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We undertake a numerical study of the ordering kinetics in the two-dimensional (2D) active Ising model
(AIM), a discrete flocking model with a conserved density field coupled to a nonconserved magnetization
field. We find that for a quench into the liquid-gas coexistence region and in the ordered liquid region, the
characteristic length scale of both the density and magnetization domains follows the Lifshitz-Cahn-Allen
growth law, R(t ) ∼ t1/2, consistent with the growth law of passive systems with scalar order parameter and
nonconserved dynamics. The system morphology is analyzed with the two-point correlation function and its
Fourier transform, the structure factor, which conforms to the well-known Porod’s law, a manifestation of the
coarsening of compact domains with smooth boundaries. We also find the domain growth exponent unaffected
by different noise strengths and self-propulsion velocities of the active particles. However, transverse diffusion is
found to play the most significant role in the growth kinetics of the AIM. We extract the same growth exponent
by solving the hydrodynamic equations of the AIM.
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I. INTRODUCTION

Active-matter systems involve the movement of large as-
semblies of individual active particles that consume energy to
self-propel and exhibit collective behavior in a nonequilibrium
steady state [1–4]. Collective motion is ubiquitous in nature,
observed in a wide array of different living systems over a
range of scales, from macroscopic fields like fleets of birds
[5] and schools of fish [6,7] to microscopic scales like hoards
of bacteria [8,9], cytoskeletal filaments, and molecular motors
[10–12]. It leads to the emergence of ordered motion of.
large clusters, called flocks, with a typical size larger than
an individual [1,13–16]. Since the early 2000s, new models
have emerged to understand the various physical principles
governing active-matter systems [14].

Vicsek and collaborators years ago introduced a minimal
model [17] of active particles that move with a constant speed
and orient via a ferromagnetic interaction with a neighbor-
hood similar to the XY model. In the Vicsek model (VM)
activity can stabilize the ordered phase even in two dimen-
sions which is not possible in the 2D XY model where the
long-range fluctuation destroys the ordered phase following
Mermin-Wagner theorem [18,19]. Then, in the early 2010s,
Solon and Tailleur introduced the active Ising model (AIM)
[20,21], where a discrete symmetry replaces the continuous
rotational symmetry of the VM. In the AIM, each particle
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assumes two possible states allowing the particle to propel in
a preferred direction which changes on interaction with other
particles at the same lattice site. The AIM retains the essen-
tial part of the VM physics and exhibits flocking behavior
with three different phases at steady state: disordered gas at
high noise and low densities, polar liquid at low noise and
high densities, and a phase-separated liquid-gas coexistence
state at intermediate densities. However, a key difference
between the VM and the AIM arises in the steady-state be-
havior of the coexistence region. In this region, AIM shows
a macrophase separation associated with normal density fluc-
tuations, whereas the VM is characterized by a microphase
separation with giant density fluctuations. The flocking tran-
sition in the AIM is a first-order liquid-gas phase transition
similar to the VM; however, for zero activity, despite the dy-
namics being nonequilibrium, the AIM shows a second-order
phase transition belonging to the Ising universality class.

Although significant progress has been made to understand
the steady-state properties of various active systems [22–36],
there is much to explore in the realm of ordering kinetics in
active systems that relaxes to a nonequilibrium steady state
(NESS). Understanding the intrinsic nonequilibrium dynam-
ics that drive an active system towards its steady state is
of fundamental as well as practical relevance. Unlike active
systems, ordering kinetics in nonequilibrium passive systems
have been studied over several decades [37–43]. Domain
growth in passive systems with nonconserved scalar order pa-
rameters follows the Lifshitz-Cahn-Allen (LCA) growth law:
R(t ) ∼ t1/2 (Model A of order-parameter kinetics), whereas
passive systems with conserved order parameter follow a
Lifshitz-Slyozov-Wagner growth law: R(t ) ∼ t1/3 (Model B
of order-parameter kinetics), where R(t ) is the average size
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of domains. However, domain growth in Model C systems
where a nonconserved scalar order parameter is coupled to
a conserved density field (similarly to the AIM) is governed
by the growth exponent of either Model A or Model B where
it depends on the quenching regime. Quench into the order-
disorder coexistence region leads to a R(t ) ∼ t1/3 growth,
whereas the asymptotic growth law for a quench into the
ordered region is R(t ) ∼ t1/2 [44].

Utilizing tools that quantify the ordering kinetics of passive
systems, several active systems have been explored. These
include Active Model B [45–47], active nematics [48], self-
propelled particles in disordered medium [49], Model B with
nonreciprocal activity [50], Kuramoto oscillators [51], active
Brownian particles [52], and motility-induced phase separated
clusters [53]. Moreover, an interesting observation of multiple
coarsening length scales was made in the prototypical VM
[54] where velocities are found to align over a faster-growing
length scale compared to density. Another intriguing result of
an active system with a nonconserved vector order parameter
following the growth law of the nonconserved scalar order
parameter field has also been observed [55]. Since AIM is a
minimal flocking model with a rich phase behavior, studying
the growth kinetics of this model will allow us to interpret the
origin of large flocks in terms of microscopic interactions.

In this paper, we explore the phase ordering kinetics of the
AIM. Quenching the AIM inside the spinodal region results
in the formation of small positively or negatively magnetized
clusters which in the late stage of the coarsening merge to
form a single, macroscopic domain of one spin type [21]. A
few questions arise in this context: (a) Does the domain mor-
phology follow the same pattern and growth law for quenches
into the coexistence and in the ordered liquid region? (b)
Since the AIM possesses both conserved and nonconserved
order parameters, how does the AIM growth law relate to the
established growth law of similar passive systems? (c) Do the
density and magnetization correlate over the same length scale
[54]? (d) What is the impact of noise and particle activity
on the domain growth? and (e) What is the role of diffusion
in the domain growth dynamics? We address these issues by
analyzing the ordering dynamics of the 2D AIM on a square
lattice via Monte Carlo simulations and by solving the AIM
hydrodynamic equations using the finite-difference method.

This paper is organized as follows. In Sec. II we discuss the
model and then present the details of numerical simulations in
Sec. III. In Sec.IV, we present the growth law of the AIM from
both numerical simulation and hydrodynamic description. Fi-
nally, in Sec. V, we conclude this paper with a summary and
discussion of the results.

