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Statistical physics of principal minors: Cavity approach
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Determinants are useful to represent the state of an interacting system of (effectively) repulsive and indepen-
dent elements, like fermions in a quantum system and training samples in a learning problem. A computationally
challenging problem is to compute the sum of powers of principal minors of a matrix which is relevant to the
study of critical behaviors in quantum fermionic systems and finding a subset of maximally informative training
data for a learning algorithm. Specifically, principal minors of positive square matrices can be considered as
statistical weights of a random point process on the set of the matrix indices. The probability of each subset of
the indices is in general proportional to a positive power of the determinant of the associated submatrix. We use
Gaussian representation of the determinants for symmetric and positive matrices to estimate the partition function
(or free energy) and the entropy of principal minors within the Bethe approximation. The results are expected
to be asymptotically exact for diagonally dominant matrices with locally treelike structures. We consider the
Laplacian matrix of random regular graphs of degree K = 2, 3, 4 and exactly characterize the structure of the
relevant minors in a mean-field model of such matrices. No (finite-temperature) phase transition is observed in
this class of diagonally dominant matrices by increasing the positive power of the principal minors, which here
plays the role of an inverse temperature.
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I. INTRODUCTION

A principal minor of a matrix A is determinant of a square
submatrix which is formed by a number of rows and columns
with the same indices from the matrix. This provides a mea-
sure of independence for the selected subset of rows (or
columns) which is useful for instance in sampling problems
where diversity matters or in computing the entropy of phys-
ical systems with fermionic statistics. The sum of powers of
principal minors (SPPM) of a matrix appears in various ar-
eas of physics and mathematics [1]. SPPM finds applications
in the study of determinantal point processes [2,3], Rényi
entropy of free fermions and quantum spin chains [4], and
partition function of the Hubbard model [1]. When the power
is one, the sum is a simple determinant that can be computed
in polynomial time. However, for other powers, the problem is
generally considered to be NP-hard, indicating that there may
not be a polynomial time algorithm to calculate them [5,6].
Nonetheless, recent advancements have been made in the
approximate analytical computation of these quantities [1].
In this paper we study statistical properties of the principal
minors of positive, symmetric, and diagonally dominant ma-
trices which can be represented by Gaussian integrals and
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estimated by the cavity method of statistical physics. We
employ this method to characterize the spectral entropy of
principal minors in this subclass of matrices and utilize it as
an approximate optimization algorithm to find the maximal
minor configurations.

The principal minors of a matrix has a very natural mean-
ing in the context of the graph theory. Consider, the adjacency
matrix of a graph G with n nodes, which is a matrix that
describes the connections between the nodes of the graph,
where the entry in row i and column j of the matrix is 1 if
there is an edge from node i to node j and 0 otherwise. Then
the Laplacian matrix of a graph is defined as the difference
between the degree matrix and the adjacency matrix of the
graph. The degree matrix is a diagonal matrix where the entry
in the ith row and ith column is equal to the degree of the ith
node, i.e., the number of edges incident to it, and the nondi-
agonal entries are 0. The Laplacian matrix L is a symmetric,
positive semidefinite matrix, which means all the principal mi-
nors are non-negative. It has numerous applications in graph
theory notably in the enumeration of the spanning trees. A
spanning tree of an undirected graph is a tree that includes all
of the graph’s vertices, while using only a subset of its edges,
such that no cycles (closed paths) are formed. The matrix-tree
theorem, see for example Ref. [7], then states that the number
of spanning trees of the graph G is equal to any cofactor of the
Laplacian matrix L. Specifically, if we remove any row and
column (say, i) from L to obtain a (n − 1) × (n − 1) matrix
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L[i], then the number of spanning trees of G is given by the
determinant of L[i].

There is a generalization of matrix-tree theorem which is
called principal minor matrix tree theorem which is used to
enumerate the number of rooted spanning forests [8]. A forest
is formed by a set of disjoint tree subgraphs of the graph G.
A rooted spanning forest is a subgraph of G that is a forest
and contains all vertices of the graph. And each tree in the
forest is rooted at a designated root vertex in that tree. Let
Lc be the submatrix of L formed by selecting the rows and
columns corresponding to the vertices in c then the number
of spanning forests rooted at c is detLc. This interpretation
of the principal minors makes the definition of the weighted
partition function of the rooted spanning forests as the sum of
powers of principal minors natural. In this paper we interpret
the power as the inverse of a temperature-like parameter. In
the limit of large powers, i.e., small temperatures, the SPPM
gives the principal minor with the largest contribution which
is a desired quantity in determinantal point processes [2] and
the study of random spanning trees [9].

Here we introduce a statistical model in which the prin-
cipal minors of a positive semidefinite matrix serve as the
statistical weights. Although the matrix need not necessarily
be a graph Laplacian, our focus is primarily on this type of
matrix. To address this problem, we utilize the cavity method
(Bethe approximation or belief propagation) [10–13], which
is commonly used in spin glasses but has not been previously
applied to studying the sum of powers of principal minors.
Examples of applications of the method in similar problems,
mainly in the study of spectral properties of sparse matrices,
can be found in Refs. [14–20]. The cavity method should
be asymptotically exact in interacting systems which have a
locally treelike interaction graph [13]. The sum of principal
minors to power β here is considered as the partition function
of principal minors of the matrix at inverse temperature β.
We employ the Gaussian representation of determinants to
find estimations of the free energy and entropy of the relevant
principal minors for Laplacian of random regular graphs of
degree K = 2, 3, 4. These results along with an exact study
of diagonally dominant matrices defined on fully connected
graphs indicate on the absence of a finite-temperature phase
transition in this class of matrices. In a diagonally dominant
matrix, the magnitude of a diagonal element |Aii| in each
row is larger than or equal to the sum of magnitudes of the
off-diagonal elements

∑
j �=i |Ai j |.

The nontrivial structure of the ground states in random
regular graphs of degree K = 2 (or chains), however, results in
numerical instabilities for large β and degrades the efficiency
of the simulated annealing algorithm in finding a maximal
principal minor in these systems; the entropy density of
relevant minor configurations is discontinuous at zero temper-
ature, jumping to a nonzero value for any finite temperature.
The situation is much better for (random) Laplacian of graphs
with larger degrees K > 2 as one approaches the mean-field
limit, where the ground states have a trivial structure in the
configuration space of the principal minors. Nevertheless, it
is possible to observe discontinuities in the entropy density at
zero temperature by introducing a chemical potential which
controls the number of present indices in the minors. These
zero-temperature transitions are similar in nature to those of

the smaller degree K = 2. We also use the zero-temperature
limit of the Bethe equations, the so-called MaxSum (MS)
equations [13,21], as an approximate optimization algorithm
to find a maximal principal minor of diagonally dominant
matrices. The standard algorithms are in general based on the
spectral decomposition of the matrix with a time complexity
of order N3 for an arbitrary matrix of dimension N [2]. The
computational complexity can of course be reduced to N for
sampling of principal minors of dimensions n � N [9,22,23].
The time complexity of the MaxSum algorithm here is pro-
portional to N for sparse and diagonally dominant matrices
where the (Gaussian) Bethe equations are expected to work.

The paper is structured as follows. In Sec. II we define
the main quantities of the problem. In Sec. III we present
the results obtained by the Gaussian representation of the
determinants. This section includes subsections that deal with
the finite- and zero-temperature limits of the Bethe equations.
The summary of results and concluding remarks are given
in Sec. IV. In the Appendices, we give a brief introduction
to the Bethe approximation (A), describe the details of the
population dynamics which is used to solve the Bethe equa-
tions (B), write the simplified Bethe equations for random
regular graphs (C), and present an exact treatment of principal
minors in matrices defined by homogeneous fully connected
graphs (D).

