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Instability in the quantum restart problem
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Repeatedly monitored quantum walks with a rate 1/τ yield discrete-time trajectories which are inherently
random. With these paths the first-hitting time with sharp restart is studied. We find an instability in the optimal
mean hitting time, which is not found in the corresponding classical random-walk process. This instability
implies that a small change in parameters can lead to a rather large change of the optimal restart time. We show
that the optimal restart time versus τ , as a control parameter, exhibits sets of staircases and plunges. The plunges,
are due to the mentioned instability, which in turn is related to the quantum oscillations of the first-hitting
time probability, in the absence of restarts. Furthermore, we prove that there are only two patterns of staircase
structures, dependent on the parity of the distance between the target and the source in units of lattice constant.
The global minimum of the hitting time is controlled not only by the restart time, as in classical problems, but also
by the sampling time τ . We provide numerical evidence that this global minimum occurs for the τ minimizing
the mean hitting time, given restarts taking place after each measurement. Last, we numerically show that the
instability found in this work is relatively robust against stochastic perturbations in the sampling time τ .
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I. INTRODUCTION

Random search processes might be sent by chance to an
undesired course away from a preset target position or area of
space. In such cases, the strategy of restart can be employed
to tackle the decision-making conundrum of continuation or
abortion of the process. This idea is modeled as stochastic
processes under restart [1,2]. Since the early 2010s, the in-
troduction of restart has opened a rapidly expanding research
field, and related topics including the optimization of first-
passage time, nonequilibrium steady states, etc., have further
propelled the expansion of this field [1–32].

A general motivation for considering quantum dynam-
ics with restart [33–44] is search processes using quantum
computers (e.g., see Refs. [45,46]). More specifically, the first-
passage time in random walks, defined as the time it takes a
random walker to reach a target or threshold for the first time
[47], characterizes the efficiency of a classical search. Proba-
bly the most studied examples are the first-passage time of a
Brownian motion or a random walker on the line. For unbi-
ased random walk in unbounded space, with restarts, namely
resetting a random walker to its initial site at some time tr ,
the expected first-passage time exhibits one unique minimum
[1,4]. As conveyed by the authors’ previous publication (see
Ref. [48]), completely different behaviors are found in the
quantum world within the context of deterministic restarts
(see definitions below). Employing repeated measurements or
monitoring with a period τ at the preset target state, one can
define the quantum hitting time, as the quantum counterpart
of first-passage time, via the record of measurement outcomes
(see details below). Using deterministic restarts, there appear
multiple minima, instead of a sole minimum, of the mean
hitting time under restart [48]. More remarkable is the pe-
riodical staircase structure of the optimal restart time, along
with plunges or rises, which manifest a kind of instability, as a

quantum signature in the restart framework. This is attributed
to the existence of several minima in the expected hitting time.
In Ref. [48] we treated this staircase structure, but only when
the target is set at the initial state, i.e., the return case. Here
in this paper, we will delve into the universality of staircase
structures and accompanied instability for general choices of
the target location. More profoundly, the staircase structure
converges to a unique structure in the limit of rare measure-
ments, namely the large-τ limit, depending only on the parity
of the distance between the initial state and the target.

The process of restarts for monitored quantum walks can
be implemented on quantum computers [49]. One may won-
der, given the instabilities we find, whether small stochastic
perturbations in the sampling times, lead to the wipe-out of
novel quantum features. When does the noise destroy the
quantum effects discussed in this paper? And does a small
amount of noise severely affect our results? We will answer
these queries towards the end of this paper.

Another natural question is how to find the global optimum
with respect both to the restart time and the measurement
period. Both these parameters are, at least in principle, control
parameters, in the mentioned quantum computer experiments.
In the classical world, the sampling time is of little concern,
and one may try to detect the walker continuously. In the
quantum case, due to the Zeno effect which typically inhibits
detection, sampling cannot be performed continuously, and
hence the sampling time becomes an important parameter.
Therefore, in the quantum case, we have two control pa-
rameters, while typically in the classical restart problem, we
minimize hitting times by changing the restart time only.
With restarts the fast sampling leads to Zeno physics and
very long mean hitting times, when the initial and target
states are nonidentical. So clearly too-small τ or too-large
τ are not optimal for the sake of fast search and similarly
with respect to the restart time. The analysis for this global
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optimization problem will be treated in the final stage of this
paper.

This paper is structured as follows: We present in the
first place the concept of quantum hitting time, or the
first-detected-passage time (in the absence of restart), for a
periodically monitored quantum walk (Sec. II) [50–58]. Then
the mean hitting time with restart is provided in Sec. III, for
the model of a tight-binding quantum walk on an infinite line.
Further analysis for the optimization problem of the optimal
restart time, exposing instabilities in the quantum restart prob-
lem, expounds the main results of the paper in Sec. IV. We
check the robustness of our results to noise in Sec. V. The
minimization of the mean hitting time, with respect to both the
measurement period and the restart time, is studied in Sec. VI,
namely we search for the global minimum of the mean hitting
time. We close the paper with a summary and discussions. A
brief summary of part of our results was recently presented in
a Letter [48].

II. THE QUANTUM FIRST-HITTING TIME IN ABSENCE
OF RESTART

We first introduce the quantum first-hitting time problem,
which is based on the continuous-time quantum walk [59] but
with repeated monitoring (measurements). The Hamiltonian
we will employ in this paper is a tight-binding model of a
single particle, sometimes called the walker, on an infinite line

H = −γ

∞∑
x=−∞

[|x〉〈x + 1| + |x + 1〉〈x|]. (1)

Here γ is the hopping rate and set as 1 in what follows.
This is a lattice walk [60], as the particle can occupy the
integers denoted with the ket |x〉, and the hopping is to nearest
neighbors only. The energy spectrum is E (k) = −2 cos(k) in
units of γ , and the eigenfunctions of H are ψk (x) = eikx/

√
2π

with k ∈ [−π, π ]. Such tight-binding Hamiltonians are used
extensively in condensed matter. Then the propagation of the
quantum wave packet (in the absence of measurement) is
described by the probability of finding the particle at state |xd〉
starting from |x0〉 (both are spatial states of the lattice), i.e.,

P(xd , x0, t ) = |〈xd ||ψ (t )〉|2 = |〈xd |Û (t )|x0〉|2

= |i|xd −x0|J|xd −x0|(2t )|2 = J2
|xd −x0|(2t ), (2)

where |ψ (t )〉 is the solution to the Schrödinger equation for
the Hamiltonian Eq. (1), Û (t ) = e−iHt is the unitary operator
with h̄ set as 1 in what follows, and Jn(x) is the Bessel
function of the first kind. This is led by the cosine law
of the dispersion relation E (k) [54,55]. Hence the quantum
walker’s travel is ballistic [61–64] and vastly distinct from
the Gaussian spreading of a classical walker on a similar
lattice [47]. To determine the time when the particle arrives
at some target for the first time, one cannot simply observe
the “walking” process of a quantum particle, since according
to Born’s rule it “freezes” the particle at some eigenstate of the
observable. This gives rise to a fundamental process and de-
batable problem known as time-of-arrival in quantum physics
[65]. A way to solve this issue renders the framework of
“monitoring” the (unitary) walking process built to define the
quantum first-detected-passage time or first-hitting time, via

some measurement protocol, within which the stroboscopic
measurement protocol has been investigated in full detail
[45,50–58]. The stroboscopic monitoring protocol states the
following: a quantum walker is initially dispatched at a lo-
calized state |x0〉 (source), and one attempts to measure the
walker on the detected state |xd〉 (target) at fixed times,
(τ, 2τ, 3τ, . . . ). In between the measurement attempts, the
system undergoes free evolution dictated by the Schrödinger
equation. We employ von Neumann (strong) measurement de-
scribed by the projection D̂ = |xd〉〈xd |, so the outcome of each
measurement is yes (detection) or no (null detection) with
probabilities determined by the Born rule. For the first hitting
of the walker at the nth measurement attempt, the output of
the experiment must be “no, no, no, no,. . . , yes,” namely
a final success at the nth attempt following previous n − 1
failure, since the experiment is done once the walker hits the
detector, i.e., a yes event is recorded. Each null detection acts
as a wipe-out of the component of the wave function at the
target [51,53,54]. We will explain the effects from the null
detection below, which manifest themselves in the quantum
renewal equation. Inherently, n is a random variable and is
defined as the first-detected-passage time or hitting time (in
units of τ ). We denote the amplitude of finding the walker for
the first time at the nth attempt by φn [53]. Using the quantum
renewal equation, one can in principle solve for the quantum
first-hitting amplitude [54]:

φn(xd , x0) = 〈xd |Û (nτ )|x0〉 −
n−1∑
m=1

〈xd |Û [(n − m)τ ]|xd〉φm.

