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Noise correlations behind superdiffusive quantum walks
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We study how discrete-time quantum walks behave under short-range correlated noise. By considering noise
as a source of inhomogeneity of quantum gates, we introduce a primitive relaxation in the assumption of
uncorrelated stochastic noise: binary pair correlations manifesting in the random distribution. Using different
quantum gates, we examined the transport properties for both spatial and temporal noise regimes. For spatial
inhomogeneities, we unveil noise correlations driving quantum walks from the well-known exponentially
localized regime to superdiffusive spreading. This scenario displays an intriguing performance in which the
superdiffusive exponent is almost invariant to the degree of inhomogeneity. The time-asymptotic regime and
the finite-size scaling also unveil an emergent superdiffusive behavior for quantum walks undergoing temporal
noise correlation, replacing the diffusive regime exhibited when noise is random and uncorrelated. However,
some quantum gates are insensitive to correlations, contrasting with the spatial noise scenario. Numerical and
analytical results provide valuable insights into the underlying mechanism of superdiffusive quantum walks,
including those arising from deterministic aperiodic inhomogeneities.
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I. INTRODUCTION

Dynamical aspects of particles in discrete systems are
among the fundamental issues in physics, the application of
which extends to a wide variety of systems such as behavioral
macroeconomics [1], image segmentation [2], animal dynam-
ics [3,4], computer science [5], evolutionary ecology [6,7],
and thermal conductivity of nanofluids [8,9]. The emergence
of quantum walks further extends its importance, whether
through a universal model for quantum computing [10–13]
and the development of new quantum algorithms [14] but also
for providing a versatile and highly controllable platform to
describe quantum systems [15–21].

Designing and controlling such quantum processes for
long-time dynamics is essential, with noise among the prin-
cipal obstacles [22–24]. Quantum error-correcting methods
[25,26] and fault-tolerant protocols [27,28] have pointed to
the need for a better understanding of the noise nature of
the system. Thus, ingredients that symbolize interaction be-
tween system and environment have been studied. In general,
noise drives the discrete-time quantum walk at a slower
spreading rate in the long-time limit. White noise fluctuations
on the time evolution operator usually lead to a diffusive
wave-function spreading [19,29–32], while an arbitrary spa-
tial inhomogeneity is responsible for a localized behavior
[19,20,33–35]. Studies also contemplate the coexistence of
both scenarios, wherein the diffusive behavior over a long-
time limit has been documented [36,37]. The consequences
of an instantaneous stochastic noise over the quantum walk
stability have been recently reported, where a maximally co-
herent initial state achieves breathing dynamics or even a
standing self-focusing in a long-time regime [38].

Noise correlations have attracted significant attention by
quantum characterization, verification, and validation tech-

niques [39–42]. This aspect has also been considered with
quantum walks, with reports of significant changes in the walk
profile. For example, we observe a quantum walker exhibiting
a superdiffusive spreading in one-dimensional systems where
quantum gates follow aperiodic time-dependent sequences,
such as Fibonacci [43,44] and Thue-Morse [44]. Conversely,
systems where quantum gates are temporally controlled based
on the Rudin-Shapiro distribution exhibit a nearly diffusive
behavior [44]. The observed behavior in the system utiliz-
ing Fibonacci temporal sequencing is connected with the
power-law decay of the time-correlation function of the trace
map [45].

The nonstochastic scenario has also been explored in the
spatial framework for different quantum gates distributed
along the lattice sites and for systems with position-dependent
phase defects. Aperiodic Fibonacci and Thue-Morse sequenc-
ing show a superdiffusive spreading, either embedded into the
quantum gate distribution [44] or the step operator, where
the allowed jumps symbolize connections between non-
neighboring quantum gates [46]. We observe spatial localiza-
tion of quantum walker for systems in which quantum gates
are distributed analogous to the Aubry-André model [47] and
the Rudin-Shapiro ordering [44]. Transitions between local-
ized and delocalized spreading were reported for systems with
quantum gates following spatial aperiodicity [48] and systems
with long-range correlations encoded as static phase disorder
in the conditional shift operator [49]. Spatial inhomogeneity
has been explored considering a hierarchical arrangement of
barriers, suggesting a regime where quantum walks never ap-
pear to be localized [50]. Long-range correlations in systems
with inhomogeneous space and time have shown a wide range
of dynamic regimes, from localized to ballistic spreading [51].

