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Kuramoto model subject to subsystem resetting: How resetting a part of the system
may synchronize the whole of it
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We introduce and investigate the effects of a new class of stochastic resetting protocol called subsystem
resetting, whereby a subset of the system constituents in a many-body interacting system undergoes bare
evolution interspersed with simultaneous resets at random times, while the remaining constituents evolve solely
under the bare dynamics. Here, by reset is meant a reinitialization of the dynamics from a given state. We
pursue our investigation within the ambit of the well-known Kuramoto model of coupled phase-only oscillators
of distributed natural frequencies. Here, the reset protocol corresponds to a chosen set of oscillators being
reset to a synchronized state at random times. We find that the mean w, of the natural frequencies plays a
defining role in determining the long-time state of the system. For wy = 0, the system reaches a synchronized
stationary state at long times, characterized by a time-independent nonzero value of the synchronization order
parameter that quantifies macroscopic order in the system. Moreover, we find that resetting even an infinitesimal
fraction of the total number of oscillators, in the extreme limit of infinite resetting rate, has the drastic effect of
synchronizing the entire system, even in parameter regimes in which the bare evolution does not support global
synchrony. By contrast, for wy # 0, the dynamics allows at long times either a synchronized stationary state or
an oscillatory synchronized state, with the latter characterized by an oscillatory behavior as a function of time
of the order parameter, with a nonzero time-independent time average. Our results thus imply that the nonreset
subsystem always gets synchronized at long times through the act of resetting of the reset subsystem. Our results,
analytical using the Ott-Antonsen ansatz as well as those based on numerical simulations, are obtained for two
representative oscillator frequency distributions, namely, a Lorentzian and a Gaussian. Given that it is easier to
reset a fraction of the system constituents than the entire system, we discuss how subsystem resetting may be

employed as an efficient mechanism to control attainment of global synchrony in the Kuramoto system.

DOI: 10.1103/PhysRevE.109.064137

I. INTRODUCTION

The idea of stochastic resetting was first put forward in
the context of classical diffusion in the seminal papers by
Evans and Majumdar [1]. Under stochastic resetting, the bare
dynamics of a system is repeatedly reset at random times
to a given state. It was inspired by the simple yet innova-
tive idea that an algorithm using diffusion and designed to
search for a misplaced target when restarted over and over
again would result in stray dynamical paths being effectively
cut off. This in turn would reduce the time of detection
of the target, as measured by the mean first-passage time
through the target, resulting in an enhanced efficiency of the
search algorithm. In the past few years, the basic paradigm
of stochastic resetting has been studied in a wide variety
of setups spanning across domains, e.g., in the context of
diffusion processes [2—4], in unveiling first order transition
for the optimal search time of Lévy flights [5], in study of
telegraphic processes [6], in analyzing Markov processes [7],
in random walk problems [8—13], in considering optimiza-
tion in first-passage resetting [14], in study of first-passage
properties of a particle in a potential [15] and also in an
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interval [16], in studying first-passage of a diffusing particle
in bounded domains under stochastic resetting [17], in dis-
cussing random walks on complex networks and subject to
first-passage resetting [18], in Brownian search process in a
homogeneous topography interpersed with resetting [19], to
mitigate long transient time in deterministic systems [20],
in discussing large deviations of ratio observables in reset
processes [21], in experimental studies related to estimating
the optimal mean time required by a free diffusing Brownian
particle to reach a target [22], in analysis of scaled Brownian
motion [23], in investigations of dynamical systems [20], in
studying predator-prey models [24-26], in studies focused on
complex chemical processes such as the Michaelis—Menten
reaction scheme [27,28], in investigating run and tumble mod-
els for active matter [29-32], in analyzing efficacy of antiviral
therapies [33], in finance models [34,35], etc.

Stochastic resetting has also been studied in quantum sys-
tems, e.g., in the context of integrable and nonintegrable
closed quantum systems [36], and in studying the tight-
binding model [37,38] and the quantum random walk [39].
Not only single-particle dynamics, stochastic resetting has
also been implemented in many-body interacting systems,
e.g., systems in the classical domain such as fluctuating
interfaces [40], exclusion processes [41,42], classical spin
systems [43], coupled oscillators [44,45]; on the quantum
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side, many-particle resetting has been considered in the case
of, e.g., quantum Ising chains [46,47]. A rather comprehensive
discussion on stochastic resetting can be found in the recent
reviews on the subject [48-50].

In the case of many-body systems, resetting has been
mostly studied in the particular context of global resetting,
in which all the system constituents are simultaneously reset
to a given state at the time instances of reset [43,44,46]. A
significant deviation from such a scenario comprises the case
in which each constituent resets independently of one other
at random times, which goes under the name of local reset-
ting [45,51]. A dynamical scenario that lies between these
two extremes is when only a given subset of the system
constituents undergoes simultaneous resets at random times.
Thus, we have a dynamical setup, which we may refer to
as subsystem resetting, wherein only a part of the system
undergoes bare evolution interspersed with resets, while the
rest of the system follows solely the bare evolution. Evidently
then due to the interaction between the constituents in the
reset and the nonreset part would one expect a strong inter-
play between bare evolution and reset moves. We may then
already anticipate interesting emergent properties, both static
and dynamic. Furthermore, in the case of global resetting,
each reset event initiates afresh the dynamics of the entire sys-
tem, resulting in all memory of dynamical evolution getting
completely washed away each time a reset happens. Conse-
quently, what matters in determining the state of the system
at any given time instant is when did the last reset event take
place [1]. This may be contrasted with what happens under
subsystem resetting, where evidently the nonreset part of the
system retains memory of its entire dynamical evolution. The
aforementioned scenario of subsystem resetting has not been
explored in the literature, and which is the central theme of
the current work.