II. THE PROBLEM STATEMENT AND DEFINITIONS

Consider a positive square matrix A of size N with ele-
ments Ai j indexed by i, j = 1, . . . , N . The nonzero elements
of A define the structure or interaction graph of the matrix.
The set of neighbors of node i in this graph is denoted by ∂i.
The 2N principal minors detA(c) are labeled with configura-
tions c = {ci = 0, 1 : i = 1, . . . , N}. That is ci = 1 shows that
row (column) i is included in the square submatrix A(c). Each
configuration is assigned a Boltzmann weight,

Pβ (c) = [detA(c)]β

Z (β )
= e−βE (c)

Z (β )
, (1)

where the associated energy function reads

E (c) = − ln[detA(c)], (2)

and the positive power β plays the role of an inverse tem-
perature. The energy of all-zero minor configuration is zero
that is detA(0) = 1. Here the partition function (normalization
factor) is

Z (β ) =
∑

c

[detA(c)]β =
∫

dee−βN[e− s(e)
β

] = e−βN f (β ), (3)

with the energy density e = E/N and the free energy density
f (β ) = −[ln Z (β )]/(βN ). The entropy density is defined by
s(e) = ln[�(e)]/N , where �(e) is the number of configu-
rations with energy density e. In the thermodynamic limit
N → ∞, the integrand is concentrated on the mean energy,
that is, f = e − 1

β
s.

In the following, we are going to change the parameter β to
study the energy and entropy landscape of the SPPM problem
given in Eq. (3). The range of energy values (principal minors
of A) represent the relevant minors for different values of β.

064141-2



STATISTICAL PHYSICS OF PRINCIPAL MINORS: … PHYSICAL REVIEW E 109, 064141 (2024)

Specially, the minimum energy value and configuration, i.e.,
the ground state(s) are obtained at zero temperature (β → ∞).
The entropy spectrum s(e) shows the number of such relevant
submatrix configurations and the free energy f is a measure
of the sum over the weights of these configurations at inverse
temperature β.

From the above system we can compute the Rényi entropy
of the probability distribution Pβ (c),

Rβ (n) = 1

1 − n
ln

[∑
c

Pn
β (c)

]

= 1

1 − n
[ln Z (nβ ) − n ln Z (β )]. (4)

Specifically,

Rβ (1) = −
∑

c

Pβ (c) ln Pβ (c), (5)

which can be obtained by a Legendre transformation of the
free energy

Rβ (1)

N
= s(β ) = β[e(β ) − f (β )]. (6)

Note that here e(β ) is the average energy density at inverse
temperature β. A parametric plot of the above quantity gives
the entropy s(e) as a function of energy. Here one is interested
in the values of the free energy, entropy, and energy of the rel-
evant minors at different inverse temperatures β, the structure
of these minors in the configuration space and the nature of
possible phase transitions in this system.

III. GAUSSIAN REPRESENTATION

Let us assume that A is a positive and symmetric matrix.
Thus all the square submatrices are positive and symmetric.
Given a configuration c of the indices we define the submatrix
A(c) with elements

Ai j (c) = ciAi jc j + (1 − ci )δi, j . (7)

A diagonal regularization takes care of the case i = j and
ci = 0. Then, we employ the Gaussian integrals to write

detA(c) = (2π )N{ ∫ +∞
−∞

∏N
i=1 dxie

− 1
2

∑
i, j xi[ciAi j c j+(1−ci )δi, j ]x j

}2 . (8)

In this way

ln detA(c)

= N ln(2π ) − 2 ln

{∫ ∏
i

dxie
− 1

2

∑
i, j xi[ciAi j c j+(1−ci )δi, j ]x j

}
,

(9)

or

ln detA(c) = N ln(2π ) − 2Ng(c), (10)

where for brevity we defined∫ ∏
i

dxie
− 1

2

∑
i, j xi[ciAi j c j+(1−ci )εδi, j ]x j = eNg(c). (11)

Recall that E (c) = − ln detA(c), therefore,

Z (β ) =
∑

c

e−βE (c) = eβN ln(2π )
∑

c

e−2βNg(c). (12)

Note that g(c) is a global function of the ci. In the following,
we write this quantity as a sum of local energy contributions
by introducing other auxiliary variables to the problem. This
allows us to apply the standard methods of estimating the free
energy of systems with a local energy function.

A. Bethe approximation of the Gaussian integral

In this section we use Bethe approximation to find an es-
timation of the Gaussian integral in Eq. (11). In Appendix A,
we briefly explain the method for a simple statistical model,
see also Refs. [10–13,21]. The Bethe or belief propagation
(BP) equations for the Gaussian integrals are recursive equa-
tions for cavity probability distributions mi→ j (xi ). This is
probability density of xi in the absence of interaction with
variable x j assuming that the interaction graph defined by
A(c) has a tree structure. To write these equations, we con-
sider the local interactions of xi with its neighboring variables
which are assumed to be statistically independent of each
other,

mi→ j (xi ) ∝ e− 1
2 ((1−ci )+ciAii )x2

i

×
∏

k �=i, j

[∫
dxke−xiciAikckxk mk→i(xk )

]
. (13)

It is known that even in interaction graphs which are not tree
(loopy graphs) these equations converge to a unique solution
as long as A(c) is a diagonally dominant matrix [24,25], that
is |Aii| �

∑
j �=i |Ai j |.

Now consider the following ansatz for the BP messages:

mi→ j (xi ) ∝ e
− x2

i
2vi→ j . (14)

Note that because of the symmetry of the problem we are as-
suming that 〈xi〉 = 0. This results in a set of BP equations for
the variances,

1

vi→ j
= (1 − ci ) + ciAii −

∑
k �=i, j

ciA
2
ikckvk→i. (15)

That is, the Gaussian ansatz is consistent with the structure of
the Gaussian BP equations.

Given the solution to the BP equations, we write g(c) in
terms of the local contributions of the variables and interac-
tions to the Gaussian integral [21],

Ng(c) =
∑

i

�gi(c) −
∑
i< j

�gi j (c), (16)

where

e�gi =
∫

dxie
− 1

2 [(1−ci )+ciAii]x2
i

×
∏
j �=i

[∫
dx je

−xiciAi j c j x j m j→i(x j )

]
, (17)

e�gi j =
∫

dxidx je
−xiciAi j c j x j mi→ j (xi )mj→i(x j ). (18)
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Later, we will also need a cavity contribution of the variables
�gi→ j , which is like �gi but excluding one of the neighboring
interactions,

e�gi→ j =
∫

dxie
− 1

2 [(1−ci )+ciAii]x2
i

×
∏

k �=i, j

[∫
dxke−xiciAikckxk mk→i(xk )

]
. (19)

Within the Gaussian ansatz for the BP messages, the above
expressions for the local variable and interaction contributions
are simplified to

2�gi = ln(2πvi ), (20)

2�gi j = − ln{vi→ jv j→idet[B(i j)]}, (21)

where
1

vi
= (1 − ci ) + ciAii −

∑
k �=i

ciA
2
ikckvk→i, (22)

B(i j) =
(

1
vi→ j

ciAi jc j

ciAi jc j
1

v j→i

)
. (23)

Note that the sign of off-diagonal elements Ai j is irrelevant as
long as the Gaussian Bethe equations are valid. That is, we
can change the sign of any such element of the matrix without
changing the determinant or the energy of the system within
the above approximation.

In the next subsection, we use the above expressions for the
determinants of A(c) to compute the partition function of the
original problem.

B. A higher-level Bethe approximation of the partition function

Now we are ready to do the sum over the configurations∑
c

e−2βNg(c) = e−βN fg, (24)

which is needed in the partition function,

Z (β ) = e−βN[ fg−ln(2π )]. (25)

Here we defined fg as the nontrivial contribution to the free
energy f = fg − ln(2π ).