(3)

Technically one uses Eq. (2) and iterations to solve this
equation or one may employ generating function tech-
niques. For example, φ1 = i|xd −x0|J|xd −x0|(2τ ), which is ex-
pected from basic quantum mechanics Eq. (2), while φ2 =
i|xd −x0|[J|xd −x0|(4τ ) − J0(2τ )J|xd −x0|(2τ )]. Equation (3) is a
quantum counterpart of the well-known classical renewal
equation, which is discussed in Ref. [47]. From Eq. (3), one
can readily find the essential effects from the repeated local
measurement conditioned with null outcome: The first-hitting
amplitude is indeed related to the measurement-free transition
amplitude 〈xd |Û (nτ )|x0〉, but the measurement-free return
amplitude propagated from the prior first-hitting amplitude,
〈xd |Û [(n − m)τ ]|xd〉φm (m < n), should be subtracted, since
they represent the events that have been aborted by the null
detection from the statistical ensemble.

Using Eq. (3), one then finds Fn, the first-hitting probability
at time n,

Fn = |φn|2. (4)

With Eq. (2) and δ := |xd − x0|, that denotes the distance
between the source and target in units of the lattice constant,
one obtains, via iterations [54]:

F1 = |φ1|2 = J2
δ (2τ ),

F2 = [Jδ (4τ ) − J0(2τ )Jδ (2τ )]2,

F3 = [
Jδ (6τ ) − J0(4τ )Jδ (2τ ) − J0(2τ )Jδ (4τ )

+ J2
0 (2τ )Jδ (2τ )

]2
,

... (5)
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FIG. 1. Fn vs n for different δ, with τ = 0.25 (γ = 1 as men-
tioned). The dashed lines represent the ninc = δ/2τ , close to the
max(Fn). For a thorough discussion on the quantum first-hitting
probability, see Ref. [55].

A numerical demonstration is presented in Fig. 1 for different
values of δ. As one may witness in the figure, besides the
oscillatory decays, the maximum of Fn plays the role of a tran-
sition point distinguishing a rapid growth and a slow decay of
Fn. The dashed lines at n = 40, 80, 120, 160 (correspond to
δ = 20, 40, 60, 80) approximately point to the maxima, and
those special values of n are given by the maximal group ve-
locity max(vg) = max[|∂kE (k)|] = 2, the distance δ, and the
measurement period τ in a kinematic fashion, ninc := δ/2τ ,
hence we regard it as the “incidence” time of the ballistic-
propagating wave front [55]. Around the ninc, the chance for
the detector to be hit reaches the maximum. Detailed analysis
of Fn is provided in Refs. [54,55]. For a classical random walk,
roughly speaking one has a peak in Fn that is determined
by diffusive motion and the initial distance of target and
source, followed by a power-law decay. In the quantum world
nontrivial oscillations determined by a phase, superimpose
on power-law decay are found [55]. Yet another difference
between the classical and quantum hitting time problem is
that the former is recurrent, while the latter is not, namely in
general

∑∞
n=1 Fn < 1 in the quantum case [50,66,67].

Now we will incorporate the restart framework with the
quantum hitting time. As shown before, the ballistic propaga-
tion is a quantum advantage in faster search (over classical
diffusive motion); however, as mentioned, Fn is unfortu-
nately non-normalized in this 1D model (also in many finite
systems), leading to infinite mean fitting times [50]. This
indicates that the probabilistic nature of quantum dynamics
sends the walker to undesired “trajectories” far away from the
target or to the states orthogonal to the detected state in the
Hilbert space forever [67]. A systematic strategy to solve this
problem, inspired from processes happening in nature [68–70]
or algorithmic methods used in classical computers [71,72], is
to perform restarts to rescue a process that probably enters a
wrong track. We expect the approach of restart to take advan-
tage of the ballistic spreading of the wave front in each single
run (one run is a monitored process between restarts), and
in the mean time, to guarantee the detection of the quantum
walker (see Appendix A), so that the quantum advantage of
faster search is reinforced to pronounce the supremacy of the
quantum search.

III. THE FIRST-HITTING STATISTICS UNDER RESTART

We will consider the deterministic restart (or sharp restart)
strategy [7], namely after every r failed attempts in detecting
the particle, the system is reset to the initial state to restart
the monitored process. This strategy has been proven as the
outperforming one, in the sense of unfailingly achieving the
lowest minimum of the mean hitting time among all random
restart strategies [3,10]. Let nR be the first-hitting time under
restart in units of τ . The general formula for the mean hitting
time under sharp restart 〈nR(r)〉 (the variable r means r steps
between restarts) is

〈nR(r)〉 = r
1 − Pr

det

Pr
det

+ 〈n〉r
cond, (6)

where Pr
det := ∑r

n=1 Fn is the detection probability within r
attempts, and

〈n〉r
cond :=

∑r
n=1 nFn

Pr
det

, (7)

which computes the conditional mean of the first-hitting pro-
vided the particle is detected within r attempts. The Fn are
the restart-free probabilities given with Eq. (5). This result
has been presented in Refs. [3,73], and we also provide an
alternative derivation in Appendix B. We note that in the
large-r limit, for classical random walks in dimension one,
Pr

det → 1, then 〈nR(r)〉 → 〈n〉r
cond, while for the quantum walk

Eq. (1), as mentioned above, Pr
det → ∑∞

n=1 Fn < 1. This im-
plies that the first term in the right-hand side of Eq. (6),
r(1 − Pr

det )/Pr
det, cannot be neglected in the large-r limit. We

will show later that for the quantum walk on an infinite line,
〈nR(r)〉 ∼ ar + b when r → ∞, with a = (1 − Pr=∞

det )/Pr=∞
det ,

b = 〈n〉r=∞
cond , namely 〈n〉r

cond in the quantum case converges to
a finite number.

In principle, substituting the first-hitting probability Fn

Eq. (5) into the formula for the mean detection time under
restart Eq. (6), we obtain 〈nR(r)〉 for this specific model, an
approach that is used to test the approximations studied below,
the latter providing insights into the behaviors of the quantum
restart. We provide a numerical demonstration of the general
landscape of 〈nR(r)〉 in Fig. 2. The first remarkable feature is
the oscillations of 〈nR(r)〉, leading to multiple extrema, which
is vastly different from the classical restart with one distinct
minimum [1]. Second, we notice that a small variation of
the sampling time τ leads to a large change of the optimum,
which switches in this example from 〈nR(6)〉 = 19 615 to
〈nR(5)〉 = 13 287. This suggests a type of instability as men-
tioned in the Introduction. Note the measurement periods τ ’s
are chosen large here (τ = 150.10π, 150.12π ), which allows
the application of asymptotic methods on our problem soon to
be discussed.