The setup of subsystem resetting is particularly interesting
to study in systems exhibiting an order-to-disorder transition.
One may consider the paradigmatic classical Ising model
comprising Ising spins, which with nearest-neighbor interac-
tions exhibits a transition between a ferromagnetic (ordered)
and a paramagnetic (disordered) phase in equilibrium and
in dimensions greater than one. Another well-known model
showing order-to-disorder transition, albeit from the domain
of nonlinear dynamics and which will form the focus of our
study in this work, is the so-called Kuramoto model [52]. The
model, which we discuss in detail below, involves globally
coupled phase-only oscillators of distributed natural frequen-
cies that are interacting through the sine of the difference
in phases between the oscillators. The Kuramoto model of-
fers a novel framework to study spontaneous synchronization
in many-body interacting systems [52-58]. The utility of
the model stems from the fact that it is simple enough to
make analytical predictions while simultaneously capturing
the bare essentials of the dynamics of synchronizing sys-
tems. Variations of this model have found applications in
analyzing synchronization phenomena in widely disparate
contexts, from yeast cell suspensions, flashing fireflies, firings
of cardiac pacemaker cells, voltage oscillations in Josephson
junction arrays to animal flocking behavior, pedestrians on
footbridges, rhythmic applause in concert halls, and electrical
power distribution networks [59,60].

In the Kuramoto model, one observes a transition in the
stationary state from an incoherent (disordered) to a syn-
chronized (ordered) phase as one tunes the interoscillator
interaction strength K across a critical threshold K. Herein,
order refers to a macroscopic fraction of oscillator phases
evolving synchronously in time. The synchronization order
parameter, which gives a measure of global phase coherence
or synchrony in the system, has a time-independent value in
the stationary state. The stationary order parameter has the
value zero for K values smaller than K., while it has a nonzero
value for all K > K.. In the setting of the Kuramoto model,
one may ask the question: if we repeatedly reset a subset of
the total number of oscillators to an ordered state, can this
drive the rest of the oscillators towards order in the stationary
state even when the bare dynamics fails to support such an
ordering? Is there a critical size of the reset subsystem that
ensures that one has ordering in the rest of the system? How
does the rate of resetting play a role in inducing a given
amount of synchronization in the nonreset subsystem? What
is the fate of the synchronization transition exhibited by the
bare model on including the effects of subsystem resetting?
As possible applications of the introduced protocol, we may
mention the following: (i) the case of the Kuramoto oscillators
on complex networks [56], such as scale-free networks [61],
wherein one can reset only the hubs and investigate whether
doing so allows to synchronize the entire system; (ii) the
case of power grids [62] also provides an exciting avenue of
application for subsystem resetting, wherein we can explore
the conditions under which the failure of the complete grid can
be avoided by resetting a small subset of the entire network.

It is pertinent to state at this point the specifics of the reset
dynamics and the main results emerging from our study. Our
resetting protocol involves all the oscillator phases of the reset
subsystem being set to the value zero with a constant rate
A > 0. While the resetting protocol is obviously applied to the
reset subsystem, our focus of study will be its effects on the
nonreset subsystem. We have done our theoretical calculations
in the continuum limit in which the total number of oscillators
in the system is infinite, N — oo, and have supported them
with numerical simulations for N = 10* oscillators. In the
limit N — oo, when the number of oscillators in both the reset
and the nonreset subsystem becomes infinite, a reasonable
quantity denoting the size of the reset subsystem is the fraction
f of the total number of oscillators undergoing reset. Our main
findings, pursued for unimodal distributions for the natural
frequencies of the oscillators, are the following:

(1) The mean wy of the oscillator frequencies plays a
defining role in determining the long-time state of the system.
This is unlike the bare Kuramoto dynamics, in which the
effects of wy can be gotten rid off by viewing the dynamics
in a co-rotating frame.

(2) Let us first discuss the limiting case A — oo. In this
limit, we unveil on the basis of exact analytical calculations
a qualitative difference in the long-time behavior between the
case wy = 0 and the case wy # 0. In the considered limit, we
show that our system of interest, i.e., the nonreset subsystem,
can be mapped to a version of the forced Kuramoto model
studied in Ref. [63]. The reset subsystem, however, may be
considered dynamically frozen in time in the reset config-
uration. This enables us to apply the analytically tractable
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Ott—Antonsen (OA) ansatz [64] to study the nonreset sub-
system in terms of single-oscillator density functions; in this
case, the dynamics of the nonreset subsystem remains con-
fined to a low-dimensional manifold called the OA manifold.
As a result, we are able to obtain an exact equation for the
time evolution of the synchronization order parameter of the
nonreset subsystem.

(a) When one has @y = 0, our exact analytical results show
that the nonreset subsystem is guaranteed to have a synchro-
nized stationary state at long times; Quite remarkably, we find
as a function of K that the nonreset subsystem always exhibits
synchrony, even for very small values of the parameter f
[see the plot for f = 0.03 in Fig. 3(b)]. We see from our
analysis [specifically, Eq. (33)] that the stationary value of the
synchronization order parameter of the nonreset subsystem
cannot be zero for any nonzero value of the parameters K and
f, thus suggesting existence of a synchronized stationary state
for any K and f. As a result, the synchronization transition as
a function of K exhibited by the bare dynamics gets converted
into a crossover in presence of subsystem resetting in the limit
A — 00.

(b) In the case wy # 0, our exact analytical results again
show that the nonreset subsystem always attains at long times
a synchronized stationary state for K < K, irrespective of the
value of f [see the density plot in the f-K plane in Fig. 4(a)
and the plot for f = 0.5 and f = 0.8 in Fig. 4(b)]. However,
for K > K., depending upon f, we may get for the nonreset
subsystem at long times either a synchronized stationary state
or an oscillatory synchronized state (specifically, an oscilla-
tory behavior of the order parameter as a function of time,
thus characterizing a nonstationary state of the dynamics, but
which yields a nonzero time-independent time average). We
have (i) f is large, when one has a synchronized stationary
state [see the plot for f = 0.5, K = 4.0 in Fig. 4(¢)], and (ii)
f is small, when one has an oscillatory synchronized state
[see the plot for f = 0.3, K =4.0 in Figs. 4(d) and 4(e)].
Thus, even with wy # 0, the nonreset subsystem gets synchro-
nized at long times through the act of resetting of the reset
subsystem.

