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Extinction and coexistence in a binary mixture of proliferating motile disks
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A binary mixture of two-different-size proliferating motile disks is studied. As growth is space limited, we
focus on the conditions such that there is a coexistence of both large and small disks, or dominance of the larger
disks. The study involves systematically varying some system parameters, such as diffusivities, growth rates, and
self-propulsion velocities. In particular, we demonstrate that diffusing faster confers a competitive advantage, so
that larger disks can in the long time coexist or even dominate the smaller ones. In the case of self-propelled disks,
a coexistence regime is induced by the activity where the two types of disks show the same spatial distribution:
both particles are phase separated or both are homogeneously distributed in the whole system.
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I. INTRODUCTION

Motivated by the collective dynamics in biological phe-
nomena such as wound healing [1–3], tissue formation [4], the
expansion of tumors [5], or the dynamics of bacterial popula-
tions [6], there is growing interest in the study of proliferating
motile matter [7,8]. These are often modeled as interacting
particle systems [3,5,9,10], and the number of particles may
not be constant in time due to processes such as birth and
death. Coupled with individual movement, one can expect
new emergent properties. For example, we recently introduced
a simple model of proliferating motile finite-size particles.
Specifically, in [11], we studied both systems of passive disks
(where motility has its origins in a thermal bath) and self-
propelled disks [12–16] subject to reproduction and death. We
analyzed different emerging structural phases [liquid, hexatic,
solid, and motility-induced phase separation (MIPS)] [16–22].
These phases result as a consequence of the disks filling the
available space, and the phase that is realized depends on
parameters such as the birth and death rates, and the motility.

In [11], we focused on a two-dimensional collection of
disks (we will also refer to these as particles), which were
all taken to be identical; in particular, they have the same size.
This is not realistic in many biological applications. In the
current work, we analyze the influence on some properties of
the system when relaxing this condition and consider a binary
mixture of disks of two different sizes [23,24]. In the standard
equilibrium system of hard disks (without birth-death events
or activity), the two-sizes binary mixture is known to have
important effects leading, for example, to the disappearance
of the hexatic phase even for very low concentration of small
disks [25]. Thus we expect new behavior in a nonequilibrium
model of a binary mixture with birth and death dynamics.
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We start with a similar concentration for both types (or
species) of disks, initially randomly distributed in a two-
dimensional space. As the system evolves, particles move,
die, and reproduce, eventually filling up space. Due to the
death processes, it is possible for one species to go extinct.
In reproduction events, a new particle is created in the system,
with the same size as the parent, and placed close to it if there
is enough room.

As in many real-world systems, reproduction in our model
is limited by the available space [26–28]. Under identical
conditions, the smaller disks have a higher a priori chance
to reproduce, and therefore to persist in the long run. Even
though the availability of space puts the larger particles at
a disadvantage [29,30], we find that depending on motility
and demography, the coexistence of both species can occur.
In some other cases, we find that the larger particles can
dominate the system, i.e., their number is much larger than
that of the smaller particles, typically more than 90% of the
total particle number.

The main questions that we address are what type of disk
dominates the system in the long run, under what conditions
both types coexist, and, in the important case of activity-
induced phase separation, what the resulting spatial structure
is. We are interested in the influence of the birth and death
rates and the motilities of the particles on the outcome. In
particular, we ask which population survives when the two
species compete (due to reproduction limited by size) with
different diffusivities [31,32], and we show results that sup-
port the prevalence of the fast diffusing type of particle. Our
overall aim is to characterize the system behavior for different
choices of the model parameters.

In the case of active motion [33–35], we also study what
the conditions are under which the spatial distribution of the
particles presents coexisting dilute and dense phases, i.e.,
the MIPS regime. This is, for example, motivated by stud-
ies hypothesizing that phase heterogeneity due to MIPS can
trigger a transition from swarming behaviour to biofilm for-
mation in some types of bacteria [36]. We analyze the role of
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this heterogeneity for the dominance dynamics of the binary
mixture.