In the previous subsection we wrote g(c) in terms of the
�gi and �gi j which in turn depend on the BP messages
vi→ j . These messages satisfy the BP equations with a unique
solution for diagonally dominant matrices. Therefore, we can
write∑

c

e−2βNg(c) =
∑

c

∑
v→

e−2β(
∑

i �gi−
∑

i< j �gi j )I(v→), (26)

that is, considering the vi→ j as auxiliary variables
which are constrained by the indicator function I(v→) =∏

i→ j δ(vi→ j − vBP
i→ j ) to satisfy the BP equations.

Again we can resort to the Bethe approximation to estimate
the sum over the extended set of variables c, v→. We can do
this because both the g(c) and the BP constraints on the vi→ j

are local functions of these variables. If the graph associated to
matrix A has a tree structure, then the interaction graph of the
ci and the auxiliary variables vi→ j is also a tree. Consider the
cavity probability distribution Mi→ j (ci, vi→ j ) of the variables

in the absence of interactions with node j. The cavity variables
{(ck, vk→i ) : k ∈ ∂i \ j} are independent of each other in a
tree interaction graph. Thus Mi→ j (ci, vi→ j ) is proportional to
the product of the cavity probabilities {Mk→i(ck, vk→i ) : k ∈
∂i \ j} for variables that are consistent with the hard constraint
I(vi→ j ). In addition, Mi→ j (ci, vi→ j ) is also proportional to the
Boltzmann factor e�gi−�gi j = e�gi→ j which gives the statistical
weight of the cavity variables [see Eq. (26)]. Therefore, the
higher-level BP equations for the cavity probability distribu-
tions read

Mi→ j (ci, vi→ j ) ∝
∏

k∈∂i\ j

⎡
⎣∑

ck

∫
dvk→iMk→i(ck, vk→i )

⎤
⎦

× I(vi→ j )e
−2β�gi→ j . (27)

We solve these equations by a population dynamics algo-
rithm which is explained in Appendix B. The probability
distributions Mi→ j (ci, vi→ j ) are represented by populations
of the variables Pi→ j = {(ca

i , v
a
i→ j ) : a = 1, . . . ,Np} on each

directed link (i → j). Then members of the populations from
the right-hand side of the equation are selected to update the
members of the population in left-hand side according to the
Boltzmann weights of the variables and the hard constraints
of the BP equations [26]. All members of the populations are
updated in a single iteration of the algorithm. In the stationary
state of the population dynamics, say, after teq iterations, we
obtain an estimation of the free energy,

N fg =
∑

i

� fi −
∑
i< j

� fi j, (28)

with local free energies that are given by

e−β� fi =
∑

ci

∏
j∈∂i

⎡
⎣∑

c j

∫
dv j→iMj→i(c j, v j→i )

⎤
⎦e−2β�gi ,

(29)

e−β� fi j =
∑
ci,c j

∫
dvi je

−2β�gi j Mi→ j (ci, vi→ j )Mj→i(c j, v j→i ).

(30)

Here vi j = {vi→ j, v j→i}.

TABLE I. The matrices studied in this paper with a brief de-
scription of the defining parameters. These are N × N matrices with
indices i, j = 1, . . . , N . The RRGs have degree K and ∂i denotes the
set of neighbors of i. In random matrices the off-diagonal elements
are independent random numbers uniformly distributed in (−2, 0).

Matrix Elements

Laplacian of RRGs (Sec. III B) Aii = K, Ai j = −1( j ∈
∂i), |∂i| = K

Quasi-Laplacian of RRGs
(Sec. III B)

Aii = 	, Ai j = −γ /K ( j ∈
∂i), |∂i| = K, 0 < γ � 	

Random Laplacian of RRGs
(Sec. III C)

Aii = −∑
j �=i Ai j, Ai j ∈

(−2, 0)( j ∈ ∂i), |∂i| = K
Scaling limit I of complete
graphs (App. D)

Aii = N − 1, Ai j = −1( j �= i)

Scaling limit II of complete
graphs (App. D)

Aii = 	, Ai j = −γ /N ( j �=
i, 0 < γ � 	)
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FIG. 1. The asymptotic behavior of minors for Laplacian of random regular graphs of degree K = 2, 3, 4. The free energy f , entropy vs
energy s(e), and probability of presence p are reported (Gaussian BP) and compared with exact numerical results for small sizes (N = 10, 20).
β is the inverse of temperature in the partition function of the principal minors. The parameters of the population dynamics algorithm are as
follows: population size Np = 104, equilibration time teq = 106, and averaging time �tavg = 104.

The above computations are simplified for homogeneous
interaction graphs where by symmetry all equations for di-
rected links (i → j) reduce to a single equation. Here we
consider the Laplacian of random regular graphs (RRGs) with
the same degree (number of neighbors) K for all nodes. See
Table I for definitions of the matrices we shall study in this
work. In Appendix C we present the resulted equations which
again are solved by a population dynamics algorithm. In this
case a single population of the messages (ci, vi→ j ) is enough
to solve the higher-level BP equations. Figure 1 shows the

main quantities computed in this way for random regular
graphs in the thermodynamic limit (N → ∞). The results are
obtained by a population of size Np = 104 after teq = 106

iterations of the population dynamics to reach a steady state
where the average quantities are stationary. For comparison
we also present the exact numerical results for small prob-
lem instances (N = 10, 20). As the figure shows finite-size
effects are more pronounced for larger degrees K = 3, 4,
where the entropy s(e) decreases continuously to zero by in-
creasing β. And the presence probability p = 〈ci〉 approaches
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FIG. 2. The asymptotic behavior of minors for Laplacian of a
closed chain. The free energy f and entropy vs energy s(e) are re-
ported (Gaussian BP) and compared with the exact solution (theory)
of Ref. [1]. The parameters of the population dynamics algorithm are
as follows: population size Np = 104, equilibration time teq = 106,
and averaging time �tavg = 104.

monotonically to 1 for large β, where nearly all the indices are
present in the relevant minors. No sign of a finite-temperature
phase transition is observed here for K = 3, 4. By increasing
β, the Boltzmann weight is smoothly concentrated more and
more on minor configurations with a larger number of present
indices.

The case K = 2 displays more interesting behaviors with
a discontinuity in the entropy for large β and a probability p
which approaches to a nontrivial value as β goes to infinity.
We know that there are a subexponential number of ground
states with extensive Hamming distances in the configuration
space [1]. The ground states are dimer coverings with pairs of
adjacent nodes which are separated with one unmatched node.
However, no finite-temperature phase transition is expected to
happen also for K = 2 because the entropic contributions to
the free energy can easily destroy the ordered states of this
one-dimensional system. We also observe an instability in the

BP equations for large β close to the discontinuity. Figure 2
compares the exact theoretical solution of Ref. [1] with the
result we obtain by the above Gaussian BP equations. This
clearly shows the region of instability where the entropy s(e)
is not anymore a concave function of the energy density. In
fact, the number of iterations teq which is necessary to get
close to the exact theoretical solution increases rapidly as one
approaches the point of discontinuity.

To have a better picture of the phase space of these prob-
lems we consider two coupled replicas of the system at
equilibrium. By controlling the strength of coupling between
the replicas we can investigate the structure of the relevant
minors around a given point of the configuration space. We
define the partition function of two replicas as

Z (β, h) =
∑
c,c′

e−β[E (c)+E (c′ )−h
∑

i δci ,c
′
i
]
. (31)

This gives the free energy f of the replicas as a function of β

and the coupling h. In terms of the energy densities and the
overlap q = 1

N

∑
i δci,c′

i
, we have

Z (β, h) = e−βN f =
∫

dede′dqe−βN[e+e′−hq− 1
β

s(e,e′:q)]
. (32)

Here the entropy density is s(e, e′ : q) = 1
N ln �(e, e′ : q)

where �(e, e′ : q) is the number of two-replica configurations
of energy densities e and e′ with overlap q. In the thermody-
namic limit, by the saddle-point approximation one obtains

f = 2e − hq − 1

β
s(e : q), (33)

s(e : q) = β(2e − hq − f ), (34)

where the last equation for s(e : q) is obtained after a Leg-
endre transformation. Note that by symmetry the equilibrium
energy densities of the two replicas are the same.

