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Semiclassical thermodynamic geometry
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In this work the thermodynamic geometry (TG) of semiclassical fluids is analyzed. We present results for
two models. The first one is a semiclassical hard-sphere (SCHS) fluid whose Helmholtz free energy is obtained
from path-integral Monte Carlo simulations. It is found that, due to quantum contributions in the thermodynamic
potential, the anomaly found in TG for the classical hard-sphere fluid related to the sign of the scalar curvature is
now avoided in a considerable region of the thermodynamic space. The second model is a semiclassical square-
well fluid, described by a SCHS repulsive interaction coupled with a classical attractive square-well contribution.
The behavior of the semiclassical curvature scalar as a function of the thermal de Broglie wavelength λB is
analyzed for several attractive-potential ranges. A description of the semiclassical R Widom lines, defined by
the maxima of the curvature scalar, is also obtained and results are compared with the corresponding classical
systems for different square-well ranges.
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I. INTRODUCTION

Semiclassical fluids (SCFs) are an important subject within
the molecular liquids research community. Unlike classical
fluids, in the quantum regime the dual wave-particle nature
of the individual constituents becomes dominant and man-
ifests in their collective properties. These systems defy our
classical understanding of matter and offer exciting prospects
for technological advancements, considering substances like
hydrogen and helium, and their transport and storage. Addi-
tionally, quantum properties of the hydrogen bond have been
of increasing interest recently [1] as well as their significance
in the description of the phase diagram of associating flu-
ids [2]. On the other hand, research on SCFs gives insight into
the fundamental principles of quantum mechanics, shedding
light on the nature of matter and its interactions under ex-
treme conditions. In this paper we explore some aspects of the
thermodynamic properties of SCFs using the thermodynamic
geometry formalism, highlighting the main aspects such as the
Riemann scalar curvature and the R Widom line.

Semiclassical hard-sphere (SCHS) fluid is a natural system
to study since it is possible to compare quantum effects with
respect to the very-well-known classical hard-sphere (HS)
system. Analytical results are known for the Slater sum of
SCHS fluids at low densities, obtaining interesting insights
into quantum effects in semiclassical computer simulation
studies [3]. Thermodynamic, structural, and dynamic proper-
ties of SCHS fluids have been studied using the more robust
path-integral Monte Carlo (PIMC) method [4–6] for a wide
range of densities ρ, temperatures T , and thermal de Broglie
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wavelength values λB and for a system of particles at tem-
perature T , with λB = h/

√
2πmkT , where m is the mass per

particle and h and k are the Planck and Boltzmann constants,
respectively. In order to consider attractive interactions for
a more realistic description of real fluid systems, different
hard-core potential equations of state have been developed,
such as for semiclassical square-well [7,8] and semiclassical
Yukawa [9] fluids.

The simulation method used to obtain a semiclassical equa-
tion of state, as described by Serna and Gil-Villegas [8], is
based on the isomorphism between Feynman’s path integrals
and the statistical mechanics of classical ring molecules, since
a quantum propagator is transformed into a partition func-
tion using a complex time τ = ih/kT according to the Wick
transformation [10–12]. Since exchange effects provide a very
small contribution to the statistical properties, as has been
shown by Singer and Smith [13] and Runge and Chester [4],
the isomorphism uses a Boltzmann-Gibbs statistics. The equa-
tion of state used in this work, described in Ref. [8], was
obtained from a reparametrization of the Carnahan-Starling
equation of state for classical hard spheres, using an effective
packing fraction dependent on the actual value of the packing
fraction and λB, in order to reproduce PIMC results. The
PIMC simulations were obtained in the NV T ensemble for
125 necklaces and 6 beads per ring molecule, using 1.28×105

and 1.28×106 bead cycles for equilibration and for averaging,
respectively. The quantization method is useful to describe
bulk and confined phases of hydrogen, deuterium, and helium-
4, as we have previously reported [14]. Low temperatures are
not necessarily required when confinement is present, since
diffraction effects are also relevant when λB is comparable
to the size of pores, as has been determined in adsorption
of hydrogen in polymeric networks (see, e.g., the work of
Arriola-González et al. [15]).

In the past few decades, several approaches have been
developed to describe thermodynamic properties of systems
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using differential geometry. Most of these theories are con-
sequences of the well-known fluctuation theory [16–18],
establishing the notion of distance between a pair of points,
each one representing a thermodynamic state, located on the
space composed of thermodynamic parameters. In the context
of Riemannian geometry, such a distance plays the role of the
metric. In particular, Weinhold [19] and Ruppeiner [20,21]
defined Hessian metrics in terms of a given thermodynamic
potential in the thermodynamic equilibrium space, the internal
energy (Weinhold), and the entropy (Ruppeiner). In Rup-
peiner’s work, its metric is the negative of the Hessian of the
entropy. Both metrics are related by a conformal factor [22].
The theoretical framework of such Hessian metrics is usually
referred to in the literature as thermodynamic geometry (TG).
This formalism is considered in the present work to study the
physical properties of the SCHS and semiclassical square-well
(SSW) fluids.