More precisely, we list a few analytical expressions for
〈nR(r)〉 using Eqs. (3), (5), and (6),

〈nR(1)〉 = 1

F1
= 1

J2
δ (2τ )

,

〈nR(2)〉 = 2 − F1

F1 + F2
= 2 − J2

δ (2τ )

J2
δ (2τ ) + [Jδ (4τ ) − J0(2τ )Jδ (2τ )]2

,

064150-3



RUOYU YIN, QINGYUAN WANG, AND ELI BARKAI PHYSICAL REVIEW E 109, 064150 (2024)

FIG. 2. The figure is changed according to referee’s remarks.
〈nR(r)〉 vs r for δ = 60, with different τ . We see the oscillations of
〈nR(r)〉 render the presence of several extrema (see the arrows), and
the global minimum is located in small r, which will be analyzed be-
low. When τ changes from 150.10π to 150.12π , we see a big change
in the minimum of 〈nR(r)〉, namely min 〈nR(r)〉 = 19 615 → 13 287,
with the optimal restart step changing from 6 to 5. This shows that
a slight change of τ causes a very large change of the optimum,
indicating a type of instability.

〈nR(3)〉 = 3 − 2F1 − F2

F1 + F2 + F3

= 3 − 2J2
δ (2τ ) − [Jδ (4τ ) − J0(2τ )Jδ (2τ )]2

F1 + F2 + F3
,

〈nR(4)〉 = 4 − 3F1 − 2F2 − F3

F1 + F2 + F3 + F4
,

〈nR(5)〉 = 5 − 4F1 − 3F2 − 2F3 − F4

F1 + F2 + F3 + F4 + F5
, · · · . (8)

Those expressions are cumbersome; however, we will analyze
particular limits where we may provide insights, e.g., large
measurement period τ . In what follows, our discussions will
be based on choosing certain values for δ to gain some insights
(e.g., δ = 0, 1, 2, . . . ) and investigating how to optimize the
mean hitting time under restart. One of our goals is to find the
optimal restart time r, denoted by r∗, which will be in general
a function of τ and δ. The corresponding 〈nR(r∗)〉 is then the
optimal in the mean sense.

IV. OPTIMIZATION OF THE MEAN HITTING TIME

A. Return case: δ = 0

We start with the “return” case where the detector is put at
the origin to monitor the walker’s first return, namely δ = 0
[54]. We first consider the Zeno limit τ → 0. Specifically, in
this limit, we have the following asymptotics for 〈nR(r)〉 using
Eq. (8):

〈nR(1)〉 ∼ 1 + 2τ 2, 〈nR(2)〉 ∼ 1 + 4τ 2,

〈nR(3)〉 ∼ 1 + 6τ 2, · · · . (9)

Clearly, the minimum is 〈nR(1)〉. Hence the optimal restart
r∗ = 1 in the Zeno regime, and this is also intuitive, since the
wave function is nearly frozen at the origin in the Zeno limit

FIG. 3. The optimal restart time r∗ as a function of τ for δ = 0.
We see the staircase structure accompanied by periodical plunges
(see the arrow). As we increase τ we witness a convergence of the
staircase structure.

[74], and it is always the best choice to restart after each failed
measurement.

For large τ , with the large-x asymptotics for Jn(x),
namely Jn(x) ∼ √

2/πx cos(x − πn/2 − π/4) [75], we can
re-express Fn for finite n as [54]

Fn(τ ) ∼ 1

nπτ
cos2

(
2nτ − π

4

)
. (10)

In this limit there is a simple relation between the probability
of first-hitting time and the measurement-free wave function.
Namely, Fn ∼ P(0, 0, t ) = |〈0||ψ (t )〉|2 = J2

0 (2t ) with t = nτ

and |ψ (t )〉 is the solution of the Schrödinger equation, in the
absence of measurement, see Eq. (2). If 2τ is a multiple of π ,
then we find, using Eq. (10),

Fn ∼ 1

2nπτ
. (11)

Thus, the restart-free Fn decays monotonically with n. For
such a case, the best strategy of restart is to use r = 1, namely
to restart after each measurement. We then have

r∗ = 1, when 2τ = kπ, (12)

where k is an integer. Using Eqs. (8,11), 〈nR(r∗)〉 ∼ 2πτ .
We now study how this optimal restart changes when we

vary the sampling time τ , in particular, what is r∗ as a function
of τ? We have found that r∗ exhibits a set of staircases, see
Fig. 3. Clearly this behavior is far from the classical limit,
and it is due to the oscillations of the first-hitting probability
Fn. The optimal choice of r, presented in Fig. 3, is a pe-
riodical function of τ , with a period of π/2. Starting with
τ = πk/2 
 1, where k is an integer, when we increase τ

slightly beyond this critical point, we find that 〈nR(1)〉 is the
optimal, i.e., the fastest approach to restart is still r∗ = 1.
We see transitions as τ is varied, from r∗ = 1 to r∗ = 2, and
then to r∗ = 3, etc., and finally a plunge to r∗ = 1, and this
is repeated. The staircase for small τ is not identical to that
for large τ ; however, as to be shown below in the latter limit,
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FIG. 4. r∗ versus τ in the large-τ limit exhibits a limiting stair-
case and plunge. Here we use τ ∈ [100π, 100.5π ] and δ = 0. The
cyan lines are the exact results, and the black crosses represent
the approximations using Table I(a). τpl here is approximated as
kπ/2 + 1.353 with k = 200.

we will reach a particular pattern of staircases, presented in
Fig. 4.

Now we also use the fact that Fn � 1 in the limit under
study, namely the large-τ limit. Using Eq. (8), we find that
the condition for τ , for the r∗ = 1 to r∗ = 2 transition, i.e.,
〈nR(1)〉 = 〈nR(2)〉, reads

F1(τ ) = F2(τ ), (13)

and Fn are given in Eq. (10). We then find a sequence of
transitions, and due to the fact that Fn is small, we find using
Eq. (8), the transition r∗ = 2 → r∗ = 3 at τ which solves

F3(τ ) = [F1(τ ) + F2(τ )]/2, (14)

and similarly for the r∗ = 3 → r∗ = 4 transition shown in
Fig. 4,

F4(τ ) = [F1(τ ) + F2(τ ) + F3(τ )]/3. (15)

We see that the transitions are taking place when Fn is the
mean of all the proceeding Fi’s. At some stage these equa-
tions cannot be solved, in the sense that there is no τ giving
a valid solution. We encountered already such a situation, and
that is the Zeno limit. We can use Eq. (10) for Fn(τ ) and find,
with a simple computer program of calculation, the transitions
in r∗ at special sampling times.

FIG. 5. 〈nR(r)〉 vs r in the vicinity of the plunge τ (≈1.36); see
the drop of r∗ (7 → 1) at the leftmost staircase in Fig. 3. There are
two minima competing with each other, and a small change of τ

(1.35 → 1.37) results in different optima. On the left panel r∗ = 7
and on the right r∗ = 1 (see the arrows). Thus a small change of τ

creates a plunge of r∗. The solid lines represent the approximations
to 〈nR(r)〉 in the large-r limit, i.e., 〈nR(r)〉 ∼ r(1 − Pr=∞

det )/Pr=∞
det +

〈nR(∞)〉cond, where 〈nR(∞)〉cond = ∑∞
n=1 nFn/

∑∞
n=1 Fn.

Note that we have plunges where r∗ falls to the value 1 (see
the arrow in Fig. 3). In Fig. 5, we choose as an example two
values of τ in the vicinity of τ ≈ 1.36. At this value we have a
plunge (see Fig. 3). As shown in Fig. 5, there are two minima
competing with each other, and the global minimum switches
between them when τ is slightly varied. At the exact transition
time τ for the plunge, the two minima are identical. Thus the
system exhibits an instability in the sense that small changes
of τ create large difference in the optimal restart time r∗.

We now calculate the sampling time τpl, where plunges are
found. Let τ = kπ/2 + ε and 0 < ε < π/2. As mentioned in
Eq. (12), if ε = 0, then r∗ = 1. We then denote ε1→2 as the
value of ε where we have a transition from r∗ = 1 to r∗ = 2,
similarly for other transitions. In between the transition ε,
namely for each interval [εk→k+1, εk+1→k+2], we will check
whether 〈nR(k + 1)〉 remains the minimum and especially
compare it with 〈nR(1)〉 in case we miss the plunge to r∗ = 1.
With Eq. (10) and Eqs. (13)–(15) we get Table I(a), which
gives the values or ε for the various transitions, and check the
minimum in Table I(b). Note that for the transitions with large
r∗, ε is accumulating close to π/2, and hence the plateaus
in optimal r are very small. Furthermore, when 1.353 < ε <

π/2, r∗ drops to 1, i.e., a sudden plunge as mentioned. So we

TABLE I. The ε at the transitions of r∗ for δ = 0.