II. MODEL

We consider N particles on a two-dimensional square
lattice L × L with periodic boundary conditions. Thus the
average particle density is ρ0 = N/L2. Each lattice site i can
accommodate an arbitrary number of particles nσ

i with spin
σ = ±1. Defining local density ρi = n+

i + n−
i and magneti-

zation mi = n+
i − n−

i , we note that ρi has no upper bound,
while mi is bounded by ρi: −ρi � mi � ρi. Each particle
with a given spin state σ can either flip to −σ or jump to a
nearest-neighbor site probabilistically.

The flipping rates are derived from a local ferromagnetic
Ising Hamiltonian defined as [20,21]:

Hi = − J

2ρi

∑
j

∑
k �= j

σ
j

i σ k
i , (1)

where J is the coupling between any two particles at site i.
Local interaction implies that a particle can align with the
average direction of all other particles at the same site. The
Hamiltonian of Eq. (1) can be rewritten as

Hi = −J

2

(
m2

i

ρi
− 1

)
. (2)

When a particle in spin-state σ flips, mi changes to mi − 2σ .
The energy difference is then

�Hi = 2J

ρi
(σmi − 1) . (3)

A particle with spin σ then flips its state according to the
transition rate:

Wflip(σ → −σ ) = γ exp

[
−2βJ

ρi
(σmi − 1)

]
, (4)

where γ is the rate of particle flipping when σmi = 1. The
transition rate is chosen to fulfill the detailed balance without
hopping with respect to the Hamiltonian Hi. In this paper,
we choose J = 1, and γ = 1 without any loss of generality.
The parameter β, denoted as “inverse temperature,” β = T −1,
in passive systems, controls the flip noise strength. Although
the system under consideration is athermal, we denote the
parameter T as “temperature” from now on.

Moreover, each particle performs a biased diffusion on
the lattice depending on the spin state σ . Particles perform a
one-dimensional biased hopping with self-propulsion ε along
a direction p via the rate [21]:

Whop(σ, p) = D(1 + σεp · ex) . (5)

The presence of other particles does not influence hopping
rates and hence is independent of particle density. The hop-
ping rate D = 1 is constant along the upward and downward
directions (±y direction). The parameter ε ∈ [0, 1] controls
the asymmetry between the purely diffusive limit ε = 0 and
the purely ballistic limit ε = 1, while D controls the overall
hopping rate. On average, a particle drifts with speed v = 2Dε

in the direction set by the sign of its spin state (where lattice
spacing is 1), while the total hopping rate 4D, remains con-
stant.

III. SIMULATION DETAILS

A Monte Carlo (MC) simulation of the stochastic process
defined above evolves in unit Monte Carlo steps �t resulting
from a microscopic time �t/N . During �t/N , a randomly
chosen particle with spin σ flips with probability Wflip�t or
hops to one of the neighboring sites with probability Whop�t .
Consequently, 1 − [4D + Wflip]�t is the probability that the
particle does nothing, and minimizing this we obtain �t =
[4D + exp(2β )]−1.

To study the morphology of the system during phase order-
ing kinetics, we use the two-point equal-time (t ) correlation
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function of the local scalar order parameters. The notion uti-
lizes the spatial fluctuations in the density and magnetization
fields to estimate [55]:

Cρρ (r, t ) = 1

L2

L2∑
i=1

〈�ρi,t�ρi+r,t 〉, (6)

Cmm(r, t ) = 1

L2

L2∑
i=1

〈�mi,t�mi+r,t 〉 , (7)

where 〈· · · 〉 denotes averaging over independent initial re-
alizations and �ρi,t = ρi − ρ0 and �mi,t = mi − m0 are the
local fluctuations in density and magnetization from the mean,
respectively. The above definition of Cρρ characterizes the
morphology of the spatial structures and Cmm evaluates the
correlations in polar alignment between evolving structures
separated by distance r. Since we observe that Cρρ and Cmm

behave similarly in the AIM (see below), we focus here on
Cρρ , which we denote as C [Cρρ (r, t ) ≡ C(r, t )] from now
on. Following a temperature quench from a random initial
configuration into the ordered state, clusters of both spin types
appear and grow with time. Similar morphology of the evolv-
ing domains with average domain size R(t ) would correspond
to a dynamical scaling relation [37–39]:

C(r, t ) = f

[
r

R(t )

]
, (8)

where f (x) is a time-independent scaling function. R : q(t ),
estimated from the decay of C(r, t ) generally show a power-
law growth [37–39]:

R(t ) ∼ t θ , (9)

with θ as the growth exponent. Typically, the morphology
of an ordering system is studied by scattering experiments,
which measure the structure factor S(k, t ), defined by the
Fourier transform of the correlation function C(r, t ):

S(k, t ) =
∫ ∞

−∞
C(r, t )eikrdr , (10)

and has a dynamical scaling form in d dimensions:

S(k, t ) = R(t )d g[kR(t )] . (11)

For scalar order parameters like the density field, the short-
distance (large-k) behavior of the structure factor scaling
function is given by Porod’s law (for domains with smooth
boundaries or scattering off sharp domain interfaces) which
corresponds to g(k) ∼ k−(d+1). Next we present results for
model parameters set by the average particle density ρ0, tem-
perature T = β−1, self-propulsion velocity ε, and diffusion
constant D.

IV. RESULTS

A. Phase diagram and domain morphology

The steady-state behavior of the AIM is summarized in the
temperature-density (T − ρ0) [Fig. 1(a)] and velocity-density
(ε − ρ0) [Fig. 1(b)] phase diagrams. The general structure of
the phase diagrams consists of a gas phase (G), a liquid phase
(L), and a liquid-gas coexistence region (G+L) separated
by the gas and liquid binodals. Qualitatively similar results

(a) (b)

FIG. 1. Phase diagrams of the AIM showing the quench di-
rections at fixed densities. (a) The (T, ρ0) phase diagram for
self-propulsion velocity ε = 1. (b) The (ε, ρ0) phase diagram at fixed
temperature T = 0.9. G and L denote the disordered gas and polar
liquid regions, whereas G+L denotes the phase-coexistence region.
The (blue) stars in (a) indicate the initial high-temperature points in
the phase diagram from where the system is quenched (indicated by
arrows) into the coexistence region (ρ0 = 3) and to the liquid region
(ρ0 = 10) [(red) stars at lower temperature]. (Red) stars in (b) mark
the quench points in the (ε, ρ0) plane. ρgas (open square, delimits G
and G+L) and ρliquid (open circle, delimits G+L and L) are the gas
and liquid binodal, respectively.

were obtained earlier in Ref. [21]. However, we obtain a
critical temperature Tc 
 2 (above which no phase separation
occurs regardless of the density, the critical density ρc = ∞)
twice as large as in Ref. [21]. This can be understood if one
compares the flipping rate of Ref. [21], Wflip(σ → −σ ) =
γ exp(−σβ mi

ρi
), with Eq. (4) for J = 1. This indicates that the

effective β considered in this paper is approximately twice as
large as the β value in Ref. [21]. In the ε − ρ0 phase diagram,
the two binodals converge at a critical density (ρc 
 2.9) for
vanishing self-propulsion (ε = 0) that signifies a second-order
phase transition belonging to the Ising universality class [20].

