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Stochastic dynamics of a non-Markovian random walk in the presence of resetting
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The discrete stochastic dynamics of a random walker in the presence of resetting and memory is analyzed.
Resetting and memory effects may compete in certain parameter regimes, and lead to significant changes in the
long-time dynamics of the walker. Analytic exact results are obtained for a model memory where the walker
remembers all the past events equally. In most cases, resetting effects dominate at long times and dictate the
asymptotic dynamics. We discuss the full phase diagram of the asymptotic dynamics and the resulting changes
due to the resetting and the memory effects.
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I. INTRODUCTION

Stochastic dynamics finds applications in a wide variety
of physical systems starting from molecular length scales to
interstellar distances [1,2]. In the simplest case, the stochastic
dynamics is diffusive as characterized by linear increase in
time of the variance of displacement. In many natural and
man-made systems, however, this simple picture breaks down
and a nonlinear growth in time is observed, which is termed
subdiffusive or superdiffusive, that is, slower or faster than
the diffusive dynamics, respectively. There may be several
mechanisms for such nondiffusive behaviors but they all can
be put into two categories: spatial constraints and temporal
or memory effects. Several stochastic models have been pro-
posed to account for these spatial and temporal effects [3–7].

An important property of a stochastic process is the
first-passage-time distribution (FPTD) [8,9]. This is the dis-
tribution of times that the stochastic trajectories take to reach
a certain point for the first time during their time evolution.
This has important implications in many areas of physics,
chemistry, ecology, and finance [10,11]. A modified stochastic
process that involves resetting positions at random times to the
initial position has been proposed [12] and analyzed [13–15].
This so-called stochastic resetting model is applicable to many
natural and man-made systems that involve random hopping
of variable lengths such as in facilitated diffusion of a protein
on DNA in search of a target sequence [16,17], enzymatic
activity [18], and has been realized in experiments [19,20]. It
is known that random resetting of position leads to significant
qualitative changes in the FPTD [12], giving rise to finite
moments of FPTD, which are otherwise not defined for the
simplest (Markovian) diffusive motion. Other various aspects
of the resetting dynamics have also been explored in recent
years. Long-time properties of the reset dynamics has been
studied using large-deviation principle in Ref. [21], ergodicity
breaking due to reset process in the underlying fractional-
Brownian dynamics and geometric-Brownian dynamics
has been analyzed in Refs. [22,23]. Barkai et al. [24] have
recently examined the ergodic nature of the steady state under
certain class of resetting processes. Quantum search is shown
to enhance significantly using resetting [25]. Thermodynamic

aspects of resetting have also been analyzed in recent
years [26,27].

In this work, we consider a non-Markovian discrete
stochastic dynamics in the presence of random resetting to an
arbitrary position. We analyze the dynamics in terms of the
mean and the mean-squared deviations in the position as the
memory and resetting are varied.

At any instant of time, the forward and backward steps
of unit length are determined based on the memory of the
past such events. We first derive a Fokker-Planck (FP) equa-
tion for this walk, without resetting, which leads to a Gaussian
probability distribution with mean and variance both dis-
playing power-law increase in time. This results in a FPTD
with no finite moments and asymptotically decays as t−3/2

in the diffusive regime and t−1−γ (1/2 < γ < 1) in the su-
perdiffusive regime. Introducing the resetting process in this
non-Markovian dynamics leads to substantial changes in the
dynamics: both the mean position and the variance may show
exponential increase in time. Different regimes emerge where
the memory and the resetting processes tend to oppose or sup-
port each other. We find that in most cases, at long times the
resetting process dominates and the asymptotic dynamics is
solely governed by the resetting effects. A nontrivial analytic
solution for the probability distribution is obtained by solving
the corresponding FP equation.

II. MODEL AND RESULTS

Consider a simple random walker which can take jumps of
unit length to its right (+1) and left (−1) sides with probability
s and 1 − s, respectively, on a one-dimensional space. This
is a Markov random walk that leads to a diffusive dynamics
where, at long times, mean and variance of the walker’s posi-
tion vary linearly in time [28].

