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Scaling regimes of the one-dimensional phase turbulence in the deterministic
complex Ginzburg-Landau equation
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We consider the one-dimensional deterministic complex Ginzburg-Landau equation in the regime of phase
turbulence, where the order parameter displays a defect-free chaotic phase dynamics, which maps to the
Kuramoto-Sivashinsky equation, characterized by negative viscosity and a modulational instability at linear level.
In this regime, the dynamical behavior of the large wavelength modes is captured by the Kardar-Parisi-Zhang
(KPZ) universality class, determining their universal scaling and their statistical properties. These modes exhibit
the characteristic KPZ superdiffusive scaling with the dynamical critical exponent z = 3/2. We present numerical
evidence of the existence of an additional scale-invariant regime, with the dynamical exponent z = 1, emerging
at scales which are intermediate between the microscopic ones, intrinsic to the modulational instability, and the
macroscopic ones. We argue that this new scaling regime belongs to the universality class corresponding to the
inviscid limit of the KPZ equation.

DOI: 10.1103/PhysRevE.109.064149

I. INTRODUCTION

The complex Ginzburg-Landau equation (CGLE) is a pro-
totype model for the effective dynamics of spatially extended
systems out of equilibrium, ranging from hydrodynamical in-
stabilities [1], pattern formation [2], chemical turbulence [3],
to driven-dissipative bosonic condensates [4]. Its success in
providing a reliable qualitative description of a vast variety of
phenomena in terms of a few parameters has earned the CGLE
conspicuous interest [3]. Important efforts have been devoted
to characterizing the rich phase diagram of the CGLE, both in
one and in higher spatial dimensions [3,5–8]. In one dimen-
sion, the CGLE can yield chaotic, nonchaotic, and intermittent
dynamics. We focus in this paper on the weakly turbulent
regime, also known as phase turbulence, characterized by
spatiotemporal chaos in the absence of topological defects
[5,9–13]. In this regime, the amplitude of the order parameter
weakly fluctuates around a finite steady value. Its dynamics
can be integrated out, resulting in a mapping of the CGLE to
the Kuramoto-Sivashinsky (KS) equation [14,15] governing
the effective dynamics of the phase. The KS equation is a de-
terministic nonlinear model for fluctuating interfaces, which
exhibits nontrivial behavior: indeed, this equation features
a negative viscosity, which yields an intrinsic modulational
instability of the linearized equation, saturated at a nonlin-
ear level. This induces a chaotic dynamics when the size of
the system is large with respect to the typical scale of the
instability pattern [16,17]. This dynamics exhibits a steady
state whose essential statistical features are captured by the
celebrated Kardar-Parisi-Zhang (KPZ) universality [18].

Originally introduced for modeling the random growth of
nonequilibrium interfaces [18], the KPZ equation is a stochas-
tic nonlinear partial differential equation which has become a
paradigm of nonequilibrium criticality, encompassing a wide

collection of systems counting, besides driven rough inter-
faces, randomly stirred viscous fluids [19], directed polymers
in random media [20], the coherence of driven-dissipative
bosonic condensates [21–23], quantum spin chains [24],
strongly correlated bosons [25], and many more [26]. In one
dimension, the KPZ equation yields a universal critical regime
characterized by a superdiffusive scaling behavior with the
exact dynamical critical exponent z = 3/2 [18], as well as
by precisely known non-Gaussian statistics [26,27]. In the
limit of vanishing nonlinearity, the KPZ equation reduces to
the Edwards-Wilkinson (EW) equation [28], which leads to a
diffusive scaling with z = 2 and Gaussian statistics. Recently,
a new scaling regime, characterized by a dynamical exponent
z = 1, was unveiled in different systems belonging to the KPZ
universality class [25,29–32]. This new regime emerged in
the limit of vanishing surface tension for the KPZ equation,
or equivalently, in the limit of vanishing viscosity for the
stochastic Burgers equation, which governs the dynamics of
the velocity of the interface [25,29–31]. The functional renor-
malization group analysis carried out in Ref. [32] showed
that this new scaling regime was controlled by a fixed point
of the KPZ equation which had not yet been identified, and
which corresponds to its inviscid limit. This fixed point was
termed the “inviscid Burgers” (IB) fixed point and it described
a new universality class, featuring, in particular, the z = 1
dynamical exponent. Its associated universal scaling function
was determined using the functional renormalization group in
Ref. [32].