Throughout our analysis, we will mostly concentrate on
systems in which the diameter of one type of disk is 20%
larger than the other, but we will also discuss other size ratios
[37–40].

The remainder of the paper is organized as follows. In
Sec. II, we present the model of mobile disks undergoing
birth and death dynamics. The main outcomes are presented
in Sec. III. A summary and discussion of the findings are
contained in Sec. IV.

II. MODEL AND NUMERICAL ALGORITHM

The model is similar to that in [11], but with particles of
two different sizes. We consider a two-dimensional system of
N (t ) = NL(t ) + NS (t ) interacting disks with diameters σS and
σL such that σS < σL (S and L stands for “small” and “large,”
respectively). The particle numbers can change in time, due
to birth and death events, as explained below. We consider
the overdamped limit and take the friction coefficient to be
equal to unity for both species. The motion of disks is then as
follows:

ṙi = Fi + Fact
i +

√
2Diζi(t ), i = 1, . . . , N (t ). (1)

If disk i is of the small type, then Di = DS , and if it is of the
large type, then Di = DL. The variables {ζi} are independent
Gaussian noise vectors satisfying 〈ζi〉 = 0, 〈ζi,a(t )ζ j,b(t ′)〉 =
δi jδabδ(t − t ′) (a and b are the entries of the two-component
vectors ζi and ζ j). No Einstein relation is assumed, and DL

and DS are taken as parameters of the model. The finite size of
the disks is simulated using a truncated Lennard-Jones poten-
tial so that the force on particle i resulting from the interaction
with the rest of the particles is Fi = −∇i

∑
i �= j U (|ri − r j |),

where the potential is given by (with r = |ri − r j |)

U (r) = 4ε

[(σi j

r

)12
−

(σi j

r

)6
]

+ ε, (2)

if r < 21/6σi j , and U (r) = 0 if r > 21/6σi j . The quantity σi j >

0 is defined from the Lorentz-Berthelot rule as σi j = (σi +
σ j )/2, where σi and σ j are the diameters of disks i and j,
respectively. Thus, σi j reflects the effective distance between
the two disks. The parameter ε is an energy scale [41,42].

In some of our numerical experiments, particles are self-
propelled. We model this using active forces

Fact
i = vin[θi(t )] (3)

of constant modulus vi = {vL, vs} (typically called activity
or velocity) and with a direction given by the unit vector
n(θi ) = (cos θi, sin θi ). The angle θi for disk i performs dif-
fusive motion, θ̇i(t ) = √

2Drηi(t ). The term ηi represents a
zero-mean Gaussian noise with 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′).

In addition to movement and interaction, disks may ran-
domly self-replicate or die, so that the number of disks of each
type, NL(t ) and NS (t ), can change with time. These events
occur as follows (see [11] for further details of the algorithm):

(i) Death occurs as a Poisson process. Each existing parti-
cle dies with per capita rate δ. Particles that die are removed
from the system.

(ii) Potential births are triggered with per capita rate βL

for large disks, and βS for small disks. The diameter of the
potential offspring is identical to that of the parent. The birth
event only occurs if there is sufficient space around the parent
particle to place the offspring without overlapping with any
other disk. If there is no space, no birth event occurs. This
means that not all potential reproduction events complete.

We always assume that the growth rates βS and βL are
larger than the death rate (the latter is taken to be equal for all
the disks), i.e., βL, βS > δ. At long times, the system reaches
a stationary state. The numbers of disks of each type in this
state is such that the mean effective birth rate for each species
is equal to the death rate.

In the next sections, we study this steady state while vary-
ing one or two model parameters at a time (e.g., the diffusivity
of both types of particles, the growth rates, or activity). Our
main objective is to study what type of disk dominates and
under what conditions there is coexistence.