The reports illustrate how studies into inhomogeneous
quantum walks focus on uncorrelated heterogeneities, which
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could arise from a stochastic noise, and heterogeneities
following deterministic sequences or exhibiting long-range
correlations. Less extreme and more realistic scenarios need
further understanding. How do discrete-time quantum walks
behave under short-range correlated noises? In this paper
we examine the impact of a primitive relaxation in uncorre-
lated stochastic noise assumption: the emergence of a binary
pair-correlated in the random distribution. Let us consider a
homogeneous lattice with quantum gates Ĉn,t (θ1), in which
a general noise process deviates some quantum gates from
their ideal operation, leading them to effectively behave like
Ĉn,t (θ2). We explore both the spatial and the temporal in-
homogeneous scenarios, in which we assume discrete-time
quantum walks effectively ruled by two distinct quantum
gates, just like in Refs. [37,43,44]. We show noise correlations
driving quantum walks with spatial inhomogeneities from the
well-known exponentially localized (stochastic and uncorre-
lated noise) to the superdiffusive spreading. This scenario
displays an exciting performance in which the superdiffusive
exponent is almost unvarying to the inhomogeneity degree
�θ . A superdiffusive asymptotic behavior is also reported
for quantum walks undergoing temporal noise correlation,
contrasting with the diffusive regime exhibited when noise
is random and uncorrelated. However, results show the su-
perdiffusive spreading unreachable for specific quantum gate
settings.

II. MODEL

We consider quantum walks in one-dimensional lattices of
interconnected sites. The quantum walker state |�〉 belongs to
a Hilbert space H = HP ⊗ HC , where HC is a complex vector
space of dimension two associated with the internal degree
of freedom, here spanned in the basis {|↑〉, |↓〉}. The position
Hilbert space HP is spanned by the basis {|n〉} with the lattice
nodes n ∈ Z.

Each step of evolution consists of quantum gates Ĉn,t lo-
cated in the lattice sites, which act on the quantum walker and
shuffle its internal state. Such a state establishes the spatial
redistribution to be performed by the shift operator Ŝ. Thus,
starting from an initial state |�t=0〉, the dynamical evolution
is accomplished by recursively applying the unitary transfor-
mation |�t+1〉 = Û |�t 〉, with Û = Ŝ · (Ĉn,t ⊗ IP ).

An arbitrary quantum walker state in the t th time step is
written as

|�t 〉 =
∑

n

(ψ↑
n,t |↑〉 + ψ

↓
n,t |↓〉) ⊗ |n〉, (1)

in which ψ
↑
n,t and ψ

↓
n,t are complex amplitudes that sat-

isfy
∑

n |ψ↑
n,t |2 + |ψ↓

n,t |2 = 1. Quantum gates Ĉn,t , the ones
responsible for mixing the internal degree of freedom, are
arbitrary SU (2) unitary operators given by

Ĉn,t (θ ) = cos[θn,t ]Ẑ + sin[θn,t ]X̂ , (2)

with θn,t ∈ [0, 2π ]. Ẑ, X̂ are the Pauli matrices, and IP

describes the identity operator in space of positions. The
subindices n and t indicate the possible spatial and temporal
dependencies of these quantum gates, respectively. The step-
ping of the quantum walker to the left and right is achieved by

using the shift operator Ŝ, given as

Ŝ =
∑

n

(|n + 1〉〈n| ⊗ |↑〉〈↑| + |n − 1〉〈n| ⊗ |↓〉〈↓|). (3)

