Fourier as well as their expressions in terms of the
DE ansatz (39).

1. Dilation and conformal Ward identities
for the different vertices

a. Equation for l",(:’o)

Let us differentiate Eq. (29) with respect to ¢ (x1):

/ PO, x1)(Dy + xu8,)$(0)

— Kx)(Do + x,8,)T "V (x15)
+ (Dw —d —Xlua,)il)r,(c]’o)(xl)

= %Tr[RkGF,?‘O)(x] )G]. (A1)
Here a matrix notation has been employed where a matrix
contraction corresponds to an integral over internal coordi-
nates.

We evaluate this identity at K = 0, in a uniform field
¢(x) = ¢ and for x; = 0. We then perform a Fourier transform
of this expression and find

(D, — DN} + 4D, 9,7 = IHRGTO g, ~a)].

(A2)
where we used
FV@r e e 00 = 40 (1 pac), (A3

b. Dilatation equation for 1",((1’1)

Now we differentiate Eq. (A1) with respect to K(y):
2,1) .
/Fk (x’xl’yl)(Dw +X/L8u)¢(x)
— K@) (Do + x,8,)T P (x13x, y1)
+ (Dy — Do — d — x1,0y —yl,ﬁy’;)r,(cl’l)(xl;yl)

. 1
— Tr[RkG(zr,i3~‘><x1;y1) -~ F,?’“(xl)Gr,iz*“(;y1>>G].

As before, we evaluate this identity for K = 0, in a uniform
field ¢(x) = ¢ and for y; = 0. We then perform a Fourier
transform, and we obtain

(Dy — Do + pudy, +¢Dyd)T" (p)

= Tr[RG* (31 (P =p) = TPV (DGT V(=) .
(AS)

¢. Dilatation equation for l';f’o) and l",((z’l)

The same procedure repeated yields the following expres-
sions for the vertices of interest F,({z’o) and F,Ez’l) :

(2D, —d + Puapu)rlilo)(P) + ¢D¢8¢FIE2'O)(17)
= Tr[RG* (3T (p. —p) = TV (p)GT (=) ],

(A6)
(#Dyds + 2Dy — Do + pydy, + lualu)rlizyl)(p’ l)
= Tr[RG* (AT (p, 1, —p — 1)
— T2V (s —p = DGTO ()
— T30 —p = DGTV(p, —q)
— T, DGTE G —p — 1)
+T20(per??erPc—p -1
+TE(pGr Y —p — DGV
+ TGP (p6rc—p—n)]. (A7)

d. Conformal equation for l";{l’l) and l",(f’o)

In the same manner, we could compute the Ward identities
for the different vertices. However, since we are interested
only in the one corresponding to I”,il’l), we shall not go any
further. Starting from Eq. (30), differentiating it with respect
to ¢(x;) and K (y;), and then evaluating on K = 0 and uniform
field ¢(x) = ¢, we obtain

— (X7 0y — 2x1,x1,0 — 2(d — Dy)x1,
+y%8y‘]‘ = 2y1,51,0p — 2D<9)’1M)F,§1’1)(X1, y1)

—2¢D, f X, DD x13 1)
s o 1ien, .
=Tr|RuG"| — zrk (x1331)

+ r,iz*”(yl)GF,S"’)(xl))], (A8)

where we introduced the notation R, (u, v) = Ry (u, v)(u, +
v,.). Following the same steps as before, this is putting y; = 0
and performing a Fourier transform to obtain

(Pud?, — 2Py, 0, — 2D,3,, )TV (p)
—2¢D,3,, T (g, P)lg=o

. 1
= / Re(9)G*(9)(d,, + aq,;)(— S0 4)
q

+T3%0p, G+ TV, p+ q)) (A9)

q=—q

One can proceed in a similar manner to obtain other confor-
mal Ward identities. For example, let us consider the identity
for F,Ez’o). Taking functional derivatives with respect to ¢(x;)
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and ¢(x;), the same steps as before yield

(Puazzr.y —2py0p,0p, — ZDwapu)F(z’O)(P)

—2¢D,3, T (g, P)lg=o

1 [
2 /R(‘I)Gz(q}(% +3,) (=T (P g, 9
q

+T3 %0, )Gp+ T (0 + 9. )
+T3%q, p+HGp+ T (p, q))

q=-q’

(A10)

2. Ward identities with the derivative expansion at order 0(*)

Let us now deduce the Ward identities for the various
functions appearing in the ansatz (39). The identities for
Uo(¢p) and Zy(¢) are the standard ones (those without the
composite operator source). We recall that for those functions,
the conformal identity gives exactly the same equations that
dilatation symmetry. We now deduce the equation for the
functions U;(¢), Zi(¢), and Y (¢). In order to do that, we
deduce the expression of the various vertices from the ansatz
(39). We recall that we are working at linear order in K, and
so, implicitly we are taking K = 0 after differentiation.