The fact that the large-scale behavior of the determinis-
tic KS equation belongs to the KPZ universality class was
early conjectured [16], and supported by some indications in
numerical simulations [33] and perturbative renormalization
group analysis of the noisy KS equation [34,35]. However,
the clear signature of the KPZ universal scaling in this system
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has long eluded numerical observation due to the very large
system size and run time needed. The scaling regime found
in early simulations was rather compatible with the EW one.
A definitive evidence of KPZ scaling has only been recently
provided by the massive numerical simulations performed by
the authors of Ref. [36], which allowed them to quantitatively
determine the scaling exponents and the statistical properties
of the one-dimensional deterministic KS equation, and show
that they correspond to the KPZ ones.

In this paper, we present a numerical study of the sta-
tistical properties of the deterministic CGLE in the phase
turbulence regime, and show that, in addition to the KPZ
universal scaling, also the inviscid Burgers one arises. We pro-
vide arguments to explain the systematic appearance of the IB
universality in the CGLE, and in the Kuramoto-Sivashinsky
equation. In detail, we simulate the deterministic CGLE,
starting from random initial conditions, and we compute the
spatiotemporal correlations of the phase by averaging over
independent realizations. We first show that the scaling be-
havior of the long wavelength modes is the EW one (z = 2),
as expected for the system size considered. We then focus
on intermediate scales and show that they exhibit a differ-
ent scaling, with z = 1, corresponding to the IB universality
class. We compute the associated scaling function. Finally,
as proposed for the KS equation in Ref. [35], we introduce a
stochastic white noise in the CGLE and identify a window of
parameters in which the KPZ universality emerges, despite the
small system size and the finite probability of noise-activated
defect formation [37,38].

II. DETERMINISTIC COMPLEX GINZBURG-LANDAU
EQUATION

A. Regime of phase turbulence

We consider the complex Ginzburg Landau equation de-
fined by

i∂tψ = iψ + (c2 − i)|ψ |2ψ − (c1 − i)∂2
x ψ, (1)

where ψ is the complex order parameter and c1, c2 are dimen-
sionless real coefficients. The homogeneous solution ψ0 =
1 × e−ic2t is linearly unstable when 1 + c1c2 < 0. Under this
condition, a modulational instability, which is known as the
Benjamin-Feir (BF) instability [3,39], triggers a turbulent be-
havior which, depending on the values of c1 and c2, is either
characterized by the presence of topological defects, where
the amplitude |ψ | goes to zero, or by defect-free phase mod-
ulations [3]. The two regimes are usually labeled defect and
phase turbulence, respectively. The latter arises if c1, c2 are
chosen close to the BF instability line 1 + c1c2 = 0 [13], in
which case the amplitude slightly fluctuates around 1, while
the phase dynamics is mapped to the Kuramoto-Sivashinsky
equation [14,15]

∂tθ = (
ν∂2

x + η∂4
x

)
θ + λ

2
(∂xθ )2, (2)

with ν = 1 + c1c2, η = −c2
1/2, λ = 2(c2 − c1). We report the

derivation of this phase equation in Appendix B. One readily
notices that the instable regime of the CGLE corresponds to a
negative value of the viscosity ν in the phase equation (2). The
instability primarily concerns the low momentum modes since

the linear dispersion −νk2 + ηk4 is positive for 0 � k < k0

with k0 = √
ν/η. In the following, we focus on the regime of

phase turbulence, by appropriately choosing c1 and c2 close to
the BF instability line.

B. Large-scale behavior

The statistical properties of the large wavelength fluc-
tuations of the KS phase are expected to belong to the
KPZ universality class [16], which means that their effective
macroscopic dynamics can be described by the KPZ equa-
tion [18]

∂tθ = νeff∂
2
x θ + λeff

2
(∂xθ )2 + ξ (x, t ), (3)

where νeff > 0 and ξ (x, t ) is a white noise with
〈ξ (x, t )ξ (x′, t ′)〉 = 2Deffδ(x − x′)δ(t − t ′). However, it was
shown that a sufficiently large system size is required for KPZ
universality to emerge, while smaller systems were observed
to display EW scaling [36].