It is well known that such quantum walk protocol, with
single and steady quantum gates, provides the asymptotical
behavior of ballistic spreading (except for θ = π/2, for which
the particle remains confined). This scenario is modified by
disturbances on the quantum gates [21]. Consider a homo-
geneous lattice with quantum gates Ĉn,t (θ1), where a general
noise process D deviates some quantum gates from their ideal
operation, causing them to effectively behave like Ĉn,t (θ2) =
DĈn,t (θ1). Such error processes can be unitary, resulting from
over- or under-rotation in qubit control pulses [52]. Assuming
a local noise, where interferences act on individual quantum
gates located along the lattice positions, the lattice displays
spatial inhomogeneity, where quantum gates Ĉn,t (θ2) emerge
for some sites n of the lattice. In the absence of a temporal
change of quantum gates (Ĉn,t = Ĉn), we effectively deal with
a random spatial arrangement of Ĉn(θ1) and Ĉn(θ2), where
Ĉn(θ2) appears according to the percentage p and Ĉn(θ1) with
(1 − p). Results show that such a scenario exhibits an expo-
nentially localized quantum walk for any Ĉn(θ2) other than
Ĉn(θ1) [19,20]. However, when all quantum gates simulta-
neously feel the same disturbances, but in randomly specific
time steps along the time evolution, we tackle a temporal in-
homogeneity (Ĉn,t = Ĉt ). Thus, Ĉt (θ2) appears throughout the
time evolution according to the percentage p and Ĉt (θ1) with
(1 − p). Results report a diffusive spreading for any Ĉn(θ2)
other than Ĉn(θ1) [37].

Here we introduce a minimally biased noise model ex-
hibiting a short-range correlation. We assume the previously
described random distribution, adding the condition that
Ĉn,t (θ2) always appears in pairs. The quantum gates are
unchanging over time for a spatial-dependent noise sce-
nario. Therefore, the stochastic arrangement of quantum gates
throughout the lattice sites obeys the constraint that Ĉn(θ2)
always appears on adjacent sites. For time-dependent noise,
where quantum gates are the same at all lattice sites and
undergo random changes at each time step, we assume the
constraint that Ĉt (θ2) invariably appears in two consecutive
time steps.

We consider the initial state of the quantum walker to be a
symmetric one of the form

|�t=0〉 = 1√
2

(|↑〉 + i|↓〉) ⊗ |n0〉, (4)

with the initial position n0 of the quantum walker defined
at the central site of the lattice. We consider open chains as
the boundary condition throughout the analysis, with large
enough lattice sizes so that the wave function does not reach
the edges over the time course described. Considering the
stochastic nature and the uniqueness of each sample owing
to its specific noise or inhomogeneity, averaging over multiple
samples provides a more representative and robust perspective
on the system. Thus, we establish an ensemble of 50 subse-
quent and independent quantum walks to evaluate its average
behavior.
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FIG. 1. Average probability distributions after 3000 time steps
for a quantum walker subjected to uncorrelated (brown circles) and
spatially correlated noise (orange squares). In the absence of correla-
tions, the quantum walker’s profile exhibits a signature of Anderson
localization, characterized by exponential decay and linear fitting in
the semilog scaled plot (the dashed line is a guide for eyes). With
binary pair correlations, the wave function spreads further, and the
exponentially decaying tails give way to wave-packet fronts exhibit-
ing sharp cutoff, which suggests a delocalized behavior.

III. RESULTS AND DISCUSSION

A. Spatial noise

Using the numerical method described above, we start by
examining the weight of the proposed correlation over the
asymptotic behavior of the quantum walker. In Fig. 1 we show
a snapshot of average probability distribution profiles, taking
as reference the scenario of quantum gates arranged randomly
and independently. We set θ1 = π/3. In the absence of corre-
lations, we consider θ2 = π/4 stochastically distributed along
the lattice sites with a proportion of p = 0.1. Under the con-
dition of binary pair correlation (BPC), the lattice exhibits the
Hadamard quantum gates (θ2) distributed in pairs (adjacent
sites) with a proportion of p = 0.1. In the absence of correla-
tions, we observe the probability distribution of the quantum
walker strictly around the initial position. Wave-function pro-
file exhibiting an exponential decay exposes a signature of
Anderson localization, which corroborates Refs. [19,20,53].
A distinct scenario is described by systems with binary pair
correlations since the wave function is no longer concentrated
around the starting position. Now, exponentially decaying
tails give way to wave-packet fronts exhibiting sharp cutoff,
suggesting a delocalized spreading regime.