We chose to quench the random initial systems in two
different regimes of the temperature-density phase diagram
shown by the arrows in Fig. 1(a). The quench occurs in-
stantaneously from a very high-temperature regime (T → ∞)
shown by the blue stars to the liquid-gas coexistence region or
the polar liquid region, denoted by red stars, with the same
final temperature T = 0.9 (T < Tc, corresponds to β = 1.1)
but different densities.

To quantify the coarsening dynamics, we performed simu-
lations on a square lattice of size 4002 with periodic boundary
conditions applied on both sides. Following quench at time
t = 0, the system evolves up to t = 105 using the MC algo-
rithm described in Sec. III. All numerical data presented here
are averaged over at least 300 independent realizations.

A typical simulation of coarsening dynamics starts with a
homogeneous initial configuration where particles with σ =
±1 are distributed randomly on each lattice site. This can also
be described as an equilibrium configuration at infinite tem-
perature because all configurations are equally likely. Then
after a quench well below the critical temperature (Tc 
 2),
the homogeneous initial configuration starts evolving in time,
and subsequent dynamics are governed by the formation and
growth of σ = 1 and σ = −1 rich domains. Such a time
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FIG. 2. Time-evolution snapshots of the local magnetization field on a 4002 system after a quench from T = ∞ to T = 0.9 for ε = 0 (top
panel) and ε = 1 (middle and lower panels). The color bar denotes magnetization per site. [(a)–(e)] Curvature-driven domain growth of the
diffusive Ising model (ρ0 = 5, ε = 0). [(f)–(j)] Growth dominated by the dynamics of spinodal decomposition after the system is quenched
inside the spinodal region (ρ0 = 3, ε = 1) and [(k)–(o)] domain growth mediated by the merging of high-density clusters of σ = ±1 after the
system is quenched deep inside the ordered liquid regime (ρ0 = 10, ε = 1). Black arrows denote the direction of the movement of the clusters
and bands.

evolution of the local magnetization field is shown in Fig. 2
for ε = 0 and ε = 1. In the latter scenario, time evolution
has been shown for a quench in both the coexistence (middle
row) and the liquid regions (bottom row). The NESS are
characterized by a single band (at lower density) and a polar
liquid (at higher density).

The top panels [Figs. 2(a)–2(e)] depict the ordering kinet-
ics of a purely diffusive (ε = 0) polar liquid at ρ0 = 5. The
domain morphology with increasing time exhibits a close re-
semblance to the passive Ising model [56]. In the Ising model,
the driving force for domain growth is the curvature of the do-
main wall, since the system surface energy can only decrease
through a reduction in the total net surface area. In the ε = 0
limit, particles do not form high-density domains due to the
diffusive movement of particles. Therefore, density-wise, the
system remains homogeneous as we observe a steady growth
of small, high-curvature to large, low-curvature domains. This
is unsurprising as the 2D AIM for ε = 0 belongs to the same
universality class of the passive 2D Ising model [21].

Next, we looked at the evolution of AIM with self-
propulsion velocity (ε = 1) quenching the system inside the
spinodal [Figs. 2(f)–2(j)] and homogeneous ordered regions
[Figs. 2(k)–2(o)]. The average densities representing these
two regions correspond to ρ0 = 3 and 10, respectively. In-
side the spinodal region, the growth dynamics is driven by
spinodal decomposition and result in the formation of nu-
merous small clusters of negative and positive spins (t =
102). The coarsening then stems from the merging of these

clusters (t = 103 and t = 104), until a single macroscopic
domain emerges (t = 105) in the steady state. A quench deep
inside the homogeneous ordered region also results in sim-
ilar dynamics of cluster formation and coalescence of those
clusters into a single large liquid domain (in this paper, for
ε > 0, the word cluster is used interchangeably with domain).
With extreme self-propelled particles (ε = 1), although the
high-density clusters are strongly biased along the horizontal
directions, they can also grow along the transverse direction
due to the constant transverse diffusion D. When these clusters
merge into a larger cluster, it always tries to minimize the
surface energy by decreasing the surface area. Accordingly,
the coarsening process leads to a single band [Fig. 2(j)] with
domain walls having the lowest curvature (the curvature of a
straight line is zero, but a liquid band with a perfectly straight
domain boundary can only happen when there is no thermal
fluctuation). The focus of this study is therefore to analyze the
coarsening dynamics shown in Fig. 2 which we will do next.

B. Dynamical scaling

In the theory of phase-ordering kinetics, the scaling hy-
pothesis states that if the system is characterized by a single
length scale R(t ) [R(t ) is equivalent to the average domain
size], then the domain morphology is statistically the same
at all times, apart from a scale factor. When all domain
lengths are measured in units of R(t ), the equal-time pair
correlation function should exhibit the dynamical scaling
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(a) (b)

(c) (d)

FIG. 3. [(a)–(c)] Scaled correlation functions C(r/R(t ), t ) versus
r/R(t ) for the evolution of the 2D AIM shown in Fig. 2. Unscaled
versions are shown in the inset. “Liquid” and “coexistence” signify
the region where the system is quenched, and ε denotes particle
speed. (d) Log-log plot of 1 − C[r/R(t )] versus r/R(t ). The cusp
exponent is estimated as α ∼ 1. The parameters correspond to Fig. 2.

property of Eq. (8). The equal-time correlation function is a
nonequilibrium quantity, as is R(t ), which can be estimated
from the decay of the correlation function. To identify the
self-similar behavior of the evolving domains we plot the
correlation function in Fig. 3. The scaled C(r/R(t ), t ) and
unscaled C(r, t ) correlation functions are shown in Figs. 3(a)–
3(c) for ε = 0 and ε = 1. R(t ) is determined from the distance
over which the correlation function decays to, e.g., 0.2 of its
maximum value, that is, C(r, t ) = 0.2C(0, t ).