We emphasize that if one considers from the start a noisy
version of the CGLE (1) and chooses c1, c2 within the stable
region [implying ν > 0 in (2)], the term proportional to ∂4

x
becomes subdominant and the phase dynamics simply inherits
the stochastic nature of the CGLE. In this case, one directly
obtains the KPZ equation [21,22]. This is the case for driven-
dissipative bosonic condensates described by the generalized
stochastic Gross-Pitaevskii equation, in which the large-scale
coherence, controlled by phase fluctuations, was shown to
exhibit the KPZ scaling [21–23] and non-Gaussian statistics
[40,41] even in small systems.

Conversely, in the deterministic case and in the unsta-
ble regime where ν < 0, the phase dynamics maps to the
deterministic KS equation, and the parameters νeff and Deff

of the effective KPZ equation are not primarily determined,
but are generated by the chaotic dynamics. The perturba-
tive renormalization group analysis of Ref. [35] showed
the emergence of a positive macroscopic viscosity from
the noisy microscopic KS equation. Indeed, they find that
while coarse-graining by including the fluctuations from small
to large scales, the effective viscosity changes sign, from
the microscopic value ν < 0 to an effective value νeff > 0
in the macroscopic limit. We emphasize that in this process,
the viscosity crosses zero at some intermediate scale: this is
the very origin of the appearance of the IB regime at in-
termediate scales [42]. Note that the Galilean invariance of
the KS equation imposes λeff = λ at all scales, although in
practice the value of λeff may be renormalized by effect of
the space discretization [33] or, as in the present case, of
the higher-order nonlinearities neglected when mapping the
CGLE to the KS equation (see Appendix B).

To characterize the statistical properties of the phase dy-
namics, we analyze both the transient regime and the steady
state. In the transient regime, i.e. during the kinetic rough-
ening, the dynamical scaling behavior of the phase θ (x, t ) is
captured by the structure function, defined as

S(k, t ) = 〈θ (k, t )θ (−k, t )〉, (4)

where in the deterministic case 〈.〉 denotes the average
over independent trajectories with randomly chosen initial
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conditions, while for the stochastic equation, in Sec. III C, the
average is over independent noise realizations. The choice (4)
is particularly suited when different scaling behaviors coexist
at different scales k [43]. The Family-Vicsek scaling ansatz
[44] for S(k, t ) reads

S(k, t ) = k−(2χ+1)s(kzt ), (5)

where χ is the roughness critical exponent, z is the dynamical
critical exponent, and s(y) is a universal scaling function with
the properties s(y → 0) ∼ y2χ+1 and s(y → ∞) → s0. For
each mode k, the structure function converges to the stationary
average occupation when the time tss(k) ∼ k−z has elapsed.

In the steady state, we focus on the velocity field u = ∂xθ

and compute the temporal correlations of its Fourier modes
C(k, t ) = 〈u(k, t + t0)u∗(k, t0)〉, with t0 > tss(k) for all the
modes k considered. The correlations exhibit the scaling be-
havior

C(k, t ) = C(k, 0) f (kzt ), (6)

where f (y) is a universal scaling function and the exponents
χ , z are the same as in Eq. (5). Note that t in Eq. (5) is the
absolute time whereas it denotes in Eq. (6) the time delay.

C. KPZ fixed points

The KPZ equation (3) can be rescaled to obtain a single
relevant parameter g = λ2D/ν3. Depending on the value of
g, there are three possible scaling regimes, controlled by the
corresponding fixed points.

(i) The KPZ regime (g finite): χ = 1/2, z = 3/2 and f =
f KPZ given by the universal KPZ scaling function, exactly
calculated in Ref. [27].

(ii) The EW regime (g = 0): χ = 1/2, z = 2, and f =
fEW, which is the universal scaling of the linear theory, given
by

f EW(y) = D

ν
e−√

νy2
. (7)

(iii) The IB regime (g = ∞): χ = 1/2, z = 1, and f =
f IB computed via the functional renormalization group in
Ref. [32]. The short-time asymptotic behavior of f IB was
shown to endow a simple Gaussian form [29,30,32]

f IB(y 
 y0) ∼ e−ay2
. (8)

In one dimension, the only attractive fixed point in the in-
frared (at large distance) for any finite g is the KPZ fixed point.
However, in a finite-size system, the other two EW and IB
fixed points, although repulsive in the infrared, can influence
the scaling properties of the system when g is respectively
very small or very large, especially for the intermediate modes
[30,32].