(a) The values of εk→k+1.

εk→k+1 ε1→2 ε2→3 ε3→4 ε4→5 ε5→6 εpl

Value 0.850 1.081 1.204 1.280 1.332 1.353

(b) The relation between 〈nR(k)〉 and 〈nR(1)〉 in [εk−1→k, εk→k+1].

[ε1→2, ε2→3] [ε2→3, ε3→4] [ε3→4, ε4→5] [ε4→5, ε5→6] [ε5→6, εpl] [εpl, π/2]
〈nR(2)〉 < 〈nR(1)〉 〈nR(3)〉 < 〈nR(1)〉 〈nR(4)〉 < 〈nR(1)〉 〈nR(5)〉 < 〈nR(1)〉 〈nR(6)〉 < 〈nR(1)〉 〈nR(1)〉 < 〈nR(6)〉
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have

τpl = 1.353 + πk/2 (16)

for large k, and in other words, let τpl = πk/2 + εpl, then
εpl = 1.353. As shown in Fig. 3, r∗ is plotted versus τ , and
we see staircases, where r∗ is increasing by unit steps, as
our theory predicts, and then a sudden plunge. The staircase
structure and plunges of r∗ versus τ are found in the whole
range of τ and are not limited to the large-τ limit studied
presented analytically in Table I.

A general formalism to obtain the transition ε is stated as
follows. We find using Fn � 1 valid from the large-τ limit and
Eq. (6),

〈nR(r)〉 ∼ r
/ r∑

n=1

Fn. (17)

Then the condition for the transition τ that leads to 〈nR(r)〉 =
〈nR(r + 1)〉 reads

Fr+1 =
r∑

n=1

Fn/r. (18)

With Pr
det = ∑r

n=1 Fn, the transcendental equation Eq. (18)
becomes

Pr
det(ε) = rFr+1(ε), (19)

which yields a set of values of τ and r, and as noted above
this gives 〈nR(r)〉 = 〈nR(r + 1)〉. Now exploiting the fact that
the values of r∗ have a staircase structure, we start with ε = 0,
and then r∗ = 1, increasing ε, we get the transition point r∗ =
1 → r∗ = 2, denoted by 1 → 2 transition. We then continue
increasing ε to find the transition 2 → 3, etc. This means that
the above formula yields the values of r∗ at sampling times
given by ε. This is a valid approximation in the case of large
τ only as mentioned, and in this case, with Eq. (10) we have
to solve for

r∑
n=1

1

n
cos2

(
2nε − π

4

)
= r

r + 1
cos2

[
2(r + 1)ε − π

4

]
,

(20)

and again we must increase ε from zero using r = 1, to find
the first transition r∗ = 1 → r∗ = 2 at ε1→2, and then update
to r = 2 finding the transition point ε2→3, etc. It is clear that
when r is very large, there is no solution to Eq. (20). Since the
summation term in the left-hand side of Eq. (20) can be sim-
plified as (1/2)

∑r
n=1[1/n + sin(4nε)/n], and in the large-r

limit,
∑r sin(4nε)/n → (π − 4ε)/2, and

∑r 1/n → ∞ does
not converge, while the right-hand side is always bounded
by 1. Physically, it makes sense that we cannot witness the
transitions forever, since as mentioned 〈nR(r)〉 is proportional
to r in the large-r limit, there must exist a minimum at finite
r. We cannot expect a restart strategy to be useful for r 
 1.
See Fig. 4 for the comparison between exact results and ap-
proximations [Eq. (20), Table I(a)].

After finding the optimal r∗, we study the mean 〈nR(r∗)〉,
at the optimal choice r∗, which is of course the fastest way
in mean sense to detect the particle. Note that when Fn � 1,

FIG. 6. The optimal mean 〈nR(r∗)〉 vs τ for δ = 0 (cyan curve).
The black crosses representing 〈nR(r∗)〉 at transition τ ’s are plotted
using Eq. (23). And at those transitions, nonsmoothness 〈nR(r∗)〉 is
witnessed (see the inset). The minima of 〈nR(r∗)〉 are predicted by
Eq. (25) and presented by red closed circles. As shown in the figure,
〈nR(r∗)〉 exhibits large fluctuations and periodic-like behavior when
the sampling time τ is varied. The peaks of 〈nR(r∗)〉 are found close
to the plunges of r∗ shown in Fig. 3, namely close to the instability
points like the one presented in Fig. 5. See more details about the plot
in Appendix C. For an efficient search one clearly needs to consider
the optimization of the process both with respect to the restart time,
but also with respect to the sampling period τ , and we will analyze
this issue later.

using Eq. (17), we have

〈nR(r∗)〉 ∼ r∗∑r∗
Fn

. (21)

From above arguments Eq. (18), at those transition τ , we have

〈nR(r∗)〉 ∼ 1

Fr∗+1
. (22)

This is obtained by calculating Fn, at the corresponding ε,
namely, using Eq. (10),

〈nR(r∗)〉 ∼ (r∗ + 1)πτ

cos2[2(r∗ + 1)τ − π/4]
. (23)

See Fig. 6 for the numerical confirmation. The exact results
are represented by the cyan line. And the theoretical 〈nR(r∗)〉
at transition τ ’s calculated by Eq. (23) are represented by
black crosses, at which nonsmoothness of 〈nR(r∗)〉 appears.
As τ is increased, the general trend is an increase of 〈nR(r∗)〉,
which is expected since the wave packet for large τ has spread
out far from the detector when δ = 0. In addition to this
trend we have a periodical set of maxima. Note the dramatic
changes in those maxima presented in the figure. The maxima
are at the plunge τ ’s, where r∗ falls from 6 to 1. The minima
of 〈nR(r∗)〉 are actually the minima of 〈nR(1)〉 = 1/F1, when
r∗ = 1, namely

min[〈nR(r∗)〉] = min[〈nR(r∗ = 1)〉]. (24)

Later we will discuss this again. In the large-τ limit, us-
ing Eq. (10), we find when τ = π/8 + kπ/2, max(F1) =

064150-6



INSTABILITY IN THE QUANTUM RESTART PROBLEM PHYSICAL REVIEW E 109, 064150 (2024)

(π2/8 + kπ2/2)−1, then the minima of 〈nR(r∗)〉 is

min[〈nR(r∗)〉] = 1

max(F1)
= π2

8
+ k

π2

2
. (25)

We plot in closed circles these theoretical minima indicated
by Eq. (25). Our theory Eqs. (23) and (25) nicely matches the
numerics, as shown in Fig. 6.

B. Nearest-neighbor detection: δ = 1

Here we investigate the case where the detector is put at
the neighboring site to the origin, namely δ = 1. In the Zeno
regime, namely τ → 0, using Eq. (8), we have

〈nR(1)〉 ∼ 1 + τ−2, 〈nR(2)〉 ∼ 5
2 + τ−2,

〈nR(3)〉 ∼ 14
3 + τ−2, . . . . (26)

Hence r∗ = 1 when τ → 0. The physical picture is the fol-
lowing: For small τ we have a leakage of amplitude, from the
starting point x = 0, both to x = 1 and to x = −1, in fact the
amplitudes at these states are the same. Now one tries to detect
on x = 1 and does not find the particle. One may choose to
restart, which means that the amplitude at x = −1 restores to
x = 0. This benefits detection. If looking at the asymptotics of
the first-hitting probability, then, with Eq. (5), we find in the
limit τ → 0,

F1 ∼ τ 2 − τ 4, F2 ∼ τ 2 − 5τ 4, F3 ∼ τ 2 − 11τ 4, · · · .