As the system coarsens, the correlation function decays
slowly [insets of Figs. 3(a)–3(c)], signifying the growth of
the characteristic length scale R(t ). On rescaling the spatial
coordinates by this length scale, the correlation function at
different times collapses onto a single function C(r/R, t ) as
shown in Figs. 3(a)–3(c), thus confirming a universal coars-

ening behavior with time. Such scaling behavior implies that
the structure is time invariant and consistent with a power-law
growth of R(t ) with increasing t . This scaling hypothesis is
satisfied when the growing length is much smaller than the
system size to avoid the finite-size effect. We further examine
the AIM domain morphology by approximating the small
distance behavior of the scaled two-point correlation function,

1 − C(r) = C̄(r) ∼ rα, (12)

in Fig. 3(d) which yields the cusp exponent α ∼ 1. This sig-
nifies the existence of sharp domain interfaces [see Fig. 2(h)
and Fig. 2(m)] and translates into the power-law behavior of
the scaled structure factor plotted in Fig. 4 [41]. Figure 3(d)
also signifies that the domain structure of the AIM for ε = 1 is
statistically self-similar for quenches into the coexistence and
liquid region, whereas different from the domain morphology
of the AIM for ε = 0, as evident from Fig. 2.

In Fig. 4, we plot the scaled structure factor, S(k, t )R(t )−2

versus kR(t ), which is the Fourier transform of the corre-
lation function. In Fourier space, Eq. (12) translates into
the following power-law behavior of the structure factor,
S(k) ∼ k−(d+α), and therefore the large-k behavior of the
structure factor tail generates a slope ∼ − 3 (in log-log
plot) for d = 2 and α = 1 which denotes “Porod’s decay,”
S(k) ∼ k−(d+1), associated with scattering from sharp inter-
faces [37,38]. This naturally originates from the long-range
ordering in AIM leading to compact high-density clusters
with smooth boundaries. Domains with rough morphologies
having fractal interfaces do not follow Porod’s law and the
large-k tail of the scaled structure factor yields a noninte-
ger exponent [57]. A similar violation of the Porod law was
also observed in the coarsening of the VM due to the ir-
regular morphology associated with the cluster boundaries
[54,58]. C(r, t ) [and, consequently, S(k, t )] exhibits two dis-
tinct power laws for small- and large-r/R(t ) limits [large-
and small-kR(t ) limits] in the VM [58] which we do not
observe in the AIM. Furthermore, density fluctuations might
also play a role in determining whether a system will follow
or violate Porod’s law. In the VM, giant density fluctua-
tions break large liquid domains and restrict the formation
of large compact domains (which eventually manifest in the
microphase separation of the coexistence region in the steady
state) [25] and might be responsible for the non-Porod behav-
ior of the system [58]. On the other hand, AIM obeys the

(a) (b) (c)

FIG. 4. [(a)–(c)] Scaled structure factors, S(k, t )R(t )−2, versus kR for the Fourier transform of the correlation function data sets corre-
sponding to the same values of time. The line of slope 
 −3 denotes the Porod’s law, S(k) ∼ k−(d+1), for d = 2.
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(a) (b) (c)

FIG. 5. (a) R(t ) ∼ t1/2 for a quench into the coexistence (solid red square) and liquid (solid green diamond) regimes. The late time
saturation of R(t ) signifies that the system has reached the corresponding NESS. As the density is higher for the liquid quench, the saturation
appears late. Parameters: ρ0 = 3 (coexistence), ρ = 10 (liquid), L = 400, β = 1.1, and ε = 1. (b) R(t ) versus t for different thermal noises
[T = β−1 with β = 0.9 (solid pink circle), 1.1 (solid red triangle), and 1.4 (solid green inverted triangle)] in the coexistence regime. Parameters:
L = 400, ρ0 = 3, and ε = 1. (c) Role of self-propulsion on the characteristic length R(t ) as a function of t . For a larger ε [= 0.5 (solid green
diamond) and 1.0 (solid pink inverted pentagon)], the system reaches the NESS faster while for ε = 0 (red square), the corresponding dynamics
is slow. Parameters: L = 400, β = 1.1, and ρ0 = 5. The growth law R(t ) ∼ t1/2 is unaffected by thermal fluctuations and particle activity.

Porod behavior where density fluctuations are normal in the
liquid phase [21] and the steady-state manifests a bulk phase
separation.

C. Growth law

In passive systems with nonconserved scalar order parame-
ters, the late-stage domain growth is governed by the diffusive
LCA growth law R(t ) ∼ t1/2 [38]. For nonconserved systems
described by scalar fields such as the Ising model, the growth
process is driven by the diffusion of the domain walls (the sim-
plest form of topological defect) caused by the local changes
in the order parameter. Diffusion also influences coarsening
in nonconserved systems with vector fields, such as the 2D XY
model, where domain evolution occurs when point topological
defects, such as vortices and antivortices, diffuse, interact,
and annihilate [59]. Both systems exhibit a diffusive growth
exponent θ = 1

2 (in the XY model, R(t ) ∼ (t/ ln t )1/2, the loga-
rithmic correction is due to the free vortices [59]). Therefore, a
0.5 growth exponent signifies a coarsening process dominated
by the diffusion of defects. For example, if the time evolution
of a nonconserved scalar order parameter such as the magne-
tization m follows the diffusive equation ṁ = D∇2m, then the
length scale will exhibit a

√
t dependence.

However, as outlined in the Introduction, AIM dynamics is
similar to the Model C dynamics [60] where a nonconserved
magnetization field is coupled to a conserved density field. In
Model C, the growth law for a quench into the order-disorder
phase coexisting region appears to be R(t ) ∼ t1/3 (reminiscent
of Model B’s growth law with a conserved order parameter
[39]). Conversely, for a quench into the ordered region, the
growth law follows R(t ) ∼ t1/2 [44] (reflecting the growth law
of Model A with a nonconserved scalar order parameter).