Let us emphasize that in one dimension all the three
regimes of the KPZ equation share a common value χ = 1/2
for the roughness exponent. This implies that the stationary
state is characterized by a flat energy spectrum C(k, 0) =
〈|u(k)|2〉 = k2S(t > tss, k) = s0 = 2D

ν
. The equipartition of

energy is a consequence of the “accidental” time-reversal
symmetry of the KPZ equation in one dimension, whereby the
spatial properties of the stationary interface coincides with the
equilibrium one (i.e., the Brownian interface of the diffusive

EW case) [26]. The associated fluctuation-dissipation relation
[45] constrains the effective macroscopic viscosity and noise
strength to conserve the ratio they have at the microscopic
level. We underline that the ratio νeff/Deff is not defined for
the deterministic KS equation, for which the time-reversal
symmetry is an emergent property at large scales [35].

More subtle is the inviscid limit of the KPZ (Burgers)
equation. Indeed, the typical solutions of the inviscid Burgers
equation in an infinite system generate dissipative shocks in a
finite time [19,46]. However, in the presence of an ultraviolet
cutoff and if the time evolution is energy-conserving, the
system evolves instead to a thermalized state with the equi-
librium static exponent χ = 1/2, and a dynamical exponent
z = 1 [29,30,32]. This implies that the inviscid limit ν → 0
is approached by preserving a constant finite ratio ν/D, thus
coinciding with the deterministic limit. As a final remark, we
mention that the authors of Ref. [31] characterized the scaling
behavior of an inviscid and noisy version of the KPZ equa-
tion, which breaks the time-reversal symmetry. In this case,
they reported an anomalous kinetic roughening behavior with
different local and global roughness exponents (χloc = 1/2 �=
χ = 1), while conserving the dynamical exponent z = 1. To
fully understand the connection between this regime and the
thermalized one of Refs. [29,30,32] is an exciting, although
nontrivial task.

III. RESULTS

We performed numerical simulations of the CGLE (1) with
random initial conditions ψ (t = 0, x) = 1 + σ (x), where
σ (x) ∈ C is a random complex number drawn independently
for every x from a Gaussian distribution of zero mean and
variance 0.01 [47]. We consider the equation in its dimen-
sionless form (1), with a space discretization chosen as
dx = 1.0 or dx = 1.5; the change corresponding to a slightly
modified weight of the kinetic term with respect to the oth-
ers in the CGLE. The deterministic evolution of ψ (x, t )
is then simulated using a second-order split-step Fourier
method [48], with time step dt = 0.1. We study the statis-
tical properties of the interface defined as the unwrapped
phase θ (x, t ) = Arg[ψ (x, t )] + 2π j, where j is an integer
chosen in order for the temporal evolution to be smooth in
time, i.e., θ (x, t + δt ) − θ (x, t ) ∈ (−π, π ]. We first present
the results for the large-scale behavior, which exhibits the
EW scaling, then discuss the behavior of the intermedi-
ate scales where we find the IB scaling. We finally show
that, adding a small noise, the KPZ scaling emerges at the
large scales, replacing the EW regime, while the IB regime
is preserved.

A. Kinetic roughening behavior

The structure function S(t, k) in the transient roughening
regime is displayed in Fig. 1. During the early evolution,
i.e., for t � 500 (not represented), the population of unstable
low momentum modes k < k0 is transferred to the dissipative
sector k > k0 via nonlinear coupling until a typical cellular
structure arises whose wave number corresponds to the lo-
cal maximum observed in S(t, k). Thereafter, the roughening
process progressively fills the low momentum sector. The

064149-3



VERCESI, POIRIER, MINGUZZI, AND CANET PHYSICAL REVIEW E 109, 064149 (2024)

FIG. 1. Scaling behavior of the structure function compared with the EW theory Eq. (9), with χ = 1/2, z = 2. The plotted window is
2π/L < k < 2k0. The parameters are c1 = 3.5, c2 = −0.6 (k0 = 0.36), L = 49152, dx = 1.5, Nsim = 1024.

