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Self-phoretic oscillatory motion in a harmonic trap
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We consider the motion of a harmonically trapped overdamped particle, which is submitted to a self-phoretic
force, that is proportional to the gradient of a diffusive field for which the particle itself is the source. In agreement
with existing results for free particles or particles in a bounded domain, we find that the system exhibits a
transition between an immobile phase, where the particle stays at the center of the trap, and an oscillatory state.
We perform an exact analysis giving access to the bifurcation threshold, as well as the frequency of oscillations
and their amplitude near the threshold. Our analysis also characterizes the shape of two-dimensional oscillations
that take place along a circle or a straight line. Our results are confirmed by numerical simulations.
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I. INTRODUCTION

In a range of physical situations, a single particle can
produce a field which influences its motion. Perhaps the first
example in the physics literature is the Abraham-Lorentz
force, which is due to the interaction of the electromagnetic
field generated by a charged particle, which itself acts on the
charged particle. The results of Abraham and Lorentz were
then extended to a fully relativistic setting by Dirac in the form
of the Abraham-Lorentz-Dirac force [1]. In the aforemen-
tioned classical analysis, the mathematical challenge lies in
solving simultaneously the Maxwell equations in the presence
of a source given by the charged particle, in conjunction with
the relativistic equation of motion of the particle subjected to
its own electric field.

A very similar problem is ubiquitous in the general field
of active matter. Here, a particle is subjected to a phoretic
force generated by gradients of a field for which the particle
is itself the source. For example, bacteria or, more generally,
microorganisms tend to move along gradients of chemicals
which are secreted by the microorganisms themselves [2,3].
Clearly, under certain circumstances, the chemical emitted by
a sole bacterium leads to a chemical gradient which depends
on the past trajectory of the microorganism [4–10]. Another
example is the motion of a synthetic “swimmer” which experi-
ences forces in the direction of the gradient of a chemical [11],
which again may be emitted by the swimmer itself, so that the
particle interacts with its own trail; examples include camphor
boats [12–17] and, more generally, self-propelled swimming
droplets [18–21].

In this context, a simplified generic model describing this
self-phoretic motion is [5–9,22]

dXt

dt
= −λ∇φ(Xt ) + √

2Dpη(t ), (1)

where Xt denotes the position of the particle at time t , λ

is a phoretic coefficient (or a measure of the activity of the

system), and η(t ) denotes normalized Gaussian white noise
satisfying 〈ηi(t )η j (t ′)〉 = 2δi jδ(t − t ′), with i, j the spatial co-
ordinates, and Dp is the diffusion constant when λ = 0. The
field φ itself obeys

∂tφ(x, t ) = D∇2φ(x, t ) − μφ(x, t ) + δσ (x − Xt ), (2)

which is simply the diffusion equation with a diffusion con-
stant D, with a degradation or decay rate μ, and a source term
centered at the particle position, which we will take to be

δσ (x) = e−x2/(4σ 2 )/(4πσ 2)
d
2 , (3)

where d denotes the spatial dimension and σ is an effective
particle size. The field φ is usually taken to be a concentration
field; however, in principle, it could also be a temperature field
which induces motion via thermophoresis [23], in which case
λ would be the Soret coefficient of the particle that would be
subject to a radiation source from which it absorbs energy and
heats up (while the absorption by the background solvent is
negligible). We emphasize here that the particle releasing the
field is isotropic due to the spherical symmetry of the source
term in Eq. (3) and so is not a Janus-type particle.

One can also see Eq. (1) as a linear response relation,
expressing the fact that the existence of a nonzero gradient
in the field φ means that the system is out of thermodynamic
equilibrium, and must then generate particle motion to drive
the system towards thermodynamic equilibrium. Note that in
Eq. (1), if φ is a temperature field, the dependence of the diffu-
sion constant (via the viscosity) on temperature is neglected,
in contrast with the “hot Brownian motion” model where such
temperature-dependent viscosity is taken to be the dominant
effect [24].

The model given by Eqs. (1) and (2) has been extensively
studied [5–9,22], sometimes with variations, such as includ-
ing inertia, or considering a time delay in the source term
(representing the measurement time of the microorganism)
instead of a particle size [5]. In the absence of noise, this
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model shows a spontaneous symmetry breaking [5,7] when
λ exceeds a positive threshold value. In this case, the particle
is so repelled by the trail it emits that it spontaneously sets
into motion at a finite velocity. In the presence of noise, the
particle can change direction and, in two dimensions, has a
behavior very similar to that of an active Brownian particle
(ABP) [25], where the speed is more or less constant and the
direction of motion diffuses.