Interestingly, our analysis done in the limit A — oo agrees
well with our simulation results for A values as low as 25.0
for the case of wy =0 [see Fig. 3(b), in which the results
denoted by the black points and obtained from simulations for
f = 0.1 and A = 25.0 match reasonably well with the A — oo
theoretical results] and as low as 100.0 for the case of wy 7% 0
[compare the agreement between the results denoted by the
points and obtained from simulations with A = 100.0 with
the A — oo analytical results for f = 0.8 in Fig. 4(b) and for
f = 0.3 in Fig. 4(d), all with wy = 2.0].

On the basis of the above, we draw the following con-
clusion. As shown in Ref. [44], the Kuramoto model when
subject to global resetting always reaches a stationary state
at long times. By stark contrast, the dynamics in presence of
subsystem resetting may or may not have a stationary state,
depending on the values of the dynamical parameters and even
in the limit in which resetting happens all the time (the limit
A — 00).

(3) For finite A, one cannot map the nonreset subsystem
to any version of the forced Kuramoto model. Here, the dy-
namical evolution of the two individual subsystems, namely,

the reset and the nonreset subsystem, remains confined to
respective OA manifolds. It is interesting though to note that
the evolution of the system as a whole does not take place
on an OA manifold. Thus, we have two time evolution per-
taining to the two subsystems taking place simultaneously
on two different OA manifolds, which are dependent on one
another and hence coupled. Even in such a setup, we are
able to find approximate analytical evolution equations for
the realization-averaged order parameters of the reset and
the nonreset subsystem, for large A. The problem of find-
ing the value(s) of these order parameters in the stationary
state, provided the latter exists, is reduced to finding the roots
of two (for wy = 0) or four (for wy # 0) coupled nonlinear
equations.

(a) For wy =0, our approximate analytical calculations
predict the nonreset subsystem to have a synchronized sta-
tionary state at long times for any nonzero value of f and A,
thereby converting the synchronization transition of the bare
dynamics into a crossover, just as in the case of the A — o0
limit discussed above. We have verified our approximate the-
ory by a comparison with simulation results for A values as
low as 1.0 [see Fig. 5(a), in which the results denoted by the
black points and obtained from simulations for f = 0.1 match
reasonably well with our theoretical results].

(b) For wy # 0, our approximate analytical calculation
predicts that the nonreset subsystem always attains at long
times a synchronized stationary state for K < K.. However,
in the K > K, region, our approximate analytical calculation
predicts the long-time behavior of the nonreset subsystem to
be either a synchronized stationary state at large f or an os-
cillatory synchronized state at small f, much like the A — oo
scenario. A comparison of theoretical with numerical results
for A = 5.0 demonstrates for large f values an agreement in
the K < K, region, and not so good an agreement for K > K,
[see Fig. 6(b), where the simulation results are denoted by
squares and circles, and which correspond to f = 0.5 and
f = 0.8, respectively]. For small f, see Fig. 6(a), our nu-
merical simulation results display oscillations with decaying
amplitude and eventual settling down to a synchronized sta-
tionary state, which is at variance with our theory that predicts
an oscillatory synchronized state at long times.

(4) All the above results are obtained by taking a
Lorentzian distribution of natural frequencies for the oscilla-
tors. Recently, an approximation scheme has been developed
that allows treating the bare Kuramoto model using the OA
ansatz even for a Gaussian distribution of natural frequencies
of the oscillators [65]. We apply the method of analysis in
Ref. [65] to our system that involves subsystem resetting.
Here, in the A — oo limit and with a Gaussian frequency
distribution, we are able to derive analytically an approximate
equation for the time evolution of the order parameter of the
nonreset subsystem. We verify the solution of this equation in
the long-time limit by means of numerical simulations. For
the small-\ case and with a Gaussian distribution of frequen-
cies, obtaining an analytical evolution equation for the order
parameter of the nonreset subsystem becomes intractable, and
thus, we are restricted to obtaining only simulation results.
We find that our results for the Gaussian case are qualitatively
similar to those for the Lorentzian distribution of the oscillator
frequencies.
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The paper is organized as follows. In Sec. II, we define
in detail the Kuramoto model and the dynamics in the pres-
ence of stochastic resetting of a subsystem. In Sec. III, we
analyze the dynamics for the case of a Lorentzian distribution
of natural frequencies of the Kuramoto oscillators. In this
section, we first discuss the A — oo case in Sec. IIT A for
both of the wy = 0 and wy # 0 cases, respectively. Then in
Sec. III B, we take up the finite-A case for both the choices
wp = 0 and wy # 0, respectively. In Sec. III C, we elaborate
on the relevance of our analysis in controlling the extent of
synchronization in our system. In Sec. IV, we present our
analysis of the dynamics by going beyond the Lorentzian
distribution, namely, for a Gaussian distribution. Finally, the
paper ends with conclusions in Sec. V. Some of the technical
details are relegated to the three Appendixes.

II. KURAMOTO MODEL IN PRESENCE OF SUBSYSTEM
RESETTING

A. Bare Kuramoto model

As mentioned in the Introduction, the Kuramoto model in-
volves a system of N globally coupled phase-only oscillators.
We denote by 6;(t) € [0, 27 ) the phase of the jth oscillator at
time ¢, with j = 1,2, ..., N. The phase evolution in time is
defined within the Kuramoto model as [52]

N
do; K .
d_tj :a)j+ﬁkE=1 sin(6x — 6;). (D

Here, the constant K denotes the interoscillator coupling
strength, which is scaled by N to ensure effective competition
between the first and the second term on the right-hand side
of the above equation in the continuum limit N — oo. In this
paper, we will consider the case K > 0 for all further cal-
culations. In Eq. (1), the natural frequencies w; € (—00, 00)
of the oscillators are quenched-disordered random variables
distributed according to a given probability distribution g(w),
which has a finite mean wy > 0 and a finite width o > 0. We
assume the distribution to be unimodal and symmetric about
the mean wy.