The higher-level BP equations here are marginal probabil-
ity distributions for the replica variables

Mi→ j (ci, c′
i, vi→ j, v

′
i→ j ) ∝ eβhδci ,c

′
i

∏
k∈∂i\ j

⎡
⎣∑

ck ,c′
k

∫
dvk→idv′

k→iMk→i(ck, c′
k, vk→i, v

′
k→i )

⎤
⎦I(vi→ j )I(v′

i→ j )e
−2β(�gi→ j+�g′

i→ j ). (35)

As before we consider random regular graphs and solve these
equations by population dynamics. The algorithm is very sim-
ilar to the one presented in Appendix B except that we have
the Boltzmann weight e

βhδci ,c
′
i that couples the two replicas.

Figure 3 shows how the entropy, energy, and overlap of the
two systems are related to each other in random regular graphs
of degree K = 2, 3. For K = 4 (not shown) the qualitative
behaviors are very similar to that of K = 3. Again we see
the instability of the BP equations for large β and q in case
K = 2. The discontinuity of the entropy for K = 2 is again
observed in the way that the energy density e behaves with the
overlap q. Compare it with the case K = 3 where e decreases
monotonically by increasing q. Moreover, we see that when
K = 2 the overlap changes abruptly at h = 0 for large β which
is a signal of clustering of the ground states in this case.
In contrast, for K = 3 the overlap smoothly approaches 1

with increasing β even at h = 0 which is consistent with the
absence of phase transitions in these systems.

We end this section with an exact study of principal mi-
nors in matrices associated to fully connected graphs. In
Appendix D we consider N × N matrices with elements Ai j =
	δi, j − �(1 − δi, j ) in two scaling limits: (I) 	 = N − 1, � =
1 and (II) 	 = finite, � = γ /N as N → ∞. In the latter case
we assume that 0 � γ � 	 to represent positive and diago-
nally dominant matrices. We show that the behavior of the
Laplacian of a complete graph, i.e., in the scaling limit (I), is
very similar to that of Laplacian of random regular graphs of
degree K = 4. There are N − 1 ground states with Hamming
distances 2 where only one of the indices is not present in the
minor configuration. The scaling limit (II), however, displays
more interesting behaviors depending on the value of 	. For
	 > 1 there are N − 1 ground states with only one index
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FIG. 3. The asymptotic behavior of two coupled minor configurations (replicas) for Laplacian of random regular graphs of degree K = 2, 3.
h is the strength of coupling and q is the overlap of the two replicas. The parameters of the population dynamics algorithm are as follows:
population size Np = 104, equilibration time teq = 106, and averaging time �tavg = 104.

absent in the maximal minor configurations. On the other side,
for 	 < 1 there are N − 1 ground states with only one index
present the configurations. For 	 = 1 all configurations have
the same energy and the ground-state entropy is maximal.
Nevertheless, in both scaling limits we do not observe any
finite-temperature phase transition; there is always a unique
minimum of the free-energy function which changes smoothly
by increasing the inverse temperature β.

Figures 4 and 5 show how finite connectivity of random
regular graphs changes the above mean-field picture. We de-
viate from the Laplacian of random regular graphs in two
different directions as depicted in Fig. 6. Let us start with
the results displayed in Fig. 4. Here the diagonal matrix ele-
ments 	 can be smaller or larger than the connectivity degree
K = 2, 3, 4 and the off-diagonal elements are � = 	/K . This
means that we are multiplying the Laplacian by 	/K which
in turn modifies the value of minors by a factor (	/K )l for
a minor configuration of size l . That is − ln(	/K ) is like a
chemical potential which now controls the number of present
indices in the minors. We see that for 	 � 1 the behavior
of different degrees K is very similar to that of the complete
graphs except the smaller ground-state entropy at 	 = 1. Ex-
act enumerations in small systems show that like the complete
graphs, in this regime the limit β → ∞ of the entropy density
coincides with the zero-temperature entropy.

For 	 > 1, we observe numerical instabilities which can
be attributed to the discontinuous behavior of the entropy
density at zero temperature. Consider for instance the case
K = 2 (or a chain of length N � 1) where the energy of
a connected cluster of l present indices is given by E (l ) =
− ln(l + 1) − l ln(	/K ). A sequence of clusters of present
indices (represented by 1s) which are separated by a single

absent index (shown by 0) make an ordered minor configu-
ration for the chain graph; for instance, · · · − 0 − 111 − 0 −
111 − 0 − 111 − 0 − · · · with l = 3 present indices in each
cluster. The energy density of such a minor configuration is
given by e(l ) = −[ln(l + 1) + l ln(	/K )]/(l + 1). This en-
ergy is minimized for a non-negative integer that is closer to
l∗ = 	

K e − 1. The optimal size of clusters increases linearly
with 	 starting from the all-zero minor configuration. A max-
imal minor configuration here can be considered as a close
packing of clusters of effective size l∗ centered around the
zeros (absent indices). As mentioned before, for the Laplacian
(K = 2,	 = 2) an optimal configuration is a dimer cover-
ing, or a close packing of (nonoverlapping) rods of length 3.
Moreover, it is easy to see that the number of such optimal
configurations is of order N (by translation) so the entropy
density at zero temperature is zero. For any finite cluster size l
the Hamming distances between the ground states is extensive
but such states are not stable for any finite temperature, be-
cause the extensive entropy of excitations dominates the finite
energies of the domain walls in this one-dimensional system.

We see in Fig. 4 that for degrees K = 3, 4 the main quan-
tities change smoothly as long as 	 � K , where the number
density of present indices in the optimal configurations is 1.
On the other hand, for 1 < 	 < K we observe a discontinu-
ous entropy density at zero temperature as 	 approaches 1,
very similar to what happens for the smaller degree K = 2.
The ground states are random arrangements of an extensive
number of zeros which are well separated on the interaction
graph to maximize the number of spanning forests rooted
at the zeros. The interval of 	 values in which a numerical
instability is displayed is of course reduced by increasing
the degree K approaching the mean-field limit. Figure 7
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FIG. 4. The asymptotic behavior of minors vs 	 for quasi-Laplacian of random regular graphs of degree K = 2, 3, 4. The free energy f ,
entropy vs energy s(e), and probability of presence p are reported for 	 = 0.5 to 	 = K + 1 in steps of size �	 = 0.5. The quasi-Laplacian
matrix is defined by diagonal elements 	 and off-diagonal elements −	/K . The results are displayed for any 0 < β < 50 as long as the
entropy is concave and greater than −0.2. The parameters of the population dynamics algorithm are as follows: population size Np = 104,
equilibration time teq = 106, and averaging time �tavg = 104.

displays the exact numerical results we obtain for the sum
of two-variable correlations χ = 1

N

∑
i< j[〈σiσ j〉 − 〈σi〉〈σ j〉]

and χSG = 1
N

∑
i< j[〈σiσ j〉 − 〈σi〉〈σ j〉]2 with σi = 2ci − 1 =

±1. The two susceptibilities χ and χSG are expected to di-
verge with N near a magnetic or spin-glass phase transition,
respectively [13]. We observe that correlations remain short-
ranged as β increases in the two cases (K = 2,	 = 2) and
(K = 3,	 = 1.5) which display a discontinuity in the entropy
density.