III. RESULTS

We consider a two-dimensional box of length Ls = 150
with periodic boundary conditions, δ = 0.01, and, for the
most part, σS = 1.0 and σL = 1.2, supplemented by some dis-
cussion of other choices of the diameters. For simplicity, we
set ε = 1.0 and Dr = 1.0. Simulation results are independent
of δ, whose role is mostly to set the timescale needed to reach
the steady state [11]. We start with 250 particles of each size,
together occupying around 8% of the total area. We compute
the packing fraction for particles of each type. We write these
as φα (t ) = Nα (t )π (σα/2)2/L2

s for α ∈ {L, S}, where Nα (t ) is
the number of particles of type α at time t .

We study passive particles in Sec. III A. Systems of active
particles are discussed in Sec. III B.

A. Passive particles

We set Fact
i = 0 and study the effects of the parameters of

the demographic dynamics, and of the diffusivities separately.

1. Effects of the birth and death rates

We fix the diffusivities to low values (i.e., the timescale of
a disk to move a distance of the order of several diameters is
large compared to its typical lifetime), DL = DS = 0.001, to
focus on the effects of the birth and death dynamics. Since
reproduction is limited by the available space, we naively
expect only the smaller disks to be present in the long run
when the raw birth rates of both types are similar. However,
the outcome may be different if the birth rate for the larger
particles is much larger than that of the smaller type. This is
indeed what we observe in the numerical experiments shown
in Fig. 1.

In the upper row of Fig. 1, we plot snapshots of the spatial
distribution of disks in the stationary state. Smaller particles
are shown in red, larger ones in green. The growth rate of
the small particles is lower than that of the larger particles in
Figs. 1(a)–1(c), but the ratio βL/βS increases from left to right.
In Fig. 1(a), we observe the extinction of the larger particles;
in Fig. 1(b), we find balanced coexistence throughout the sim-
ulation; and in Fig. 1(c), the ratio βL/βS is sufficiently large
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FIG. 1. (a)–(c) Snapshots of the spatial distribution of passive disks in space at long times (only a part of the full size Ls = 150 is shown).
(d)–(f) The temporal evolution of the packing fraction starting with a random configuration of 250 disks of each type. The snapshots in
(a)–(c) are taken at the end of the time series in (d)–(f), respectively. In each column, we have used different values of βL , at fixed βS = 0.05,
and βL = 0.06, 0.062, 0.065 from left to right. The remaining parameters are δ = 0.01, D = 0.001, σL/σS = 1.2.

for the larger disks to fully dominate (the smaller particles go
extinct). In the lower row of Fig. 1, we plot the corresponding
time evolution of the packing fractions (the snapshots in the
upper row are taken at the final time of the lower ones).
These time series confirm the extinction of the larger type of
particle [Fig. 1(d)], coexistence [Fig. 1(e)], and the extinction
of the smaller type [Fig. 1(f)]. In all three situations, and
regardless of the final fate of the larger particles, there is
initially a faster increase of the packing of the larger particles.
This is because βL > βS in all panels in Fig. 1.

In Fig. 2(a), we plot the phase diagram in the plane of
birth rates for the two species (each divided by the death
rate δ = 0.01). The colored heat map indicates the normal-
ized packing fraction φS/(φS + φL) of the smaller disks. In
Fig. 2(b), we show the respective packing fractions of both
types when varying βL, for fixed βS . This corresponds to a
vertical cut of the phase diagram in Fig. 2(a). The dominance
of the smaller type at low βL, coexistence at intermediate
values, and dominance of the larger disks at high βL are clearly
visible.

The coexistence of both species occurs in a very limited
region of the diagram, i.e., around a small area near a specific
line in the (βS, βL ) plane. An approximate characterization of
this coexistence curve can be obtained from a simple descrip-
tion of the dynamics in terms of rate equations. To construct
these equations with proper parameters, we first consider only

one type of disk in isolation, neglect fluctuations and any
notion of space. We use a Lotka-Volterra model to describe
the combination of death events and growth limited by volume
exclusion [43],

dN

dt
= −δN + β̂N

(
1 − N

Nmax

)
, (4)

where the term in the brackets ensures that the growth dy-
namics stops as N reaches Nmax; δ is the death rate and β̂ is an
effective growth rate.