The Kuramoto system is capable of exhibiting rich dynam-
ics due to the interplay between randomness and coupling.
The randomness originates from the variation in the natural
frequency among the oscillators; in the absence of coupling,
each oscillator phase tends to rotate uniformly and indepen-
dently in time. This results in the individual phases being
scattered uniformly and independently in [0, 27) at large
times, leading to an unsynchronized/incoherent state. How-
ever, the counter effect is provided by the coupling among
the oscillators, which tends to make the oscillators acquire
the same phase, thereby leading to a synchronized state. De-
pending upon the relative magnitude of these two competing
effects, one observes within the Kuramoto dynamics in the
limit N — oo and in the stationary state a synchronization
phase transition, or, more precisely, a supercritical bifurca-
tion [52,53,57]. The transition takes place between a low-K
unsynchronized/incoherent phase and a high-K synchronized
phase across a critical K, denoted by K.

The aforementioned phase transition is characterized by
the synchronization order parameter z(t) = r(t)e’¥ "), defined

as [52,53]

N
. 1 )
rt)e? " = v § e, )
j=1

Thus, the complex quantity z(¢) is represented in the complex-
z plane by a vector of length r(¢) inclined at an orientation
angle Y (t) with respect to an arbitrary reference. We refer
to z(¢) as the synchronization vector. The real quantity r(z)
measures the amount of global phase synchrony present in the
system at time instant #, while the real quantity ¥ (¢) € [0, 2r)
quantifies the average phase. Clearly, we have 0 < r < 1,
with » = 0 (respectively, » = 1) implying incoherence (re-
spectively, perfect synchrony). Any value of r in the range
0 < r < 1 implies partial synchrony. In terms of the quantities
r and ¥, the dynamics Eq. (1) takes the form

do; )

o = + Kr(t)sin(y () — 0;), 3)
which makes it evident the mean field nature of the Kuramoto
dynamics: every oscillator phase evolves in the presence of a
mean-field common to all, which is generated by the interac-
tion among all the oscillators.

In this paper, we will consider the case o > 0. This is
because with o = 0, implying same w; for all the oscillators,
the system will trivially synchronize. Specifically, we will
be working with two representative frequency distributions,
namely, a Lorentzian and a Gaussian, given respectively by

- z m (Lorentzian), A
gw) = 1 exp ( _ M) (Gaussian) @
NGz 27 '

For these distributions, the critical K to observe the synchro-
nization phase transition can be calculated explicitly, as was
first achieved by Kuramoto; one has [52,53,57]

_ 2
-~ mglwy)

For K in the range 0 < K < K, the system is in the un-
synchronized phase with the stationary-state order parameter
given by ry = r(t — o00) = 0. However, for K > K, the sys-
tem is in the synchronized phase with 0 < ry < 1.

(&)

C

B. Model in presence of subsystem resetting

Following the analysis of Kuramoto, we know that even
if we start from a fully synchronized state, the system for
K < K, will always desynchronize in time and the quantity
r will settle down at long times to the value zero in the
continuum limit N — oo. Keeping this in mind, the situation
we are interested in within the framework of the Kuramoto
model is the following (see Fig. 1): We initialize the dynamics
from a fully synchronized state, i.e., 8;(0) = 0V j. Then, at
random times, the bare Kuramoto evolution following Eq. (3)
is interrupted, whereby a given number of oscillators are reset
back to their initial phase value, i.e., zero. The random times at
which the system undergoes a reset vary from one realization
of the dynamics to another. A priori we do not have any
bias about which oscillators are to be reset. Specifically, we
choose once and for all the subset of oscillators to be reset,
and keep resetting the same subset across different realizations
and different reset times. We construct this subset by choosing
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FIG. 1. Schematic diagram of subsystem resetting: The dark- and light-gray circles represent individual oscillators together forming our
system of Kuramoto oscillators, where the position of a given circle denotes the phase of the corresponding oscillator with respect to an arbitrary
but fixed axis. The dark-gray circles represent the oscillators of the reset subsystem, while the light-gray circles represent the oscillators of the
nonreset subsystem. The horizontal arrow denotes the arrow of time. As shown in the left most diagram, all the oscillators at + = 0 are set at
the same phase value (which we take to be zero) and begin to evolve following the bare Kuramoto dynamics given by Eq. (1); note that the
circles, which should have fallen on top of each other, have been displaced for convenience of visualization. The time instant #; denotes the
time at which the first reset event occurs, while the time instant ¢;- denotes the instant just before the first reset event. We observe that till time
t,-, the entire system is undergoing the bare Kuramoto dynamics. At time #;, the reset subsystem (constituted by the dark-gray circles) resets
to the phase value zero, while the nonreset subsystem (constituted by the light-gray circles) are kept untouched. After the reset event, the entire
system again undergoes the evolution given by the bare Kuramoto dynamics till the time instant 7,-, while at time #,, the second reset event
takes place in exactly the same manner as the first reset event. The time evolution for a fixed total time comprises such alternating sequences

of bare evolution and reset events.

uniformly and independently n distinct oscillators out of the
total NV oscillators, with n < N. The details of the numerical
implementation are summarized in Appendix A.