structure function is found to endow the scaling ansatz (5), and
the collapse obtained with the EW exponents z = 2, χ = 1/2,
shown in Fig. 1, is excellent. The scaling function coincides
with the EW one given by

sEW(y) = 2Deff

νeff

(
1 − e−2

√
νeff y2)

, (9)

with the argument y = kt1/2. We find νeff ≈ 12 and Deff ≈
4.7 × 10−3. These numbers, together with the effective non-
linearity λeff ≈ λ = 2(c2 − c1), give the KPZ coupling geff ≈
1.7 × 10−4. Following the authors of Refs. [33,49], we can
estimate the threshold system size and crossover time needed
for the effective KS dynamics to exhibit the KPZ behavior,
for which we obtain respectively Lc ≈ 6 × 105, tc = 6 × 108,
thus confirming a posteriori the expectation of the EW scaling
emerging for our system size.

B. Inviscid Burgers regime

We now focus on the intermediate-scale modes, for which
the spectrum becomes stationary at short times, typically for
t � 500. We analyze the correlations C(k, t ) in the stationary
state. The energy spectrum, given by C(k, 0), is displayed in
Fig. 2. It exhibits a plateau at small k resulting from equipar-
tition of energy. To identify the potential scaling regimes,
we first compute the scale-dependent correlation time τ1/2(k)
defined for each mode k from C(k, t = τ1/2) = 1

2C(k, t = 0).
It is expected to behave as τ1/2 ∼ kz in a scaling regime. The
result, displayed in Fig. 2, clearly shows two distinct scaling
behaviors: for small k, we retrieve the diffusive EW regime
with z = 2, while at intermediate k we observe a different
power-law dependence which is τ1/2 ∼ k−1. To further char-
acterize this scaling regime, we select the modes k within the
z = 1 scaling region, and compute the full correlation C(k, t ),
which is shown in Fig. 3. The level lines coincide with con-
stant y = kt , which indicates that z = 1 in the scaling ansatz
(6). We indeed obtain a remarkable collapse of the spatiotem-
poral data when plotted in the scaling variable kt , as shown in
Fig. 3. Furthermore, the short-time behavior of f (y) is found
in excellent agreement with the analytical prediction in the IB
regime, Eq. (8), obtained by the FRG calculation [32]. The full
shape of f (y) is also qualitatively compatible with the FRG re-
sult for f IB and with its estimate in the numerical simulations
of the Galerkin-truncated inviscid Burgers equation [29,30],
which both exhibit a negative dip at a finite value of y after
the initial Gaussian decay. However, the depth and position of

the negative dip we observe here do not quantitatively com-
pare with the values found in these works. This discrepancy
is likely to originate in another essential difference of our
work with the “ideal” IB regime of Refs. [29,30,32]. At the in-
termediate scales considered here, the roughness exponent is
slightly lower than χ = 1/2, as can be observed in the energy
spectrum of Fig. 2, where a residual slope replaces the plateau
for these intermediate modes. The extracted value for χ has
been found to depend on the parameters, ranging from 0.28 to
0.43 when c1, c2 take values within the square (2.70,−0.80),
(2.10,−0.80), (2.10,−0.60), (2.70,−0.60). This signals that

FIG. 2. Top panel: Energy spectrum C(k, 0) = 〈|u(k)|2〉. Bottom
panel: Correlation time τ1/2, defined as C(k, τ1/2) = 1

2C(k, 0). The
parameters are c1 = 2.1, c2 = −0.8 (k0 = 0.434), L = 8192, dx =
1.0, Nsim = 1024. The solid lines represent the ∼k−z behaviors.
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FIG. 3. Scaling behavior of the correlations C(k, t ) in the IB regime. Left panel: Correlation decay C(k, t )/C(k, 0). Right panel: Collapse
onto the scaling function f (y = kt1/z ) with z = 1. The plotted window is 2π/L < k < 2k0. The dashed line shows the fitted asymptotic
Gaussian behavior of f IB at short times, also plotted in logarithmic scale in the inset. The parameters are c1 = 2.7, c2 = −0.8 (k0 = 0.44),
L = 2048, dx = 1.0, Nsim = 1024.