In this paper, we investigate the question of how such self-
phoretic particles behave in confinement. Since free particles
acquire a spontaneous velocity above a threshold, we may
expect that confined particles do not rest at an equilibrium
position, but rather escape this position and display oscillatory
motion, as is the case in other contexts of molecular motor as-
semblies [26–28], cilia beating [29], or oscillations of cellular
protrusions [30]. Indeed, oscillatory motion has been experi-
mentally observed in the context of camphor boats confined
in one-dimensional (narrow slit) and two-dimensional (disk)
domains [12–17,31,32]. We also note that experiments where
active particles are harmonically confined using acoustic [33]
or optical [34] traps or parabolic surfaces [35] show regimes
where particles tend to avoid the trap’s center. However, de-
scriptions of the motion of active particles in confinement rely
either on the use of phenomenological models, such as run and
tumble models, ABPs, etc. [35–43], or on a time derivative ex-
pansion valid only for a rapid relaxation of the field φ [12–14].
The purpose of the present work is to present exact analytical
results for harmonically confined self-phoretic motion that do
not rely on such rapid-relaxation assumptions or on effective
models, in order to take into account the full non-Markovian
feature of the dynamics of Xt .

The outline of this paper is as follows. First, we derive
an effective equation of motion for Xt (Sec. II). Then, we
carry out a linear stability analysis where we identify an oscil-
latory instability (Hopf bifurcation) and we identify exactly
the phase diagram of the system for any spatial dimension
(Sec. III). Then, we calculate asymptotically exact formulas
for both the amplitude and frequency of the weakly nonlinear
oscillations, slightly above the bifurcation threshold (Sec. IV).
Furthermore, our analysis also explains how higher harmonic
terms are generated as the activity increases. The results de-
scribed above are largely explained by an exact analytical
treatment close to the transition and in the case where the
particle size σ is taken to zero particularly explicit results can
be found. In two dimensions, we also describe the shape of
the oscillations, which describe circles in the two-dimensional
plane instead of straight lines. Finally, we present numerical
simulations of the model in Sec. V and present concluding
remarks in Sec. VI.

II. EQUATION OF MOTION

In this paper, we analyze the motion described by Eqs. (1)
and (2), but where we introduce an additional harmonic trap-
ping force,

Ẋt = −K Xt − λ∇φ + √
2Dpη(t ), (4)

∂tφ = D∇2φ − μφ + δσ (x), (5)

where K represents the stiffness of a harmonic potential
(renormalized by the friction coefficient, so that it has the
dimension of an inverse of time). If one knows the trajectory
Xt up to t , at all past times, then the field φ at a position x is a
sum of the effects of all past sources, whose intensity decays
at the rate μ, so that

φ(x, t ) =
∫ ∞

0
dτ

∫
dy

e− (x−y)2

4Dτ
−μτ

(4πDτ )d/2
δσ (y − Xt−τ ), (6)

which is obtained using the Green’s function of the diffusion
equation. For the Gaussian source δσ given by (3), this leads
to

φ(x, t ) =
∫ ∞

0
dτ

e− (x−Xt−τ )2

4(Dτ+σ2 )
−μτ

[4π (Dτ + σ 2)]d/2
. (7)

Using this expression to calculate ∇φ, we obtain the effective
equation of motion for X as

Ẋt = − K Xt + √
2Dpη(t )

+
∫ ∞

0
dτ (Xt − Xt−τ )

2λ e− (Xt −Xt−τ )2

4(Dτ+σ2 )
−μτ

πd/2[4(Dτ + σ 2)]d/2+1
. (8)

This equation shows that Xt is a strongly non-Markovian
process since the future evolution depends on the whole past
trajectory. We also see that in the absence of noise, Xt = 0
is a trivial solution of the problem, which may, however, be
neither unique nor stable. Similar equations have been studied
in Refs. [5,8] and, in the absence of confinement (K = 0),
a threshold of λ was identified beyond which the particle
acquires a finite velocity after a spontaneous symmetry break-
ing. This was found for vanishing particle sizes, with a time
delay to regularize the integrals [8] which is equivalent to our
case with finite particle sizes. In the next sections, we turn
to the case with confinement (K > 0) and perform an exact
study of the stability of the trivial solution Xt = 0 and find the
location at which an oscillatory instability appears.