To better understand the previous results, we follow the
time evolution of the wave-function spreading by using the
standard deviation

σ (t ) =
√

〈n2(t )〉 − 〈n(t )〉2, (5)

where 〈n2(t )〉 = ∑
n n2|�n(t )|2 and 〈n(t )〉 = ∑

n n|�n(t )|2.
Its characteristic power-law behavior σ (t ) ∼ tα quantifies
the spreading properties of wave functions, as the ballistic
(α = 1.0), the diffusive (α = 0.5), and the localized (α = 0.0)
behavior. In Fig. 2(a) we explore θ1 = π/3 and θ2 = π/4,
the same θ settings employed in Fig. 1. We also consider
a noiseless quantum walk as a reference, which displays a

FIG. 2. Average standard deviation of the quantum walker dis-
tribution vs time for noiseless, random, and binary pair-correlated
quantum walks. (a) θ1 = π/3 and θ2 = π/4 and (b) θ1 = 4π/15 and
θ2 = π/4. An asymptotic superdiffusive behavior emerges from the
binary pair correlation, contrasting with the characteristic localized
regime exhibited by quantum walks subjected to uncorrelated ran-
dom noise.

ballistic spreading evident from the linear growth of σ (t )
as time evolves. Such behavior contrasts with the localized
quantum walk verified when θ1 and θ2 are randomly and
independently spatial distributed, characterized by σ (t ) sat-
urating after an initial transient, σ (t ) ∼ t0. The main point is
the superdiffusive spreading for quantum walks subjected to
binary pair correlations, characterized by exponent α ≈ 0.74.
The constancy of the asymptotic spreading performance,
even with replacing the quantum gate θ1 from π/3 to
4π/15 [see Fig. 2(b)] or differing scenarios of inhomogeneity
(p = 0.1, 0.3, 0.5), highlights the robustness and generaliza-
tion of the finding.

The supplementary analysis in Fig. 3 examines the lattice
size dependence for the wave-packet width in a long-time
regime and the time evolution of return probability. Con-
sidering the initial transient behavior, which becomes more
prolonged as the error �θ = |θ1 − θ2| decreases, we explore
in Fig. 3(a) lattice sizes ranging from N = 10 000 to N =
1 000 000 sites using the previously defined quantum gates:
θ2 = π/4 with θ1 = 4π/15 and θ2 = π/4 with θ1 = π/3.
By adopting p = 0.5 as the benchmark value from now on,
we observe systems with a stochastic and uncorrelated spa-
tial ordering of quantum gates displaying a size-independent
scenario [σ (t∞) ∼ N0], indicative of the localized regime.
Conversely, finite-size scaling for systems with binary pair-
correlated spatial noise reveals σ (t∞) ∼ N0.72, consistent with
the superdiffusive spreading reported earlier. Such results
fully agree with previous findings in Fig. 2. However, the
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FIG. 3. (a) The finite-size scaling computed for the long-time
average of σ (t ) supports the previous findings, which unveils the
superdiffusive behavior for lattices with binary pair correlation.
However, the persistence of a nonvanishing return probability at long
times [see panels (b) and (c)] reveals that a fraction of the walker
remains localized around its initial position.

return probability

R0(t ) =
∑

α=↑,↓
|〈n0| ⊗ 〈α|�n(t )〉|2, (6)

which indicates the probability of the walker returning to
the initial position n0 at time t , reveals that a fraction of
the walker remains localized around its initial position even
over an extended time evolution. This behavior contrasts with
a fully delocalized regime, such as the noiseless quantum
walk, where the return probability tends to zero at long times
[34,54,55].

To better understand this intriguing scenario, we evaluate
the average probability distributions along the lattice sites
(	 = n − n0) at different time steps t for a quantum walker
evolving on lattices with binary pair-correlated spatial noise,
as depicted in Fig. 4. The quantum gates are set to θ1 = π/3
and θ2 = π/4, identical to those used in Fig. 1. Despite the
concentration around the initial position n0, we observe in
Fig. 4(a) the wavefront advancing across the lattice sites over
time. The inset provides a magnified view around the starting
position, with the collapsed data confirming the persistent
nonvanishing return probability as time evolves, consistent
with previous findings. In Fig. 4(b) analysis of the prob-
ability distributions at different evolution times reveals the
ballistic advancement (∼t) of the wavefront and a power-
law tail |�n|2 ∼ 	−ϕ , characterized by a scaling exponent

FIG. 4. Profile of the average probability distributions along the
lattice sites (	 = n − n0) computed at different time steps t for a
quantum walker subjected to spatially correlated noise. Quantum
gates are the same employed in Fig. 1. (a) Despite the concentra-
tion around the initial position n0 (the magnified view shown in
the inset confirms the nonvanishing return probability), the wave-
front advances as time evolves. (b) Analysis of the distribution at
distinct evolution times shows such wavefront advancing ballisti-
cally (∼t) and a power-law tail |�n|2 ∼ 	−ϕ , with scaling exponent
ϕ = 1.46(5).