This effective growth rate is a fitting parameter introduced
in this very simple description to take into account that the
actual birth rate is limited by the available space, and therefore
not equal to the raw birth rate β. We take β̂ = aβ, where a is
an unknown adimensional coefficient. In [11], we observed
that the steady number of disks in a single-species model
depends in a nontrivial way on the birth and death rates, the
size of the particles, and on the diffusion coefficient. Thus, in
this description, we use a > 0 and Nmax as fitting parameters.

We rewrite Eq. (4) in the standard form,

dN/dt = rN (1 − N/K ), (5)

with r = aβ − δ. The carrying capacity K = Nmax(1 −
δ

aβ
) is the effective long-time number of disks in the

system.
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FIG. 2. Coexistence diagram for the system of passive particles
in the plane spanned by the birth rates βS and βL . (a) Color indicates
where in parameter space either type of particle dominates or if there
is coexistence. (b) Vertical cut in the phase diagram in (a) for βS/δ =
10 (as indicated by the blue line) showing the packing fractions for
both types of disks. The colors of the symbols represent the fraction
of small particles in the system. δ = 0.01, σS = 1.0, and σL = 1.2.
The simulation data represented in the phase diagram are derived
from time-averaged values in the long time for a single realization.

To verify the validity of the logistic-growth approach, we
have carried out simulations of the model in which all parti-
cles have the same size, using a small diffusion coefficient,
D = 0.001. In the long time, we compute the packing frac-
tion φ∞ = N (t → ∞)π (σ/2)2/L2

s . We do this for several
different disk sizes (σ = 1.0, 1.2, 1.4) and for some val-
ues of β to check the relationship φstat = Kπ (σ/2)2/L2

s =
Nmaxπ (σ/2)2/L2

s (1 − δ
aβ

) (the stationary packing fraction of
the Lotka-Volterra equation). The results are shown in Fig. 3.
There is a good collapse of all the plots for the different values
of σ , and the best fit to the expression of φ∞ is obtained for
φmax = Nmaxπ (σ/2)2/L2

s = 0.7, a = 1.5. This confirms that
the logistic description with suitable effective parameters can
be used to describe the stationary state with a single type of
particle.

The Lotka-Volterra model can be generalized to the case of
a binary mixture of disks. This approximate description can be
useful to study the influence of one type of disks on the other,
in particular, attending to their different sizes and growth
rates. We assume the following Lotka-Volterra competition
dynamics between the two species (which we again label S

FIG. 3. Long-time average packing fraction φ∞ for a system of
only one type of disks as a function of the rate β and δ = 0.01. The
plots correspond to different disk sizes σ as the symbols indicate.
The black line corresponds to the best fitted curve for a = 1.5, and
φmax = 0.7.

and L for “small” and “large” disks, respectively) [44]:

dNL

dt
= −δNL + aβL

(
1 − NL + αLNS

NL,max

)
NL,

dNS

dt
= −δNS + aβS

(
1 − NS + αSNL

NS,max

)
NS. (6)

The term αLNS (αSNL) is the decline of the growth rate of
NL (NS) due to the presence of the smaller (larger) disks. The
quantities NS,max and NL,max are the number of particles for
either species at which no further growth can occur.