A. Introduction of memory

Now let us introduce a particular type of memory in this
walk. We consider a case where walker remembers all its
past steps with equal probability. At any instant of time, it
picks up a past-remembered event and performs the same with
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probability p and opposes it with probability q, p + q = 1.
The probability that the nth step will be σn = +1 or −1 now
depends on the entire history of previous jumps {σn−1} =
(σ1, σ2, · · · , σn−1).

P[σn = σ |{σn−1}] = 1

2(n − 1)

n−1∑
k=1

(1 + σγ σk )

= 1

2
+ σγ

2(n − 1)
xn−1, (1)

where σ = ±1, γ = p − q, and xn = ∑n
k=1 σk is the position

after n steps. For simplicity, we consider the first step σ1 =
+1 with unit probability. Similar random walk models have
been studied in Refs. [29] and [7] which include the possibility
of σ = 0 as well. Here we consider a simpler walk without
σ = 0, as our motivation is to study the effect of memory on
simple resetting walk. This simple memory model was first
introduced in Ref. [30].

From Eq. (1), we find 〈σn〉 = γ xn−1/(n − 1), which upon
using in xn = σn + xn−1 gives a recursion relation for the mean
position that gives:

〈xn〉 =
(

1 + γ

n − 1

)
〈xn−1〉

= �(n + γ )

�(n)�(1 + γ )
. (2)

Thus, unlike the simple Markovian case, the mean position
varies nonlinearly in time (here time is same as n) and for
long time 〈xn〉 ∼ nγ /�(1 + γ ).

In order to compute average square position, we note that
〈σ 2

n 〉 = 1∀n. This gives

〈
x2

n

〉 = 1 + n + 2γ − 1

n − 1

〈
x2

n−1

〉
= 2γ

(2γ − 1)�(n)

[
�(n + 2γ )

�(1 + 2γ )
− �(n + 1)

2γ

]
. (3)

For asymptotic times,

〈
x2

n

〉 ∼ 1

2γ − 1

(
n2γ

�(2γ )
− n

)
. (4)

Clearly, the variance �x2
n = 〈x2

n〉 − (〈xn〉)2 at long times is

�x2
n ∼

(
1

(2γ − 1)�(2γ )
− 1

�2(1 + γ )

)
n2γ

− n

2γ − 1
, (5)

which varies nonlinearly in time if γ > 1/2.
From Eq. (5), we therefore conclude that, due to the

memory, the walker’s asymptotic dynamics shows a phase
transition from diffusive to superdiffusive as γ is increased
beyond 1/2. In the superdiffusive regime, the variance grows
in time with a power law with exponent 2γ . Indeed, as γ → 1,
variance vanishes as the particle motion becomes determinis-
tic: 〈xn〉 = n and 〈x2

n〉 = n2.
The probability P(x, t ) to find the walker at position xn ≡ x

after “time” t ≡ n satisfies the following rate equation (see

Appendix)

P(x, t ) = 1

2

(
1 + γ

t − 1
(x − 1)

)
P(x − 1, t − 1)

+ 1

2

(
1 − γ

t − 1
(x + 1)

)
P(x + 1, t − 1). (6)

Note that for the discrete model considered here, for a finite
time t , the particle can cover only a finite distance and its
position is bounded, −t + 2 � x � t . The probability P(x, t )
satisfies the initial condition P(x, 1) = δ(x − 1) together with
the boundary conditions

P(t, t ) =
(

1 + γ

2

)t−1

,

P(−t + 2, t ) = 1 − γ

1 + γ

(
1 + γ

2

)t−1 �
(

t − 2γ

1+γ

)
�(t )�

(
2

1+γ

) . (7)

The rate equation, Eq. (6), leads to a Fokker-Planck equa-
tion (see Appendix)

∂

∂t
P(x, t ) = − ∂

∂x

[γ x

t
P(x, t )

]
+ 1

2

∂2

∂x2
P(x, t ) (8)

for large t . This FP equation is same as of a Brownian particle
moving in an “inverted” time-dependent harmonic potential
V (x, t ) = (γ /t )x2. Thus, if the initial jump of the particle
is to the left (right) of the origin (x = 0), it has a natural
tendency to move to the left (right) under the force due to
the potential. Of course, this deterministic motion competes
with the random force due to the second term on the right side
in Eq. (8). The net dynamic behavior is thus determined by
the parameter γ which controls the relative weight of the two
forces.