ϕ = 1.46(5). This power-law tail extends up to a cutoff
distance 	m from the initial position, corresponding to the
wavefront. These temporal and spatial scaling behaviors
enable the evaluation of the wave-packet mean-square dis-
placement by

σ 2(t ) = σ 2(	0) +
	m (t )∑

	0

	2(|�0|2	−ϕ ). (7)

Here 	0 denotes the characteristic distance beyond which
the power-law decay occurs, and |�0|2 represents the coef-
ficient of the asymptotic power-law decay of the wave packet.
Considering that σ 2(t ) ∼ ∑	m (t )

	0
|�0|2	−(ϕ−2) and ϕ − 2 < 1,

the wave-packet mean-square displacement is observed to be
sensitive to the wave-packet cutoff. Specifically, this series
yields in the long-time regime σ 2 ∼ 	1.54

m . Since the wavefront
advances ballistically, we can infer that σ ∼ t0.77, which sup-
ports the previously reported superdiffusive behavior.

The question that arises is whether this superdiffusive
behavior persists for other quantum gates or if alternative
quantum gates could potentially induce diffusive or subdif-
fusive spreading. The answer is presented in Fig. 5, which
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FIG. 5. Asymptotic exponent (α) of standard deviation and long-
time average of return probability for different quantum gates θ1,
with (a), (b) θ2 = π/4 and (c), (d) θ2 = π/3. Binary pair corre-
lation induces a notable transition from exponential localization to
superdiffusive spreading. Despite correlated noise, a fraction of the
walker remains localized around the initial position, a phenomenon
not exclusive to Hadamard quantum gates appearing in pairs.

explores the asymptotic exponent α of characteristic power
law σ (t ) ∼ tα and the average return probability at long times.
These quantities are examined as a function of θ1 while taking
into account systems with quantum gates arranged unbias-
edly or with binary pair correlation. We explore [Figs. 5(a)
and 5(b)] θ2 = π/4 and [Figs. 5(c) and 5(d)] θ2 = π/3.
Figure 5(a) extends the previous results to further θ1 quan-
tum gates and confirms a dominant superdiffusive regime for
quantum walks with binary pair-correlated noise. The same
behavior is observed when other quantum gates play the
role of binary pair-correlated [see Fig. 5(c)]. The asymptotic
exponent α stands approximately unvarying (∼0.73) when
noise is correlated, even for a small �θ . On the other hand,
uncorrelated spatial noise leads to a stagnation of the spread
after an initial transient and hence a σ (t ) ∼ t0 in the asymp-
totic regime, in entire agreement with Refs. [19,20,53]. We
observe exceptions for quantum gates θ1 equivalent to the
pair-correlated quantum gates θ2, in which the fully extended
(ballistic) regime is achieved. On the other hand, employment
of Pauli X quantum gates results in a localized behavior,
coming from swapping the amplitudes of states |↑〉 and |↓〉
that corresponds to a negation operation. Despite the alteration
in the prevailing spreading regime, the binary-pair correla-

tion has no significant effect on the return probability of the
quantum walker. After evaluating different configurations of
θ1 and θ2, results indicate a nonvanishing return probability
at long-time evolutions, i.e., R0(t ) ∼ t−β becomes R0(t∞) ∼
t−0. Results depicted in Figs. 5(b) and 5(d) indicate that a
fraction of the walker persists in its initial position in the
presence or absence of correlation in spatial noise even at
long-time evolutions, undermining the conception of com-
plete delocalization.