the equipartition of energy is not perfectly established for
the modes that exhibit the IB scaling z = 1. We remind that
in order for the equipartition to settle while approaching the
inviscid limit of the stochastic Burgers equation, it is crucial
that the noise obeys the fluctuation-dissipation relation [30].
In our case, the random noise and the positive viscosity are
effective properties of the small k modes, emerging from
the underlying chaotic dynamics of the CGLE. As a conse-
quence, it is not guaranteed that they fulfill the time-reversal
symmetry. We can thus reasonably expect a quantitative dif-
ference in the shape of the scaling function f IB. Nevertheless,
the results presented here suggest that the value of the dy-
namical exponent z = 1 and the qualitative shape of f IB are
robust against a weak loss of equipartition. The more general
analyzis of the inviscid regime for different types of noise,
breaking the time-reversal symmetry would be interesting, but
is left for future work. We stress that our results suggest that
the intermediate IB regime should be observed in the pure KS
equation as well. A more detailed characterization of the IB
regime emerging within the KS equation can be obtained by
means of functional renormalization group [42].

C. Adding noise: Crossover to KPZ

In this section, we discuss the effect of adding a stochastic
noise of small amplitude to the CGLE on the large-scale
scaling behavior of the phase turbulence. We thus consider
the equation

i∂tψ = iψ + (c2 − i)|ψ |2ψ − (c1 − i)∂2
x ψ + √

σξ, (10)

where ξ (x, t ) is a complex white noise with 〈ξ (x, t )〉 = 0 and
〈ξ (x, t )ξ ∗(x′, t ′)〉 = 2δ(x − x′)δ(t − t ′). We replace the statis-
tical average over trajectories starting from different initial
conditions with an average over independent realizations of
the noise. In the numerics, we implement the noise using
Euler-Maruyama scheme adding at each time step a stochastic
term

√
σ dt/dx[r1(x) + ir2(x)], where for every x the ran-

dom number r1,2(x) is sampled independently from a normal
distribution N (0, 1).

For the KS equation, the stochastic formulation yields con-
siderable advantages. At a theoretical level, it allows one to
cast the problem into a field theory and study it by means of
dynamical renormalization group [34,35] or nonperturbative
functional renormalization group [42]. At a numerical level,
it allows one to observe the KPZ universality emerging at
large scales for much smaller system sizes since the effective
nonlinearity geff is higher [35]. However, for the CGLE, the
addition of noise is more subtle. The noisy CGLE, widely em-
ployed as a mean-field model for open quantum fluids [4,50],
exhibits a richer phase diagram than its deterministic version
[37,38]. In particular, it was shown that, at large noise, the
compact nature of the phase becomes crucial since topological
defects (phase slips or space-time vortices in one dimension)
can be activated by the noise, breaking down the analogy
with growing interfaces. In tuning the noise amplitude σ ,
we are thus restrained to small values in order not to enter
the vortex-turbulent phase of Refs. [37,38]. We observe that
the region of defect-free phase turbulence in the (c1, c2) phase
diagram shrinks as the noise amplitude is increased. We could
obtain such a regime only for small noise amplitude σ � 0.1
and by tuning c1, c2 closer to the BF instability line.

The effect of the noise on the kinetic roughening properties
of the phase is again encoded in the scale-dependent corre-
lation time τα (k), with α = C(k, τα )/C(k, 0) ∈ (0, 1] (which
is a slight generalization of the τ1/2 defined in Sec. III B
corresponding to α = 0.5). We show in Fig. 4 the behavior
of τ̄ = 〈τα〉α , where an average over 0.3 � α � 0.6 is per-
formed to increase the statistics. First, we find that the IB
regime with z = 1 is always present at the intermediate scales,
robust to the addition of a small noise. Let us now comment
on the behavior at the large scales (small k modes). For the
smallest value of the noise σ = 0.01, they follow the same
scaling as for the deterministic case, i.e., we identify the EW
regime with τ̄ ∼ k−2. At intermediate noise, here σ = 0.05,
the EW regime is replaced by the KPZ one, with τ̄ ∼ k−3/2.
This corroborates the results found for the KS equation when
adding noise. However, for stronger noise, here σ = 0.10, the
large-scale behavior is affected by the presence of defects,

064149-5



VERCESI, POIRIER, MINGUZZI, AND CANET PHYSICAL REVIEW E 109, 064149 (2024)