Therefore, the immediate question we ask is whether the
late-stage growth of the coarsening length scale in the AIM
(an active system) follows the Model C growth laws, which
vary depending on the quenching regime. To characterize this,
we plot the length scale data with time in Fig. 5 for various
control parameters and quench regimes. We find that the late-

stage growth kinetics of the domains in the coexistence and
liquid regimes exhibit a R(t ) ∼ t1/2 growth law [Fig. 5(a)].
We extract the same growth law for different temperatures
[Fig. 5(b)] and self-propulsion velocities [Fig. 5(c)]. Domains
identified by the correlation of density and magnetization
fields also show similar growth behavior (see Appendix A).
The domains exhibit larger sizes when quenching into the liq-
uid regime compared to those formed when quenching into the
coexistence region, primarily due to higher density. However,
despite this difference, the coarsening length scale follows the
same growth pattern in both scenarios [see Fig. 2 at t = 103

and Fig. 5(a)]. Also, notice that a larger β in Fig. 5(b) signifies
a reduced thermal noise that slows down the local ordering of
spins. Thus smaller β allows the formation of larger domains.
Nevertheless, different thermal fluctuations exhibit the same
growth as thermal noise is asymptotically irrelevant for order-
ing in systems that are free from disorder [39].

Figure 5(c) shows the increasing length scale with time for
different self-propulsion velocity ε. For the nonmotile AIM
(ε = 0), the system is purely diffusive, and domain growth
proceeds through the coarsening of connected domains of
σ = ±1 (curvature-driven growth facilitated by diffusing do-
main wall) [see Figs. 2(c) and 2(d)]. Therefore the domain
morphology of the magnetization field looks very similar to
the evolution of an Ising ferromagnet quenched below the
critical temperature. Thus, an ∼t1/2 growth law for ε = 0
similar to the pure Ising model is physically plausible. Fur-
thermore, in the case of the nonmotile AIM, we observe
the same growth exponent θ = 1/2 for the conserved den-
sity field. We hypothesize that this similarity arises from the
fact that the ε = 0 limit of the AIM belongs to the same
universality class as the Ising model [21]. It is important to
note that while AIM and Model C share the same combina-
tion of a nonconserved magnetization with Ising symmetry
coupled to a conserved density, the crucial distinction lies in
the fulfillment of detailed balance. Model C satisfies detailed
balance, whereas even at ε = 0, AIM is not in equilibrium
and fails to satisfy detailed balance regarding any distribution.
Consequently, Scandolo et al. [61] argued that the critical
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(a)

(b)

FIG. 6. Effective growth exponent Zeff versus time t for (a) differ-
ent self-propulsion [ε = 0 (solid red square), 0.5 (solid blue circle),
and 1 (solid green triangle), β = 1.1 and ρ0 = 3] and (b) quenching
into different NESS [ρ0 = 3 for coexistence (solid red square) and
ρ0 = 10 for liquid (solid green triangle), β = 1.1 and ε = 1]. The
dashed lines are a guide to the eyes.

point of AIM belongs to a distinct universality class from
that of Model C. Moreover, it was suggested [61] that if a
general AIM model is formulated where detailed balance gets
restored in the zero self-propulsion limit, it would belong to
the Model C universality class. This has recently been shown
in a thermodynamically consistent model of the AIM [62].

However, for ε > 0, the domains of each spin no longer
remain connected and form high-density clusters that self-
propel along the horizontal direction. As time progresses,
these clusters spread in the transverse direction due to constant
diffusion (D = 1) and merge with other clusters. Therefore,
the domain growth for ε > 0 is again a diffusive phenomenon,
and consequently, the growth kinetics exhibits a growth law
R(t ) ∼ t1/2 similar to ε = 0. We have identified this novel
mechanism of diffusion-driven domain growth in the AIM af-
ter a thorough investigation of the altered diffusion coefficient
in Sec. IV D and Appendix B.

It should also be noted that while approaching the NESS
via coarsening, the high-density AIM domains of individual
spins, on merging, try to minimize the surface energy by
decreasing the surface area similar to the ordering dynamics
of the passive Ising model. Therefore, although the system is
active, the critical mechanisms (diffusion-dominated growth
and minimization of surface energy during coarsening) of do-
main coarsening in AIM are similar to the 2D Ising model, and
thus, it is not surprising that we extract a R(t ) ∼ t1/2 growth
law for both the passive and active models. For a more precise
quantification of the asymptotic growth law, we determine the
effective growth exponent, defined as:

Zeff = d[ln R(t )]

d[ln t]
. (13)

In Fig. 6(a), we plot Zeff versus t for different ε corresponding
to the data in Fig. 5(c). All data show extended flat regimes

at late times (after ∼t > 102). The effective exponent turns
out to be in the regime 0.45 < Zeff < 0.52, denoted by the
dashed lines. We perform a similar study for the quench into
the coexistence and liquid regimes. Figure 6(b) shows Zeff vs.
t once again confirms Zeff ∼ 0.5, irrespective of the quench
regimes.

Now we aim to highlight the differences between the
coarsening dynamics in the AIM and the VM, where both
systems involve the coupling of a conserved density field
with a nonconserved magnetization field. The main difference
between the coarsening dynamics of AIM and VM lies in their
growth laws. In the VM, the coarsening length scale of the
density domains grows as R(t ) ∼ t0.25, while the magnetiza-
tion length scale grows much faster, R(t ) ∼ t0.83 [54]. The
slower growth of the density domains can be attributed to
the fractal morphology of the density field. Although density
clusters in the VM are not compact, due to activity, individual
particles may move between these clusters, transmitting the
orientation order over larger length scales than the sizes of the
density clusters, resulting in faster growth in the coarsening
length scale of the magnetization [54]. On the other hand, in
the AIM, both the density and magnetization fields exhibit
a R(t ) ∼ t0.5 growth law. The main ingredient responsible
for this growth in the AIM is diffusion along the transverse
direction which will be discussed in the following section.
Regarding the morphology of the density and magnetization
domains in these two models, the density fluctuation appears
to be crucial. In the VM, density fluctuation is giant [25],
whereas in the AIM, density fluctuation is normal [21]. Gi-
ant density fluctuations break large liquid domains, arrest
band coarsening, and restrict the formation of large compact
domains in the VM. In contrast, we observe compact high-
density clusters with smooth boundaries in the AIM. This
difference elucidates why we observe a faster growth in the
density domains compared to the VM. The behavior of the
magnetization fluctuations in the VM and AIM mirrors that
of the density fluctuations: the VM exhibits giant fluctuations,
while the AIM shows normal fluctuations. Despite this differ-
ence, both VM and AIM exhibit long-range order (LRO). The
LRO in AIM is a natural consequence of its discrete symmetry
[21], while the continuous symmetry VM exhibits LRO [18]
due to the nonequilibrium activeness of the particles. There-
fore, the faster growth in the magnetization length scale in
the VM (compared to AIM) can be attributed to activity, as
discussed in Sec. IV E.