Figure 5 shows the results for matrices with diagonal ele-
ments K and off-diagonal elements −γ /K when γ ∈ (0, K ).
By decreasing the magnitude of the off-diagonals compared
to the diagonals we approach the mean-field behavior. Here
the picture is simpler, with curves that smoothly approach (up
to very large β) the presence probability p = 1, where nearly
all the indices are present in the optimal minor configurations.
In Fig. 8 we report exact numerical results for variations in
the number of minor configurations just above the optimal
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FIG. 5. The asymptotic behavior of minors vs γ for quasi-Laplacian of random regular graphs of degree K = 2, 3, 4. The free energy f ,
entropy vs energy s(e), and probability of presence p are reported for γ ∈ (0, K ). The quasi-Laplacian matrix is defined by diagonal elements
K and off-diagonal elements −γ /K . The results are displayed for any 0 < β < 50 as long as the entropy is concave and greater than −0.2.
The parameters of the population dynamics algorithm are as follows: population size Np = 104, equilibration time teq = 106, and averaging
time �tavg = 104.

ones in small systems of sizes N = 18, 20, 22. We see that the
entropy gap remains nonzero (for K = 2) or approaches zero
(for K = 3, 4) when the number of present indices changes
by deviating from the Laplacian in the diagonal direction of
Fig. 6. Again we observe that the entropy density displays a
discontinuity for K = 2, and for K = 3, 4 when 	 is close to
1. On the other hand, the entropy gap tends to zero when we
approach the mean-field limit, except for K = 2 and γ close
to K .

C. Zero-temperature limit

At zero temperature the Gibbs probability measure is
concentrated on the ground states of the system with mini-
mum energy E = − ln detA(c), i.e., the maximal minors of
the matrix A. To study the ground states we take the limit
β → ∞ of the higher-level BP equations. Let us assume
that Mi→ j (ci, vi→ j ) = eβwi→ j (ci,vi→ j ) as β → ∞. Then, from
Eq. (27) we obtain the so-called MS equations [21] for the
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FIG. 6. Deviation from the Laplacian in the region of diagonally
dominant matrices. Moving in the diagonal direction γ = 	 is like
introducing a chemical potential for the size of minor configurations.
The mean-field picture is recovered in the other direction γ → 0.

cavity messages wi→ j (ci, vi→ j ), see also Appendix A,

wi→ j (ci, vi→ j )

= −2�gi→ j + max
{ck ,vk→i k∈∂i\ j}:I(vi→ j )

∑
k �=i, j

wk→i(ck, vk→i )

− Ci→ j . (36)

The constant Ci→ j is chosen such that maxci,vi→ j

wi→ j (ci, vi→ j ) = 0.
To solve the above equations by iteration we use a dis-

crete representation of the variances vi→ j = ni→ jδv with
integers ni→ j for a small δv. The maximum over the variables

FIG. 7. The sum of two-variable correlations when the entropy
density displays a discontinuity. The ferromagnetic and spin-glass
susceptibilities, χ and χSG are exactly computed for random regular
graphs of small sizes N . The matrices have diagonal elements 	 and
off-diagonal elements −	/K . Panels (a) and (b) show the results for
random regular graphs of degree K = 2 when 	 = 2. Panels (c) and
(d) show the results for random regular graphs of degree K = 3 when
	 = 1.5.

{ck, vk→i k ∈ ∂i \ j} can efficiently be computed by using re-
peated convolutions of the messages wk→i. In this way, the
time complexity of each iteration of the algorithm in a graph
of degree K is of order N (KNv )2, where Nv is the number of
the possible values of discrete variances. In each iteration all
the cavity messages are updated in a random and sequential
way. The number of iterations needed to solve the equations is
of order 100, independent of the problem size N .

In the same way, we can take the limit β → ∞ of the free
energies in Eqs. (29),

� fi = − max
ci

{
max

{c j ,v j→i : j∈∂i}

[ ∑
j∈∂i

w j→i(c j, v j→i ) − 2�gi

]}
,

(37)

and

� fi j = − max
{si j ,vi j}

[wi→ j (ci, vi→ j ) + w j→i(c j, v j→i ) − 2�gi j].

(38)

These equations are useful to obtain an estimation of the
ground-state energy within the Bethe approximation.

In practice, we use a reinforcement algorithm to find a min-
imum energy configuration of the system [27]. The idea is to
reinforce the MS equations by introducing a bias feedback to
the equations. The bias is provided by the local MS messages
to gradually converge the algorithm towards a ground state of
the system. More precisely, the reinforced MS equations at
iteration t + 1 read as follows:

wt+1
i→ j (ci, vi→ j ) = r(t )wt

i (ci ) − 2�gi→ j + max
{ck ,vk→i k∈∂i\ j}:I(vi→ j )

×
∑
k �=i, j

wt
k→i(ck, vk→i ) − Ci→ j, (39)

with the initial MS messages w0
i→ j = w0

i = 0. The reinforce-
ment parameter r(t ) increases linearly with time as r(t + 1) =
r(t ) + δr, starting from r(0) = 0 with δr � 1. Similarly, the
local MS messages are given by

wt+1
i (ci ) = r(t )wt

i (ci )

+ max
{c j ,v j→i : j∈∂i}

⎡
⎣∑

j∈∂i

wt
j→i(c j, v j→i ) − 2�gi

⎤
⎦.

(40)

These messages then provide a candidate for the minimum
energy configuration,

c∗
i = arg max wt

i (ci ). (41)

Note that the MaxSum algorithm is not expected to work well
in a loopy graph but the algorithm can always be used to
provide a candidate for the optimal configuration and there-
fore an upper bound for the minimum energy even in a loopy
interaction graph.

We start by applying the above algorithm to Laplacian of
a closed chain where we know the ground-state energy and
configurations. Recall that the maximal minors of a chain are
dimer coverings which are separated by extensive Hamming
distances in the configuration space. We will see that this
nontrivial structure of the ground states can make it difficult
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FIG. 8. The gap in the number of minors �N above the optimal minors in random regular graphs of degree K = 2, 3, 4. The results are
obtained by exhaustive enumeration for small sizes N = 18, 20, 22. Panels (a1), (b1), and (c1) show the changes with the chemical potential
when the diagonal elements are 	 and off-diagonal elements are −	/K . Panels (a2), (b2), and (c2) show the variations in the mean-field
direction when the diagonal elements are K and off-diagonal elements are −γ /K . The curves start with horizontal lines which correspond to
1
N ln(N ).

for a local optimization algorithm to find an optimal solution
of the problem. In fact, an algorithm may try to minimize
energy of the system by constructing a configuration that is
locally like one of the ground states of the system. If these
states are very different, then it could be very difficult to
overcome these energy and entropy barriers and to end up with
one of the optimal states of the system. Figure 9 shows how
the minimum energy density suggested by the reinforced MS
algorithm approaches the theoretical value e0 = − ln(3)/3 ex-
pected for a very large chain. For comparison, we also report
the results obtained by a simulated annealing (SA) algorithm;
in each step, one variable ci is selected and its value is changed
with probability min{1, e−β�E }, where �E is the resulted
change in the energy function. In one iteration of the algorithm
all variables are selected in a random and sequential way, as
in the MS algorithm. We start from a high temperature (small
β) and in each iteration increase the inverse temperature by
δβ to approach a low-energy configuration. We see in Fig. 9
that it is more difficult for the SA algorithm to find a ground
state than the MS algorithm. A similar behavior is observed
in Fig. 10 for random Laplacian of a closed chain. Here the
off-diagonal elements are random and independent numbers
uniformly distributed in (−2, 0) to have the average −1 as
in the ordered case. The diagonal elements in each row are

minus the sum of the off-diagonal elements in that row, like a
Laplacian. Note that the MS algorithm finds a good estimation
of the minimum energy in a smaller number of iterations
compared to the SA algorithm. Moreover, a single iteration of
SA algorithm is more time-consuming than the MS algorithm
because we need to compute the matrix determinants for each
update of the configuration. This does not allow us in practice
to study larger systems by the simulated annealing algorithm.