We define the reset subsystem as the one constituted by the
oscillators that are being reset, while the rest of the oscilla-
tors form the nonreset subsystem. Then the question we are
interested in is the following: By resetting the oscillators of
the reset subsystem, are we able to synchronize the nonreset
subsystem? Since the reset subsystem will get synchronized
under the dynamics of resetting because of the choice of
the resetting state, synchronization of the nonreset subsystem
implies synchronization of the system as a whole. If the an-
swer to the question just raised is yes, then this question is
followed by a plethora of interesting questions: How does
this inducing of synchronization in the nonreset subsystem
through resetting of the reset subsystem depend on the reset-
ting rate, the size n of the reset subsystem, and the interaction
strength K? For K < K, the bare dynamics does not support
synchronization. Can we then make the system synchronized
for K < K.? For K > K, even the bare dynamics supports
synchronization, and then the question will be: Can resetting
increase the amount of synchronization in the system than
what is achieved in the bare dynamics? If it turns out that the
system in presence of resetting is synchronized for all values
of K, then the phase transition in the bare dynamics would
turn into a crossover in stationary values of r as a function of
K. Thus, we may ask: Does the phase transition with respect
to K in the bare model persist even on including resetting in
the bare dynamics?

In this paper, we set out to answer the aforementioned
questions. The random times at which resets happen are con-
sidered to follow a Poisson point process with rate A. This

implies that the random variable 7, denoting the time interval
between two successive resets, is distributed according to an
exponential distribution

p(r)y=2re", A>0, tel0,00). (6)

The dynamics may then be defined as follows: During the
infinitesimal interval dr following any time instant ¢, the state
{0;(t)} of the system evolves following the dynamics (3)
with probability (1 — Adt). However, with the complementary
probability Adt, the phases of the n oscillators constituting
the reset subsystem are all reset to the value zero, while
the phases of the oscillators forming the nonreset subsystem
evolve following the dynamics (3). Here, the parameter X is
the resetting rate, while the quantity 1/A denotes the average
time between two successive resets. Evidently then, on setting
A to zero, the dynamics in presence of resetting reduces to the
bare Kuramoto dynamics (3).

We will analyze the above-mentioned dynamics in the limit
N — oo, where a more reasonable quantity than n to charac-
terize the size of the reset subsystem is the fraction f = n/N
of the total number of oscillators undergoing the reset. From
now on, we will use the quantities f and 1 — f to denote
the size of the reset and the nonreset subsystem, respectively.
Note that f varies in the range 0 < f < 1. It is pertinent at
this point to list down the various parameters that characterize
our dynamics. These are the following: (i) the coupling K, (ii)
the resetting rate A, (iii) the fraction f of the total number of
oscillators undergoing the reset, and (iv) the parameters wq
and o characterizing the frequency distribution g(w).

As the reset and the nonreset subsystem are subjected
to two different schemes of evolution, it is appropriate to
track separately the order parameter (7,(¢), ¥, (¢)) of the reset
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FIG. 2. Subsystem resetting with finite A and Lorentzian g(w) with mean wy = 0 and width & = 1.0: Time variation of the order parameter
r of the entire system in the case of bare dynamics (a) and in the case of bare dynamics interspersed with subsystem resetting (b), respectively.
In the case of dynamics with resetting, time variation of the order parameters 7, (c) and r,, (d) pertaining to the reset subsystem and the nonreset
subsystem, respectively, have also been shown. The values of the various parameters are: K = 1.5, A = 0.5, f = 0.5. The data correspond to
a single realization of the dynamics, and are obtained from numerical simulation of the dynamics for a system of N = 10* oscillators; the
integration time step is taken to be 0.01. The initial state has 6;(0) = 0V j, and is the same for all figures in this paper that depict numerical

simulation results.

subsystem as well as the order parameter (7, (¢), ¥, (¢)) of the
nonreset subsystem. Given a set of N Kuramoto oscillators,
we will from now on label the oscillators in such a way that the
ones with the label j =1, 2, ..., n form the reset subsystem,
while the ones with the label j =n+1,n+2,..., N form
the nonreset subsystem. Consequently, we have

. 1< .
— i) — i0;(1)
z(t) = ri(t)e = E e, (N
J=1
1 N
— iVYar (1) — i0;(1)

() = e (t)e = — et 8
Zue(1) = 1ue(t) N—nﬁzg (8)

The quantities on the left, together with the global or-
der parameter (r(t), ¥ (t)) defined in Eq. (2) make up the
observables of the problem at hand. For the latter, it is straight-
forward to see that

(1) = fz(®) + (1 = flza (@), (€))

which immediately implies on rewriting the z’s in terms of
r’sand ¥’s, as r(t)eV D = frit)eV" O + (1 — fr(t)eVm®
that

r= [ (= P24 2 (1 = rera cos(Pi — Y.
(10)

From now on, we will drop the explicit time dependence
in the quantities z;(¢), znr (¢), 1+ (t), Vi (t), ror(t), ¥nr(2), unless
specified otherwise. Note that because of resetting of phases
of all the reset oscillators to the same value, the quantity r;
hits the value of unity at the time instances of reset. A repre-
sentative variation of the mentioned observables as a function
of time in a single realization of the dynamics and for chosen
values of the various parameters is shown in Fig. 2. In panel
(c), the sudden changes in the value of r; from its current value
to unity denote the resetting instances. Note that all the plots
in Fig. 2 have been obtained for a value of K (here K = 1.5)
for which the bare dynamics fails to attain synchrony [see

Fig. 2(a), where we may see the quantity r settling to the
zero value with time even when the oscillators are initiated
from a perfectly synchronized state]. However, when reset-
ting is introduced in the dynamics, even the oscillators not
getting reset become synchronized [see Fig. 2(d)]. Our goal
is to explore synchronization of the oscillators even when the
bare dynamics can not afford synchrony. The reset subsystem
will always get synchronized because of the direct influence
of resetting. If we can show that the nonreset subsystem is
also getting synchronized because of resetting of the reset
subsystem, then it will in turn imply that the entire system is
getting synchronized. That is why from now on we will only
focus on the behavior of the synchronization order parameter
of the nonreset subsystem. Another reason for studying r; and
ror separately and not the quantity r is that we are mainly
interested in how resetting a part of the system influences the
other part of the system.

III. ANALYSIS FOR LORENTZIAN g(w)

In this section, we proceed to analyze the Kuramoto model
in presence of subsystem resetting, for the particular case of
the Lorentzian frequency distribution given in Eq. (4). We
consider successively the case of infinite and finite resetting
rate A. In our analysis, we will use the fact that for the
Lorentzian g(w), the critical K to observe synchronization
may be obtained from Eq. (5) as K, = 20.