The dependence of the interaction terms on the ratio of disk
sizes becomes more apparent if we write this equation in terms
of packing fractions,

dφL

dt
= −δφL + aβL

⎛
⎝1 −

φL + αL
σ 2

L

σ 2
S
φS

φL,max

⎞
⎠φL,

dφS

dt
= −δφS + aβS

⎛
⎝1 −

φS + αS
σ 2

S

σ 2
L
φL

φS,max

⎞
⎠φS. (7)

Now, φα,max = Nα,maxπ (σα/2)2/L2
s (α = L, S). We assume

that αL and αS depend on the demographic parameters of the
system (βL, βS ), and as detailed in the Appendix A. Fitting to
simulation data, we find

αL ≈
(

βS

βL

)1/4

,

αS ≈
(

βL

βS

)1/4

. (8)

These relations characterize the tradeoff between geometry
and demography (reproduction) in the competition dynam-
ics. For example, the coefficient in the growth rate for the

larger disks, αL
σ 2

L

σ 2
S

= σ 2
L

σ 2
S

( βS

βL
)1/4, increases proportionally to

(σL/σS )2, while its dependence on the relative birth rates is
much weaker and only scales as (βS/βL )1/4.
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FIG. 4. (a)–(c) Snapshots of the spatial distribution of passive disks space at long times (graphs only show a part of the full system,
which has lateral size Ls = 150). (d)–(f) The corresponding time evolution of the packing fractions for both species, starting with a random
configuration of 250 disks of each type. In the different columns, we have used different values of DL and DS = 0.001: DL = 0.01, 0.02, 1.0
from left to right. Remaining parameters are δ = 0.01, β = 0.05, σL/σS = 1.2.

2. The role of diffusion

In this section, we study the case in which both types of
passive disks have the same birth and death rates, but where
their diffusion coefficients are different. In biological applica-
tions, situations of this type have given rise to contradictory
results (albeit under very different settings) so that diffusing
faster provides a competitive advantage [31] or can be detri-
mental [32]). Thus, one of the main questions that we address
is if high or low diffusivity can provide a selective advantage
for either of the two competing populations.

In the upper row of Fig. 4, we show the spatial distribution
of disks at long times, for different DL and leaving all other
model parameters fixed. In Fig. 4(a) (small ratio DL/DS), the
smaller particles dominate the system. In Fig. 4(b) (intermedi-
ate DL/DS), there is a balance of both types of disks, and when
DL/DS is sufficiently high [Fig. 4(c)], the larger disks occupy
most of the space. Figures 4(d)–4(f) show the time evolution
of the packing fractions of both types in simulations starting
with 250 particles of each size. The corresponding phase
diagram, for σL/σS = 1.2, is shown in Fig. 5(a). Increasing
the diffusivity of either species promotes an increased relative
abundance of that species. This is because larger diffusivity
for a given particle means it effectively occupies more space
where others cannot place their offspring. In particular, we
observe a transition between phases in which the system is
predominantly filled by the smaller particles to one in which
it is mostly filled by larger particles.

We conclude that increasing diffusivity of the larger disks
can reverse the competitive advantage of the smaller ones. We
have seen that due to the space-limited birth dynamics, diffu-
sion is “related” to particle size. However, the details of this
relationship are subtle. We observe that diffusion increases
the survival probability of a particle type. This is against the
intuition that the effective particle size would increase with
diffusivity, and that this would thus lead to a reduction of the
particles’ effective birth rate. One possible mechanism leading
to this is that larger diffusivity might increase the effective size
of a given particle as far as the interaction with other particles
is concerned. Suppose the diffusivity of a focal particle is
increased. The particle will “disturb” other particles in its
surroundings, thus leading to a reduction of these particles’
birth rate. This then makes space for the focal particle itself
to reproduce. At difference with the results of the previous
section (Fig. 1), the dominance of larger disks for high DL/DS

is not complete though. Instead, we find a remaining popula-
tion of smaller disks occupying about 10–15% of space until
the end of our simulations (i.e., φS = 0.1–0.15); see Fig. 5(b).
We attribute this to interstitial holes, i.e., empty space be-
tween the disks, noting that the effect is more pronounced
[i.e., φS/(φS + φL ) becomes larger] when the ratio σL/σS is
increased (see Fig. 6).