In this work we are also interested in the study of the SCF
supercritical region using the TG approach. This region is of
great interest for both theoretical and experimental research,
particularly the estimation of the existing boundary which
separates the gaslike and liquidlike phases, which has been
observed in the supercritical region [23–25]. One of these
boundaries is the so-called Widom line [24,26,27], which is
defined as the locus of points that maximize the correlation
length. It is known that the correlation length diverges at the
critical point, but above its vicinity changes with a defined
power law [23]. This behavior makes it possible to character-
ize this curve through extreme values of the correlation length
and near the critical point, via the extreme values of different
response functions. It is well known that such curves exhibit
a linear behavior in the region close to the critical point,
to later separate from each other as temperature increases.
Therefore, the coincidence of such lines in the (P, T ) plane
has been used previously as a definition for a unique Widom
line [24,28,29].

A more recent proposal to define the Widom line comes
from the TG framework, which defines this curve as the
locus of maxima of the isotherms of the scalar curvature
obtained for the thermodynamic metric constructed using this
formalism [30,31]; this is known as the R Widom line. It
is important to stress that, at present, there is no consensus
on a single definition of the Widom line. Some of the most
common definitions in the literature involve the maxima of
certain response functions (heat capacities, compressibilities,
etc.). Another definition, as previously mentioned, refers to
the Widom line as the maxima of the correlation length. Since
we are working within a TG formalism, in this work the R
Widom line definition will be used to explore the supercritical
behavior of the SSW fluid.

This work is organized as follows. In Sec. II we briefly
present how the metric and curvature are calculated in terms
of the dimensionless Helmholtz free-energy representation.
Subsequently, equations of state related to the classical and
semiclassical HS systems are presented together with the ge-
ometrical analysis of their curvatures, as well as a discussion
about its consequences. Section III presents the TG analysis
for the SSW fluid and the Widom lines for different values
of the square-well (SW) range λ. Finally, a summary and
prospective avenues of research are given in Sec. IV.

II. THERMODYNAMIC GEOMETRY: CLASSICAL
AND SEMICLASSICAL HARD-SPHERE FLUID

In this section we will consider the TG formalism [20,21]
for a SCHS fluid. We use the Helmholtz free-energy represen-
tation for which the thermodynamic metric components are
obtained as second derivatives of the free energy per volume
f = A/V with respect to absolute temperature T and number
density ρ = N/V . This metric is given in its matrix form by

[gi j] = 1

kT

⎛
⎝− ∂2 f

∂T 2 0

0 ∂2 f
∂ρ2

⎞
⎠. (1)

In the statistical associating fluid theory (SAFT) approach,
developed for chain molecules of hard-core segments with
attractive potentials of variable range (SAFT-VR) [32,33],
which will be followed in subsequent sections, the dimension-
less free energy is defined by

A

NkT
= a(T, ρ). (2)

The TG metric components of the system are determined by

gT T = 6

πσ 3

(
2η

T

∂a

∂T
− ∂2a

∂T 2

)
,

gηη = πσ 3

6

(
η

∂2a

∂η2
+ 2

∂a

∂η

)
, (3)

where η is the packing fraction for hard-sphere particles with
diameter σ , obtained from the density number as

η = πρσ 3/6. (4)

The corresponding reduced curvature scalar R∗ = R/σ 3 is
given by

R∗ = π2σ 3

36
√

g

∂

∂η

(
1√
g

∂gT T

∂η

)
− 1

σ 3√g

∂

∂T

(
1√
g

∂gηη

∂T

)
. (5)

This form of R∗ is particularly simple because the metric is
diagonal in the Helmholtz free-energy representation [20,30].
According to the TG approach and following the sign con-
vention in [21], negative (positive) values for R indicate that
attractive (repulsive) interactions are predominant in the sys-
tem under study. However, it is well known that the TG
description for a classical HS fluid presents a fundamental
inconsistency related to the interpretation of the sign of R
(see, for instance, Ref. [30]), since the corresponding scalar
curvature, calculated for different equations of state, is always
negative, which contradicts the repulsive nature of the hard-
sphere potential. This convention will also be followed here.
Furthermore, for semiclassical system results it is convenient
to represent the curvature in terms of λB instead of tempera-
ture. This change results in a global minus sign that reverses
the sign interpretation of R.

In the fluid region of the phase diagram of a classical
hard-sphere fluid, the Helmholtz free energy can be accurately
described by the Carnahan-Starling equation [34]

AHS

NkT
= ln

(
ρλ3

B

) − 1 + 4η − 3η2

(1 − η)2
. (6)
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The TG applied to the classical HS fluid was partially ana-
lyzed in Ref. [35], where the curvature R of the free energy (6)
was computed and compared with values determined with
another HS model [30]. It was observed for both models
that the interaction hypothesis related to the thermodynamic
curvature of the HS system was not valid, since the HS cur-
vature always remains negative. Given the fact that there is
no attractive contribution to the HS interaction, the sign of its
curvature contradicts the aforementioned hypothesis. This is
known in the literature as the Brańka-Pieprzyk-Heyes (BPH)
anomaly [36]. In what follows, a model of a SCHS fluid will
be analyzed with the premise that the BPH anomaly could be
solved when quantum contributions are taken into account.