A. A — oo Limit: Case for maximum possible
induced-synchronization

Before we embark on a detailed analysis of our system for
arbitrary values of the resetting rate A, let us ask the following
question: For a given value of the parameter f, what is the
maximum amount of synchronization that can be induced in
the nonreset subsystem? One may expect that maximum syn-
chronization in the nonreset subsystem will be achieved in the
limit of infinite resetting rate, i.e., A, — oo. This is because, in
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this case, the reset subsystem remains perfectly synchronized
almost at all times. Then, it is expected on the basis of the
coupling between the reset and the nonreset subsystem that,
if and when possible, the nonreset subsystem will acquire
maximum possible synchrony.

In the limit of infinite A, the phases of all the oscillators
in the reset subsystem can be considered to be fixed at the
resetting angle, i.e.,6;(t1) =0Vrand j =1, - -- , n. Using this
in Eq. (1), we get the evolution equations for the oscillators in

the nonreset subsystem, i.e., for j =n+1,..., N, as
N
do; . K .
d_t] = w; — Kfsin(9;) + N kéH sin(G — ;). (11)

Interestingly, this equation breaks the phase-shift symmetry
that is present in the bare Kuramoto dynamics (1). In other
words, rotating every phase by an arbitrary amount (same
for all), i.e., effecting the transformation §; — 6; + « V j and
arbitrary «, leaves the dynamics (1) invariant but not the
dynamics (11). In terms of the quantities r,, and ¥, Eq. (11)
can be rewritten as

do;
d_tj =w; — Kfsin0;) + K(1 — f)ry sin(Yryr — 0;), (12)
with j =n+1,---, N. From the above equation, it is evident

that resetting at infinite rate effectively adds a constant forcing
term of strength K f acting on the individual nonreset oscilla-
tors, represented by the second term on the right hand side of
Eq. (12). With the increase of the fraction f, the strength of
this forcing term increases. However, the effective coupling
between the oscillators of the nonreset subsystem, given by
K(1 — f), decreases with increasing f. Under the effect of
the forcing term, the phases of the nonreset oscillators tend
to become zero. This would imply fixing the orientation of
the synchronization vector z,,(t) of the nonreset subsystem
at the value v, = 0. By contrast, the mutual interaction
between the nonreset oscillators tends to rotate the same syn-
chronization vector in time, provided one has wy # 0. For
wo = 0, the effects of forcing and mutual interaction thus go
hand in hand in synchronizing the nonreset subsystem. For
nonzero wy, these two effects oppose each other, which we
will show below to be resulting in a transition depending on
the values of wy, f, and K.

A variation of Eq. (11) has been studied by Childs and
Strogatz [63] in the context of periodic forcing of the bare
Kuramoto model and with a Lorentzian frequency distri-
bution. We will follow their analysis, which makes use of
the celebrated Ott-Antonsen (OA) ansatz. The latter offers
a powerful exact method to study dynamics of coupled os-
cillator ensembles. In the context of the bare Kuramoto
model (1) with a Lorentzian distribution of the oscillator
frequencies, the ansatz studies the evolution in phase space
by considering a particular class of single-oscillator density
functions that is defined on a low-dimensional manifold M C
D called the OA-manifold, the manifold being embedded
in the space D of all possible density functions. A remark-
able feature of the manifold is that when initialized on the
manifold, the subsequent evolution of the system remains
confined to it [64,66]. This enables one to write down a single
first-order ordinary differential equation for the evolution of

the synchronization order parameter r(¢). As we will discuss
below, for our system (11), the initial condition 6;(0) =0
for j=n+1,---,N lies on the OA-manifold. Considering
evolution under the dynamics (11) also to remain confined to
this manifold [63,64,66], the order parameter (ry, ¥,,) may
then be shown to satisfy a two-dimensional dynamical system.
We now turn to details of the derivation of this dynamical
system, following Ref. [63].

To proceed, we consider the dynamics (11) in the contin-
uum limit N — oo. This implies that the size of both the reset
subsystem, given by N f, and the nonreset subsystem, given
by N(1 — f), is also infinite. Then the state of the nonreset
subsystem can be described using a single-oscillator density
function F (0, w,t). By definition, F (0, w, t)d0dw denotes
the fraction of nonreset oscillators at time ¢ that have their
phase values between 0 and 6 + d6 and have their natural fre-
quency between w and w + dw. Normalization of the density
function implies that one has

2
f F(6, 0.1)d8 = g(w). (13)
0

oY) 2
/ / F@,w,t)d0dw = 1. (14)
—o00 J0

It is evidently true that the number of oscillators with a
given frequency is conserved under the dynamics (11). As
a consequence, F (6, w,t) evolves in time according to the
continuity equation

JoF a dao
— +—(F=) = 1
ot + 89( dt) 0 (15)

wherein the quantity d6/dt is obtained from Eq. (12) in the
continuum limit as

D ot LUK = frem + K™

- = w P - nr e

dt 2 ¢

—(K(1 = f)zs + Kf)e"], (16)
where we have
) 0 2 )
Zor = Pyl VT = / / FF0, w, 1)dbdw, (17)
—o0 JO
and the star denotes complex conjugation.