(27)

So F1 > F2 > F3 > · · · , indicating that continuing with the
measurement is not beneficial and a restart is the best option
to speed up search. Hence performing restart after each failed
measurement is the best strategy, and r∗ = 1 when τ → 0. In
the opposite limit of large τ , we have

Fn ∼ 1

nπτ
cos2

(
2nτ − 3π

4

)
. (28)

For τ = πk/2, we find again that Fn ∼ (2nπτ )−1, and r∗ = 1,
the same as Eqs. (11) and (12). To be more specific, since Fn

is a monotonic decaying function, for these special values of
τ the best strategy is to restart after the first measurement.
Similarly to the case δ = 0, we expect that increasing τ in
every interval [πk/2, π (k + 1)/2] leads to the quanta jumps
of r∗. While it is noteworthy that if we let τ = πk/2 − ε with
k 
 1, then Eq. (28) becomes

Fn ∼ 1

nπτ
cos2

(
−2nε − 3π

4

)
= 1

nπτ
cos2

(
2nε − π

4

)
,

(29)

which recovers to the case δ = 0. This means that in the range
τ ∈ [πk/2, π (k + 1)/2], Fn in the case of δ = 1 is symmetric
to that in the case of δ = 0, with respect to τ = πk/2 + π/4,
when k is large, as shown in Fig. 7. Therefore, we expect the
behaviors of r∗ in the case δ = 1 is a mirror reflection to that
in the case δ = 0 in every interval [πk/2, π (k + 1)/2], with
the symmetry axis at πk/2 + π/4. Then the transition ε’s are
associated via ε ↔ π/2 − ε when δ switches between 0 and
1. In Fig. 8 we plot r∗(τ ) with τ ∈ [0, 2π ], and the staircase
structure is symmetric to the previous case, even when τ is not

FIG. 7. Fn vs τ ∈ [100π, 100 1
2 π ] for n = 1, 2 and δ = 0, 1. The

black curves represent the trigonometric approximations Eqs. (10)
and (28). As shown and mentioned in texts, the Fn’s for δ = 1, in
each interval [πk/2, π (k + 1)/2], are symmetric to the ones for δ =
0 about πk/2 + π/4 (the dashed line).

large. In the large-τ limit, there appears definite symmetry (as
seen in Fig. 9).

A calculation similar to that in Table I is provided in
Appendix D. And in the case δ = 1 we have a sudden rise
in r∗, unlike the plunge for δ = 0. The rise τ , denoted by τr ,
is equal to π/2 − εpl ≈ 0.218. And those transition ε are all
symmetric to that in the case δ = 0 about π/4, as expected.
See Fig. 9 for a comparison between the exact results and
approximations.

Furthermore, one can readily show that in the case of even
or odd δ, Eq. (10) or Eq. (28) always hold, respectively, and
the pattern presented in Fig. 9 is generic. This insightfully
indicates the δ independence of Fn for all even or odd δ, in
the large-sampling-time limit (similar properties are shown in
Ref. [55]). In other words, large τ renders Fn’s dependence
only on the parity of distance between the initial and detected

FIG. 8. The optimal restart time r∗ as a function of τ for δ = 1.
We see the staircase structure along with periodical rises, i.e., r∗

jumping from 1 to 4 or 5 (see the arrow). The series of plateaus
declines from the maximum from left to right unlike the case δ = 0
where we find the opposite trend (see Fig. 3).
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FIG. 9. r∗ versus τ with τ ∈ [100π, 100.5π ] and δ = 1. The
cyan lines are the exact results obtained using Eq. (6), and the black
crosses represent the approximations [via applying ε → π/2 − ε to
Eq. (20)]. τr here is approximated as kπ/2 + 0.218 with k = 200.
There is a mirror image of Fig. 4 (the gray dashed line here), so
the parity of the initial condition determines the staircase structure
which otherwise is universal in the sense that it does not depend on
the initial condition. The symmetry axis for the two staircase patterns
is kπ/2 + π/4 with k = 200 here.

sites. We will see this more clearly after the discussion on
δ = 2.

C. Next-nearest-neighbor detection: δ = 2

When δ = 2, in the limit of τ → 0, we find using Eq. (5)

F1 ∼ 1
4τ 4 − 1

6τ 6, F2 ∼ 9
4τ 4 − 6τ 6,

F3 ∼ 25
4 τ 4 − 235

6 τ 6, · · · . (30)

Namely F1 < F2 < F3 < · · · until some n ∼ 1/τ and then
decreases. This behavior is very different if compared with
the cases δ = 0 and δ = 1, where F1 was the maximum of the
set {F1, F2, F3, . . . }. We expect that r∗ exhibits divergence in
this limit, see Fig. 10. Checking the asymptotics of 〈nR(r)〉,
with Eq. (8), we have

〈nR(1)〉 ∼ 4τ−4, 〈nR(2)〉 ∼ 4
5τ−4,

〈nR(3)〉 ∼ 12
35τ−4, · · · . (31)

Hence 〈nR(1)〉 > 〈nR(2)〉 > 〈nR(3)〉 > · · · . We use the theory
in Ref. [48] to study the Zeno limit.

Assuming large τ , Fn is re-expressed as [54,55]

Fn ∼ 1

nπτ
cos2

(
2nτ − π

4

)
. (32)

This is the same as in the case δ = 0, since the initial condition
δ only affects the phase in Fn via πδ/2, and then the same
parity of δ leads to the same Fn, and to the same pattern
of r∗(τ ). Thus we could use Table I(a) to approximate r∗’s
staircase structure in this case, see Fig. 11.

FIG. 10. The optimal restart time r∗ as a function of τ for δ = 2.
We see the staircase structure along with periodical plunges.

D. The parity of δ matters

Following above discussion, we note a remarkable feature
of the quantum first-hitting times probabilities, namely that
beyond a phase, they are independent of δ:

For even δ: Fn ∼ 1

nπτ
cos2

(
2nτ − π

4

)
,

For odd δ: Fn ∼ 1

nπτ
cos2

(
2nτ − 3π

4

)
. (33)

This is obtained with the large argument asymptotics for Jn(x),
which was also used in the case of return in Ref. [54], and
in the supplemental material of Ref. [55]. Equation (33) is
valid in the large-τ limit, and we note that when n is large,
the first-detection probability Fn transits to a n−3 power-law
decay [54,55], but this does not affect our theory, which only
focuses on finite r restart.

FIG. 11. r∗ versus τ with τ ∈ [100π, 100.5π ] and δ = 2. The
cyan lines are the exact results, and the black crosses represent the
approximations using Table I(a). τpl here is approximated as 100π +
1.353.
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Hence, based on Eq. (33), the staircase patterns, are bi-
nary and merely determined by the parity of δ. These two
patterns are mirror reflection to each other, connected by the
operation or mapping εk+1→k ↔ π/2 − εk→k+1. The origin of
universality of staircase is related to the fact that, for large τ ,
the first-detection amplitude is directly associated to the wave
function of the measurement-free process. This then leads to
specific phases in the asymptotic expansion Eq. (33) which
depends on the parity only. We note that related work on
discrete-time quantum walks also found interesting effects for
the parity on the probability distribution of a walker’s position,
see Refs. [76,77].

To put it differently, a unity change of the distance between
the target and source δ, in units of the lattice constant, results
in a “flipping” of the staircase pattern of the optimal restart
time, which again indicates, in our view, a type of instability.
This effect was demonstrated in Figs. 4, 9, and 11.

V. THE ROBUSTNESS OF INSTABILITY AGAINST
PERTURBATIONS IN τ

In this section, we discuss the effects of precision of the
sampling time τ on the instability. In experiments, one can-
not perfectly achieve the stroboscopic measurement protocol,
namely there could be some random variation around the
preset sampling time or measurement period τ . Hence, the
practical sampling time, denoted by τ̃ , is fluctuating around
τ . This randomness in the ideal periodicity of measurements,
would have non-negligible influences, when becoming con-
siderable. In particular such noise could possibly modify the
probability Fn’s oscillatory behaviors [78], and thereby prob-
ably eliminates the instability exposed in this paper. Will the
instability be present when the noise is weak? And how much
randomness will eliminate the instability? These issues are
addressed below using numerical methods.