An exception to the survival of the smaller disks can be
observed in a region in (DS, DL ) space in which the larger
disks almost completely dominate the system [dark green
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FIG. 5. Phase diagram in the space of diffusivities, DS and DL .
(a) Background color indicates the relative filling fraction of the two
type of disks. In the red region, the smaller particles fill most of the
space; in the green region, the larger particles dominate. (b) Long-
time average packing fractions for both species as a function of DL ,
for fixed DS = 0.001. The colors of the symbols indicate the relative
amount of space occupied by the small particles. Model parameters
are δ = 0.01, βL = βS = 0.05, σS = 1.0, σL = 1.2.

to the lower left in Fig. 5(a)]. This dominance only occurs
when DS is small enough so that the movement of the smaller
disks is negligible with respect to their lifetime. This region

FIG. 6. Normalized packing fraction of small particles vs DL for
different values of σL/σS as indicated. Same remaining parameters
as in Fig. 5.

FIG. 7. (a) Phase diagram of the system with active disks in the
(vL, vS ) plane. Background color represents the normalized packing
fraction of the smaller particles (darker-red color indicates domi-
nance of the smaller type; darker-green color indicates dominance
of the larger type). (b) Long-time average packing fractions for
both species as a function of vL for fixed vS = 50. The colors of
the symbols indicate the relative space occupied by the small par-
ticles. Model parameters are δ = 0.01, βL = βS = 0.05, σS = 1.0,

σL = 1.2.

disappears as the ratio σL/σS becomes larger (see Fig. 6),
so that we think it is because small disks may occupy the
interstitial holes.

B. Active particles

We consider systems in which both types of disks are
self-propelled, possibly with different values of the propulsion
velocities vL and vS . The remaining parameters are set to the
same: βL = βS = β, DL = DS = D, and δ = 0.01.

We first take a birth rate of β = 0.05 and diffusivity of D =
0.05. Under these conditions, without activity, the system is in
a liquid state, which means that the packing fraction of both
types is low and there is no ordering. Also the system reaches
the steady state faster. Our motivation for this choice is that
we aim at analyzing MIPS, which is typically not observed
for large values of the packing fraction (solid phase) [11,15].

In the previous section, we have shown that Brownian
mobility provides an advantage in the competition for space
between the two types of disks. Given that self-propulsion
yields comparable effects (at low velocities) to diffusiv-
ity [45,46], we expect, in this low activity regime, similar
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FIG. 8. (a)–(d) Snapshots of the spatial distribution of active disks space at long times (only a part of the full size Ls = 150). (e)–(h) The
temporal evolution of the packing fraction starting with a random configuration of 250 + 250 disks. In addition, for each column, we have
used different values of vL and vS = 50. The values used are vL = 25, 40, 56, and 70 from left to right.

outcomes for active particles. However, MIPS typically ap-
pears when activity is large, and thus we study this regime in
detail by varying the self-propulsion coefficients of both types
of disks, and compute the average packing fraction of each
species at long times.

The resulting phase diagram, obtained for σL/σS = 1.2, is
shown in Fig. 7(a). When the activity of both types of disks
is sufficiently low, the smaller disks dominate the system. As
vL increases (keeping vS fixed at a sufficiently small value), a
transition to coexistence is found. This coexistence remains as
the activity of the larger particles is further increased. We find
interesting behavior for sufficiently large vS . This is the region
of MIPS. We observe that coexistence can be reached for low
and intermediate values of vL [see Fig. 7(b)]. In between, there
is a range of values where large particles dominate, and for
very high vL small particles dominate the system.