Quantum corrections to classical equations of state (EOSs)
can be introduced according to semiclassical thermodynamic
perturbation methods [2,8]. These EOSs are given as functions
of λB. In [8] the functional expression of the Carnahan-
Starling excess Helmholtz free energy was used to obtain a
parametrization valid for a SCHS fluid in order to reproduce
PIMC simulation values. The corresponding SCHS Helmholtz
free energy can be expressed in terms of an effective packing
fraction ηe,

ASCHS

NkT
= 4ηe − 3η2

e

(1 − ηe)2
, (7)

where ηe is a function of the actual packing fraction η and the
reduced de Broglie thermal wavelength λ∗

B = λB/σ ,

ηe = (1 + d1λ
∗
B)η + (

d2λ
∗
B + d3λ

∗2
B

)
η2, (8)

with d1 = 1.659 385 448 4, d2 = −1.092 711 515 0, and
d3 = −1.118 823 392 1.

For the purpose of exploring geometric properties of
Eq. (7) it is convenient to construct the TG formulation in
terms of λB instead of the usual variable temperature T . In
order to do this, it is useful to introduce the reduced tempera-
ture T ∗ = kT/ε, where the energy parameter ε is related to the
potential depth of a particular attractive interaction. Although
this not apply for the HS system, it is possible to define a
suitable energy parameter, denoted by ε0, given by

ε0 = h2

2πmσ 2
, (9)

and then T ∗
HS = kT/ε0.

The reduced thermal wavelength λ∗
B is given in terms of the

de Boer parameter 
 = h/σ
√

mε as

λ∗
B = 
√

2π
√

T ∗ , T ∗ = kT

ε
. (10)

For the SCHS system the corresponding expression is

λ∗
B = 
0√

2π
√

T ∗
HS

= 1√
T ∗

HS

, (11)

where 
0 = √
2π , which is very close to the de Boer param-

eter for atomic hydrogen. This procedure for 
 will also be
used to obtain the geometric properties of the SSW systems
since it allows us to write the geometric properties of the
HS system in terms of the reduced thermal wavelength λ∗

B by
using the relation λ∗

B = 1/
√

T ∗
HS.

FIG. 1. Reduced curvature for the classical and semiclassical
hard-sphere systems for different isotherms in the (λ∗

B, η) repre-
sentation. The solid line for λ∗

B → 0 represents the behavior for
a classical HS fluid; as λ∗

B increases (temperature decreases), the
quantum contribution becomes more important in the region where
the curvature becomes negative, crossing the R∗ = 0 line, reversing
the known anomaly for the classical HS curvature.

The geometric properties of the SCHS system can be
rewritten in terms of derivatives with respect to λ∗

B using
Eq. (11),

gλ∗
Bλ∗

B
= − 3η

2πσ 3

(
λ∗2

B

∂2a

∂λ∗2
B

− λ∗5
B

∂a

∂λ∗
B

)
, (12a)

gηη = πσ 3

6

(
η

∂a2

∂η2
+ 2

∂a

∂η

)
, (12b)

and hence the curvature scalar is given by

R∗ = π2σ 3

36
√

g

∂

∂η

(
1√
g

∂gλ∗
Bλ∗

B

∂η

)
− λ∗3

B

4σ 3√g

∂

∂λ∗
B

(
λ∗3

B√
g

∂gηη

∂λ∗
B

)
.

(13)
As long as the free-energy representation is used, the cur-
vature R∗ given in (13) remains the same, regardless of the
particular model; therefore, it will be used to calculate R∗ for
the classical and semiclassical SW fluids described in the next
section.

The results for R∗ for the SCHS system are presented in
Fig. 1, where several isotherms in the (λ∗

B, η) representation
are plotted. The solid line represents the classical case, which
corresponds to the isotherm where λ∗

B → 0, for which, in
the range of validity for the EOS given by (7), R∗ is always
positive, i.e., negative in the T -η thermodynamic space. As
λ∗

B increases, quantum effects become more noticeable, since
a change in the sign of the curvature appears at small den-
sities. In such a region, the usual interpretation given in the
literature of the sign of R∗ is then fulfilled. However, for
even greater values of λ∗

B, another change of sign appears,
returning to the BPH anomaly for R∗ in the region of higher
values of η, therefore constraining the region where quantum
effects are able to reverse this anomaly. For instance, in the
isotherm λ∗

B = 0.9 (dash-dotted line) a bump underneath the
line R∗ = 0 is observed; this is the region for which the usual
TG interpretation of a repulsive interaction holds.
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FIG. 2. Reduced curvature for the SCHS system in the (λ∗
B, η)

representation for different values of η. The crossing through zero of
the semiclassical curvature is also favored by increasing density. This
behavior for both λ∗

B and η is better depicted in the three-dimensional
representation of R∗.