D. Role of transverse diffusion

In the AIM, particles self-propel only in the horizontal
direction with average velocity 2Dε. The directional hopping
of the particles is a function of the spin type (+σ or −σ ).
To test the hypothesis that the late time domain growth in
the AIM is also a diffusion-driven process, we decompose the
diffusion into two components, D⊥ (along ±y direction) and
D‖ (along ±x direction). We vary D⊥, keeping D‖ = D = 1
henceforth, and show the domain evolution in Fig. 7.

The time evolution of the domains for D⊥ = 0 is shown
in Figs. 7(a)–7(c). Starting from a disordered configuration,
the time evolution of the system progresses via the forma-
tion of 1D rings with domains of alternating polarity along
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FIG. 7. Time evolution of the local magnetization field for D⊥ =
0 [top panel, (a)–(c)] and D⊥ = 1 [bottom panel, (d)–(f)] after
quenching the system from a disordered gaseous phase to a high-
density region. Parameters: L = 400, β = 1.1, ρ0 = 10, and ε = 1.

the horizontal direction (x direction). These domains are one
lattice unit wide along the transverse direction (y direction)
and are independent of the neighboring rings [Fig. 7(b)]. As
particles cannot diffuse along the transverse direction, these
domains can only grow horizontally without merging with the
neighboring rings. At late times, we observe narrow horizontal
stripes of alternating magnetization [Fig. 7(c)]. Therefore,
AIM with D⊥ = 0 does not manifest the observed domain
morphology representative of the growth law ∼t1/2. D⊥ = 0
also signifies Ly numbers of one-dimensional periodic rings
on which the AIM is defined. Such 1D AIM has been found
to display flocking of a single dense ordered aggregate at
intermediate temperatures (this flock undergoes stochastic re-
versals of its magnetization with time) but an aster phase
consisting of sharp peaks of positive and negative magneti-
zations in a jammed state at lower temperatures [63]. The one
lattice unit-wide (along y) domains in Fig. 7(c) manifest the
characteristics of the flocking state of 1D AIM for the given
parameters (see Appendix B for details) but the system does
not exhibit flocking as a whole since the Ly number of 1D
rings do not interact with each other for D⊥ = 0. Altering
the transverse diffusion D⊥ to a nonzero value, particle dif-
fusion occurs along the transverse ±y direction. Therefore,
the random initial state coarsens to form high-density clusters
which coarsen further to give rise to a large flocking domain
[Figs. 7(d)–7(f)].

To quantify the role of the diffusion coefficient (D⊥), we
plot R(t ) versus t in Fig. 8 for various values of D⊥. The
plot shows that the system follows a power-law growth of
R(t ) ∼ t1/2 across different values of D⊥. Notably, even a
small value of D⊥ = 0.2 is sufficient to drive proper domain
growth. Increasing D⊥ further only increases the average do-
main size. As shown earlier in Figs. 7(b) and 7(c), a vanishing
D⊥ or a very small D⊥ cannot initiate domain growth, as R(t )
remains constant with t (see inset of Fig. 8). This indicates
that transverse diffusion plays one of the most crucial roles
in the growth kinetics of the AIM. However, our primary mo-
tivation for suppressing transverse diffusion extends beyond
simply verifying the diffusion-driven nature of coarsening. As

FIG. 8. R(t ) versus t (on a log-log scale) showing a 0.5 growth
exponent for different transverse diffusion D⊥ = 0.2 (solid cyan dia-
mond), 0.3 (solid yellow inverted triangle), 0.5 (solid green square),
and 1 (solid blue triangle). Inset: R(t ) versus t for small values of the
transverse diffusion, D⊥ = 0 (open black inverted pentagon), 0.05
(open red diamond), and 0.1 (open purple inverted triangle) showing
no temporal domain growth. Parameters: L = 400, β = 1.1, ε = 1,
and ρ0 = 8.

shown in Fig. 8, we explore the critical regime of transverse
diffusion (D⊥) where the growth exponent transitions to the
diffusive behavior observed in Model A. By systematically
reducing D⊥ and analyzing the resulting growth dynamics,
we identify the limiting values of D⊥ at which this transition
occurs. This investigation provides insights into the sensitivity
of the growth kinetics of the AIM to the strength of transverse
diffusion.

E. Growth law from the hydrodynamic description of the AIM

In this section, we want to investigate whether the contin-
uous description of the AIM [20,21,61,64] also manifests the
same time dependency (∼ t1/2) of the coarsening length scale
as observed in our numerical analysis. We consider refined
mean-field equations similar to Ref. [21] for the spatiotempo-
ral evolutions of the density (ρ) and magnetization (m) fields:

ρ̇ = D∇2ρ − v∂xm , (14)

ṁ = D∇2m − v∂xρ + 2

(
2β − 1 − r

ρ

)
m − α

m3

ρ2
, (15)

where v = 2Dε, α = 4β2(1 − 2β/3), and r = 3ααm/2 is a
positive function of β [21]. In constructing Eq. (15), we
slightly modify the flipping rate equation of Eq. (4) to read
Wflip = exp(−2βσm/ρ). For the mean-field equations, r = 0,
which cannot correctly capture AIM physics as the system
always exhibits homogeneous profiles (gas and liquid), and
inhomogeneous phase-separated profiles are never observed
[21]. In Eqs. (14) and (15), local fluctuations are taken into
account, which are generally neglected in the mean-field ap-
proximations [21].
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FIG. 9. Time-evolution snapshots of the magnetization field m
obtained by solving the AIM hydrodynamic equations Eq. (14) and
Eq. (15) after a quench from the homogeneous gaseous phase to an
ordered liquid phase. Parameters: L = 400, β = 0.75, and ρ0 = 5.