III. OSCILLATORY INSTABILITY: LINEAR ANALYSIS

A. Location of the bifurcation

Keeping only terms that are linear in Xt in Eq. (8)
and going to Fourier space [with the convention f̂ (ω) =∫ ∞
−∞ dt f (t )e−iωt ], we obtain

iωX̂(ω) = −K X̂(ω) + λG(ω)X̂(ω) + √
2Dpη̂(ω), (9)

where we have defined

G(ω) =
∫ ∞

0
dτ

2(1 − e−iωτ )e−μτ

πd/2[4(σ 2 + Dτ )]d/2+1
. (10)

We may write this equation as

X̂(ω) = R(ω)
√

2Dpη̂(ω) =
√

2Dp

iω + K − λG(ω)
η̂(ω), (11)

where R(ω) is the linear response function. If the steady-state
solution is finite at all times, then causality implies (given
the convention of Fourier transforms used here) that all the
poles of R(ω) are in the upper complex plane. The immobile
solution X = 0 thus becomes unstable when the response
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FIG. 1. (a) Behavior of line of transitions between oscillating
(above the line) and nonoscillating (below the line) phases in the
plane (K, λc ) for d = 1. Here the units are set so that D = σ = 1
and one shows that different critical curves correspond to different
values of μ. (b) Unstable frequency ωc at the transition as a function
of K for the same parameters.

function has a pole on the real axis. This means that there is
a bifurcation when one of the poles of R crosses the real axis
at some frequency ωc (and another pole also crosses the real
axis, at frequency −ωc). This occurs for a critical value of the
coupling λ = λc, which can be identified from the equation

i ωc = −K + λcG(ωc), (12)

which can also be written as

λc = ωc/Gi(ωc), (13)

K = ωcGr (ωc)/Gi(ωc), (14)

where Gr and Gi are, respectively, the real and imaginary parts
of G. These equations define, in an implicit form, the location
of the Hopf bifurcation. More precisely, this defines a curve in
the (K, λ) plane that is parametrized by ωc, so that the phase
diagram can be straightforwardly obtained.

In Fig. 1(a), we show how the phase boundary changes for
fixed values of D and σ as the evaporation term μ is varied. As
μ is decreased, the memory effect becomes stronger and the
threshold value λc is reduced, which can be physically under-
stood since, for large evaporation rate, the field vanishes too
quickly to obtain an instability. Similar behaviors are obtained
for d = 2; see Fig. 2. Next, in Fig. 3, we show how the phase
boundary changes for fixed values of D and μ as the effective

(a) (b)

μ σ2 / D = 0

μ σ2 / D = 0.2
μ σ2 / D = 0.4

FIG. 2. (a) Behavior of line of transitions between oscillating
(above the line) and nonoscillating (below the line) phases in the
plane (K, λc ) for d = 2. Here the units are chosen so that D = σ = 1
and one shows that different critical curves correspond to different
values of μ. (b) Unstable frequency ωc at the transition as a function
of K for the same parameters.

FIG. 3. (a) Line of transitions between oscillating and immobile
states in the plane (K, λc ) for d = 1. Here the units are set so that
D = μ = 1 and one shows that different critical curves correspond
to different values of σ . (b) Unstable frequency ωc at the transition
as a function of K for the same parameters.

particle size σ is varied. As σ is increased, we expect that this
suppresses gradients in the field φ and thus the transition is
pushed to higher values of λc. In Fig. 3(a), we see that this is
indeed the case. However, the frequency of the unstable mode
at the transition is actually increased as σ decreases, as shown
in Fig. 3(b).

In all of these curves, we see that ωc vanishes when the
(normalized) stiffness of the potential K tends to zero, which
can be understood analytically by noting that Gi(ω) ∼ ω,
whereas Gr (ω) ∼ ω2 for small ω, so that

ωc ∼
K→0

√
K . (15)

For low values of the stiffness, the oscillations at the thresh-
old are therefore very slow. For larger ones, the frequency
increases and so does the value of the threshold, λc. This
stabilization effect by the stiffness, due to suppression of
memory effects, is well known in other contexts, such as stick-
slip oscillations [44,45], oscillations induced by molecular
motors [28], and oscillations of cellular protrusions [30].