These results can be understood when we look at the quan-
tum gates playing the role of altering the probability of the
quantum walker (qubit) moving to the right or left. With all
quantum gates identical, the system is translation invariant,
and the generalized eigenfunctions are described by Bloch
waves, infinitely extended over the whole lattice. However, the
system is no longer translationally invariant when quantum
gates vary randomly in space. The sequence of such quantum
gates becomes reflective and decoherent for a walker trying to
spread through the respective lattice, which inhibits spreading
due to interference effects between multiple scatterings of
the qubit wave function, causing the eigenfunctions to be-
come exponentially localized [19,20,53]. In agreement with
previous works over that class of inhomogeneities [56–58],
the noise with binary pair correlation gives rise to extended
states that emerge as transparent (resonant) states for small
finite samples (domains) and contribute to the spreading of
the quantum walker on the lattice. Not all modes are extended
and effectively sensitive to the emergence of such domains,
resulting in a fraction of the quantum walker stuck around the
initial position [50]. Although a similar phenomenology has
been reported in electronic transport [56], we observe particu-
lar features such as the absence of superdiffusive, diffusive, or
localized regimes, with thresholds between them depending
on the inhomogeneity degree. Our results suggest a prevailing
superdiffusive scenario, asymptotically independent of �θ .
This scenario helps us understand the superdiffusive quantum
walks reported for Thue-Morse- and Fibonacci-type spatial in-
homogeneities [44], where binary pairs spontaneously appear
throughout the sequencing.

B. Temporal noise

This section is devoted to studying walks with time-
dependent varying quantum gates. We start by looking at the
standard deviation [see Eq. (5)], establishing a comparative
analysis between systems with binary pair correlations and
their uncorrelated counterparts. In Fig. 6 we evaluate the time
evolution by considering θ2 = π/4 with (a) θ1 = π/3 and (b)
θ1 = 4π/15. We observe noiseless quantum walks displaying
a ballistic behavior, characterized by power law σ (t ) ∼ t . On
the other hand, systems in which θ1 and θ2 appear randomly
and independently exhibit a diffusive character, corroborating
previous studies [44]. Our analysis unveils the emergence of
superdiffusive quantum walks resulting from the binary pair
correlations. This superdiffusive character is maintained even
when the percentage of appearance of the θ2 gates (p) is
changed. Additionally, such regime seems to be independent
of how far θ2 is from θ1, as the superdiffusive behavior is the
same for θ1 − θ2 = π/12 and θ1 − θ2 = π/60.
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FIG. 6. Average standard deviation of the quantum walker dis-
tribution vs time for noiseless, random, and binary pair-correlated
quantum walks. (a) θ1 = π/3 and θ2 = π/4 and (b) θ1 = 4π/15 and
θ2 = π/4. An asymptotic superdiffusive behavior emerges from the
binary pair correlation, contrasting with the characteristic diffusive
regime exhibited by quantum walks subjected to uncorrelated ran-
dom noise.

The previous behavior is reinforced by analysis of finite-
size scaling of the wave-packet width in an asymptotic regime
[see Fig. 7(a)]. By employing quantum gates as depicted
in Fig. 6 for lattice sizes ranging from N = 10 000 to N =
1 000 000, we observe results that agree. Systems with quan-
tum gates undergoing an uncorrelated alternation exhibit a
diffusive character, identified by σ (t∞) ∼ N0.5, whereas sys-
tems with binary pair correlations exhibit a superdiffusive
behavior (∼N0.73). Additionally, we explore in Figs. 7(b)
and 7(c) the probability of the walker returning to its initial
position n0 at time t . A behavior change is observed in the
presence of noise, leaving the R0(t ) ∼ t−1.0 of noiseless quan-
tum walks [34,54,55] as R0(t ) ∼ t−0.5, whether the noise is
uncorrelated or correlated. As observed in the spatial noise
scenario, correlation in noise plays a relevant role in the
dynamics by promoting resonant extended states that drive a
ballistic advance on the wavefront and promote a power-law
tail on the wave packet. Such a change in the distribution
tail is fundamental for manifesting the reported superdiffusive
scenario. Not all states are effectively sensitive to the binary
pair correlation, thus preserving the dynamic profile around
the initial position.