In the diffusion regime (γ < 1/2), the mean position of the
particle at time t is much smaller compared to the boundary
points which are far and can be approximately considered
at x = ±∞. In this case, the FP equation has a well-known
[30–32] Gaussian solution with the mean and the variance
changing in time according to Eqs. (2) and (5) at long times,
respectively.

P(x, t ) =
√

2γ − 1

2π (t2γ − t )
e
− (1−2γ )(x−tγ )2

2(t−t2γ ) , (9)

with the initial condition P(x, t → 1) = δ(x − 1).
The effect of memory on the long-time dynamics and

the Gaussian solution of the Fokker-Planck equation for the
model was discussed in Ref. [30]. However, in the superdiffu-
sive regime γ > 1/2, the mean position may lie closer to the
boundary points (for γ = 1, the dynamics is ballistic) which
must be taken into account while solving the FP equation. In
this case the position distribution may deviate significantly
from the Gaussian function and Eq. (9) may no longer be a
valid approximate solution. The boundary conditions needed
in solving the FP equation include values of P(x, t ) at x = t
and x = −t + 2, already given in Eq. (7), and also the deriva-
tives ∂P(x, t )/∂x ≈ (P(x, t ) − P(x − 2, t ))/2 defined at the
boundary points. These derivatives in the long-time limit can
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FIG. 1. Exact probability distribution (solid) obtained by
numerical solution of Eq. (6) for various values of γ =
0.0, 0.4, 0.5, 0.6, 0.8, 0.9 at t = 200. Dashed curves show Gaussian
approximate solution for γ = 0.0, 0.4, 0.5, 0.6. For γ = 0.0, the two
results agree perfectly.

be approximated as (see Appendix)

∂P(x, t )

∂t

∣∣∣∣
x=t

≈ 1

2

(
1 + γ

2

)t−1[
1 − t

(
1 − γ

1 + 3γ

)]
,

∂P(x, t )

∂t

∣∣∣∣
x=−t+2

≈ t
1−γ

1+γ

2

(1 − γ )2

(1 + γ )(1 + 3γ )

(
1 + γ

2

)t−1

.

(10)

Note that for γ → 1, the derivative at x = t approaches
a constant value 1/2 while the derivative at x = −t + 2
vanishes.

In the following, we do not attempt to solve the FP
equation with above-boundary conditions but compute the
distribution directly from Eq. (6) using numerical iterative
method. In Fig. 1, we depict the numerical solutions for
different memory (γ ) values, and the corresponding approx-
imate Gaussian solution of FP equation are also shown for
comparison for low memory. It is clear that in the diffusive
regime γ < 1/2, the approximate Gaussian works well, while
it completely breaks down in the superdiffusive regime as
the exact result is highly non-Gaussian and shows a long-tail
behavior.

An interesting property related to a random walk is the
first-passage time (FPT): the time that the walker takes to
reach a certain point the first time. This has wide applica-
tions such as in drug delivery, spontaneous chemical reaction
rates, etc. The probability F (x, t ) to arrive first time to a
point at a distance x from the initial position in time t
is defined as F (x, t ) = − d

dt S(t |x), where survival probabil-
ity S(t |x), having an absorbing boundary at x, is obtained
within the image method [9] (see Appendix) by placing
the absorbing boundary at x = 0 and shifting the initial
position of the walker at x. Note that in presence of time-
dependent drift, the FPT distribution depends on whether the
drift is towards or away from the absorbing boundary (or
point). For the case 0 < γ < 1/2, the FPT distribution is

FIG. 2. FPT distribution with absorbing boundary at x = 10 in
the diffusive regime for γ = 0 (blue), γ = 0.2 (black), and γ = 0.3
(red) from bottom to top. Filled (empty) points denote simulation
results when the drift is away from (towards) the absorbing point.
Solid (dashed) curves are the analytic result from Eq. (11). Inset
shows simulation results in the superdiffusive regime for γ = 0.6
(blue), 0.7 (black), and 0.8 (red).

obtained as

F (x, t ) = 2[x(1 − 2γ t2γ−1) ± tγ (1 − 2γ )]

×
√

(2γ − 1)