This interpretation is reinforced in Fig. 2, where R∗ is given
in the (λ∗

B, η) representation for several values of the packing
fraction. A change of sign appears in R∗ starting from the
curve η = 0.1. The bump region where the BPH anomaly is
reversed can also be noticed in this figure, appearing at higher
densities; it is clearly visible from η = 0.2 and around the
interval 0.1 � λ∗

B � 0.6.
In order to better depict the behavior of the curvature of

the semiclassical SCHS system, a three-dimensional (3D) plot
in the (λ∗

B, η) representation is presented in Fig. 3. This plot
also presents the plane of flat curvature R∗ = 0. The region
below this plane with negative curvature, as observed in Fig. 1,
becomes a strip that crosses the middle section of the plot.
This is the region where quantum effects reverse the BPH
anomaly in the curvature of the SCHS system, since in the
usual (T, η) representation, curvature becomes positive now,

FIG. 3. Plot of the 3D reduced curvature scalar R∗
SCHS for the

SCHS system as a function of λ∗
B and η. The crossing with the R∗ = 0

plane is also presented. The main feature of this plot is the existence
of a region of (λ∗

B, η) for which the interpretation of the sign of
the curvature scalar holds, located in the strip around the middle
section of η.

FIG. 4. Contour plot for the curvature scalar for the SCHS sys-
tem in the (λ∗

B, η) space. The region where R∗ < 0 (i.e., where the
BPH anomaly is reversed) is located in the strip in the middle of the
plot limited by the lower and upper contour lines, whereas for high
values of λ∗

B and η the value of R∗ becomes positive once again. A
region of minimum values for the curvature also appears in the upper
middle section of the plot.

consistent with the interpretation given in the TG literature of
a repulsive potential, as is the case of the HS fluid.

Finally, a contour plot of λ∗
B vs η for the SCHS curvature

R∗ is presented in Fig. 4. This plot describes the values that
curvature R∗ takes in the (λ∗

B, η) representation. The region
where the BPH anomaly is reversed due to quantum effects
is also present in the middle section, enclosed by the lines
where R∗ = 0. This region is the same one observed in Fig. 3.
Additionally, the existence of a small U-shaped region around
λ∗

B = 0.8 and η = 0.2 can be noticed, which is the region
where the lowest value [or highest value in the (T, η) repre-
sentation] of the curvature is reached.

III. THERMODYNAMIC GEOMETRY OF THE
SEMICLASSICAL SQUARE-WELL FLUID

In this section the TG of a semiclassical SW fluid is ex-
plored. This is achieved by coupling the SCHS equation of
state (7) with a classical SW potential, a first approach to ex-
plore thermodynamic geometric properties of a semiclassical
SW fluid. In this regard, the SW fluid is a more general and
interesting system whose classical thermodynamics has been
widely studied [37–42]. In the case of SSW systems, several
models have been developed previously (see, for instance,
Refs. [2,7,8]). We consider a thermodynamic perturbation
approach with the SCHS contribution described in Sec. II as
the reference system, given by the semiclassical Helmholtz
free energy (7), coupled with the classical SW contribution
presented in [43] as a perturbation,

A

NkBT
= Aideal

NkBT
+ ASCHS

NkBT
+ A1

NkBT
+ A2

NkBT
, (14)
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where A1 and A2 are the first SW perturbation terms used
in the optimized SW equation of state in the SAFT-VR ap-
proach [33]. The first contribution A1/NkT is given by

A1

NkBT
= −4

( ε

kT

)
(λ∗3 − 1)ηGHS(1; ηeff ), (15)

where GHS(1; ηeff ) is the contact value of the radial distribu-
tion function evaluated at an effective packing fraction ηeff,

GHS(1; ηeff ) = 1 − ηeff/2

(1 − ηeff )3
. (16)

The effective packing fraction is parametrized using a Padé
approximation [33]

ηeff = c1η + c2η
2

(1 + c3η)3
, (17)

where the indexed constants ci (i = 1, 2, 3) are given in terms
of the reduced SW range λ∗ = λ/σ , which can be written as

c1 = −3.1649

λ∗ + 13.3501

λ∗2
− 14.8057

λ∗3
+ 5.7029

λ∗4
,

c2 = 43.0042

λ∗ − 191.6623

λ∗2
+ 273.8968

λ∗3
− 128.9334

λ∗4
,

c3 = 65.0419

λ∗ − 266.4627

λ∗2
+ 361.0431

λ∗3
− 162.6996

λ∗4
. (18)

These inverse-power expansions in λ∗ ensure that ηeff → 0
for λ∗ → ∞, from which the desired behavior in the mean-
field limit GHS(1; ηeff ) → 1 is recovered. The second-order
fluctuation term A2/NkBT is computed using the local-
compressibility approximation [32,33],

A2

NkBT
= 1

2

( ε

kT

)
KHSη

∂

∂η

(
A1

NkBT

)
, (19)

where KHS is the HS isothermal compressibility [44]