First, the "D function is

rEDyx) =U{(@)8(x —y) — 32X ($)8(x — )
+1Z@)(8:9) 80 — y)

+ Z1($)9%()318(x — ). (A1)

One can evaluate in a uniform field ¢(x) = ¢, at y = 0 and
Fourier transforming to obtain

r“Yp) =U{(@¢) + p’Y'(9). (A12)

J

One can also differentiate (A11) with respect to ¢(x;) to ob-
tain in a uniform field (and for x, = 0) the Fourier transform:

reV(p ) = U@ +p(p+DZi) + Y@, (A13)

In a similar manner one obtains as well the expression for any
vertex I' 1) at this order of the DE:

LD (py, . puei;) =UM (@) + Y (I
1 n—1 n—1 2
2 2
= [ -l
2(Z(+2) )

x 2" (¢). (A14)

It will be useful below to give the expression for ['[¢]
defined in Eq. (33). At order O(d?), one has

R 1
Ple] = / [U1<¢>+Ezl(¢>(au¢)2}. (AL5)

3. Equation for U, (¢)

The equation for U;(¢) (or more precisely for U|(¢)) can
be obtained from the dilatation equation for I'":D(p) at p = 0.
One obtains

(Dy — Do)U{(¢) + ¢D,U{ (#)
. 1
= /Rk(q)Gz(q)[z(U{”(@+CIZZ{(¢))

q

— (U{(®) + ¢°Z1($))G(@)(U}' (9) + q226(¢))]~
(A16)

An alternative, and easier way to deduce this equation is to
differentiate once the equation for I'[¢] with respect to ¢ and
evaluate it at a uniform field. It is important to stress that the
equation for U;(¢) is nothing but the equation for the linear
perturbation of the potential around the fixed point.

One must stress that special conformal transformations do
not give new information for U (¢).

4. Equation for Z,(¢)

One can obtain the equation for Z;(¢) by expanding the equation for ' (p; [ = 0) at order p*. Performing this calculation

in the Ward identity for dilatation yields
@D, — Do +2)Zi($) + D, Z; ()

2

1 . 8
== f Rk(q>Gz(q2){ — (21 (¢) + U{/<¢>)(G/<q2))2qu(qzz(a(m +UP )’
q

4
- G’(qz)g[zG(q%(qua@) + U @) (U (DI + 2)4°Zi(¢) + AU ()]

+ PZYPA + 6 Zi(P) + (d + DU (D)) — U (@) ((d + 2)¢*Z; ($) + dU ) (9))

8
— Zy@®)(d +HPZ1(9) + (@ + 22U (@)] - G624 (4°Z(@) + Ug” (@) (- 4°Zi (@) — U (¢)

2
+26(P)d*Zy(d) + U (D)][¢°Z1(d) + UL (9)]) + EG%qZ)( — 208 () Zy()[22d + D)g*Zi () + 3dU{ ()]

+ @2 (25()’[ = 7d + DG Z1 (@) — 32d + DU ()] — d (UL ()’ Z1())

+2G(g*) (2Z)()[(2d + DGZ;(¢) + AU ()] + dZ{ (D) [4*Zi(9) + U (9)] + 24U ($)Z; () — de<¢)}. (A17)
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5. Equation for Y (¢)

One can obtain the equation for Y (¢) by expanding the
equation for T'""D(p) at order p®. If one performs this cal-
culation in the Ward identity for dilatation, one obtains

(Dy — Do +2)Y'(¢) + ¢D,Y"(¢)

5 2, 2 1 " 7 2
- / Re(9)G(q ){EY (@) — Y($)G(q?)
q
x (U] (d) + ¢°Z($))

2
- %zl (@)G(GP)Z)(®) +2G ()

x (U (9) + ¢°Z5(#)))
7 2 % 2 2 20 2
— (U] ($) + ¢°Z; (¢>)[Zo<¢)<c(q )+ -4’Gq ))