B. Explicit formulas for a pointlike particle in d = 1

In one dimension, we can take the limit σ → 0, which has
the advantage of providing more explicit analytical results for
the phase boundary and the frequency ωc associated with the
instability at the boundary. In this case, we find that

G(ωc) = 1

2D
3
2

[
√

μ + iωc − √
μ]

= 1

2D
3
2

[(
μ2 + ω2

c

) 1
4

(
cos

θ

2
+ i sin

θ

2

)
− √

μ

]
,

(16)

where

θ = tan−1

(
ωc

μ

)
. (17)

Using the identities ωc = (μ2 + ω2
c )

1
2 sin θ and sin θ =

2 sin θ
2 cos θ

2 , equating the imaginary parts of Eq. (12) gives

(
μ2 + ω2

c

) 1
4 cos

θ

2
= λc

4D
3
2

, (18)
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while equating the real parts leads to

K = λc

2D
3
2

[(
μ2 + ω2

c

) 1
4 cos

θ

2
− √

μ

]
. (19)

Combining the above equations then gives an equation for
λc which can be solved, giving the phase boundary between
oscillating and nonoscillating phases as

λc = 2D
3
2 (

√
μ +

√
2K + μ). (20)

In the case where K = 0, we recover the stability criterion
given in Ref. [5] for a free particle in the limit where the time
delay τ is taken to zero, which is equivalent to our model
when σ vanishes. In agreement with the previous numerical
analysis for nonzero σ , we see that the value to λ necessary to
trigger the instability increases with D, K , and μ. Now, using
the standard trigonometric formula,

cos
θ

2
=

√
cos θ + 1

2
=

√
1

2

√
μ√

μ2 + ω2
c

+ 1, (21)

along with Eqs. (18) and (20), we find that the frequency at
the onset of bifurcation is

ωc =
√

K{K + 2[μ +
√

μ(μ + 2K )]}. (22)

Interestingly, when μ = 0, the frequency associated with the
instability is simply ωc = K . This analytical result is also in
accordance with the numerical results for finite σ , showing an
increase of the unstable frequency on increasing K and μ.

We have thus determined the phase boundary between the
active and passive phases and, in particular, we have explicit
analytical results for the case where σ = 0 and d = 1.

IV. WEAKLY NONLINEAR OSCILLATIONS

A. Amplitude equation

Now, we will analyze the behavior of the oscillating phase
close to the transition. We will show that close to the transi-
tion, the oscillation frequency is given by ωc determined in the
previous section via the stability analysis. We also determine
the continuous nature of the transition by computing the am-
plitude of the oscillations. Our analysis also shows how this
first harmonic term then generates higher harmonics, leading
to deviations from a single mode of oscillation and the more
complex behavior in the strongly oscillating regime.

Let us keep cubic terms in Eq. (8), where we again omit
noise:

Ẋt 	 − K Xt +
∫ ∞

0
dτ

2λ(Xt − Xt−τ ) e−μτ

πd/2[4(Dτ + σ 2)]d/2+1

−
∫ ∞

0
dτ (Xt − Xt−τ )

2λ(Xt − Xt−τ )2e−μτ

πd/2[4(Dτ + σ 2)]d/2+2
. (23)

Let us place ourselves in the vicinity of the bifurcation: λ =
λc(1 + ε), with small ε. Following standard techniques in
nonlinear physics, we use the ansatz

Xt = At eiωct + c.c., (24)

where c.c. denotes the complex conjugate and At is a d-
dimensional vector with complex components. Here, one
assumes that At varies slowly compared to the timescale ω−1

c ,

which is justified since we will actually find that Ȧt is of
the order of εAt . Now, since At varies slowly, we can use
At−τ 	 At − τ Ȧt + · · · to evaluate the integrals in Eq. (23).
The first term on the right-hand side of this equation then reads∫ ∞

0
dτ

2(Xt − Xt−τ ) e−μτ

πd/2[4(Dτ + σ 2)]d/2+1

	 2
∫ ∞

0
dτ

e−μτ [At eiωct − (At − Ȧtτ )eiωc (t−τ ) + c.c.]

πd/2[4(Dτ + σ 2)]d/2+1

	 eiωct {AtG(ωc) + ȦtQ(ωc)} + c.c., (25)

where

Q(ω) =
∫ ∞

0
dτ

2τe−μτ−iωτ

πd/2[4(Dτ + σ 2)]d/2+1
= i∂ωG(ω). (26)

We also have

Ẋt = (iωcAt + Ȧt )e
iωct + c.c. (27)

Last, the cubic term in Eq. (23) can be evaluated with At−τ 	
At since higher orders will generate negligible terms. Omit-
ting nonresonant terms (proportional to e±3ωct ), we thus obtain∫ ∞

0
dτ (Xt − Xt−τ )