Without loss of generality, we chose uniformly distributed
deviation from the ideal sampling time τ . Specifically, the
relative deviation |τ̃ − τ |/τ is uniformly distributed in the
interval [−w,w], with w chosen as 0.1, 0.2, and 0.3 in this
work. Namely the actual τ̃ is uniformly distributed within
[τ (1 − w), τ (1 + w)], and hence w characterizes the noise
level affecting the precision of sampling time. Inspired by the
unstable behaviors in the vicinity of the plunge τ , where we
witnessed two minima competing with each other, as demon-
strated in Fig. 5, we chose the ideal τ = 1.35 and the return
case δ = 0 and observe how the noise level w affects the
behaviors of those two minima.

It is noteworthy that we numerically study the issue for
quantum hitting times under restart with random τ̃ and Eq. (6)
is invalid since the denominator Pr

det = ∑r
n=1 Fn is not con-

stant, leading to the number of restart not obeying a geometric
distribution anymore [48]. Thus, we employ the Monte Carlo
method to perform simulations. The procedures are described
as follows:

(i) Initialization of the quantum walker: The quantum
walker is initially evolved from a predefined state in accor-
dance with the Schrödinger equation. This evolution occurs
over a time duration, τ̃1, which is a uniformly random variable
within the range [τ (1 − w), τ (1 + w)].

(ii) Random coin tossing for detection assessment: A ran-
dom variable, referred to as a “coin,” is generated. This
variable is uniformly distributed within the interval [0, 1].
The purpose of the coin is to ascertain whether the quantum
walker is detected following the initial state’s evolution. This
determination is made by comparing the coin’s value with
the detection probability, which is derived from the unitary
evolution.

(iii) Non-detection and state modification: If the coin value
falls below the computed detection probability, then we are
done and the hitting time is 1. If the coin value exceeds
the computed detection probability, then it signifies that the
walker remains undetected. In this case, the amplitude at the
target site |0〉 is erased, and the wave vector is renormalized.
Subsequently, the single-site-erased wave vector undergoes
unitary evolution for a duration, τ̃2. Notably, τ̃2 is an inde-
pendent and identically distributed random value, akin to τ̃1.
The objective is to compute the probability of detection at the
time t = τ̃1 + τ̃2.

(iv) Repeated detection attempts: Post the initial nondetec-
tion, a second independent and identically distributed coin is
generated and compared with the newly computed detection
probability to decide if the walker is detected at this stage, as
in the step (iii).

(v) Criteria for repetition termination under sharp restart:
The process iterates until the coin value is less than the com-
puted probability of detection, marking the end of a repetition
cycle. Alternatively, if the process extends up to a preset
fixed restart step r (i.e., after a cumulative time of t = τ̃1 +
τ̃2 + · · · + τ̃r) and the walker remains undetected, the entire
procedure recommences from the initial state, repeating the
procedures (i)–(v).

(vi) Restarted hitting time calculation: Once we get, for
the first time, the scenario where the coin value falls below the
computed probability of detection at the corresponding time,
the process is done. The number of all preceding unsuccessful
attempts, incremented by 1, is recorded as the first-detection
time, or the hitting time, under the restart condition [79].

(vii) Realizations and expected value determination: The
aforementioned procedures, executed for obtaining a single
value of the hitting time nR under r-step restarts, is called a
single realization. To ascertain the expected value of nR as a
function of r, large number of realizations are conducted for
each value of r.

This was implemented with a Python program, generating
the results presented in Fig. 12, for three different levels of
noise w, i.e., 0.1, 0.2, 0.3. We note that, since computers can-
not simulate the dynamics of an infinite line, practically, a line
of 120 sites was used to approximate the unbounded model,
and the maximal restart step is chosen as 15 to ensure that
the boundary does not affect the dynamics of the wave packet
prior to restart (i.e., 15τ (1 + 0.3) · max(vg) = 15 × 1.35 ×
1.3 × 2 = 52.7 < 120/2, where as mentioned the group ve-
locity vg = ∂kE (k), and the initial site is set in the middle of
the line). As seen, the instability is robust, in the sense that
the presence of two minima is clearly visible for w = 0.1 and
w = 0.2, indicating that the basic phenomenon is immune
to noise. For w = 0.3 the existence of a pair of minima is
somewhat vague, and hence roughly when w = 0.3, the effect
we have found in the main text is wiped out.
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FIG. 12. The mean hitting time under restart 〈nR(r)〉 versus
restart step r for different levels of noise characterized by the width of
the distribution of τ̃ . We see the appearance of two minima of 〈nR(r)〉
when the noise is chosen as 0.1, 0.2 fluctuating around τ = 1.35,
while the absence of two minima when the noise is 0.3. Hence the
instability is quite robust under noise in the sampling time. The
zero-noise data are for confirmation of the validity of the theory
Eq. (6). The simulations are obtained using Monte Carlo methods
as described in the text.

VI. OPTIMIZATION WITH RESPECT TO BOTH τ AND r

In this section we will not deal with the noise problem.
All the above discussions focus on the optimal restart time for
given sampling time τ , and a natural question arises from the
existence of a globally optimal choice (τ ∗, r∗) that achieves
a global optimization of the mean 〈nR〉, with regard to both
controlling parameters. We note here that the number of mea-
surements until the first-detection is minimized in this work,
and the global optimization of the expected time is left for
future study.

The function 〈nR(r∗)〉 has multiple minima, as shown al-
ready in Fig. 6. We also present 〈nR(r∗)〉 for cases δ = 1 and
δ = 2 in Fig. 13. As mentioned in Eq. (24) and likewise here,
in the large-τ limit which validates the Jα (x) approximated
as trigonometric functions, using Eq. (33), all the minima
of 〈nR(r∗)〉 are found at τ = τ † minimizing 〈nR(r∗ = 1)〉,

i.e.,

min[〈nR(r∗)〉] = πτ †, with

τ † = (−1)δπ/8 + kπ/2, and r∗ = 1. (34)

Here k is a large integer. Eq. (34) is valid for large k or τ .
It is not surprising that in this large-τ limit r∗ = 1, since the
wave packet has a long time to evolve, and hence statistically
the particle is far from the target after and before the first
measurement, thus it is wise to restart. Unfortunately, or not,
the global minimum as found, for example in Fig. 13, is found
for small τ , provided that δ is also small. For large δ, as we
discuss below, special features emerge.

We conjecture, that even beyond the large-τ limit, the
global minimum is found for r∗ = 1. More specifically, let r∗,
τ ∗ be the sampling time and restart time that minimize 〈nR〉,
and we suggest:

〈nR(r∗, τ ∗)〉 = 1

F1(τ ∗)
= 1

max(F1)
. (35)

Recall that F1 = J2
δ (2τ ) [see Eq. (5)], and thus r∗ = 1 and

τ ∗ = ξδ/2, where t = ξα marks the highest peak of Jα (t ), give
the global minimum of 〈nR〉. Equation (35) should hold for
any value of δ. Nevertheless, an estimate for τ ∗, which be-
comes more accurate for large δ, can be found in the recently
published literature. References [80,81] show that 2τ ∗ = ξδ ∼
δ, whose numerical confirmation, as well as exact numerical
solutions for other extrema of Jα (t ) (also used in Fig. 13, the
data presented by crosses), can be found in the supplementary
material of Ref. [80]. Thus, the global minimum is given by

r∗ = 1, τ ∗ ∼ δ

2
= δ

max(vg)
=: tinc, (36)

where tinc = δ/2 is the incidence time (in time units with
γ = 1) during which the wave front travels from |0〉 to |δ〉 (see
Fig. 1). Hence, as mentioned, this suggests that τ ∗ � δ/2 be-
comes a better approximation as δ grows, namely for large δ,
tinc gives a good estimate of the globally optimized sampling
time τ ∗. This again manifests the ballistic spreading of the
wave packet’s wave front. See Fig. 14, where we witness that

FIG. 13. The optimal mean 〈nR(r∗)〉 vs τ for δ = 1 (left) and δ = 2 (right). The numerically obtained exact minima (crosses) converge to
the theoretical results (open circles) calculated with Eq. (34) as τ becomes larger. We see that the global optimization (leftmost cross) with
respect to both τ and r is achieved for τ = ξδ/2 (vertical dashed lines, obtained from Eq. (35) and Table II) that minimizes 〈nR(1)〉 = [Jδ (2τ )]−2

(horizontal dashdotted lines), i.e., when F1(τ ) = J2
δ (2τ ) reaches its global maximum. The result clearly shows that Eq. (35) is an excellent

approximation.
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TABLE II. The numerical τ ∗ minimizing 〈nR〉, the maximum of J2
δ (2τ ), ξδ/2, and the incidence time tinc = δ/2, for different δ. Recall that

in our system the maximal group velocity is 2, hence δ/2 is the incident time, for a particle initially at a distance δ from the detector.