Figure 11 displays the results we obtain for random
Laplacian of random regular graphs of degree K = 3, 4.
The random Laplacians are constructed as described in the
previous paragraph. We observe that the SA algorithm is
more effective for large connectivity degrees compared to
the case of chain (K = 2) because the energy landscape is
simpler for K > 2. For the same reason, the MS algorithm
very quickly converges to the ground state of these systems.
The optimal states of random Laplacians are indeed very
close to the ground states of the ordered systems with only
a small fraction of indices not present in the optimal states.
The ground states in the ordered versions of these systems are
minor configurations with nearly all indices, except one or two
of them, present in the configuration. For instance, only one
of the indices is not present in the ground states of the Lapla-
cian of random regular graphs of degree K = 4. There are
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FIG. 9. Finding a maximal minor of Laplacian of a closed chain
of size N by an optimization algorithm. The results are obtained
by the SA and MS algorithms with the indicated parameters. The
horizontal lines show the exact value expected in the thermodynamic
limit. The ground states are dimer coverings of energy density e0 =
− ln(3)/3. Here t is the number of iterations in the algorithms. In
each iteration all the variables are updated once.

therefore N ground states in such a homogeneous system and
the Hamming distance between two optimal configurations is
2. This trivial structure of the ground states makes it also easy
for a local optimization algorithm like SA to find a ground
state.

IV. CONCLUSION AND DISCUSSION

In summary, a Gaussian representation of minors for sym-
metric, positive, and diagonally dominant (DD) matrices was
employed to estimate the free energy, entropy, and energy
of relevant minors at different temperatures by the Bethe ap-
proximation. The estimation is expected to be asymptotically
exact for matrices which have a locally treelike graph rep-
resentation. Specifically, we studied the energy and entropy
landscape of the Laplacian of random regular graphs of degree
K = 2, 3, 4. For large degrees K = 3, 4 the interesting quanti-
ties change smoothly by increasing the inverse temperature β.
The case K = 2, however, displays a discontinues entropy and
numerical instability close to this discontinuity which sepa-
rates the zero- and finite-temperature behaviors. Nevertheless,
we do not observe a finite-temperature phase transition in
these systems for K = 2, 3, 4. The same result is obtained by
an exact treatment of principal minors in DD matrices which
are defined by homogeneous fully connected graphs.

The zero-temperature limit of the Bethe equations is
used as an optimization (MaxSum) algorithm to find an
estimation of the ground-state energy and optimal configu-
rations (maximal minors) of random DD matrices. Here the

MaxSum algorithm is more efficient than the standard simu-
lated annealing algorithm regarding the number of iterations
that are needed to find a good estimation of the ground
state(s). The time complexity of the MaxSum algorithm is
proportional to N in a finite-connectivity graph which is rep-
resented by a sparse N × N matrix.

The first part of the study enables us to estimate the sum
of powers of principal minors which is relevant to computa-
tion of the partition function and the Shannon-Rényi entropy
of quantum systems such as the Hubbard model and the
transverse field Ising model [1]. In the second part, we ob-
tain an approximate message-passing optimization algorithm
which can be applied to sampling problems where a subset
of maximally independent configurations are needed as in the
determinantal point processes.

It seems that restriction to diagonally dominant matrices
is the main reason behind the absence of finite-temperature
phase transitions in such systems. This is the case also for
positive but quasi-one-dimensional matrices where entropy is
dominated for any finite temperature. It would be interesting
to investigate the nature of the possible phase transitions for an
arbitrary positive matrix. If the problem of finding the optimal
minors is in general a computationally hard problem, then one
expects to observe spin-glass phases in these systems. In this
study, we were mainly focused on regular quasi-Laplacian
matrices with no randomness in matrix elements. A more
detailed investigation of random and diagonally dominant ma-
trices is needed to characterize the phase diagram of this class
of matrices.

Recall that the principal minors of a Laplacian give the
number of possible spanning forests that are generated by a
set of trees rooted at the zeros of the minor configuration (the
absent indices). By maximizing the number of such forests
we are indeed increasing the strength of an effective repulsive
interaction between the zeros of the minor configuration. In
this study we used a chemical potential to control the expected
number of roots (zeros) in the relevant minors. We showed
that a maximal minor in a chain (K = 2) is a close packing
of the roots with an effective distance l∗ which is determined
by the chemical potential. It would be interesting to investi-
gate the statistical properties of this system of repulsive zeros,
for example in a Hamming space from the perspective of the
coding theory.
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APPENDIX A: BETHE APPROXIMATION:
BELIEF PROPAGATION ALGORITHM

In this section we briefly describe the Bethe approxi-
mation and the resulting BP algorithm for an Ising model
defined on an interaction graph G. Consider N Ising
variables of configurations s = {si = ±1 : 1, . . . , N} and en-
ergy function E [s] = −∑

(i j) Ji jsis j − ∑
i hisi. Note that the
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FIG. 10. Finding a maximal minor of a random Laplacian of a closed chain of size N by an optimization algorithm. The results are obtained
by the SA and MS algorithms with the indicated parameters. The off-diagonal elements of the matrices are uniformly distributed in (−2, 0)
and the diagonal elements in each row are minus the sum of other elements in that row. The horizontal lines show the numerical value predicted
by the MaxSum equations. The ground states are random configurations close to the dimer coverings of the ordered system. The number of
iterations in the SA algorithm is scaled with δt = 1, 10, 100 for δβ = 0.05, 0.005, 0.0005, respectively.

interaction term is a sum over edges (i j) of the interaction
graph G. In thermal equilibrium at inverse temperature β,
the Boltzmann factor e−βE [s]/Z gives the statistical weight of
configurations s, where the partition function Z = ∑

s e−βE [s]

is a normalization constant. Here we are interested in the
marginal probabilities of local variables μi(si ) at equilibrium.
In limit β → ∞ these marginals can be used to find the
ground state(s) of the system.

Bethe equations are indeed recursive equations for the cav-
ity marginals μi→ j (si ), see Fig. 12. This is the probability of
state si for variable i in the absence of interaction with variable
j, i.e., when the interaction term −Ji jsis j is removed from the
energy function. It is also assumed that in the absence of this
interaction si is independent of the state of the other neighbors
of variable j. This assumption is valid when the interaction

FIG. 11. Finding a maximal minor of a random Laplacian of ran-
dom regular graphs of degree K = 3, 4 by an optimization algorithm.
The results are obtained by the SA and MS algorithms with the
indicated parameters. The off-diagonal elements of the matrices are
uniformly distributed in (−2, 0) and the diagonal elements in each
row are minus the sum of other elements in that row. The horizontal
lines show the minimum energies obtained by the MaxSum algo-
rithm in a few hundred iterations. The fraction of present indices
are around p = 0.88(K = 3) and p = 0.99(K = 4). The number of
iterations in the SA algorithm is scaled with δt = 1, 10, 100 for
δβ = 0.05, 0.005, 0.0005, respectively.

graph G is a tree, or has very large loops such that locally it is
like a tree. Then, the Bethe equations for the cavity marginals
read

μi→ j (si ) ∝ eβhisi
∏

k∈∂i\ j

⎡
⎣∑

sk

eβJiksisk μk→i(sk )

⎤
⎦, (A1)

were ∂i is the set of neighbors of variable i in the inter-
action graph. The normalization constant is obtained from∑

si
μi→ j (si) = 1. These equations can be solved by iteration

starting from random initial messages μi→ j (si ) and updating
the messages according to the above equations. Having the
cavity marginals one finds the local marginals μi(si) by con-
sidering the effects of all neighboring variables,

μi(si) ∝ eβhisi
∏
k∈∂i

⎡
⎣∑

sk

eβJiksisk μk→i(sk )

⎤
⎦. (A2)

Moreover, an estimation of the free energy F = − 1
β

ln Z can
be obtained from the cavity marginals. To this end, we need
to compute the contributions of all variables and interactions
in the partition function. Assuming that the interaction graph

FIG. 12. An illustration of the BP algorithm in a tree interaction
graph. The node variable i sends the cavity message μi→ j (si ) to node
j depending on the messages μk→i(sk ) that it receives from the other
neighbors.