2(Xt − Xt−τ )2e−μτ

πd/2[4(Dτ + σ 2)]d/2+2

	 eiωctW (ωc){A∗
t (At · At ) + 2At (At · A∗

t )} + c.c., (28)

where we have defined

W (ωc) =
∫ ∞

0
dτ

4e−μτ (1 − e−iωcτ )[1 − cos(ωcτ )]

πd/2[4(Dτ + σ 2)]d/2+2
. (29)

Collecting the results in Eqs. (25), (27), and (28), and using
Eq. (12) defining λc, Eq. (23) becomes

Ȧt 	λc{εAtGc + ȦtQc − Wc[A∗
t (At · At ) + 2At (At · A∗

t )]},
(30)

where, for conciseness, we have written Gc = G(ωc), Qc =
Q(ωc), Wc = W (ωc). Collecting the terms proportional to Ȧt

leads to

Ȧt = λc
εGcAt − Wc[A∗

t (At · At ) + 2At (At · A∗
t )]

1 − λcQc
, (31)

which is the amplitude equation for our system.
The variable At in this equation is a complex-valued vector,

and it is convenient to derive an equation for two positive
scalar quantities Rt and Ut defined by

Rt = At · A∗
t , Ut =

√
(At · At )(A∗

t · A∗
t ). (32)

Using the amplitude equation for At (and its complex con-
jugate), we obtain, after some algebraic manipulations, the
equations describing the evolution of Ut and Rt (see the Ap-
pendix):

U̇t = Ut [εα − 3βRt ], (33)

Ṙt = εαRt − β
[
U 2

t + 2R2
t

]
, (34)

where α and β are real coefficients defined by

α = λcGc

1 − λcQc
+ c.c., β = λcWc

1 − λcQc
+ c.c., (35)

which turn out to both be positive.
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FIG. 4. Flow lines for the dynamical system defined in Eqs. (33)
and (34) above the bifurcation threshold for εα = β = 1, which can
be used, without loss of generality, by proper rescaling of Ut and Rt .
We show the three fixed points: the nonoscillating state (cyan disk),
oscillations in a straight line (red diamond), and circular oscillations
(black square). The gray area, with Rt < Ut , is physically forbidden.

The flow lines of the dynamical system, formed by
Eqs. (33) and (34), are represented in Fig. 4. One identifies
three fixed points. The first one is U = 0, R = 0 (dropping
the subscript t for fixed points) and corresponds to a nonoscil-
lating state. The second fixed point is

U = R = εα

3β
. (36)

This fixed point corresponds to oscillations that take place
along a straight line in the d-dimensional space. The third
fixed point exists only if the spatial dimension is d > 1 and
is

U = 0, R = εα

2β
, (37)

which corresponds to circular trajectories for two-dimensional
systems; see the Appendix. Looking at the flow lines in
Fig. 4, one realizes that for ε > 0, the fixed point correspond-
ing to circular oscillations is the only stable one and it is
straightforward to check it analytically. Interestingly, some
lines approach very close to the fixed point corresponding to
straight trajectories, so that one may expect that the system
may exhibit temporary trajectories in a straight line before
converging to the final state with circular oscillations.

B. Frequency shift and anharmonicity of the oscillations

The frequency of the dominant mode near the transition
corresponds to the frequency of the instability leading to the
transition, with possibly a small shift when the bifurcation
threshold is crossed. If there is a frequency shift �ω, it means
that in the steady state, At ∼ ei�ωt and therefore Ȧt = i�ωAt .
Insertion of this into (31), which we multiply by A∗

t , leads to

�ω = λc

iR

[
εGcR − Wc(U 2 + 2R2)

1 − λcQc

]
. (38)

This formula provides the frequency shift of the oscillations
as one leaves the critical line in terms of the single parameter
ωc.

Up to now, we have considered only perfectly harmonic
oscillations, whose amplitude (along each spatial coordinate)
varies as e±iωct . However, cubic nonlinearities also generate
terms of the form e±3iωct . To quantify this effect, we consider
solutions of the form

Xt = At eiωct + A(3)
t ei3ωct + c.c., (39)

which we insert into (23) to select terms of frequency 3ωc,
thereby obtaining

A(3)
t = −R(3ω)λcScAt (At · At ), (40)

where the response function R was defined in Eq. (11), and

Sc =
∫ ∞

0
dτ

2e−μτ (1 − eiωcτ )3

πd/2[4(Dτ + σ 2)]d/2+2
. (41)

Note that R(ω) has a pole at ω = ωc when λ = λc, but
R(3ωc) is finite. Hence, (40) predicts the presence of an-
harmonic terms with the triple frequency, of the order of
A(3) ∼ A3 	 ε3/2. Noting that A ∝ √

ε, this means that those
anharmonic terms are one order smaller than the leading or-
der harmonic contributions in the solution for Xt . Another
interesting remark is that for the fixed point corresponding
to d-dimensional oscillations, we have U = 0 and therefore
A · A = 0, so that Eq. (40) indicates that the anharmonicity
vanishes for such circular oscillations. In turn, in d = 1, where
oscillations occur on a line, the anharmonicity does not vanish
and one may therefore expect oscillations that differ from a
sinusoidal shape when one leaves the threshold.