2π (t2γ − t )3
e− (2γ−1)

t2γ −t
(x±tγ )2

2 , (11)

where the upper (lower) sign is for the case when the drift is
away from (towards) the absorbing boundary. F (x, t ) decays
asymptotically as t−(3/2−γ ) in the diffusive regime and sup-
presses quickly (with Gaussian weight) with increasing x, the
distance between the initial position and the absorbing point,
indicating that positions sufficiently far from the initial point
and away from the direction of the drift, are reached with
vanishing probabilities. When γ = 0, the FPT reduces to that
for an unbiased random walk. Note that even for γ = 0, the ±
sign still remain because, unlike the standard case, the initial
position is at x = +1; that is, position of the absorbing point,
which is at a distance x from the initial position, differs by
unity depending on whether it is located on the right side or
the left side of the initial position.

For (γ < 0), the drift is always towards x = 0, starting
from x = 1. The FPT is given by Eq. (11) and decays asymp-
totically as t−3/2. This case is similar to the standard diffusive
process. Thus, memory introduces qualitative changes in
the dynamics (diffusion to superdiffusion). However, these
changes are not reflected in the FPTD, which like the standard
diffusive case, does not posses any finite moments.

Figure 2 shows FPT distributions for various values of
the memory γ in the diffusive regime (γ < 1/2). We note
that, in general, the peak of the distribution shifts towards the
smaller times with increasing memory. That is, it becomes
more probable to reach the absorbing point at earlier times.
This sounds counterintuitive for the case when the drift, which
increases with γ , is away from the absorbing point. However,
fluctuations (variance) also grow with γ and help to reach
the boundary point faster at smaller times. Of course, for
asymptotically large times, the variance grows linearly in time
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as we are in the diffusive regime. Comparatively, when the
drift is towards the absorbing point, the optimal time to reach
the boundary decreases more significantly and the probability
increases more as the memory in increased. In this case, both
fluctuations and drift help reach the absorbing boundary ear-
lier as the memory is increased. In the superdiffusive regime
(inset), the FPT distribution shows almost an exponential
decay in time.

B. Introduction of resetting

We now consider the case where we are allowed to reset
the position at random times to a new position which depends
on the present position as discussed below. Thus at any point
in time n, we have three possibilities of σn = +1,−1, and a
resetting jump which is fraction f of its current position σn =
− f xn−1. We would like to understand how resetting and mem-
ory effects interplay and control the dynamics. Note that for
the standard resetting walk we need to put f = 1. A Markov
resetting walk for all f values was analyzed in Ref. [33] and
with partial resetting in Refs. [34,35]. Singh et al. [36] have
analyzed resetting dynamics in terms of moments of resetting
time distribution.

We assume that the walker remembers only ±1 steps
and does not remember resetting step, which is considered
a Markovian process with rate r. Thus at any time we have
p + q + r = 1.

In the presence of resetting, Eq. (1) modifies to

P[σn = σ |{σn−1}] = 1 − r

2
+ σγ

2(n − 1)
xn−1. (12)

Following steps that lead to Eq. (2), we now have

〈xn〉 = (1 − f r)n

γ�(n)

�
(

n + γ

1−r f

)
�

(
γ

1−r f

) . (13)

In the asymptotic limit of n, 〈xn〉 ∼ (1 − f r)nnγ /(1− f r) where
the first term (1 − f r)n is due to the resetting while the
second term arises due to the memory (γ ). For 0 < f r < 1,
there is a competition between the resetting and the mem-
ory effects. The former tries to bring the walker closer to
the initial position while the latter tries to move it away.
The resetting takes over the memory and the mean position
of the walker approaches to x = 0 at asymptotic times. Note
that the resetting also modifies the memory effects by rescal-
ing the parameter γ → γ /(1 − f r). For 1 < f r < 2 and γ >

0, both resetting and memory work in tandem to bring the
average position of the walker to the initial position. For
f r = 2, the average position of the walker oscillates around
its initial value with amplitude slowly decreasing (increasing)
with power-law weight n−γ for γ > 0 (γ < 0).

For f r > 2 and γ < 0, both resetting and memory drag the
walker away from the initial position while for γ > 0, mem-
ory tries to keep the walker’s position close to the initial value.
In both the cases (γ > 0 and γ < 0), the resetting process
dominates over the memory and the walker drifts away from
its initial position at an exponential rate.