064141-13



A. RAMEZANPOUR AND M. A. RAJABPOUR PHYSICAL REVIEW E 109, 064141 (2024)

is a tree, the free energy is given by

F =
∑

i

�Fi −
∑
(i j)

�Fi j . (A3)

This is obtained by writing a recursive equation for the par-
tition function starting from an arbitrary variable [21]. The
local free-energy changes are related to the cavity marginals
as follows:

e−β�Fi =
∑

si

eβhisi
∏
k∈∂i

⎡
⎣∑

sk

eβJiksisk μk→i(sk )

⎤
⎦, (A4)

e−β�Fi j =
∑
si,s j

eβJi j sis j μi→ j (si )μ j→i(s j ). (A5)

To obtain some information about the ground states, we
take the limit β → ∞ and assume that μi→ j (si) = eβmi→ j (si ).
The BP equations in this limit (called MaxSum equations) are

mi→ j (si ) = hisi +
∑

k∈∂i\ j

max
sk

[Jiksisk + mk→i(sk )] − Ci→ j,

(A6)

where Ci→ j is obtained by normalization condition
maxsi mi→ j (si ) = 0. As before, the equations are solved
by iteration. It is useful for a better convergence to introduce
reinforcement in the algorithm; at each step of the iteration
algorithm a bias field (feedback) is added to the system
to favor the more probable states of the variables. More
precisely, the reinforced MaxSum equations at time step t + 1
read as follows:

mt+1
i→ j (si ) = hisi + r(t )mt

i (si )

+
∑

k∈∂i\ j

max
sk

[
Jiksisk + mt

k→i(sk )
] − Ci→ j . (A7)

Similarly, one obtains the local messages,

mt+1
i (si ) = hisi + r(t )mt

i (si )

+
∑
k∈∂i

max
sk

[
Jiksisk + mt

k→i(sk )
] − Ci. (A8)

The reinforcement parameter r(t ) is zero at the beginning of
the algorithm and increases slowly by the number of itera-
tions. At each time step, one can find an approximate ground
state of the system by computing the maximal states of the
local messages, that is,

s∗
i = arg max

si

mt
i (si ). (A9)

For more details and applications of the BP and MaxSum
algorithms in other problems see [21].

APPENDIX B: THE POPULATION
DYNAMICS ALGORITHM

In this section we describe the population dynamics that is
used to solve the higher-level BP equations in the Gaussian

representation of the minors,

Mi→ j (ci, vi→ j ) ∝
∏

k∈∂i\ j

[ ∑
ck

∫
dvk→iMk→i(ck, vk→i )

]

× I(vi→ j )e
−2β�gi→ j . (B1)

Recall that the variances vi→ j are solutions to the BP equa-
tions for the Gaussian variables,

1

vi→ j
= (1 − ci ) + ciAii −

∑
k �=i, j

ciA
2
ikckvk→i, (B2)

and

2�gi→ j = ln(2πvi→ j ). (B3)

The probability distributions Mi→ j (ci, vi→ j ) are repre-
sented by populations of the variables Pi→ j = {(ca

i , v
a
i→ j ) :

a = 1, . . . ,Np} on each directed link (i → j). In addition,
we introduce populations of the Boltzmann weights Wi→ j =
{e−2β�ga

i→ j : a = 1, . . . ,Np} which are associated to members
(ca

i , v
a
i→ j ) of the Pi→ j . More about the population dynamics in

general can be found in Ref. [26].
At the beginning of the algorithm we set the initial values

va
i→ j = 0, ca

i = 0, 1 (with equal probability) and �ga
i→ j = ∞.

In each iteration of the population dynamics we go through all
the directed links (i → j) in a random and sequential way and
do the following steps:

(i) select a member (cak
k , v

ak
k→i ) from Pk→i for k ∈ ∂i \ j;

(ii) compute vi→ j (ci ) and �gi→ j (ci ) [Eqs. (B2) and (B3)]
for ci = 0, 1 given the messages (cak

k , v
ak
k→i );

(iii) select a member (ca0
i , v

a0
i→ j ) of Pi→ j and replace it with

(0, vi→ j (0)) with probability e−2β[�g
a0
i→ j−�gi→ j (0)]. If accepted,

then replace �ga0
i→ j with �gi→ j (0);

(iv) select a member (ca1
i , v

a1
i→ j ) of Pi→ j and replace it with

(1, vi→ j (1)) with probability e−2β[�g
a1
i→ j−�gi→ j (1)]. If accepted,

then replace �ga1
i→ j with �gi→ j (1);

Note that the members of the populations are selected
randomly and uniformly. The updates are repeated for teq

iterations to reach a steady state where the average quantities
are stationary.

In the stationary state of the population dynamics, we ob-
tain an estimation of the free energy,

N fg =
∑

i

� fi −
∑
i< j

� fi j, (B4)

with local free energies that are given by

e−β� fi =
∑

ci

∏
j∈∂i

⎡
⎣∑

c j

∫
dv j→iMj→i(c j, v j→i )

⎤
⎦e−2β�gi ,

(B5)

e−β� fi j =
∑
ci,c j

∫
dvi je

−2β�gi j Mi→ j (ci, vi→ j )Mj→i(c j, v j→i ).

(B6)

Here vi j = {vi→ j, v j→i}. Recall that

2�gi = ln(2πvi ), (B7)

2�gi j = − ln
{
vi→ jv j→idet[B(i j)]

}
, (B8)
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where

1

vi
= (1 − ci ) + ciAii −

∑
k �=i

ciA
2
ikckvk→i, (B9)

B(i j) =
(

1
vi→ j

ciAi jc j

ciAi jc j
1

v j→i

)
. (B10)

To compute the � fi we repeat the following steps for �tavg

times:
(i) select a member (cak

k , v
ak
k→i ) from Pk→i for k ∈ ∂i;

(ii) compute �gi(ci ) [Eq. (B7)] and wi(ci ) ≡ e−2β�gi (ci )

for ci = 0, 1 given the messages (cak
k , v

ak
k→i ).

From the above computation we obtain the aver-
ages Zi(ci ) ≡ 〈wi(ci )〉, and �Ei(ci ) ≡ 2〈wi(ci )�gi(ci )〉. Then
� fi = − ln[Zi(0) + Zi(1)]/β, the probability of ci = 1 is
pi = Zi(1)/[Zi(0) + Zi(1)], and we define �ei = [�Ei(0) +
�Ei(1)]/[Zi(0) + Zi(1)].

In the same way, to compute the � fi j we repeat the follow-
ing steps for �tavg times:

(i) select (ca
i , v

a
i→ j ), (cb

j, v
b
j→i ) from Pi→ j and Pj→i;

(ii) compute �gi j [Eq. (B7)] and wi j ≡ e−2β�gi j given the
above messages;

From the above computation we obtain the averages Zi j ≡
〈wi j〉 and �Ei j ≡ 2〈wi j�gi j〉. Then � fi j = − ln(Zi j )/β and
we define �ei j = �Ei j/Zi j .