KHS = (1 − η)4

1 + 4η + 4η2 − 4η3 + η4
. (20)

Before proceeding to obtain the curvature of the free en-
ergy given in Eq. (14), it is important to make the following
point. As mentioned before when the geometric properties of
the SCHS system were derived, it is convenient to express
the free energy of the semiclassical and classical SW fluids
in terms of the thermal de Broglie wavelength λ∗

B, including
the explicit terms depending on temperature, according to
the relation λ∗

B = 
/
√

2πT ∗, with T ∗ = kT/ε. In the case
of the SSW system the energy parameter used to scale the
temperature is ε, the energy depth of the square well. We use
this natural scaling instead of the SCHS parameter (9). There-
fore, we have two different reduced temperatures T ∗

SW = kT/ε

and T ∗
HS = kT/ε0 for the SW and HS potentials, respectively.

From the relation between the thermal de Broglie wavelength
and the de Boer parameter, presented in Eq. (10), it follows
that when this parameter is set equal to 
 = √

2π , it basically
corresponds to the atomic hydrogen value, the energy param-
eters ε and ε0 are indeed equal, and the same is also true for
the reduced temperatures. This allows us to write the complete
free energy in terms of only one reduced temperature. In ad-
dition, the relation between λ∗

B and T ∗ is simply λ∗
B = 1/

√
T ∗

TABLE I. Theoretical critical values in the (T ∗, η) representation
of the semiclassical and classical SW fluid are presented for different
potential ranges between 1.25 an 3.0, denoted by qcrit and ccrit,
respectively.

λ∗ ηqcrit T ∗
qcrit P∗

qcrit ηccrit T ∗
ccrit P∗

ccrit

1.25 0.0314 0.2378 0.0047 0.2239 0.83627 0.1649
1.50 0.0404 0.4932 0.0126 0.1499 1.32907 0.1434
1.75 0.0475 0.8487 0.0255 0.1232 1.9073 0.1583
2.00 0.0566 1.3782 0.0493 0.1247 2.8248 0.2325
2.50 0.0783 3.3019 0.1673 0.1330 5.8015 0.5226
3.00 0.0931 6.7089 0.4201 0.1336 10.3288 2.3393

and the change of variable applied to calculate the curvature
of the SCHS system can also be applied without any further
modifications. The corresponding expressions for the metric
components and curvature are the same as those ones given
by Eqs. (12) and (13), respectively.

The TG metric of the semiclassical SW fluid is obtained
through second-order derivatives of the Helmholtz free energy
given in Eq. (14) and applying Eq. (1). In order to com-
pare how this geometric property changes by introducing the
SCHS potential given in Eq. (7), the classical SW fluid model
presented in [43] is used as a reference. In Table I the critical
values for different potential ranges for the classical and semi-
classical SW fluids are presented in the (T ∗, η) representation.
It can be noticed that the critical values of the semiclassical
system are considerably lower when compared to the classical
ones.

Once both metric elements and curvatures are calculated
for the semiclassical and classical SW fluids using Eqs. (3)
and (13) in the (λ∗

B, η) representation, an analysis of their
behavior is performed in the supercritical region of λ∗

B, in
order to avoid any singularity due to the gas-liquid phase
transition. First, a 2D comparison of the curvature scalar for
different isotherms is presented in Fig. 5 for a SW range
λ∗ = 1.5 for both semiclassical and classical systems (solid
and dashed lines, respectively). Three different temperatures
are considered for this comparison, namely, T ∗ = 1.25T ∗

crit,
2.0T ∗

crit, and 3.0T ∗
crit; these particular values were chosen to

fairly compare the corresponding curvatures since the critical
points for each system are not close to each other, as noticed
in Table I. The main remark about Fig. 5 is that the maxi-
mum of R∗ reached for the semiclassical SW is higher when
compared to the classical one at the same “distance” from
their corresponding critical point. The semiclassical system
has a steeper maximum and is located at smaller packing
fractions compared to the classical SW fluid. This feature is
more evident upon reaching the critical point of each system.

Figure 6 presents 3D plots of the semiclassical (red sur-
face) and classical (blue surface) SW fluid for the curvature
scalars in the thermodynamic space (λ∗

B, η) for a SW λ∗ =1.5.
As in the case of the two-dimensional plots presented in Fig. 5,
these surfaces were obtained for the supercritical region to
avoid any singularity in R∗ close to the critical point, starting
from 0.3λ∗

Bcrit
up to 0.8λ∗

Bcrit
, i.e., from 30% to 80% of the

critical value in λ∗
B. From this figure it can be noticed that

the curvature of the semiclassical and classical SW fluids
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FIG. 5. Isotherms of the curvature R of the semiclassical (solid
lines) and classical (dashed lines) SW fluid for a potential range of
λ∗ = 1.5 in the supercritical region. To gain further insight into the
behavior of both systems, T ∗ is set equal to (a) 3T ∗

crit, (b) 2T ∗
crit, and

(c) 1.25T ∗
crit, namely, at the same percentage away from its corre-

sponding critical value.

greatly differs in the region η → 0, i.e., for small densities,
where quantum effects are more relevant. This behavior is also
captured in the 2D plots.