Now, using the 27 periodicity of F (6, w, t) with respect to
0, we obtain the Fourier expansion

o0
F(e,w,r)=—g§“’) 1+ Y F.ne™ |, (18
JT
n=—oo
n#0

where F,(w,t) is the nth Fourier coefficient. Using
foz T el dg = 21 8,0, it can be easily checked that the above
expansion indeed satisfies Eq. (13). As F (0, w,t) is a real
quantity, we have a further condition on the Fourier coeffi-
cients:

Foy(o,1) = [F(o,D]". 19)

Substitution of Eqs. (18) and (16) in Eq. (15) yields an infinite
number of coupled nonlinear differential equations for the
coefficients F,(w, t), which are analytically intractable. At this
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point, Ott and Antonsen suggested that if we only consider the
special class of density functions F (6, w, t) for which

Fy(w,1) = [a(w,N)]" (20)

for all n > 1, then the aforementioned infinite number of
equations are automatically satisfied so long as «(w,t)
evolves according to the following equation obtained by sub-
stituting Eqgs. (16), (18), and (20) in Eq. (15):
e S
_— = — — — o
o 2 o 1
K
—51d — )z + flo, 2D

where we have dropped the functional dependence in « for
ease of notation. Here z,, is obtained from Eq. (17) as

Zor = / a*(w, t)g(w)dw. (22)
—0o0

Thus, instead of solving the mentioned infinite set of coupled

nonlinear differential equations for the Fow,1)s, we only

have to solve the equation for o(w, t) and thereby obtain the

entire density function F (0, w, t).

Since we start from the initial condition 6;(0) =0 for
j=n-+1,--- N, the initial density function for the oscil-
lators in the nonreset subsystem can be written as F (6, w, t =
0) = g(w)3() = g(w)(1/2m)) Y02 . €™, which is consis-
tent with Eq. (20) and which yields

Fy(@,0)=1Vn #0. (23)
Correspondingly, we take
a(w,0)=1. (24)

Therefore, our dynamics is initialized on the OA manifold,
and Eqgs. (21) and (22) together would describe the time evo-
lution of the order parameter on this manifold.

In the case of the Lorentzian frequency distribution given
in Eq. (4), Egs. (21) and (22) can be further simplified if
a(w, t) satisfies certain conditions in the complex  plane.
Namely, @ (w, t) can be analytically continued from real w into
the complex w plane for all + > 0, and that |a(w, )] — 0 as
Im(w) > —o0 and |a(w, t)| < 1 for real w [64]. With these
conditions, one may compute Eq. (22) by the use of contour
integration to obtain z,:(#) = o*(wy — io, t), and thereby de-
rive the exact evolution equation of the order parameter z,
from Eq. (21) as

dzar
dt

K % 2
= 5{[(1 = Pz + 1= 1A = Hzg, + flzg}
—(0 — iwy)Znr- (25)

At this point, we can reduce the number of dynamical
parameters by nondimensionalizing the parameters through
the transformationt — o, K — K/o,and wy — wy/o. Note
that for all analysis and results related to the infinite resetting
rate case, we will assume from now on that such a nondimen-
sionalization of parameters to have been made. Next, using
Zor = Fare’V™ in Bq. (25) and comparing real and imaginary
parts on both sides of the equation, we obtain the desired

two-dimensional dynamical system:

ro= M,ﬂr(l )
2
+ KTf(l — rp) COS Vi (26)

and

K
Vnrlﬁér = - |:_w0rnr + Tf(l + rl%r) sin wnr] ’ (27)

where the prime denotes differentiation with respect to dimen-
sionless time.

It is pertinent to ask: Does the synchronization phase tran-
sition of the bare model persist when considering resetting
events in the infinite resetting rate limit? In other words, is the
incoherent state with r,, = O still a possible stationary-state
solution of Eqgs. (26) and (27)? To obtain an answer, we put
ri. = rpe = 0 in Eq. (26), which gives cos yr,, = 0, implying
sin Y, = 1. Using this along with r,; = 0 in Eq. (27), we get

Kf
5 =

which is satisfied only with f = 0. We thus conclude that
the incoherent state is a stationary state of the dynamics only
when the system undergoes bare Kuramoto evolution (the case
f = 0). However, inclusion of resetting in the dynamics at
an infinite rate always synchronizes the nonreset subsystem,
even when one resets a vanishing fraction of the total number
of oscillators. Thus, the synchronization phase transition in
the bare Kuramoto dynamics gets converted into a crossover
with infinite resetting rate because of the nonexistence of the
incoherent stationary state.

As concluded above, r,; = 0 cannot be a stationary-state
solution of the dynamics, Eqs. (26) and (27), and hence, we
can rewrite Eq. (27) as [63]

0, (28)

, Kf 1Y .
1pnr = _|:_w0 + — <rnr + _> sin 1»l/nri|- (29)
2 T

Next, we are interested in the stationary-state value of ry,
from Eqgs. (26) and (29), and hence, we need to put r; =
0 in these equations. Now, v = constant # O cannot be a
stationary-state solution, as /. = 0 in Eq. (26) will require
cos Y, to have a constant value in the stationary state, which
in turn implies v, to attain a time independent value at long
times. This latter fact implies that one must have ¥, =0 in
the stationary state. Using these facts in Eqgs. (26) and (29),

we get the stationary-state equations as

K(1 — X
B Dmp— o)
K
20— oyt = 0, (30)
K 1
wo— S (st LY ginys =0 G1)
2 nr rlslll nr

Here, “st” denotes the stationary-state value. It may be worth-
while to compare the above situation with the one for the
bare Kuramoto dynamics, for which setting f = 0 in Eq. (29)
implies that one has v, = wy = constant # 0 in the station-
ary state. This means that in the stationary state of the bare
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FIG. 3. Subsystem resetting with A — oo and Lorentzian g(w) with mean wy, = 0 and width o = 1.0: Panel (a) shows analytical results for
the stationary-state synchronization order-parameter r5. of the nonreset subsystem, depicted in terms of a density plot in the f — K plane. The
analytical results are computed by solving the roots of Eq. (33). As one tunes K at a fixed f # 0, the quantity r;. undergoes a crossover from
low to high values. From the density plot in panel (a), variation of r5\ with K for representative values of f is presented in panel (b). Here, the

st

black dashed line corresponds to the bare Kuramoto dynamics, for which one has i, = 0 for K < K., and one has a synchronization transition
as a function of K. In this panel, we also show by points numerical simulation results for f = 0.1 and A = 25.0, demonstrating agreement
with theory; the data correspond to the stationary state of a single realization of the dynamics for a system of N = 10* oscillators with the
integration time step equal to 0.005. Panel (c) shows as a function of f the quantity drS./df, for different K values given in the panel.