Which type of particle survives (or the presence of co-
existence) results from a complicated interplay between the
separation in dense and diluted phases formed of both species
in nonsteady conditions because of activity, and the birth-
death dynamics which is itself mediated by the spatial
distribution of disks. This is shown in the upper row of
Fig. 8 with some examples of the disk distribution at long
times for vS = 50 and different values of vL. In Fig. 8(a),
there is coexistence for sufficiently small vL. As we increase
vL, the smaller species becomes extinct (dark-green region
in the phase diagram) Fig. 8(b). As vL is increased further,
coexistence is observed again and both species show MIPS
[see Fig. 8(c)]. For even higher values of vL, the large disks
become extinct [see Fig. 8(d)]. In the lower row, we show
the corresponding time evolutions of the packing fractions of
both types of particles, starting from a configuration with 250
particles of each.

Let us next characterize the emerging spatial structures
when there is coexistence. To do this, we compute the dis-
tribution of local packing fractions of large disks, P(φL ),
and small ones, P(φS ). These are obtained from the local
packing fraction of either species at each location in space.
MIPS is characterized by a double-peaked distribution, with
the two peaks corresponding to the dense and diluted phases,
respectively [15]. In Fig. 9(a), we plot P(φS ) and P(φL ) cor-
responding to two situations: (i) small particles with very
low vS = 0.1 and large particles with low vL = 10 (the two
distributions are plotted in red); and (ii) small particles again
with vS = 0.1, but large particles with high vL = 150. These
scenarios correspond, respectively, to the cases where (if the
two types were in isolation without the presence of the other)
(a) neither small nor large disks would form MIPS, and (b)
small disks would not form MIPS, but large ones would
because they have a high vL. However, when both types of
particles are present in the system, the distribution of local
packing fractions is single peaked, and there is no separation
between dilute and dense phases.

Instead, in Fig. 9(b), we use a higher value of vS = 50 and
two different values of vL: vL = 25 for which there would
be no MIPS for the large particles in isolation, and vL = 56
for which there would be MIPS. Now, P(φL ) and P(φS ) are
double peaked, that is, both types of disks have a dense and
a dilute phase. These results indicate that the two species
arrange in the same spatial distribution when they coexist.
Either both display a single phase or both species show
MIPS.

Finally, in Fig. 10, we plot the normalized packing fraction
for the smaller types of disks when vL varies (keeping vS = 50
fixed, i.e., within the MIPS region) and for several values of
the ratio of size particles. When we increase σL/σS , the effect
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FIG. 9. Distribution of the local packing fraction for different
values of activity in configurations where both disks types coexist.
(a) vS = 0.1. (b) vS = 50. The vL value is shown in the legend.

of the interstices becomes more pronounced, which causes
the small particles’ packing fraction to increase. For the same
reason, the region in Fig. 10 in which the smaller particles go
extinct reduces. In other words, as σL/σS increases, the large
particles need a higher value of activity to form MIPS. This
results in a higher value of vL for the small particles to go
extinct.

FIG. 10. Normalized packing fraction of the smaller type of par-
ticle vs vL for different values of σL/σS as indicated in the legends.
vS = 50, and same remaining parameters as in Fig. 7.

IV. SUMMARY AND DISCUSSIONS

The interplay between motility and proliferation is funda-
mental for many biological processes. In this work, we have
studied a binary mixture of two types of motile disks with
different sizes and undergoing birth and death dynamics. At
difference with our previous work [11] where we concentrated
on the spatial structure formed by a single population of
identical disks, in this work we have studied the conditions
for coexistence and which of the two types does not go extinct
in the long time. Since the birth probability is limited by
size, smaller disks have larger chances to reproduce (when the
remaining characteristics are identical). Thus we focused on
the conditions under which this is reversed, i.e., larger disks
survive or there is coexistence of both types of disks. We
have considered two main cases: passive and self-propelled
disks. For passive particles, we have discussed the role of
growth rates and diffusivities, and have obtained typical phase
diagrams when the ratio of the particles’ sizes is σL/σs = 1.2,
but also discussed it for other ratios, unveiling the role of
interstices. We observe that Brownian mobility provides an
advantage such that the larger particles, with less chances to
reproduce, can coexist with the smaller or even dominate in
the steady state when they diffuse faster.