In order to display the differences in the behavior between
the semiclassical and classical curvature scalars of the SW
fluid, the normalized difference �R = (R∗

Q − R∗
C )/R∗

Q of the
reduced curvatures for a potential range of λ∗ = 1.5 is pre-
sented in Fig. 7. In this figure, �R is calculated considering
thermodynamic variables reduced with their corresponding
critical values, i.e., η+ = η/ηcrit and T + = T/Tcrit, and using
a counter i to increase the values of the thermodynamic pa-
rameters. Critical reduced values are considered to compare

FIG. 6. 3D plot of the reduced semiclassical (R∗
QSW) and classical

(R∗
CSW) SW curvatures. Both plots are determined for the same SW

range, λ∗ = 1.5. The corresponding thermal de Broglie wavelength
values at the critical temperatures are λSC

B = 1.4239 and λC
B = 0.8674

for the semiclassical and classical curvatures, respectively. In order
to avoid singularities due to the gas-liquid transition, the plot is con-
structed considering only supercritical values of λ∗

B for each system
within 0.3 � λ∗

B/λ∗
Bcrit

� 0.8.

FIG. 7. Normalized difference between classical and semi-
classical SW curvatures for λ∗ = 1.5, �R = (R∗

Q − R∗
C )/R∗

Q. This
difference is given in terms of reduced temperature T + = T/Tcrit and
reduced packing fraction η+ = η/ηcrit. A counter i is used to evaluate
point by point the corresponding value of �R for each pair of values
(η+, T +). Two regions are described for �R: (a) the supercritical re-
gion, where the interval is [1.001, 2.0], and (b) the subcritical region,
where (η+, T +) are equally increasing in the interval [0.5, 0.999].
In the subcritical region �R → 0.6 as parameters reach the critical
point, and in the supercritical region this tendency remains.

both scalars, since the semiclassical and classical systems
do not exhibit the same behavior in the same region of the
thermodynamic equilibrium space, as observed in Fig. 6.

Two different regions are shown separately. (i) In the lower
plot, the values of �R in the region of subcritical values
of (η+, T +) are calculated, in the interval [0.5, 0.999], for
which both parameters equally increase. In this plot, it can
be noticed that �R → 0.6 as (η+, T +) → 1, i.e., as these
parameters reach their critical values. (ii) In the upper plot, the
corresponding values of �R are calculated for supercritical
values of (η+, T +), in the interval of [1.001,2.0]; similarly to
the subcritical case, near the critical values of η+ and T +, the
difference �R remains close to 0.6, slowly increasing as the
value of thermodynamic parameters go up to 2.0 times their
critical values. Therefore, Fig. 7 shows that in the presented
regions, the semiclassical scalar is always greater than its
classical counterpart.

An additional comparison of the differences in the geomet-
ric properties of the semiclassical and classical SW fluids is
also performed via an analysis of the behavior of the R Widom
lines for both systems. As mentioned in the Introduction, these
lines are defined in the supercritical region as the locus of
the maxima for the isotherms of the scalar curvature R; this
line separates a gaslike phase from a liquidlike phase in the
supercritical region for the semiclassical and classical SW
fluids. This comparison is presented in Fig. 8 in the (λ+

B , P+)
representation, instead of the usual temperature-pressure one;
therefore, the separation of phases is inverted with respect to
the usual case. The most relevant feature of these plots is that
when semiclassical and classical Widom lines are compared,
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FIG. 8. Comparison of R Widom lines obtained for the semiclas-
sical (circles) and classical (diamonds) SW fluids, given by circles
and diamonds, respectively, for the following values of the SW range
λ∗: (a) 2.5, (b) 2, (c) 1.75, and (d) 1.5. Results are presented as a func-
tion of the reduced de Broglie thermal wavelength λ+

B = λB/λBcrit

and the reduced pressure P+ = P/Pcrit. In this representation, higher
supercritical states are reached as λ∗

B → 0. Semiclassical and clas-
sical lines exhibit the same linear behavior in the region near the
critical point. The supercritical line can be extended further for the
semiclassical SW fluid for smaller potential ranges. Interestingly, this
behavior is reversed as λ∗ increases.

these lines are range dependent. For smaller ranges (λ∗<2.0),
a shorter Widom line is obtained for the semiclassical system.
For instance, when λ∗ = 1.5 the semiclassical line cuts around
P+ ≈ 3, while its classical counterpart has a linear behavior
up to P+ ≈ 4. This situation is reversed, however, as λ∗ is
increased, as can be seen for λ∗ = 2.0; in this case the longest
Widom line is the semiclassical one. Therefore, for greater
values of the SW range, the line that separates the aforemen-
tioned liquidlike phase from the gaslike one is more persistent
for the semiclassical system. However, in all cases the Widom
line ends not far from the critical point, that is, the maximum
in the curvature scalar disappears when we move away from
the critical point, in a similar way to what happens with the
extrema of response functions.