Time evolution of the mean position of the walker, Eq. (13),
for various resetting scenarios discussed above is depicted in
Fig. 3. For f r < 2, the mean position of the walker increases

FIG. 3. Mean position of the walker with time for γ = 0.4, r =
0.2, and f = 1.2, 1.5, 2.0, 5.0, 6.0, 7.0 from top (red) to bottom (red
circle). Results for f = 6.0, 7.0 are shown by dots as the mean
position is sharply peaked at n = 1. Inset shows exponential growth
in the mean position for f r > 2, f = 11 (red),12 (black),13 (blue),14
(orange) outside from the central line.

sharply at short times and quickly suppresses to zero as time
increases due to competition between the memory and the
resetting as discussed above.

For the second moment 〈x2
n〉, we obtain a recurrence rela-

tion 〈x2
n〉 = 1 − r + (a + 2γ /(n − 1))〈x2

n−1〉, where a = 1 +
r f 2 − 2r f . The recurrence relation can be solved iteratively
to obtain

〈
x2

n

〉 = an−1�
(
n + 2γ

a

)
�(n)�

(
1 + 2γ

a

)[
1 + 1 − r

a + 2γ
F

(
1, 2, 2 + 2γ

a
,

1

a

)]

− (1 − r)

[
F

(
1, n, n + 2γ

a
,

1

a

)
− 1

]
, (14)

where F (b, c, d, e) is the hypergeometric function. Parameter
a > 0 controls the resetting effect.

Similar to the case of mean position discussed earlier,
resetting modifies the fluctuation by rescaling the memory
effects γ → γ /a. Thus for 0 < f < 2 (for which 0 < a < 1),
the effective value of γ increases due to the resetting process.
That is, due to resetting, the effective memory tends to
drag the walker more into the superdiffusive regime by
increasing the value of 〈x2

n〉 in time. On the other hand, the
explicit dependence on the resetting which is contained in
the factor an−1 tends to exponentially suppress the value
of the fluctuation. The result is that, in the long time, the
fluctuation approaches a time-independent value determined
by the second term on the right-hand side of Eq. (14).
For f > 2 (a > 1), the effective γ value decreases, that is,
increase in the fluctuation with time due to the memory is
suppressed while the explicit resetting dependence tends
to exponentially increase the fluctuation in time. Thus the
“effective memory” and the resetting both compete against
each other with the result that in the long time, the fluctuation
and also the variance increase exponentially and the walker is
in the superdiffusive regime, as depicted in Fig. 4.

Interestingly, for f = 2 (a = 1), although resetting does
affect the mean position of the walker as discussed above, it
does not, however, influence the long-time dynamics of the
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FIG. 4. Variance in the walker’s position for γ = 0.4, r = 0.2,
and f = 1.2, 1.5, 2.0 (solid red, black, and blue curves, bottom to
top) in the diffusive regime ( f r < 2) and f = 5.0, 6.0, 7.0 (solid
orange, dashed black and dashed red curves, bottom to top) in the
super-diffusive regime.

fluctuation 〈x2
n〉, which is determined only by the memory

effects according to the discussion in the previous section.
This can be understood as follows. For f = 2, the long jumps
σ = − f xn do not change the distance of the particle from its
initial position and only take it from one side to the other
side of the initial position, affecting the mean position but
not the fluctuation. Figure 5 shows the effect of resetting for
r > 0. For f = 0, the long-time dynamics is either diffusive
(D) or superdiffusive (SD-I) depending on the memory γ as
discussed above. In the SD-I region, the variance exhibits
a power-law growth in time. An arbitrary small amount of
the resetting ( f 
= 0) wipes out this behavior and leads to
a steady state (SS) at long times in the region 0 < f < 2.
The standard resetting is recovered for f = 1 (dashed line).
f = 2 (blue line) denotes boundary between the SS region

FIG. 5. Phase diagram of the walker in ( f , γ ) region for r > 0.
Black line (0.0 < γ < 0.5) and red line (0.5 � γ � 1.0) at f = 0
denote diffusive (D) and superdiffusive (SD-I) regions, respectively.
The yellow shaded region for 0 < f < 2 corresponds to steady state
(SS) where variance is independent on time with mean position at
x = 0. SD-II denotes superdiffusive region where variance shows
exponential growth in time.