We have analyzed the role of activity and have shown
that as expected, it is similar to that of diffusivity when self-
propelled velocities have low values. However, when MIPS
is present (typically obtained for larger values of activities),
the coexistence dynamics changes and the typical situation is
a coexistence of both species, with both showing the same
diluted and dense phases.

From our study, we learn that while size may initially
appear as a limiting proliferation factor, the interplay with
other processes can mitigate its effects. More specifically, our
main findings are as follows: (i) the interaction coefficients
of the two species can be interpreted as a ratio of the two
birth rates, (ii) a larger diffusion coefficient can provide a
competitive advantage, (iii) activity can induce coexistence,
and (iv) activity can induce that the particles that initially
had less chance of survival completely dominate the system.
Further work should be devoted to analyze the spatial struc-
ture in the different situations that we have described and,
in particular, the influence on the hexatic and solid phases,
if any, of the binary mixture with demography. Extensions of
the model could allow for partial overlap of the offspring with
the parent. This would likely lead to a larger packing fraction.
Therefore, we speculate that allowing partial overlap would
produce similar effects as increasing the birth rate.

Concerning biological applications, the main motivation
for our work, where populations are characterized by large
diversity, it is of great interest to consider not only two disks
sizes, but a whole size distribution, and also of the other
parameters such as the growth rates and the self-propulsion
velocities.

ACKNOWLEDGMENTS

A.A and C.L. acknowledge Grant No. LAMARCA
PID2021-123352OB-C32 funded by MCIN/AEI/10.13039/

501100011033323 and FEDER “Una manera de hacer

064140-8



EXTINCTION AND COEXISTENCE IN A BINARY … PHYSICAL REVIEW E 109, 064140 (2024)
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APPENDIX

The parameters for which both species coexist can be ap-
proximated from the nonzero fixed points of Eq. (7),

φ∗
S = κS − αSφ

∗
L

(
σS

σL

)2

,

φ∗
S = 1

αL
(κL − φ∗

L )

(
σS

σL

)2

, (A1)

with

κS = aβS − δ

aβS
φS,max,

κL = aβL − δ

aβL
φL,max. (A2)

Both equalities are fulfilled at the same time in the coexis-
tence region. Furthermore, recall that φS,max = φL,max, since
the maximum value does not depend on either the type of
particle or the size of the system. Now, we make the ansatz

αS = cS (βL/βS )γ ,

αL = cL(βS/βL )γ , (A3)

where cS , cL, and γ are constants.

We have assumed symmetry in the interaction of the
species, so that both species have the same exponent γ . In-
serting the ansatz (A3) in Eq. (A1), we obtain an expression
for the packing fraction with explicit dependence on the de-
mographic rates,

φ∗
S = 1

1 − cLcS

[
κS − κLcS

(
βL

βS

)γ (
σS

σL

)2
]
,

φ∗
L = 1

1 − cLcS

[
κL − κScL

(
βS

βL

)γ (
σL

σS

)2
]
. (A4)

These expressions predict the value of the steady packing
fractions at each point of the diagram (βL, βS ) inside the
coexistence region. In the region where only large (small)
particles are found, we have φ∗

L = κL and φ∗
S = 0 (φ∗

L = 0 and
φ∗

S = κS).
We have carried out a series of numerical experiments

for various values of δ, σL, σS (not shown) beyond those
used in Fig. 2 and have observed that the phase diagram
is almost independent of the value of δ (always assuming
β > δ), and the ratio σL/σS . The coefficients cL, cS , and γ

in Eq. (A4) can be obtained from fits of the packing fraction
(see Fig. 11). We compute the difference between the packing
fraction obtained from Eq. (A4) and the one obtained from the
numerical simulations of the particle model for different val-
ues of δ, σS , σL, βS , βL. Then, we minimize the sum of all the
differences.

From these simulations, the best fit is obtained for cL =
0.69, cS = 1.34, and γ = 1/8.
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