FIG. 4. Correlation time τ̄ averaged over ten values of α ∈
[0.3, 0.6] where α = C(k, τα )/C(k, 0). The parameters are c1 =
1.9, c2 = −0.70 (k0 = 0.35), L = 4096, dx = 1.0, Nsim = 1024. The
solid lines are guidelines to identify the different scaling behaviors.

which eventually destroy the KPZ regime since the phase
can no longer be unwrapped. In this regime we find τ̄ �
constant as expected in presence of vortices. In fact, as shown
in Refs. [37,38], since defects are formed in randomly located
space-time points, the phase trajectories are characterized by a
finite homogeneous density of uncorrelated phase jumps. As
a result, at length scales beyond the average vortex distance
lv , the phase dynamics can be interpreted as the result of
a random deposition process, implying a scale-independent
correlation time, i.e., τ (k � 2π/lv ) ∼ constant.

To fully characterize the KPZ regime for the intermediate
noise value, we proceed as for the IB regime. We select
the low modes for which τ̄ ∼ k−3/2, and compute the full
correlation C(k, t ) function in this window, shown in Fig. 5.

The level lines are now observed at constant y = k3/2t as
expected for the KPZ regime. Moreover, a very good col-
lapse is obtained, and the scaling function extracted from
the numerical data compares accurately with the exact KPZ
scaling function f KPZ of Ref. [27]. Thus, our results show
that adding a noise, provided it is small enough to prevent
the proliferation of defects, allows one to observe the KPZ
scaling regime without having to resort to very large system
sizes. This confirms that the phase turbulence of the CGLE
equation belongs to the KPZ universality class. Moreover, the
IB regime systematically appears at intermediate scales, and
is an intrinsic feature of this system. Its origin can be traced to
the necessary vanishing of the effective viscosity to crossover
from a negative microscopic value to an effective positive
value at large scales.

IV. CONCLUSION AND PERSPECTIVES

We studied the phase turbulence of the deterministic com-
plex Ginzburg-Landau equation in one spatial dimension,
focusing on the statistical behavior of the large and interme-
diate wavelength modes. In this regime, the phase dynamics
maps to the Kuramoto-Sivashinsky equation. This chaotic
dynamics results in an effective noise, and generates an ef-
fective positive viscosity at large scales. These elements,
together with the intrinsic nonlinearity of the phase dynam-
ics, yield that the critical behavior of the CGLE belongs to
the one-dimensional KPZ universality class. In our numerical
simulations, we first recovered the known results, namely, we
observe at large scales the EW scaling expected for the system
size considered, smaller than the typical size necessary for the
KPZ behavior to settle.

Focusing on the scales intermediate between the wave-
length of the instability pattern and the onset of the EW
(KPZ) behavior, we evidenced the emergence of an additional,
distinct scaling regime, characterized by the dynamical ex-
ponent z = 1. We argued that this regime corresponds to the
inviscid limit of the KPZ equation, which was recently shown
to be controlled by a genuine fixed point, termed the inviscid

FIG. 5. Scaling behavior of the correlations C(k, t ) in the KPZ regime. Left panel: Correlation decay C(k, t )/C(k, 0). Right panel: Collapse
onto the scaling function f (y = kt1/z ) with z = 3/2. The plotted window is 2π/L < k < 2k0. The dashed line shows the exact KPZ scaling
function f KPZ from Ref. [27]. The parameters are c1 = 1.9, c2 = −0.7 (k0 = 0.35), σ = 0.05, L = 4096, dx = 1.0, Nsim = 1024.
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Burgers fixed point, of the KPZ equation in one dimension.
Indeed, while the viscosity crosses over from a negative value
at the microscopic scale in the KS equation to a positive value
at the macroscopic scale in the effective KPZ equation, it has
to vanish at some intermediate scale. This generates a region
of scales with vanishingly small viscosity, and these scales are
inherently controlled by the IB fixed point. This explains the
systematic appearance of the IB scaling z = 1 in the CGLE,
and we expect the same mechanism to arise in the pure KS
equation, which is the object of ongoing analysis [42]. We
also considered the noisy version of the CGLE, widely used in
the context of driven-dissipative quantum fluids. By focusing
on the weakly unstable region of the parameter space, we
showed that the KPZ scaling could be observed, enhanced by
the presence of the noise, although the region of validity of the
phase description shrinks due to noise-activated defects. This
result allows us, on the one hand, to confirm that the phase
turbulent regime of the CGLE belongs to the KPZ universality
class. On the other hand, it represents a yet unexplored regime
of the noisy CGLE, for which the weakly unstable regime
(phase turbulence) is found to be resilient to a small noise.
This opens up the route to potential applications to generic
open systems in which the microscopic fluctuations are not
negligible in the hydrodynamical description, such as exciton-
polariton condensates.
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APPENDIX A: STABILITY ANALYSIS