FIG. 6. Probability distribution of the walker for f = 2 at time
t = 100 and r = 0.2 for different memory (top to down) γ = 0.0
(blue), 0.2 (orange), 0.4 (green), 0.6 (red), and 0.8 (purple).

and a super-diffusive region (SD-II) where the variance in the
position grows exponentially in time.

In the presence of resetting, the rate equation, Eq. (6),
modifies to

P(x, t ) = 1

2

(
1 − r + γ

t − 1
(x − 1)

)
P(x − 1, t − 1)

+ 1

2

(
1 − r − γ

t − 1
(x + 1)

)
P(x + 1, t − 1)

+ rP(x/(1 − f ), t − 1). (15)

For the standard resetting walk ( f = 1), the rate equa-
tion leads to the following Fokker-Planck equation for t >

max( γ

r ,
γ

1−r ):

∂P(x, t )

∂t
= − r

1 − r
P(x, t ) − γ x

t (1 − r)

∂P(x, t )

∂x

+ 1

2

∂2P(x, t )

∂x2
+ r

1 − r
δ(x), (16)

which can be solved to obtain the following probability distri-
bution:

P(x, t ) =
√

1 − 2b

2π

[
e− r

1−r (t−1)

√
t − t2b

e− 1−2b
t−t2b

(x−tb )2

2

+ r

1 − r

∫ t

1
ds

e− r(t−s)
1−r√

t − t2bs1−2b
e− 1−2b

t−t2bs1−2b
x2

2

]
, (17)

where b = γ /(1 − r). For no memory (γ = 0), Eq. (17) re-
duces to the well-known result for the standard resetting walk
which reaches the steady state P(x) ∝ e−|x|√2r/(1−r). The same
steady state is reached even in the presence of the memory
since, for f = 1, the resetting effects dominate at large times.
It is clear from Eq. (17) that the resetting process suppresses
the memory effect, the first term in Eq. (17), exponentially in
time, and the second term determines the steady state.

To explore memory effects for larger values of f > 1,
we numerically solve the rate equation to obtain position
distribution. In Fig. 6, we show some results for f = 2 for
different values of the memory. It is clear that in this case, the
memory effects are significant: for small memory, the walker
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is most likely to be found at the initial position, but as the
memory increases, its position distribution develops a double-
peak structure with most probable positions lying equidistant
on either side of the initial position. Average position of the
walker is always zero, although the probability for walker to
be at the initial position decreases as the memory is increased
(large γ ). The position distribution is symmetric about x = 0
which is unlike the case without the resetting [Fig. 1]. This
symmetry for f = 2 is also evident from the rate equation,
Eq. (15).

III. CONCLUSION

A simple random-walk model where particle step at time t
is determined by the past events (steps forward and backward)
that the walker remembers with equal probability is coupled
with resetting process, and leads to rich dynamics at long
times. The memory effects alone give rise to simple diffu-
sive or superdiffusive dynamics with no steady state, while
the resetting process, in addition to diffusive and superdiffu-
sive behavior, may also lead to a steady state at long times.
The resetting effects are robust, that is, in most cases when
there is a competition between the two processes (resetting
and memory), the effect of resetting dominates and dic-
tates the final dynamics. In the case where resetting involves
jumps of twice the current position leading to a swapped
position x → −x and vice versa, the fluctuation dynamics
remains unaffected by the resetting process while the mean
position is strongly affected by the resetting, causing the
walker to remain localized at its initial position at long times.
In the transient dynamics, memory effects tend to suppress
fluctuations.

There could be several examples in nature where memory
and resetting process may be important. For example, in the
stock market. If a stock is correlated in time with itself rep-
resenting the memory effect, large unpredictable jumps in the
stock price may be modeled as resetting events.
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APPENDIX: DERIVATION OF THE RATE EQUATION,
EQ. (6)

In order to derive the rate Eq. (6), we define characteristic
function

Q(λ, t ) = 〈eiλXt 〉 =
∑

Xt

eiλXt P(x, t ), (A1)

where P(x, t ) is the probability to be at Xt = x at time t . Using
Xt = Xt−1 + σt and averaging over σt for a given history, as
defined in Eq. (12), we get

〈eiλXt |{σt−1}〉 = eiλXt−1

∞∑
n=0

(iλ)n

n!