δ 1 2 3 6 9 12 20 40 100

t inc 0.500 1.000 1.500 3.000 4.500 6.000 10.000 20.000 50.000
ξδ/2 0.921 1.527 2.101 3.751 5.356 6.940 11.110 21.393 51.884
τ∗ 0.920 1.527 2.100 3.751 5.356 6.940 11.109 21.394 51.883

Eq. (36) also works well for not-too-large δ, i.e., δ = 9, 12. As
expected, for δ = 100, presented in Fig. 15, the approximation
works even better, see also Table II. The global optimum is
physically interpretable, since this special τ allows the largest
part of the wave packet to arrive at the target state, once
collapsed, it is best to start anew, namely a restart. For small δ,
say, 1,2, Eq. (35) is tested in Fig. 13. For this test we find the
maximum of |Jδ (2τ )| semianalytically with a simple program.
We see that Eq. (35) is valid for small δ, and while it holds
also for large δ, Eq. (36) is simpler. We will now analyze the
reliability of our conjecture Eq. (35), where the key is whether
the global minimum always occurs for r = 1.

When δ is large, namely it takes a long time to reach the
target, we expect that large τ is useful. We can prove that
in the large-τ limit, the minima of 〈nR(r∗)〉 is always when
r∗ = 1. To do this, one needs to justify that the minima of
〈nR(1)〉 are smaller than those of 〈nR(r)〉 for any r � 2 in
every interval of resemblance. Recall that for large τ , the mean
detection time exhibits periodic-like behaviors, see Fig. 6, and
hence we have intervals or resemblance. With Eq. (8), the
equivalent statement is that the maximum of J2

δ (2τ ) is larger
than that of 1/〈nR(r)〉 for any r � 2, hence in the large-τ limit
approximation,

max

[
1

〈nR(1)〉
]

= max
[
J2
δ (2τ )

]
> max

[∑r
n=1 Fn(τ )

r

]
r�2

.

(37)

Namely, this simply states that the maximum of J2
δ (2τ ) ex-

ceeds that of the average of all the Fn until n = r, and

clearly
∑r

n=1 Fn(τ )/r � max[Fn(τ )]. This can be proven by
illustrating that the maximum of J2

δ (2τ ) is larger than the
maximum of any Fn when n > 1. Using the large-x ap-
proximation of Jν (x), it is just to show that the maxima of
(1/πτ ) cos2(2τ − πδ/2 − π/4) are larger than the maxima
of (1/nπτ ) cos2(2nτ − πδ/2 − π/4), with the integer n � 2.
This is obvious since the latter is enveloped by 1/nπτ . Hence
in the large-τ limit, we can readily verify Eq. (37) and prove
that the minima of 〈nR(r∗)〉 occur at r∗ = 1. Further, the
envelope of F1, 1/πτ , indicates that the minima of 〈nR(r∗)〉
are also growing with τ , as seen in Eq. (34) and Fig. 13. See
also Fig. 15 for the numerical confirmation and the incidence
time tinc as a good approximation for τ ∗ when δ is large.

Although it is difficult to rigorously prove the dominance
of r∗ = 1 in attaining the global minimum of 〈nR(r∗)〉, for any
value of δ, it is physically reasonable and interpretable. The
interpretation is that the wave packet’s wave front propagates
ballistically, as quantified by the Bessel function J2

δ (2t ), ren-
dering the detection probability reaching its maximum when
the detector captures the wave front (see Fig. 1). Since the
detector in our setup is fixed at the target site and switched
on-off stroboscopically, if we choose the first “on” time, at
t = τ , coinciding with the juncture wherein the wave packet’s
wave front encompasses the target site, this temporal align-
ment will maximize the probability of particle detection. In
the event of detection failure, recommencing the experimental
process is advantageous, as it offers the highest likelihood
of subsequent successful particle detection. In this sense, the
global optimization requires the specific τ ∗ that maximizes
J2
δ (2τ ) and thus minimizes 〈nR(1)〉, indicating (1, ξδ/2) as the

FIG. 14. The optimal mean 〈nR(r∗)〉 vs τ for δ = 9 (left) and δ = 12 (right). We see that the numerical global minimum of 〈nR(r∗)〉
(crosses) is matched by our theory Eq. (35), namely 〈nR(1, ξδ/2)〉 = [Jδ (ξδ )]−2 (see the vertical dashed lines and horizontal dashdotted lines,
obtained from Table II). The incidence time tinc = δ/2 (vertical dotted lines) also provides a rough approximation for τ ∗. Thus, we conjecture
that the most efficient detection strategy, in the sense of the least number of measurement attempts, is to restart after the first measurement with
the largest success probability in the first measurement.
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FIG. 15. The optimal mean 〈nR(r∗)〉 vs τ for δ = 100. We
see that the exact global minimum of 〈nR(r∗)〉 (cross) is matched
by the minimum of 〈nR(1)〉 = [J100(2τ )]−2 (the horizontal line) at
τ = ξ100/2 (the vertical dashed line, see Table II), and the incidence
time tinc = δ/2 (vertical dotted line) gives pretty good approximation
for τ ∗.

optimal set of parameters. Notably, in large-δ cases, a good
approximation is τ ∗ = ξδ/2 � δ/2 (Fig. 15).

VII. SUMMARY

With restarts introduced to quantum hitting times, we find
features that expose the instability existing in the optimization
of the mean hitting time. The first feature is the presence of
several minima of the mean hitting time [48] rather than one
unique minima, as in the classical case [1]. This is due to the
interference-induced quantum oscillations, indicated by the
Bessel function Jn(x) in Eq. (2) and the graphic illustration in
Fig. 1. These oscillations are found features of the solution to
the Schrödinger equation, and the quantum first-hitting time
probability Fn in the absence of restarts. These are general
aspects of quantum dynamics, so we expect that our results
will have a wider application than the model presented here.

Then the challenge is to find the optimum of the mean
hitting time under restart. For large τ (in units γ = 1), we
showed that r∗(τ ) possesses a staircase structure of period
π/2, accompanied by plunges or rises, see Figs. 4, 9, and
11. We note that the r∗ here is the optimal choice of the
restart step r for a given sampling time τ . Furthermore, there
are two symmetric patterns of staircases, determined by the
parity of the distance between the initial and detected sites
(in units of the lattice constant). All those findings depict the
instability existing in the quantum restart problems. Namely,
slight changes of τ lead to a large change of 〈nR(r)〉 (Fig. 2),
optimum switching between different minima (Fig. 5), and
change of the parity of δ causes a “flipping” of the staircase
pattern of the optimal restart time. We want to note that the
instability is not limited in the large-τ case, and it is also
found for small τ though then the staircases do not converge
to an asymptotic limit, see the small-τ limit of Fig. 3. Since
the instability is essentially attributed to the oscillatory nature
of the hitting time statistics, we expect its generality when
changing other control parameters.