Last, when d = 1 and σ = 0 and μ = 0, the above results
can be rendered particularly explicit; in this case, one finds

A2 = ε
2D

ωc
= ε

2D

K
, (42)

where we have used the relationship given by Eq. (22). In this
case, the shift in the frequency is given by

�ω = 2ε(3 − 2
√

2)ωc, (43)

which means that the frequency increases as λ increases, as
one would intuitively expect.

V. NUMERICAL ANALYSIS

A. One-dimensional case

Now, we describe a numerical analysis of the model to
check our results. As with our analytical analysis, we study
the noiseless equations. We use two numerical methods. The
first method, which we apply for d = 1, consists in numer-
ically integrating the equation for the gradient of the field
u(x, t ) = ∂xφ(x, t ), which satisfies

∂t u(x, t ) = D∂2
x u(x, t ) − μ u(x, t ) + ∂xδσ (x − Xt ). (44)

The trajectories Xt can be obtained by solving this partial-
differential equation with a time-dependent source, by, in
parallel, evolving Xt with the equation of motion at each time
step.

The numerical simulation is carried out on a region of
finite size and one must be careful in solving the diffusion
equation when μ is small and so the steady-state solution
for φ(x, t ) can be large far from the origin. However, if the

064147-5



ARTHUR ALEXANDRE et al. PHYSICAL REVIEW E 109, 064147 (2024)

particle is confined near the origin, then the steady-state so-
lution for φ far from the origin must be asymptotically the
same as that for a pointlike source term δσ (x − Xt ) 	 δ(x).
The steady-state solution us(x) to the resulting equation,

D∂2
x us − μ us(x, t ) + δ′(x) = 0, (45)

is then

us(x) = − 1

2D
sgn(x)e−

√
μ

D |x|. (46)

This suggests that one can impose Dirichlet conditions for u
at the boundaries,

u(x = ±L, t ) = us(±L), (47)

which will cover the case of finite μ for which us(L) vanishes
if L is large enough (L � √

D/μ), and the case of vanishing
μ, for which us becomes constant far from the particles. In this
way, one avoids the divergence of the field φ which appears in
the case μ = 0.

In practice, we start the simulation with this steady-state
solution as the initial condition, i.e., u(x, 0) = us(x), and we
also start the particle close to the origin. For λ < λc, the parti-
cle oscillates in a damped way and eventually settles down to
the immobile steady-state solution X = 0. As λ is increased
beyond λc, but stays close to λc, the particle starts to oscillate
with small amplitude [see Fig. 5(b)] and then settles into a
steady state with an almost perfect form,

Xt = 2A cos(ωt + φ), (48)

as can be seen at late times in Fig. 5(b) and also from the
elliptical trajectories in the (Xt , Ẋt ) plane in Fig. 5(a). In
addition, close to the transition, there are only two peaks in
the Fourier spectrum of Xt (corresponding to ±ω), as shown
in Fig. 5(c).

The transition is found be continuous for the amplitude A,
which starts at zero at the phase boundary between the active
and inactive phases and increases as λ is increased. The slow
temporal increase in the amplitude seen in Fig. 5(b) can be
understood as being due to an exponentially growing mode
due to the pole below the real axis, which is, however, close
to the real axis.

In Fig. 5(e), we show simulations when λ is much larger
than λc. Clearly, the amplitude A is larger, and the steady-state
solution X (t ) remains periodic but no longer with a single
frequency component of the form Eq. (48), as seen from the
presence of several peaks in the Fourier spectrum in Fig. 5(f)
and the nonelliptical shape of the trajectories in phase space;
see Fig. 5(d). Interestingly, the shape of these oscillations is
similar to that of stick-slip oscillations [44,45] and oscillations
of molecular motor assemblies [26–28].

In Fig. 6, we show the numerically obtained phase bound-
ary for the case D = 0.5 and σ = 0.2 and μ = 0.5 compared
with the predictions of the stability analysis performed here.
We see that the agreement is perfect (the accord is of the order
of 1% given potential numerical imprecisions and the fact that
the decay times of the initial perturbation become very long
close to the transition).