〈
σ n

t

∣∣{σt−1}
〉
, (A2)

where 〈· · · 〉σt is used to denote that the averaging is only over
the last step σt .

Using Eq. (1), we have〈
σ n

t

∣∣{σt−1}
〉 = 1

2
(1 + (−1)n) + γ xt−1

2(t − 1)
(1 − (−1)n).

(A3)

Substituting this in Eq. (A2), and averaging over all Xt−1, we
get

Q(λ, t ) = cos(λ)Q(λ, t − 1) + γ

t − 1
sin(λ)

∂

∂λ
Q(λ, t − 1).

(A4)

Inverse transforming, P(x, t ) = ∫
dλ
2π

e−iλXt Q(λ, t ), and
using ∫

dλ

2π
e−iλXt Q(λ(1 − f ), t − 1)

=
∫

dλ

2π
e−iλXt

∑
Xt−1

eiλ(1− f )Xt−1 P(Xt−1)

=
∑
Xt−1

P(Xt−1)δXt ,(1− f )Xt−1 = P(Xt/(1 − f ))

≡ P(x/(1 − f ), t − 1) (A5)

leads to Eq. (6).

1. Derivation of the Fokker-Planck Eq. (8)
and its solution, Eq. (9)

In the rate Eq. (6) we use Taylor expansion to ex-
pand P(x ± 1, t − 1) around P(±x, t ), we have P(x ± 1, t −
1) ≈ P(x, t ) ± ∂P(x,t )

∂x + 1
2

∂2P(x,t )
∂2x − ∂P(x,t )

∂t . Substituting this in
Eq. (6) and considering x, t 
 1, we obtain the FP Eq. (8).

In order to solve the FP equation for natural boundary
conditions, we first Fourier transform to k space P(k, t ) =∫ ∞
−∞ dxeikxP(x, t ). This gives

∂P(k, t )

∂t
= γ k

t

∂P(k, t )

∂k
− k2

2
P(k, t ), (A6)

with the initial condition P(k, t = 1) = eik . We next
parametrize both k and t by s such that P(s) ≡ P(k(s), t (s)),
where 1 � s � ∞ and t varies from 1 to t as s takes values
from s = 1 to s. Then

dP(s)

ds
= ∂P(s)

∂t

∂t

∂s
+ ∂P(s)

∂k

∂k

∂s
. (A7)

Considering ∂t/∂s = 1 and ∂k/∂s = −γ k/t , so that t = s and
k(s) = k0s−γ for constant k0. These can be trivially inverted
to obtain s = t and k0 = ktγ . Equations (A6) and (A7) then
allow us to write

dP(s)

ds
= −k2(s)

2
P(s) = −k2

0s−2γ

2
P(s), (A8)

which is solved to obtain P(s) = P(1)e− k2
0
2

s1−2γ −1
1−2γ with P(1) =

eik0 . Upon transforming back from s to k, t and substituting
for k0, we obtain

P(k, t ) = eiktγ

e− k2

2
t2γ −t
2γ−1 . (A9)

Inverse Fourier transforming Eq. (A9), we obtain the desired
result given in Eq. (9).
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Next we solve the FP equation with the boundary condi-
tions given in Eqs. (7) and (10). We again define the Fourier
transform P(k, t ) = ∫ t

−t+2 dxeikxP(x, t ). Note the finite range
−t + 2 � x � t for a given t . This gives∫ t

−t+2
dxeikxx

∂P(x, t )

∂x
= (t − 2)e−ik(t−2)P(−t + 2, t )

+ teikt P(t, t ) − ∂

∂k
(kP(k, t )),

≈ teikt P(t, t ) + te−ikt P(−t + 2, t )

− ∂

∂k
kP(k, t ), (A10)

where the last line is for large t 
 1 limit.
Similarly,∫ t

−t+2
dxeikx ∂2P(x, t )

∂x2
≈ −e−ikt ∂P(x, t )

∂x

∣∣∣∣
x=−t+2

− k2P(k, t ) + eikt ∂P(x, t )

∂x

∣∣∣∣
x=t

+ ikeikt P(t, t )

− ike−ikt P(−t + 2, t ). (A11)

The FP equation in k space is then obtained as

∂P(k, t )