Is the instability we found in quantum restarts “robust”
in the presence of external “disturbance,” such as imperfect

projective measurements, or nonstroboscopic measurements?
We numerically study the latter with Monte Carlo simulations,
through introducing uniformly distributed noise or deviations
to the chosen fixed sampling time. The results indicate that
the instability is quite robust when confronting the noise in
sampling, in the sense that the mean hitting time around the
plunge τ (in Fig. 5), still exhibits two minima up to a noise
level of 20%, as shown in Fig. 12. Further research on the
impact of different types of noise, including analytical study,
is deemed worthwhile.

Another issue is the global minimum of 〈nR〉 given a
specific choice of both controlling parameters, (r∗, τ ∗). We
conjecture that the global optimization occurs when τ is
tuned to minimize the 〈nR(1)〉, and hence the restarts must
be made after the first measurement. Roughly speaking, when
the sampling time or measurement period τ is around τ ∗ =
ξδ/2, which maximizes J2

δ (2τ ), the first-detection attempt
at |δ〉 will succeed with a relatively large probability. This
leads to the optimal choice of restart time at r = 1. In the
cases where the distance between the target and initial sites
is large, i.e., δ 
 1, ξδ/2 is approximately the incidence
time tinc = δ/2, showing the ballisticity of the wave-front
spreading. Hence in the sense of detecting the quantum
walker with least attempts (through the sharp-restart strategy),
when δ is large, restarting after the first measurement with
the highest likelihood of success, performed at τ ∗ � δ/2,
is the most efficient choice. We emphasize again that we
optimized here 〈nR〉 and not 〈nR〉τ , so clearly more work
is needed.

Can we foresee quantum experiments checking the validity
of this work? A good platform for that aim are quantum com-
puters, on which on-demand qubit resets have been achieved
with the initial purpose of optimizing quantum circuits. The
quantum walk dynamics can be mapped to a spin model
through the Jordan-Wigner transformation [82], or other
methods [46], with repeated measurements implemented
by the built-in single-qubit measurements [45]. Similar
experiments on finite systems, with restarts taking place
after 20 measurements, have been successfully imple-
mented [49]. This greatly enhances our confidence in
verifying the theory presented in this paper for the op-
timization problem, though finite-size effects might be
important.

In this work we considered a quantum walk on the line;
however this is not an essential ingredient of our results, in
the sense that quantum instabilities for the restart problem can
be found also for finite systems. We also note that possibly
other oscillatory dynamics or reset strategies [83], beyond the
quantum case, will exhibit similar features to what we have
found here. A key point to study the quantum instabilities is
the use of sharp restart, which as mentioned is the optimal
choice. In our previous work [48], we studied briefly quan-
tum restarts with Poisson restarts, which did not exhibit the
multiple minima found here.
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APPENDIX A: UNDER RESTART: THE FIRST-HITTING
PROBABILITY, GUARANTEED DETECTION

1. The probability

In probability theory language, the first-hitting probability
Fn = Pr(E1E2 · · · En−1En), where Ek denotes the event of suc-
cessful detection at the kth attempt, and Ek means the event of
failing to detect the walker at the kth attempt. Now with the
deterministic restart strategy incorporated, the measurement
protocol is as follows: After the rth attempt, if the walker
is not yet detected, then we start anew with the same initial
state, until the first successful detection at the nRth attempt
with nR = rR + ñ, where R is the number of restart event
and ñ is the number of attempts until success following the
last restart, and then 1 � ñ � r, R � 0 since the restart is
made just after a measurement. Following standard statistical
methods, the first-hitting probability under restart is

FnR = Pr(E1 · · · ErE1 · · · Er︸ ︷︷ ︸
repeat R times

E1 · · · Eñ)

= (1 − F1 − · · · − Fr )RFñ

=
(

1 −
r∑

k=1

Fk

)R

Fñ, (A1)

where Fj are the probabilities of the first-hitting at the jth
attempt in the absence of restart. The last expression in
Eq. (A1) is also intuitive: The term inside the brace suggests
the survival probability after rth measurement, the power is
the number of reset event, and the term outside the brace
gives the probability of first success after the last restart,
and thus the product of the two probability is FnR . Note here
ñ ranges from 1 to r (different from the remainder rang-
ing from 0 to r − 1), and R � 0. If r = 10, then FnR=30 is
(1 − ∑10

k=1 Fk )2F10.

2. Proof for the guaranteed detection

The restarted total detection probability Pdet is

Pdet =
∞∑

nR=1

FnR =
∞∑

rR+ñ=1

⎛
⎝1 −

r∑
j=1

Fj

⎞
⎠R

Fñ

=
∞∑

R=0

r∑
ñ=1

⎛
⎝1 −

r∑
j=1

Fj

⎞
⎠R

Fñ

=
r∑

ñ=1

Fñ

∞∑
R=0

⎛
⎝1 −

r∑
j=1

Fj

⎞
⎠R

=
r∑

ñ=1

Fñ

⎛
⎝ r∑

j=1

Fj

⎞
⎠−1

= 1. (A2)

Hence the total detection probability is one provided that∑r
j=1 Fj �= 0, meaning that the particle will be eventually

detected, as long as there exist finite probability of detection
during one restart period.

APPENDIX B: DERIVATION FOR EQ. (6)
IN THE MAIN TEXT

Here we provide an alternative derivation for the mean
of nR under restart. With Eq. (A1) and the definition
〈nR(r)〉 = ∑∞

nR=1 nRFnR , we obtain

〈nR(r)〉 =
∞∑

nR=1

nR

(
1 −

r∑
k=1

Fk

)R

Fñ

=
∞∑

rR+ñ=1

(rR + ñ)

(
1 −

r∑
k=1

Fk

)R

Fñ

=
∞∑

R=0

r∑
ñ=1

rR
(

1 −
r∑

k=1

Fk

)R

Fñ

+
∞∑

R=0

r∑
ñ=1

ñ

(
1 −

r∑
k=1

Fk

)R

Fñ

= r
r∑

ñ=1

Fñ

∞∑
R=0

R
(

1 −
r∑

k=1

Fk

)R

+
r∑

ñ=1

ñFñ

∞∑
R=0

(
1 −

r∑
k=1

Fk

)R

= r
(
1 − ∑r

j=1 Fj
)∑r

j=1 Fj
+

r∑
k=1

kFk

(
r∑

k=1

Fk

)−1

︸ ︷︷ ︸
〈n〉r

cond

= r
1 − Pr

det

Pr
det

+ 〈n〉r
cond. (B1)

This gives the Eq. (6) in the main text.

APPENDIX C: DETAILS IN PLOTTING FIG. 6

Since Eq. (23) is valid at the transition τ , we chose
τ = 1.369 + πk/2 for r∗ = 6 with k an integer [using
Eq. (20)]. Although r∗ = 6 is cutoff by εpl = 1.353, we
use the fact that 〈nR(6)〉(τ = 1.353) ≈ 〈nR(6)〉(τ = 1.369) =
1/F7(τ = 1.369), see Fig. 5. The black crosses nicely capture
the 〈nR(r∗)〉 at the transition τ ’s.

APPENDIX D: TRANSITION τ IN THE CASE OF δ = 1
AND THE LARGE-τ LIMIT

ε ∈ [0, 0.218] : 〈nR(1)〉 = min(〈nR(r)〉),

ε ∈ [0.218, ε6→5] : 〈nR(6)〉 < 〈nR(1)〉,
ε6→5 = 0.239 = π/2 − 1.332,

ε ∈ [ε6→5, ε5→4] : 〈nR(5)〉 < 〈nR(1)〉,
ε5→4 = 0.291 = π/2 − 1.280,

ε ∈ [ε5→4, ε4→3] : 〈nR(4)〉 < 〈nR(1)〉,
ε4→3 = 0.367 = π/2 − 1.204,
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ε ∈ [ε4→3, ε3→2] : 〈nR(3)〉 < 〈nR(1)〉,
ε3→2 = 0.490 = π/2 − 1.081,

ε ∈ [ε3→2, ε2→1] : 〈nR(2)〉 < 〈nR(1)〉,
ε2→1 = 0.721 = π/2 − 0.850. (D1)
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