Equations (14) and (15) immediately show the importance
of transverse diffusion. If we start with an x-independent ini-
tial condition, for instance, a horizontal thin stripe of width w,
where ρ(y) = ρ0/w, m(y) = m0 > 0 is the stationary solution
of Eq. (15) for 0 < y < w and ρ(y) = δ � ρ0/w and m0 = 0
otherwise. Then the solution stays x independent at all later
times, ρ(x, y, t ) = ρ̃(y, t ) and m(x, y, t ) = m̃(y, t ), where the
equations for ρ̃ and m̃ are

˙̃ρ = D∂yyρ̃ , (16)

˙̃m = D∂yym̃ + 2

(
2β − 1 − r

ρ̃

)
m̃ − α

m̃3

ρ̃2
. (17)

Equation (16) shows that the thin stripe expands diffusively
in the y direction (transverse direction) yielding a

√
t de-

pendence of the stripe width. For general random initial
conditions, we use explicit Euler forward time centered space
(FTCS) [65] differencing scheme to numerically integrate
Eqs. (14) and (15). We solve these two coupled partial dif-
ferential equations on a square domain of size L × L with
periodic boundary conditions applied in both directions. In
our simulation, L = 400 and the maximum simulation time
is tsim = 5 × 106. To maintain the numerical stability criteria,
we set �x = 1 as the discretization in space and �t = 10−3

as the discretization in time. These discretization parameters
satisfy the Courant-Friedrichs-Lewy stability condition. In our
numerical implementation, we fix D = r = v = 1 and the ini-
tial system is prepared as a high-noise homogeneous gas phase
with ρ = ρ0 and m = 0 by adding a zero-mean scalar Gaus-
sian white noise to Eq. (15) [25]. We then calculate the spatial
dependence of the density and magnetization correlation us-
ing Eqs. (6) and (7) for 25 independent realizations. Finally,
R(t ) is determined where the ensemble-averaged correlation
functions decay to 0.2 of its maximum value.

In Fig. 9, we plot the time evolution of the magnetization
field m by solving Eqs. (14) and (15) via the finite-difference
FTCS scheme. The formation of self-propelling clusters with

FIG. 10. R(t ) versus t (on a log-log scale) exhibiting a growth
exponent θ = 1/2 by solving the AIM hydrodynamic equa-
tions Eq. (14) and Eq. (15) using the FTCS scheme. Parameters:
L = 400, β = 0.75, and ρ0 = 5.

smooth interfaces and their growth with time resembles the
dynamics shown in Fig. 2 for the time evolution of the micro-
scopic model [Eqs. (1)–(5)]. We also extract the LCA growth
law R(t ) ∼ t1/2 (as shown in Fig. 10 on a logarithmic scale)
by solving the hydrodynamic equations after quenching the
system from a disordered gaseous phase to an ordered liq-
uid phase. The length scale in Fig. 10 is obtained from the
equal-time spatial correlation of the density fields (the length
scale obtained from the correlation of the magnetization fields
also exhibits the same growth law). Hence, the self-propulsion
terms in the hydrodynamic equations (14) and (15) of the AIM
do not alter the asymptotic growth law of the nonconserved
Model A.

It can be seen that for v = 0 (ε = 0), Eq. (15) trans-
forms into the deterministic version of the well-known
time-dependent Ginzburg-Landau (TDGL) equation [39] of
the order parameter evolution. Then one can derive the Allen-
Cahn equation of motion for the interfaces from the TDGL
equation [39], and this will produce a growth R(t ) ∼ t1/2 as
shown in Fig. 5(c). Equation (14) for v = 0 follows a purely
diffusive equation and therefore the density length scale will
also exhibit a

√
t dependence.

We now aim to discuss and compare the impact of hydro-
dynamics on domain growth in both the AIM and the VM.
From Eqs. (14) and (15), we observe that in the AIM, density
is advected by the magnetization only in the x direction and
vice versa. Therefore, diffusion, denoted by the term D∇2ρ

(or D∇2m) becomes exceptionally significant in the growth
of the density (magnetization) domains in the 2D AIM. Now,
let us consider the minimal hydrodynamic equations that can
describe the VM [25,66]:

∂tρ = −v �∇ · �m , (18)

∂t �m = D∇2 �m − λ �∇ρ − ξ ( �m · �∇ ) �m + (a2 − a4| �m|2) �m ,

(19)
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where �m(�r, t ) is the vectorial magnetization field for contin-
uous symmetry, a2 and a4 are functions of ρ, λ �∇ρ reflects
the pressure gradient induced by density heterogeneities, and
ξ and D are two transport coefficients associated with the
advection and the diffusion of the magnetization, respectively.
As one can notice, the advective term v∂xm of the AIM is
replaced by v �∇ · �m in Eq. (18), and in the VM, density can
only be advected along the direction of the magnetization �m.
As there is no D∇2ρ term in the Vicsek density equation, dif-
fusion cannot play a role in the growth of the density domains
by diffusing particles in directions other than those dictated by
�m. Ordering dynamics in self-propelled particles with the dif-
fusive term in the density equation has been reported to show
a faster growth of the density field [49]. In Eq. (19), along with
the diffusive term D∇2 �m, the additional ( �m · �∇ ) �m term is an
advective term (analogous to the advective term in the Navier-
Stokes equation). It is well known that in Model H [60], where
advection is included (a conserved order parameter is coupled
to hydrodynamic flow), the asymptotic growth exponent is
greater than 0.5: R(t ) ∼ t when the advective term is dominant
at late times (viscous hydrodynamic regime), and even later
times, when the inertial effect also becomes important (inertial
hydrodynamic regime), R(t ) ∼ t0.67 [67]. Therefore, advec-
tion is probably most relevant for the emergence of the large
value (0.83) in the growth exponent for magnetization in the
VM. In contrast to the VM, within the AIM, the flow occurs
exclusively along the x direction, emphasizing the crucial role
of diffusion in growth kinetics. As a result, both density and
magnetization grow diffusively.