The stability of the homogeneous rotating solution ψ0 =
e−ic2t is studied by considering the linearized evolution of
plane waves on top of ψ0. The dispersion is given by

ω±(k) = − i(1 + k2)

±
√

−(1 + k2)2 + 2(1 + c1c2)k2 + (
1 + c2

1

)
k4.

We define ω±(k) = ε±(k) + iγ ±(k), where a positive growth
rate γ ± gives the instability condition. For small enough k,
the square-root is purely imaginary. The rate γ −(k) is always
negative, we thus focus on γ +(k) and expand it up to fourth
order in k to obtain

γ +(k) = −(1 + c1c2)k2 − 1
2 c2

1

(
1 + c2

2

)
k4 + · · ·

= −νk2 − τk4 + · · · .

The instability onset is controlled by the sign of ν = 1 + c1c2.
When ν < 0, some low wavelength modes are unstable, ap-
proximately 0 < k < k0 = √

ν/τ .

APPENDIX B: PHASE EQUATION

In this Appendix, we detail the mapping from the CGLE to
the phase equation. The CGLE is given by

i∂tψ = iψ + (c2 − i)|ψ |2ψ − (c1 − i)∂2
x ψ. (B1)

In the amplitude-phase representation ψ = √
ρ eiθ , it yields

the two coupled equations for the amplitude and for the phase

∂tρ

2ρ
= 1 − ρ +

{
∂2

x ρ

2ρ
− (∂xρ)2

4ρ2
− (∂xθ )2

}

− c1

{
∂2

x θ + ∂xρ∂xθ

ρ

}
,

∂tθ = −c2ρ + c1

{
∂2

x ρ

2ρ
− (∂xρ)2

4ρ2
− (∂xθ )2

}

−
{
∂2

x θ + ∂xρ∂xθ

ρ

}
.

We emphasize that small rigid (∂x · = 0) fluctuations of the
amplitude around 1 have a relaxation time of order 1 (for
this choice of units), while no such timescale appears explic-
itly for the phase dynamics. This is a known consequence
of the U(1) symmetry of the CGLE, which leads us to as-
sume that slow phase modulations dominate the fluctuations
at the macroscopic scale. The fast fluctuations of the ampli-
tude around its stationary homogeneous value can thus be
neglected, so that its modulations can be considered as en-
slaved to the slow phase dynamics. By inserting the Ansatz
ρ = 1 + w[θ, ∂2

x θ, (∂xθ )2, . . . , ] and substituting it into the
amplitude equation, one obtains w = [−c1∂

2
x θ − (∂xθ )2]. By

inserting w into the phase equation, considering linear terms
up to order 4, we obtain

∂tθ = (1 + c1c2)∂2
x θ − c2

1

2
∂4

x θ + (c2 − c1)(∂xθ )2 + · · · ,

(B2)

which is the KS equation with ν = 1 + c1c2, τ = − c2
1

2 and
λ = 2(c2 − c1). The higher-order nonlinear terms, propor-
tional to ∂xθ∂3

x θ and ∂2
x θ (∂xθ )2, were neglected. They are

considered as unimportant in the long wavelength dynamics,
while their effect is relevant for the short scales, when study-
ing, for instance, the divergences which lead to the breakdown
of the phase description [5].

We underline that the expression of τ obtained here is
different from the one obtained from expanding the growth
rate γ +(k) in perturbations in Appendix A. The reason
for the discrepancy is that γ +(k) can be considered as a
phase-like branch only for small k. Unlike the pure phase
diffusion νk2, the order-4 term is affected since, at increasing
k the off-diagonal perturbations, mixing phase and amplitude
become larger.
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