In order to know whether such superdiffusive behavior also
extends when other quantum gates are involved, we examine
the power-law exponents α [σ (t ) ∼ tα] and β [R0(t ) ∼ t−β ]
as a function of θ1, taking into account the quantum gates θ2 =
π/4 and θ2 = π/3 (see Fig. 8). As a reference, we also present
data for the regimen without correlations, named random. We
observed a predominant superdiffusive spreading, whether the

FIG. 7. (a) Investigating the long-term average of σ (t ) using
finite-size scaling supports the previous findings, which reveal su-
perdiffusive behavior in lattices featuring binary pair correlation.
However, the temporal evolution of the return probability demon-
strates that the observed performance remains coherent with systems
subjected to uncorrelated random noise, following a power law
R0(t ) ∼ t−0.5 [see panels (b) and (c)].

dimerized quantum gates are Hadamard (a) or θ2 = π/3 (c).
This scenario is present even for the Pauli-X quantum gates,
whose bit-flip character between |↑〉 and |↓〉 has proved to
be dominant when the noise interfered only in the spatial
arrangement of the quantum gates. However, we observed
an anomalous behavior when θ1 is in the vicinity of 2π/3
while evaluating on both θ2. Our observations suggest that
these quantum gates are insensitive to binary pair correlation.
Notably, the significant change in the spreading regime does
not reflect in the asymptotic return probability [as illustrated
in Figs. 8(b) and 8(d)]. Data indicate that there is no significant
difference between correlated or uncorrelated temporal noise.
Both systems exhibit an approximately constant exponent β

(around β ≈ 0.5), regardless of how much θ2 differs from θ1.
To better characterize this unusual regime, we show in

Fig. 9 a density plot of asymptotic exponent characteristic of
the standard deviation (α) in a plane of θ2 vs θ1 quantum gates.
The scenario where θ1 and θ2 are identical corresponds to a
noiseless system, resulting in ballistic wave function spread-
ing. Such behavior is exhibited by α = 1.0 along the diagonal.
To improve the clarity of the density plot, we excluded the
exceptional case where both θ1 and θ2 are configured as Pauli-
X gates, which results in a well-known localized behavior
[48,59]. The most significant observation is the prevalence
of superdiffusive behavior across a wide range of quantum
gates θ1 and θ2, highlighting the influence of correlated noise
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FIG. 8. The asymptotic exponent of the standard deviation (α)
and the return probability (β) are examined for various quantum
gates θ1, with (a), (b) θ2 = π/4 and (c), (d) θ2 = π/3. Binary pair
correlation induces a transition in the dominant spreading behav-
ior from diffusive to superdiffusive. Exceptions around θ1 = 2π/3
suggest that certain quantum gates are insensitive to binary pair
correlation. Altering the spreading regime does not notably impact
the time evolution of the return probability.

on wave-function spreading. The sequential repetition of a
single quantum gate over time promotes the spreading of
the quantum walker. However, introducing different quantum
gates disrupts the phase relationship between different wave
function components, interfering with the superposition and
interference of states, thus compromising the wave function
spreading. The emergence of temporal binary pair correlation
mitigates this loss of phase coherence in some components,
thereby contributing to the observed superdiffusive behavior.
However, the temporal alternation between quantum gates
θ1 and θ2 and the subjacent effects of interference and su-
perposition of the quantum walker states prove effectively
unvarying to the presence of binary pair correlations for par-
ticular combinations of quantum gates, sustaining diffusive
spreading. The occurrence of this singular scenario depends
on the specific values of θ1, described by an approximate re-
lationship θ1 ≈ π/2[1 − sin(2θ2 − φ)/4] where φ = π . This
scenario points to the possibility of particular quantum gates
performing as a filter of correlations, which can contribute to
the progress of tools and algorithms for quantum processes
under noise influence [60].