V. SUMMARY AND DISCUSSION

We conclude this paper with a summary and discussion of
our results. We study the ordering kinetics of the AIM, a flock-
ing model with both conserved (density) and nonconserved
(magnetization) scalar order parameters, after quenching from
a disordered high-temperature gaseous phase to the phase
coexistence region and the polar-ordered liquid phase. We
observe the formation of connected domains of negative and
positive spins similar to the ferromagnetic Ising model in the
nonmotile diffusive limit of the AIM. But for self-propelled
particles, AIM manifests an extensive number of disconnected
small clusters of the negative and positive spins which even-
tually merge to a single, macroscopic liquid domain [21]. The
domain-evolution morphology is characterized by the equal-
time two-point correlation function and its Fourier transform,
the structure factor. The scaling behavior of the correlation
function demonstrates a good data collapse, indicating the
self-similar nature of domain growth. Additionally, the large-k
behavior of the scaled structure factor tail exhibits Porod’s
decay, supporting the smooth spatial structure of the AIM
domains. Although AIM contains both conserved and noncon-
served order parameters, we extract the same growth law for
the AIM density and magnetization fields, the LCA growth
law [37–39] R(t ) ∼ t1/2 of the nonconserved scalar order pa-
rameter. This indicates that activity does not affect the growth
law of the AIM. This observation aligns with earlier findings
in Model A with an external drive where external influences
do not alter the growth law at the linear level [68]. Unlike
the VM [54], in AIM, the density domain aligns over the

same length scale as the orientation. Furthermore, we do not
observe any activity-induced correction to the growth law
of the nonconserved scalar order parameter, as observed in
the context of the active polar fluid with a nonconserved
vector order parameter [55]. Further, we investigate the role
of diffusion in the growth kinetics of the AIM. We observe
that due to the horizontal biased hopping (along ±x direc-
tion) of the AIM clusters, particle diffusion along the vertical
±y direction is the predominant mechanism through which
coarsening happens in the AIM. This establishes diffusion
as the main growth mechanism rather than activity, leading
to a growth law R(t ) ∼ t1/2 for the AIM. We further solve
the AIM hydrodynamic equations using a finite-difference
scheme, and the extracted coarsening length scale validates
the growth exponent θ ∼ 1/2 observed in the microscopic
simulation. As a future exercise, one could also consider ex-
ploring an analytical approach [68] to solve the hydrodynamic
equations to perceive a better understanding of the coarsening
dynamics.

In this paper, we focus on purely local particle interactions.
Instead of considering a purely local interaction between
particles, one can also consider the presence of interactions
between the nearest neighboring sites and investigate whether
this short-range spatial structure of the interactions affects
the extracted growth law. On coarse-graining, coupling the
magnetization on a site to those on its four neighboring sites
will only modify the magnetization equation, but not the
density equation, which will retain its form. Consequently,
we expect the same growth law exponent in the presence of
nearest-neighbor interactions.

An interesting extension of this study would be to ex-
plore the phase ordering kinetics in flocking models in the
presence of disorder, as experimental systems always contain
both quenched and mobile impurities. The similarity in the
growth law of a passive system and its active counterpart is
an interesting result. Therefore, further studies on the coars-
ening dynamics of active systems, such as the active Potts
model or the active clock model, where the growth laws of
the corresponding passive models are well known [43,57,69],
are required to confirm (or contradict) this theoretical
observation.
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APPENDIX A: COMPARISON OF THE GROWTH LAW
FOR THE DENSITY AND MAGNETIZATION FIELD

The ordering kinetics of the AIM discussed in this paper
are studied mainly by extracting the length scale R(t ) from
the equal-time two-point density correlation function defined
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FIG. 11. R(t ) versus t for density (solid red square) and magne-
tization (solid green diamond) field yields the same growth exponent
0.5 for a quench in the coexistence regime, ρ0 = 3. Inset: A similar
growth law is extracted for a quench in the liquid regime, ρ0 = 10.
Parameters: L = 400, β = 1.1, and ε = 1.

in Eq. (6). However, one can also extract R(t ) from the mag-
netization correlation function defined in Eq. (7). Now it was
argued in the context of the coarsening dynamics of the VM
that, unlike generic coarsening systems which typically ex-
hibit a single dominant length scale, the Vicsek model exhibits
distinct coarsening length scales for the density and velocity
correlations [54]. In VM, despite the density and velocity
fields being fully coupled, the velocity length scale grows
much faster compared to the density length scale because ve-
locity order extends over longer distances than density clusters
due to the irregular fractal morphology of the density clusters.
In AIM, however, besides being the density and magnetization
fields fully coupled, the clusters are also regularly shaped with
smooth boundaries, and therefore, the temporal behavior of
the two length scales are found similar as shown in Fig. 11.

Figure 11 shows, for the coarsening of the AIM, that the
two length scales exhibit the same growth law, R(t ) ∼ t1/2

(although the domain size for the density field is marginally
larger than the corresponding magnetization field) for a
quench into the coexistence region and into the polar ordered
liquid regime (see inset of Fig. 11). Therefore, we can con-
clude that the R(t ) ∼ t1/2 growth law is reasonably universal
in the AIM as it neither depends on the quenching regime
nor the local order parameter (be it conserved density or
nonconserved magnetization).

(a)

(b)

FIG. 12. (a) m(y) versus t for Ly ∈ [200 : 210] starting from a
random disordered configuration (m ∼ 0). The color bar denotes the
averaged magnetization along the x axis. (b) Late time averaged mag-
netization profile as a function of y. Parameters: L = 400, ρ0 = 10,
β = 1.1, and ε = 0.8.

APPENDIX B: 2D AIM WITH D⊥ = 0

The role of transverse diffusion in domain growth of 2D
AIM is immense. Here we present a more detailed pic-
ture of the D⊥ = 0 scenario. In Fig. 12(a) we plot m(y) =
1
Lx

∑Lx
i=1 m(i, y) versus time t for Ly ∈ [200 : 210]. As the

density is very large (ρ0 = 10), we see highly magnetized one
lattice unit-wide domains that cannot merge to create a larger
domain as time progresses because we inhibit the diffusive
hopping in the transverse direction. These 1d domains are sin-
gle dense ordered aggregates that stochastically reverse their
magnetization [63]. The magnetization profile in Fig. 12(b)
is averaged over x and shows sharp peaks of positive and
negative magnetizations, spread over either one site or a few
sites. The density profile of such an arrangement shows a
homogeneous profile around the average density which is
similar to the density profile of a large liquid domain but
the alternating magnetization profile signifies that there is no
domain growth at the asymptotic limit in the 2D AIM for
D⊥ = 0.
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