1o 2 2q2 1"y 2 " 21
+ G(q)+7G (@) )Wy (@) + aZy(@) + | ¢-

(A18)

If one compares Eq. (A18) with the first two lines of
equation for U;(¢), Eq. (A16), one observes that they are
identical except for the fact that U;(¢) is replaced by Y (¢),
Do is replaced by Dp — 2, and Z; is not present in the case
of Y. This is not a surprise, because we have seen that the
equation for f‘[q)] is identical to that of f‘w[qﬁ] except that
Do is replaced by Dp — 2. Now, given a solution of the
eigenvalue equations, where U, (¢) is the potential in ['[¢]
one can construct a solution where U;(¢) and Z;(¢) are zero
and where Y (¢) is the potential in translational invariant part
of f‘w[qﬁ] (up to a normalization) so they must satisfy the
same equation [once we impose U;(¢) = 0 and Z;(¢) = 0 on
it]. The fact that the equivalent of Z;(¢) is not present in the
equation of Y (¢) should not be a surprise, given the fact that
that would be a 8% term in the effective action, so it has been
correspondingly neglected.

The consequence of this analysis is that, if we are consider-
ing the leading even scalar perturbation, one may have Y (¢) #
0, but we certainly must have U, (¢) different from zero. Alter-
natively, one could consider the case U;(¢) = Z;(¢) = 0 and
Y (¢) different from zero. That would correspond simply to
the local eigenoperator 82(901% (x)) whose dimension is trivially
related to the one of 7 (x).

It is important to stress that the operator 82((/),% (x))isnota
primary operator, so in order to impose conformal constraints
to it, one must change the form of the special conformal trans-
formations. Anyhow this is not necessary because its scaling
properties can be obtained from g3 (x).

6. Conformal equation at order 0(d%)

One can also obtain a nontrivial conformal equation at
order O(d?) by plugging in the corresponding ansatz in the
conformal identity for I'""D(p). In fact, imposing the confor-
mal identity for I'*D(p; I) does not give further information.
At this order of the DE, one has for this identity one term
proportional to p,, and one term proportional to /,. The term
proportional to p, can be evaluated at / = O at this order,
and we proved before that the conformal identity at / = 0 is

nothing but the derivative of the dilatation identity. The term
proportional to [, can be evaluated at this order at p =0,
but it just gives in that case the derivative with respect to ¢
of the equation for I'""V(p). Accordingly, a single nontrivial
conformal identity (for each primary operator) is obtained at
this order. The equation is presented as Eq. (42) in the main
text.

APPENDIX B: COMPATIBILITY OF DILATATION
AND CONFORMAL WARD IDENTITIES FOR I'*"(p)

We now show that up to the vertex F,iz’o) (p), which in-
cludes the functions Uy(¢) and Zy(¢), the Ward identities
for dilatation and conformal invariance lead to the same con-
straints. To do this, we will prove that the special conformal
Ward identity (A10) is just a consequence of the dilatation
Ward identity (A6) (and rotation invariance). Let us start by
noticing that

ar“ FS’O)(P, r)|r:0 = ar" FS'O)(_P - r)|r:0
=0TV (p+ 1, —1)lrmo
=3, TP (p,0) — 3, T (p, )l =0

= 30,070 (p, 0) = 30,080,137 (),
(B1)
where in the last equality we used Eq. (A3). This transforms
the term 2Dy, 3, T (p, r)|,_¢ into 9,upD, " > (p).
At this point is useful to observe that the r.h.s. the dilatation
identity for the vertex I'™"™ can be expressed in the form

L [ ari@G @ mem i1 !
2 1 kCI) k(q) (Pl’-~-7pn—l,q,q, Iy e m)-
q
(B2)

In a similar manner, r.h.s. of the conformal Ward identity can
be written in the form

1

2 / 0 Ri(0)G{(q") (B, + B )H" "
q

< lm)|q’=—q~ (B3)

For example, the explicit expression of H?%(p, ¢, ¢') can be

extracted from Eq. (A10):

H®Yp,q,¢) =T (p, )G(p+ TV (p + ¢, ¢)
+T8%q, p+)Gp+ )T (p, ¢)
~ T4, ¢, ¢). (B4)

The functions H"™ appearing in Eqs. (B2) and (B3) can be
chosen with the following properties given the fact that it is
inside the integral over g:

() H®(py, ..., pu=1,q,q 311, ..., 1,) is completely
symmetric on momenta in the set {p;, ..., py—1, —p1 — -+ —
prt =l ==l —q—q).