∂t
= γ k

t

∂P(k, t )

∂k
− k2

2
P(k, t )

+
(

1 + γ

2

)t−1

f (k, t ), (A12)

where f (k, t ) = A1(k, t )eikt + A2(k, t )e−ikt with

A1(k, t ) = −γ − ik

2
− t

4

1 − γ

(1 + 3γ )
,

A2(k, t ) = − 1−γ

1 + γ

⎛
⎜⎝(

γ− ik

2

)
t− 2γ

1+γ

�
(

2
1+γ

) + 1 − γ

4(1 + 3γ )
t

1−γ

1+γ

⎞
⎟⎠.

(A13)

Following steps that lead from Eqs. (A6) to (A9), we obtain

P(k, t ) = eiktγ

e− k2

2
t2γ −t
2γ−1 + 2

1 + γ

∫ t

1
dτ

(
1 + γ

2

)τ

× e− k2

2
t2γ τ1−2γ −t

2γ−1 f (ktγ τ−γ , τ ). (A14)

This upon inverse Fourier transforming to x space gives

P(x, t ) =
√

2γ − 1

2π (t2γ − t )
e− 2γ−1

t2γ −t
(x−tγ )2

2

+ 2

1 + γ

∫ t

1
dτ

(
1 + γ

2

)τ
√

2γ − 1

2π (t2γ τ 1−2γ − t )

× [A1(τ )e− (2γ−1)(x−tγ τ1−γ )2

2(t2γ τ1−2γ −t )

+A2(τ )e
− (2γ−1)(x+tγ τ1−γ )2

2(t2γ τ1−2γ −t ) ], (A15)
where

A1 = −γ − 1 − γ

1 + 3γ

τ

4
+ tγ τ−γ

2

(2γ − 1)(x − tγ τ 1−γ )

t2γ τ 1−2γ − t
,

A2 = −1 − γ

1 + γ

[
γ

τ
−2γ

1+γ

�
(

2
1+γ

) + 1 − γ

4(1 + 3γ )
τ

1−γ

1+γ

− tγ τ−γ

2

2γ − 1

t2γ τ 1−2γ − t
(x + tγ τ 1−γ )

]
. (A16)

2. Derivation for FPT distribution, Eq. (11)

In order to compute the FPT of the walker to reach at
a point x = x0, we consider an absorbing boundary placed
at a distance x0 from the origin x = 0. In order to use the
“image” method, we then displace the x coordinate such that
the absorbing boundary is at x = 0 and the walker starts
from x = x0 with initial jump now towards the “right” of the
initial position. This is possible, since the effective potential
(inverted harmonic potential) is symmetric in x and therefore
a walk with initial jump to the left and absorbing boundary on
the left is identical to the situation where the initial jump is to
the “right” with absorbing boundary placed on the “right”.

Solution of the FP Eq. (8) in the displaced coordinates with
natural boundary conditions is obtained by changing x → x −
x0. We consider a mirror image of the walker on the other
side of the origin (absorbing point). We first consider the case
when the drift of the dynamics is away from the absorbing
point. In this case, both the real walker and its image drift
away from the absorbing point. Thus a solution is given in
terms of the linear sum of the solutions for the real walker and
for the image point:

P̃(x, t ) =
√

2γ − 1

2π (t2γ − t )

× (e
− (2γ−1)(x−x0−tγ )2

2(t2γ −t ) − e
− (2γ−1)(x+x0+tγ )2

2(t2γ −t ) ). (A17)

The survival probability S(t ) is obtained by integrating P̃(x, t )
over the region 0 < x � ∞. This gives survival probability
in terms of the error function as S(x0, t ) = erf(

√
2γ−1

2(t2γ −t ) (x0 +
tγ )), where erf(x) = (2/

√
π )

∫ x
0 dye−y2

. The FPT distribution
is then given by F (x, t ) = −dS(x, t )/dt . This yields Eq. (11).

When the drift is towards the absorbing boundary, we need
to change x0 to −x0 in Eq. (A17) so that the average position
of the walker (drift) starting from −x0 + 1 moves towards the
absorbing point at x = 0. Following the same steps as for the
case when the drift is away from the absorbing boundary, we
obtain FPT distribution as given in Eq. (11).
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