Finally, the free energy density f and energy density e are
obtained

N f =
∑

i

� fi −
∑
i< j

� fi j − N ln(2π ), (B11)

Ne =
∑

i

�ei −
∑
i< j

�ei j − N ln(2π ). (B12)

APPENDIX C: THE BETHE EQUATIONS FOR RANDOM
REGULAR GRAPHS

Consider the Laplacian of a random regular graph of de-
gree K . Here by symmetry all nodes are equivalent. Thus the
BP equations for the cavity marginals Mi→ j (ci, vi→ j ) of the
Gaussian representation

Mi→ j (ci, vi→ j ) ∝
∏

k∈∂i\ j

[ ∑
ck

∫
dvk→iMk→i(ck, vk→i )

]

× I(vi→ j )e
−2β�gi→ j , (C1)

reduce to a single equation for M→(c, v) which does not
depend on the indices i and i → j. We take M→(c, v) =
(1 − p)δ(v − 1)δc,0 + pρ(v)δc,1 with p for the probability of
presence of index i in the minor configuration. We recall that
for c = 0 the variance is v = 1 independent of the states of
the neighbors. The probability distribution of v for c = 1 is
shown by ρ(v). Then the BP equations for p and ρ(v) read

p = z1(K − 1)

z0(K − 1) + z1(K − 1)
, (C2)

ρ(v) = z(v : K − 1)

z1(K − 1)
, (C3)

where z0(K − 1) = e−β ln(2π ),

z1(K − 1) =
K−1∑
l=0

C(l, K − 1)pl (1 − p)K−1−l

×
∫ l∏

k=1

dvkρ(vk )e−β ln( 2π
K−∑

k vk
)
, (C4)

and

z(v : K − 1) =
K−1∑
l=0

C(l, K − 1)pl (1 − p)K−1−l

×
∫ l∏

k=1

dvkρ(vk )e−β ln( 2π
K−∑

k vk
)

× δ

(
v − 1

K − ∑
k vk

)
. (C5)

with C(l, K ) = K!/(l!(K − l )!). Again we solve these equa-
tions with a population dynamics algorithm as described in
Appendix B. The only difference is that here we need only one
population of variables (ca, va) and the Boltzmann weights
e−2β�ga

→ .
After solving the above equations for p and ρ(v), the free

energy is given by

−β fg = ln[z0(K ) + z1(K )] − K

2
ln(z00 + 2z01 + z11), (C6)

where z0(K ), z1(K ) are as before and

z00 = (1 − p)2, (C7)

z01 = (1 − p)p, (C8)

z11 = p2
∫

dvdv′ρ(v)ρ(v′)eβ ln(1−vv′ ). (C9)

Recall that

−β f = 1

N
ln Z = −β[ fg − ln(2π )]. (C10)

On the other hand, the average energy density is

e = − 1

N
〈ln detA(c)〉 = 2〈g〉 − ln(2π ). (C11)

Here

2〈g〉 = g0(K ) + g1(K )

z0(K ) + z1(K )
− K

2

g11

z00 + 2z01 + z11
, (C12)

with

g0(K ) = z0(K ) ln(2π ), (C13)

g1(K ) =
K∑

l=0

C(l, K )pl (1 − p)K−l

×
∫ l∏

k=1

dvkρ(vk ) ln

(
2π

K − ∑
k vk

)
e−β ln( 2π

K−∑
k vk

)
,

(C14)

g11 = −p2
∫

dvdv′ρ(v)ρ(v′) ln(1 − vv′)eβ ln(1−vv′ ). (C15)
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Finally, by a Legendre transformation, the entropy is
obtained

s = β(e − f ). (C16)

A parametric plot of this quantity vs e gives the entropy
spectrum s(e).

APPENDIX D: MINORS OF HOMOGENEOUS COMPLETE
GRAPHS: A MEAN-FIELD MODEL

Consider a symmetric matrix A associated to a complete
graph of size N with elements Ai j = 	δi j − �(1 − δi j ). We
assume that 	 > 0 and 	 � N� > 0 to have a positive and
diagonally dominant matrix. A minor configuration of size l
here is represented by a l × l matrix with diagonal elements
	 and off-diagonal elements −�. Such a matrix has one
eigenvalue 	 − (l − 1)� and l − 1 eigenvalues 	 + �. Thus
the determinant (for 0 < l � N) is given by

det[A(c)] = [	 − (l − 1)�][	 + �]l−1, (D1)

and the energy is

El = − ln{det[A(c)]}
= −(l − 1) ln(	 + �) − ln[	 − (l − 1)�]. (D2)

The partition function is

Z =
∑

c

eβ ln det[A(c)] = 1 +
N−1∑
l=1

�(l, N )e−βEl , (D3)

where �(l, N ) = N!/[l!(N − l )!]. Or, in terms of the energy
and entropy densities

Z � N
∫ 1

0
dxeN[s(x)−βe(x)] = N

∫ 1

0
dxe−Nβ f (x), (D4)

where x = l/N is the number density of the present indices,
and

s(x) = −x ln(x) − (1 − x) ln(1 − x), (D5)

e(x) = −x ln(	 + �) − 1

N
ln(	 − N�x), (D6)

f (x) = e(x) − 1

β
s(x). (D7)

The thermodynamic behavior depends on the scaling of the
matrix elements 	, �, with N .

1. Scaling limit I: � = N − 1, � = 1

This is Laplacian of a complete graph. Here we use the
scaling β → β/ ln(N ) and replace e(x)/ ln(N ) with e(x) as
N → ∞. Ignoring the subextensive terms in the energy den-
sity, we get

e(x) = −x. (D8)

The minimum of the free-energy function

f (x) = e(x) − 1

β
s(x), (D9)

at x∗ determines the equilibrium values of the main quantities
e(x∗), s(x∗), f (x∗). Recall that x∗ is the presence probability
p we used in the main text. Here the free energy is always
minimized for a number density 1

2 � x∗ < 1, which is the sole
solution to

β = ln

(
x∗

1 − x∗

)
. (D10)

This system dose not display a phase transition. By increas-
ing β from zero to infinity, the density of relevant minors
x∗ increases smoothly from 1/2 to 1. And the minimum of
free-energy function remains an extremum [ df

dx (x∗) = 0] as
β → ∞. There are N ground-state configurations of energy
EN−1 = −(N − 2) ln N where only one of the nodes is not
present in the minor configuration. So the Hamming distance
between two ground states is 2.

2. Scaling limit II: � = finite, � = γ/N

This can be considered as a mean-field model of random
regular graphs of degree K = 	. Here the energy density as a
function of x in the thermodynamic limit reads

e(x) = −x ln(	). (D11)

Note that value of � is not relevant in both the above scaling
limits. Again, we do not observe a finite-temperature phase
transition; the minimum of free energy at x∗ changes smoothly
as β approaches infinity. That is, equation

df

dx
(x∗) = − ln 	 + 1

β
ln

(
x∗

1 − x∗

)
= 0 (D12)

always has a unique solution 0 < x∗ < 1 due to the monotonic
behaviors of the two parts of the equation

β ln 	 = ln

(
x∗

1 − x∗

)
. (D13)

However, depending on the value of 	 the solution x∗ ap-
proaches 0 or 1 as β → ∞ for 	 < 1 and 	 > 1, respectively.
For 	 = 1 the solution is always x∗ = 1

2 . The ground states
have a trivial structure: When 	 < 1 the minimum energy
is obtained by N minor configurations with a single present
index, putting aside the all-zero configuration. When 	 > 1
the minimum energy is obtained by N minor configurations
with a single absent index. The case 	 = 1 has the maximal
ground-state degeneracy where all minor configurations are
equivalent in energy. Note that in all the above scenarios the
value of entropy at zero-temperature coincides with the limit
β → ∞ of the entropy function. It means that the entropy
changes continuously as the temperature increases.
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