X (Pls-evy Pno1.4, 4311, ...

Q) H®™(p1, ..., pue1, ¢, ¢ 311, ..., Lp) is completely
symmetric on momenta in the set {ly, ..., l,_1, [,}.
3) H*(py, ..., pu-1,9,q¢ 311, ..., 1,) is symmetric

under the exchange of ¢ and ¢'.
With these properties in mind, we can manipulate the right-
hand side of the special conformal Ward identity for the vertex
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function F,ﬁz’o) in the following manner:

(34, +34,)H*V (P, 4, 4)ly=—
= (3, + 00 )H* " (—p—q— ¢, 4. =4
= (3, + 02 )H* O (p+ g+ 4. —q. —4)lg=—q
=205, H* (. q. —q) — (3, + 85 ) H > (1. 4. lg=—4
= 3, H*V(p, q, =9 (BS)

The last piece of the puzzle is quite obvious now; we just
apply a p** derivative on Eq. (A6) for the F,(Cz’o), and this reads

3y (pydy — d + 2D, + ¢D,05) T >V (p)
= [Pv32 e + 2Dy —d + 1) + 9§D, 35 T (p)
= (2909 e — Pud 0 + 2Dy + 3D, 3) T >0 (p)
+ [puaﬁvpv — pUB;vp,L +(—d + 1)apu]r(2,0)(p)
= (20093 — Pud2 e + 2Dy + DDy 05) IO (p)

=0, / R()GH@H*V(p, q, —q). (B6)
q

The first to last equality is obtained after using the rotational
Ward identity (as can be easily checked). Recognizing the
terms already worked out in Egs. (B1) and (BS5), we check
that we obtain Eq. (A6). In this way we verify that the special
conformal Ward identity for I' ,EZ’O) is nothing but the derivative
of the dilatation Ward identity for the same vertex.

APPENDIX C: NUMERICAL DETAILS

After deducing the expressions that were analyzed in this
study, the numerical procedure consists in two stages. The
first stage consists in solving FRG flow equations in order
to obtain the fixed point that governs the critical regime of
the system. The second and final stage is that of performing a
stability analysis of the fixed point or solving the equations for
the eigenperturbations and to evaluate at this fixed point the
conformal constraints for these eigenperturbations.

1. Solving for the fixed point

The FRG equations within the DE ansatz and with a
generic regulator are partial integro-differential equations. To
treat this type of equations we discretize the field dependence
in an uniform p = ¢?/2 grid with 201 points and consider
discretized seven-point centered derivatives in this grid for the
partial derivatives with respect to p. When getting close to the
edges of the selected grid, the derivatives are taken as centered
as possible. For the momentum integrals, we employ a 21-
point adaptive Gauss-Kronrod quadrature up to momentum
gmax = 10k, where k is the scale of the regulator. This ensures
that integrals being considered are well converged due to the
exponentially fast decay of the integrands in virtue of terms
such as nth powers of the regulator and 9,R;. With this setup,
we moved on to finding zeros of the beta functions. To do
this one can proceed in two ways: to start from a microscopic
initial condition and fine-tune on a temperature-like parameter
or to start working in a dimension close to the upper critical
one and to start a root-finding procedure using an approximate
analytical expression and then to reduce the dimension param-
eter towards d = 3. Either way, the fine-tuning procedure is
not accurate enough on its own due to cumulative errors while
flowing from a microscopic scale k = A up to the Ginzburg
scale k. Because of this issue, a root-finding procedure must
be implemented after running the flow with a method of
choice which serves as a good initial condition for the search
of zeros of the beta function already at the dimension of
interest d = 3. In any case, once this educated guess of fixed
point is at our disposal, the root-finding procedure consists in
a discretized Newton-Raphson or secant method.

2. Linear analysis at the fixed point

Once we are at the fixed point, we need to solve the eigen-
value problem to find the eigenperturbations. We do this by
resorting again to a Newton-Raphson procedure. For this pur-
pose, a simple linear stability analysis of the fixed point serves
as a very good starting point for the search of eigenvectors
and eigenvalues. Once a desired threshold of convergence is
achieved for the method, we conclude the numerical study
by evaluating the conformal constraint with the found eigen-
value (Do), eigenvector [functions {U;(p), Zi(p), Y (p)}], and
the Wilson-Fisher fixed point solution [given by functions

{Uo(9), Zo()}].
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