FIG. 5. Numerical oscillations for the one-dimensional problem
obtained with the method of Sec. V A. In (a)–(c), we used μ = 0.1,
D = 0.1, σ = 0.3, K = 0.6, L = 10, and λ = 0.25. The value of the
threshold for these parameters is λc 	 0.236. (a) Trajectories in the
(Xt , Ẋt ) plane; the blue line is the simulation result and the orange
line is the theoretical estimate using Eq. (36). (b) Signal Xt vs time t .
(c) Spectrum of the signal obtained using the fast Fourier transform,
where one sees a peak at the main oscillation frequency. In (d)–(f),
we show the same quantities as in (a)–(c) for the same parameters,
except for K = 0.2 and λ = 0.6, for which λ is much larger than λc.

B. Two-dimensional case

To investigate the case d = 2, for which Xt = (Xt ,Yt ), we
numerically integrate the equation of motion (8), where the in-
tegral over the past trajectory is evaluated with Euler’s method
for all τ < t . We do not consider any contribution from τ > t
in this integral, which corresponds to the case that the activity
coefficient λ vanishes for negative times. The initial position
is X0 and lies in the vicinity of the origin. In this way, initially
the motion takes place on the line joining 0 and X0. When
λ < λc, Figs. 7(a) and 7(b) show a relaxation of Xt towards
the origin, as expected. For λ > λc, we observe first a time
lag where oscillations occur along a single line in the (X,Y )
plane, followed by a phase with circular oscillations; see
Figs. 7(c)–7(f). This corresponds to the behavior visualized
in Fig. 4, with the system flowing close to the fixed point of
straight oscillations and then moving to the final stable fixed
point of circular oscillations. As expected, the time period
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FIG. 6. Line of transitions between the oscillating and nonoscil-
lating phases for d = 1, D = 0.5 and σ = 0.2 and μ = 0.5. The
blue line corresponds to the theoretical prediction from the stability
analysis as given by Eqs. (13) and (14). The points correspond to
the numerically determined phase boundary by examining when the
onset of oscillations occurs with the method described in Sec. V A,
for L = 5.

during which one observes straight oscillations is longer when
one approaches the threshold.

To further validate our theory, we measure the amplitude of
the oscillations as a function of λ, both for circular oscillations
and straight ones. The results in Figs. 8(a) and 8(b) show
a good agreement with the theory when (λ − λc)/λc  1,
validating our approach.

VI. CONCLUSION

We have analyzed a simple model of an overdamped par-
ticle in a harmonic trap subject to a self-phoretic driving
mechanism. Physically, the particle becomes active because
it is repelled from the concentration field that it produces and
when the repulsion becomes strong enough, it is set in motion.
This memory-generated effect is strongest when the diffusion
constant D is small and the evaporation rate is small. In
agreement with results for free particles and particles confined
in finite domains in similar systems [7,12–17], the particle
undergoes a continuous transition from a stationary to an
oscillating phase. This means that one can identify the phase
boundary between the oscillating and immobile phases, as
well as the amplitude and frequency of the oscillations close to
the transition. We determined the shape of oscillations for the
two-dimensional case, finding that circular oscillations are the
only stable state, but that the system can also display a tem-
porary state with straight-line oscillations. Similar behavior
was observed experimentally and predicted theoretically with
a simplified analysis for camphor boats in a bounded disk [14],
as well as in active swimmer systems where the effect per-
sists at a collective level for multiparticle systems [46,47].
We have also determined fully explicit formulas describing
the oscillation threshold and frequency in the case of one-
dimensional pointlike particles. Our analysis is exact and does

(a) (b)

(d)

(f)(e)

(c)

FIG. 7. Oscillations for d = 2 obtained numerically with the
method described in Sec. V B, for D = σ = μ = 1, K = 0.521. For
these parameters, the theoretical threshold is λc 	 170.0. In (a), we
show the radial coordinate as a function of time for λ = 165 <

λc, and in (b), the evolution of the system in the (X,Y ) plane.
(c),(d) The same quantities represented for λ = 220 > λc. (e),(f) The
same quantities represented further away from the threshold, for
λ = 250. Here, the time step is dt = 0.003, Dp = 0, and colors code
(arbitrarily) for the time.