FIG. 9. Density plot illustrating the characteristic asymptotic ex-
ponent of the standard deviation (α) in the plane of θ2 and θ1 quantum
gates. Binary pair correlation supports a superdiffusive spreading
for most evaluated quantum gates. Notably, specific combinations of
quantum gates remain unresponsive to noise correlation, preserving
the diffusive regime despite its existence.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have studied the transport properties in
discrete-time quantum walks undergoing a noise correlation.
By considering a relaxation in the uncorrelated stochas-
tic noise premise, we conjectured the emergence of binary
pair-correlated in the random distribution. We have explored
spatial and temporal noise scenarios, always drawing a com-
parative analysis with systems under uncorrelated noise. The
dynamics of the quantum walker were computed from a
sample mean of independent noises. In systems with spa-
tial inhomogeneity, we observe the binary pair correlation
driving the quantum walks from the exponentially localized
regime (coming from the stochastic and uncorrelated noise)
to superdiffusive spreading. Such behavior holds maintained
regardless of the difference between quantum gates θ1 and θ2,
by analyzing either the time-asymptotic regime or the finite-
size scaling, which has unveiled a superdiffusive exponent
almost unvarying to the degree of inhomogeneity. Despite this
superdiffusive spreading, we identified that a fraction of the
walker remains localized around its initial position even after a
long-time evolution. Such interesting behavior is allied to the
emergence of resonant states induced by correlation in noise.
These states facilitate a ballistic advance of the wavefront
and contribute to developing a power-law tail in the wave-
packet distribution. Analytical results reveal that this change
in the distribution profile underpins the numerically reported
superdiffusive scenario, which is consistent with the findings
of Ref. [61].

The binary pair correlation also favors the spreading in
the temporal scenario. In such systems, the superdiffusive
spreading also emerges from the binary pair correlation, tak-
ing the place of the diffusive quantum walks observed for
an independent and random temporal inhomogeneity. How-
ever, some quantum gates exhibit a remarkable effect of
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insensitivity to correlations, which seems attractive for study-
ing correlation filters for quantum processes [60]. Our results
introduces aspects about superdiffusive quantum walks and
the relationship with possible correlations in their protocol,
as reported in quantum walks with Fibonacci- or Thue-
Morse-type aperiodic inhomogeneities [44], where binary
pairs appear spontaneously throughout the sequence.

Our findings provide additional understanding into the
emergence of resonant extended modes in noisy systems and
how wave-packet dispersion unveils their existence. Analyti-
cal approaches and entanglement studies represent promising
avenues for elucidating further insights into the central theme.
To conclude, recent experimental achievement in a time-
multiplexing system based on an unbalanced Mach-Zehnder

interferometer with a feedback loop [62] makes us believe
that the proposed scheme here is feasible for prompt im-
plementation. Such a setup has been proven capable of
controlling quantum gates over space and time, designing
inhomogeneities.

ACKNOWLEDGMENTS

We are grateful for the insightful discussion with M. L.
Lyra. This work was partially supported by CAPES (Coor-
denação de Aperfeiçoamento de Pessoal do Nível Superior),
CNPq (Conselho Nacional de Densenvolvimento Científico e
Tecnológico), and FAPEAL (Fundação de Apoio à Pesquisa
do Estado de Alagoas).

[1] C. R. Nelson and C. R. Plosser, J. Monetary Econ. 10, 139
(1982).

[2] L. Grady, IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768
(2006).

[3] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J.
Murphy, P. A. Prince, and H. E. Stanley, Nature (London) 381,
413 (1996).

[4] E. A. Codling, M. J. Plank, and S. Benhamou, J. R. Soc.
Interface 5, 813 (2008).

[5] P. Pons and M. Latapy, in Computer and Information Sciences—
ISCIS 2005, edited by P. Yolum, T. Güngör, F. Gürgen, and C.
Özturan (Springer, Berlin, 2005), pp. 284–293.

[6] U. Dieckmann and R. Law, J. Math. Biol. 34, 579 (1996).
[7] J. Metz, R. Nisbet, and S. Geritz, Trends Ecol. Evol. 7, 198

(1992).
[8] P. Keblinski, S. Phillpot, S. Choi, and J. Eastman, Int. J. Heat

Mass Transf. 45, 855 (2002).
[9] S. P. Jang and S. U. S. Choi, Appl. Phys. Lett. 84, 4316

(2004).
[10] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,

1687 (1993).
[11] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[12] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[13] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon,

Phys. Rev. A 81, 042330 (2010).
[14] A. Ambainis, Int. J. Quantum Inf. 01, 507 (2003).
[15] C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme,

Phys. Rev. A 72, 062317 (2005).
[16] W. S. Dias, E. M. Nascimento, M. L. Lyra, and F. A. B. F. de

Moura, Phys. Rev. B 76, 155124 (2007).
[17] A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A.

Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff
et al., Science 329, 1500 (2010).

[18] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.
Zupancic, Y. Lahini, R. Islam, and M. Greiner, Science 347,
1229 (2015).

[19] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex,
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