IV. CONCLUSION

In this work we briefly explored the thermodynamic ge-
ometry of semiclassical fluids. Two different models were
analyzed, a SCHS fluid whose Helmholtz free energy is ob-

tained from PIMC simulations and a semiclassical SSW fluid,
described by a semiclassical hard-sphere repulsive interaction
coupled with a classical attractive square-well contribution.
The curvature obtained from the SCHS potential presents
important differences compared to its classical counterpart.

It was found that when quantum contributions are taken
into account, the BPH anomaly is partially reversed, in a
region in the middle of the plane (λ∗

B, η) where the considered
SCHS equation of state is valid. For the regions of low and
high densities, RSCHS exhibits the same anomalous behavior
as its classical counterpart. It is not surprising that at lower
densities the classical anomalous behavior remains; however,
it is interesting that at the regime of high densities the SCHS
curvature tends to return to the anomalous classical behavior
since it resembles the behavior of other semiclassical sys-
tems [6].

Regarding the geometric properties of the semiclassical
SSW fluid when compared to the classical one, interesting dif-
ferences were found between both systems. For instance, the
critical points for temperature and density of the semiclassical
system are significantly lower that the classical ones, which
can be noticed in the direct comparison of the supercritical
curvatures depicted in Fig. 6. This comparison was further
explored for the normalized difference �R = (R∗

Q − R∗
C )/R∗

Q,
where we found, for each of the cases explored, that the
semiclassical curvature is always greater than the classical
one. Finally, the supercritical R Widom lines for both systems
were also determined and compared, showing that near the
critical point both lines practically overlap. Interestingly, it
was found that the length of these lines is also potential-range
dependent, and the length for ranges below λ∗ = 2.0 is larger
for the classical SW fluid, which is reversed for ranges above
this value. We were then able to distinguish the liquidlike
phase from the gaslike one deeper into the supercritical region
when compared to the classical one.

It is clear that this research represents only an initial step
in the study of semiclassical fluids within the framework of
thermodynamic geometry and more work is needed to clarify
the influence and consequences of quantum effects in these
systems.

ACKNOWLEDGMENTS

J.T.-A. acknowledges support from Universidad de Gua-
najuato through Grant No. 042/2024 of Convocatoria Insti-
tucional de Investigación Científica. L.F.E.-H. acknowledges
support from CONAHCYT (Consejo Nacional de Hu-
manidades Ciencias y Tecnologías) CVU 230753 through the
postdoctoral grant Estancias Posdoctorales por México para
la Formación y Consolidación de las y los Investigadores por
México.

[1] X.-Z. Li, B. Walker, and A. Michaelides, Proc. Natl. Acad. Sci.
USA 108, 6369 (2011).

[2] S. Contreras, C. Serna, and A. Gil-Villegas, J. Chem. Eng. Data
65, 5933 (2020).

[3] B.-J. Yoon and H. A. Scheraga, J. Chem. Phys. 88, 3923 (1988).

[4] K. J. Runge and G. V. Chester, Phys. Rev. B 38, 135 (1988).
[5] L. M. Sesé, Mol. Phys. 74, 177 (1991).
[6] T. E. Markland, J. A. Morrone, B. J. Berne, K. Miyazaki, E.

Rabani, and D. R. Reichman, Nat. Phys. 7, 134 (2011).
[7] N. Singh and S. K. Sinha, J. Chem. Phys. 69, 2709 (1978).

064145-7

https://doi.org/10.1073/pnas.1016653108
https://doi.org/10.1021/acs.jced.0c00827
https://doi.org/10.1063/1.453841
https://doi.org/10.1103/PhysRevB.38.135
https://doi.org/10.1080/00268979100102151
https://doi.org/10.1038/nphys1865
https://doi.org/10.1063/1.436865


L. F. ESCAMILLA-HERRERA et al. PHYSICAL REVIEW E 109, 064145 (2024)

[8] C. Serna and A. Gil-Villegas, Mol. Phys. 114, 2700 (2016).
[9] B. P. Singh and S. K. Sinha, Phys. Rev. A 18, 2701 (1978).

[10] J. Barrat, P. Loubeyre, and M. L. Klein, J. Chem. Phys. 90, 5644
(1989).

[11] B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. 37, 401
(1986).

[12] D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078
(1981).

[13] K. Singer and W. Smith, Mol. Phys. 64, 1215 (1988).
[14] V. M. Trejos and A. Gil-Villegas, J. Chem. Phys. 136, 184506

(2012).
[15] K. R. Arriola-González, A. Gil-Villegas, and S. Figueroa-

Gerstenmaier, Mol. Phys. 121, e2244611 (2023).
[16] C. R. Rao, Bull. Calcutta Math. Soc. 37, 81 (1945).
[17] R. Mrugała, Physica A 125, 631 (1984).
[18] R. Mrugala, J. D. Nulton, J. C. Schön, and P. Salamon,

Phys. Rev. A 41, 3156 (1990).
[19] F. Weinhold, J. Chem. Phys. 63, 2479 (1975).
[20] G. Ruppeiner, Phys. Rev. A 20, 1608 (1979).
[21] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995).
[22] P. Salamon, J. Nulton, and E. Ihrig, J. Chem. Phys. 80, 436

(1984).
[23] M. E. Fisher and B. Widom, J. Chem. Phys. 50, 3756 (1969).
[24] L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F.

Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 102,
16558 (2005).

[25] D. Bolmatov, M. Zhernenkov, D. Zav’yalov, S. N. Tkachev, A.
Cunsolo, and Y. Q. Cai, Sci. Rep. 5, 15850 (2015).

[26] D. Corradini, M. Rovere, and P. Gallo, J. Chem. Phys. 143,
114502 (2015).

[27] J. Jaramillo-Gutiérrez, J. López-Picón, and J. Torres-Arenas,
J. Mol. Liq. 347, 118395 (2022).

[28] V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, and
E. N. Tsiok, J. Phys. Chem. B 115, 14112 (2011).

[29] I. Zerón, J. Torres-Arenas, E. de Jesús, B. Ramírez, and A.
Benavides, J. Mol. Liq. 293, 111518 (2019).

[30] G. Ruppeiner, Phys. Rev. E 86, 021130 (2012).
[31] H.-O. May and P. Mausbach, Phys. Rev. E 85, 031201 (2012).
[32] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G.

Jackson, and A. N. Burgess, J. Chem. Phys. 106, 4168 (1997).
[33] B. H. Patel, H. Docherty, S. Varga, A. Galindo, and G. C.

Maitland, Mol. Phys. 103, 129 (2005).
[34] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 53, 600

(1970).
[35] J. Jaramillo-Gutiérrez, J. López-Picón, and J. Torres-Arenas,

J. Mol. Liq. 319, 114213 (2020).
[36] A. C. Brańka, S. Pieprzyk, and D. M. Heyes, Phys. Rev. E 97,

022119 (2018).
[37] B. J. Alder, D. A. Young, and M. A. Mark, J. Chem. Phys. 56,

3013 (1972).
[38] W. R. Smith, D. Henderson, and Y. Tago, J. Chem. Phys. 67,

5308 (1977).
[39] A. Gil-Villegas, F. del Río, and A. L. Benavides, Fluid Phase

Equilib. 119, 97 (1996).
[40] A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225

(1999).
[41] M. Khanpour, Phys. Rev. E 83, 021203 (2011).
[42] L. Vega, E. de Miguel, L. F. Rull, G. Jackson, and I. A. McLure,

J. Chem. Phys. 96, 2296 (1992).
[43] J. López-Picón, L. Escamilla-Herrera, and J. Torres-Arenas,

J. Mol. Liq. 368, 120607 (2022).
[44] T. Lafitte, A. Apostolakou, C. Avendaño, A. Galindo, C. S.

Adjiman, E. A. Müller, and G. Jackson, J. Chem. Phys. 139,
154504 (2013).

064145-8

https://doi.org/10.1080/00268976.2016.1173732
https://doi.org/10.1103/PhysRevA.18.2701
https://doi.org/10.1063/1.456419
https://doi.org/10.1146/annurev.pc.37.100186.002153
https://doi.org/10.1063/1.441588
https://doi.org/10.1080/00268978800100823
https://doi.org/10.1063/1.4712299
https://doi.org/10.1080/00268976.2023.2244611
https://doi.org/10.1007/978-1-4612-0919-5_16
https://doi.org/10.1016/0378-4371(84)90074-8
https://doi.org/10.1103/PhysRevA.41.3156
https://doi.org/10.1063/1.431689
https://doi.org/10.1103/PhysRevA.20.1608
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1063/1.446467
https://doi.org/10.1063/1.1671624
https://doi.org/10.1073/pnas.0507870102
https://doi.org/10.1038/srep15850
https://doi.org/10.1063/1.4930542
https://doi.org/10.1016/j.molliq.2021.118395
https://doi.org/10.1021/jp2039898
https://doi.org/10.1016/j.molliq.2019.111518
https://doi.org/10.1103/PhysRevE.86.021130
https://doi.org/10.1103/PhysRevE.85.031201
https://doi.org/10.1063/1.473101
https://doi.org/10.1080/00268970412331303990
https://doi.org/10.1063/1.1674033
https://doi.org/10.1016/j.molliq.2020.114213
https://doi.org/10.1103/PhysRevE.97.022119
https://doi.org/10.1063/1.1677637
https://doi.org/10.1063/1.434709
https://doi.org/10.1016/0378-3812(95)02851-X
https://doi.org/10.1080/00268979909482924
https://doi.org/10.1103/PhysRevE.83.021203
https://doi.org/10.1063/1.462080
https://doi.org/10.1016/j.molliq.2022.120607
https://doi.org/10.1063/1.4819786