(a) (b)

FIG. 8. Amplitude of two-dimensional oscillations in (a) the
regime of circular oscillations and (b) the (temporary) regime of
straight oscillations, defined as the maximal value of (X 2

t + Y 2
t )1/2

over time. Symbols: simulations; the time step dt is indicated in the
legend. Lines are theoretical predictions using Eqs. (36) and (37),
noting that the amplitude defined in this way is 2

√
R for straight

oscillations (with a phase shift of nπ between Xt and Yt , n being an
integer) and

√
2R for circular ones (with a phase shift of π/2 + nπ

between Xt and Yt ). Parameters: D = σ = μ = 1, K = 0.521, as in
Fig. 7.
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not rely on the use of simplified models of active particles
or on the use of a fast-varying assumption for φ. It would be
interesting to extend this study to bounded systems of the kind
studied in [12,14], where inertia is also taken into account and
confinement comes from the finiteness of the domain (with re-
flecting conditions for φ at the boundaries) instead of coming
from a harmonic trap. In this case, time derivative expansion
only yields approximative results for the phase boundary,
but our approach may lead to exact results, as soon as one
replaces the propagator of the diffusion operator in free space
by the propagator in confined domains in Eq. (8). It would
also be possible to characterize the shape of oscillations, for
which nonlinearities in Xt and Xt−τ are not the same as those
obtained here. Another extension would be to consider non-
axisymmetric domains. Other possible extensions are to the
case of two- or more-body, systems, although we note that it
is not certain that such systems exhibit a continuous transition.
Finally, it would be interesting to investigate the cases where
one includes both thermal noise and hydrodynamic effects, in
particular the effect of advection on the concentration field.
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APPENDIX: DYNAMIC SYSTEM FOR Ut AND Pt

Here we give some details about how to obtain and analyze
the dynamics system for Ut and Rt . First, we define

Pt = At · At , Rt = At · A∗
t . (A1)

Multiplying Eq. (31) by At leads to

1

2
Ṗt = λc

1 − λcQc
[εGcPt − 3WcPt Rt ]. (A2)

Next, multiplying (31) by A∗
t and adding the complex conju-

gate of the resulting expression leads to

Ṙt = λc

1 − λcQc

[
εGcRt − Wc

(
Pt P

∗
t + 2R2

t

)] + c.c. (A3)

Let us now define

Mt = Pt P
∗
t . (A4)

Then,

1

2
Ṁt = λc

1 − λcQc
[εGcMt − 3WcMt Rt ] + c.c. (A5)

Using the real coefficients α and β defined in Eq. (35), we
obtain

1
2 Ṁt = Mt [εα − 3βRt ], (A6)

Ṙt = εαRt − β
[
Mt + 2R2

t

]
. (A7)

Finally, using Ut = √
Mt , we obtain

U̇t = Ṁt

2
√

M
= Ut [εα − 3βRt ], (A8)

Ṙt = εαRt − β
[
U 2

t + 2R2
t

]
. (A9)

The dynamical system for (Rt ,Ut ) has three fixed points.
The first fixed point is (R = 0; M = 0) and corresponds to
a nonoscillating state. The second fixed point is U = R; R =
εα/(3β ). To determine the shape of the trajectories for this
second fixed point, let us consider the two-dimensional case
(d = 2), with steady state

At = (ρxei�ωt ; ρyei�ωt+iϕ ), (A10)

with ρx > 0 and ρy > 0, and ϕ a constant value at the steady
state. In that case, Rt = ρ2

x + ρ2
y is fixed and the equality Ut =

Rt becomes(
ρ2

x + ρ2
y e2iϕ

)(
ρ2

x + ρ2
y e−2iϕ

) = (
ρ2

x + ρ2
y

)2
, (A11)

so that

ρ2
x ρ2

y 2 cos(2ϕ) = 2ρ2
y ρ2

x . (A12)

This implies cos(2ϕ) = 1 so that ϕ = 0 or ϕ = π ; in both
cases, the trajectories in the (x, y) plane take place along a
segment in the two-dimensional plane.

Last, the third fixed point is U = 0 and R = εα/(2β ). For
this fixed point, we have

ρ2
x + ρ2

y e2iϕ = 0. (A13)

Considering the imaginary part of this equation leads to
sin(2ϕ) = 0, meaning that ϕ = nπ/2 for some integer n.
Clearly, n = 0 or n = 2 is not acceptable (otherwise, ρ2

x +
ρ2

y = 0). With n = 1 or n = 3, we have

ρ2
x = ρ2

y . (A14)

So, this third fixed point corresponds to circular oscillations
in the two-dimensional (x, y) plane.
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