Kuramoto model, the synchronization order parameter z,, can
have a time-independent value of its length r,, while its
orientation angle may change uniformly in time with angular
velocity wy, for wy # 0. Unlike that, in our case, to have a
time-independent r,,, in the stationary state, the orientation
angle of z,, must not also change as a function of time, even
when wg # 0.

In the rest of this section, we will put our efforts into
solving Egs. (30) and (31) and deduce the ensuing physical
picture. We will consider successively the cases wy = 0 and
(O] 75 0.

1. Resetting with @y = 0

In the particular case of infinite resetting rate under con-
sideration, let us obtain the average phase v, of the nonreset
subsystem. Putting wy = 0 in Eq. (31), and since we have
it 2 0 for any nonzero f, the only way Eq. (31) is satisfied
will be by having

sinyn = 0. (32)

The above conclusion could have also been arrived at by
analyzing Eq. (29) for wy = 0. In this case, noting that 7y,
is an intrinsically positive quantity, Eq. (29) has the form
df/dt = —asinf, with @ > 0 and 6 € [0, 27), which evi-
dently has one stable fixed point at 6 = 0. We thus conclude
that the long-time solution of Eq. (29) is given by sin 5t = 0
and cos St = 1. As a result, Eq. (30) reduces to a cubic
equation for ri.:

o)+ (725 )i’

_ 2 gyl (LYoo 33
+[K<1—f>_ }r‘“_<1—f>_ - OY

The above equation can be solved exactly for r3; see
Appendix B. Interestingly, it is clear from Eq. (33) itself that,
for any nonzero f, one cannot have 75t = 0 as a solution of the
equation. For now, we are going to discuss the main features
of the solution of Eq. (33), depicted in the plots in Fig. 3.
Figure 3(a) depicts the density plot for 75 in the f — K
plane, wherein the synchronization transition of the bare
Kuramoto model appears along the K axis for f = 0. As the
figure suggests and as has been explained earlier, the men-
tioned transition becomes a crossover as soon as f becomes
nonzero. We thus conclude that the nonreset subsystem is syn-
chronized, i.e., rﬁ‘r # 0, for any nonzero value of f, however
small. It can be seen from the figure that as we increase f at a
fixed K, the quantity ri. takes up higher and higher values for
K values in the region K < K, = 2, where the bare dynamics
does not support any synchronization. Note that as mentioned
in the paragraph following Eq. (25), we are here working with
nondimensionalized parameters, and hence have the critical
value of the coupling as equal to 2 instead of 2¢. To bring out
better the salient features of this induced synchronization in
the nonreset subsystem, we plot in Fig. 3(b) the quantity 73
as a function of K for several representative values of f. The
black dashed line represents the case of the bare Kuramoto
dynamics, showing no synchronization, i.e., rf. = 0 for K <
K.. We see from Fig. 3(b) that we can induce a significant
amount of synchronisation in the nonreset subsystem even
by resetting as low as 3% of the total number of oscillators
(f = 0.03). The effect of resetting becomes more prominent
near the transition point of the bare Kuramoto model, i.e., near
K = K.. Interestingly, we see from Fig. 3(b) that the change
in the value of r5! does not take place proportionately to the
change in the value of f. Namely, for the same amount of
change in f, once from 10% to 50% and again from 50%
to 90%, the corresponding change in rj. is different in the
two cases. In fact, one has a greater change in r5. when f
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is changed at a lower than at a higher value. This fact is
more clearly established on plotting the quantity dri./df as a
function of f for several values of K; see Fig. 3(c). Figure 3(c)
shows that the derivative dr3. /df takes up its maximum value
when f is close to zero, and which monotonically decreases
as we increase f. On the face of it, this result may appear
counter-intuitive, as one would expect the effect of resetting
90% of the total number of oscillators to be more pronounced
in inducing synchronization in the nonreset subsystem than
resetting say 50% of the total number of oscillators.

Remarkably, for a given value of K and as a function of
f, there is a bound on the amount of synchronization that can
be achieved in the nonreset subsystem through resetting as f
hits its maximum allowed value, i.e., in the limit f — 17. We
now derive this bound. Multiplying both sides of Eq. (33) with
(1 — f) and taking the limit f — 17, we get the desired upper
bound as

_\/l—l-Kz—l

st
(rnr)max - K (34)

An important point to note from Fig. 3(c) is that the quantity
}in}) dril/df increases with K in the region K < K., diverges

at K = K, and then decreases as we increase K further, be-
yond K = K_. This is a signature of the synchronization phase
transition in the bare Kuramoto model, which is retrieved in
the f = 0 case.

From Eq. (34), we see that for a particular K value, 75t can-
not exceed (73 )max. This upper bound on 75 implies that 73
versus f at a fixed K has to behave in such a way as to saturate
to the value (73)max as f hits the value of unity from below.
This would in turn imply that the slope drs/df changes faster
at smaller values of f than at higher values, explaining the
observation mentioned above regarding the behavior of the
quantity drst /df as a function of f.

Now, one may question the physical relevance of studying
the case A — oo, which is evidently experimentally unattain-
able. One may argue in favor of such a study by mentioning
that it gives a bound on how much synchronization can be
induced via resetting for fixed K and f, in the extreme case in
which the reset subsystem remains completely synchronized
almost at all times. For any finite A, the reset subsystem cannot
remain synchronized at all times, and one may expect only a
smaller amount of synchrony to get induced in the nonreset
subsystem through its interaction with the reset subsystem.
Second, as shown in Fig. 3(b), our theoretical predictions
obtained in the A — oo limit correctly reproduce numerical
simulation results for finite A, for A values as low as 25.0.

2. Resetting with oy # 0

In the nonzero wy case, Eq. (31) gives the average phase
Yar Of the nonreset subsystem in the stationary state as

wo

Sin Yo = %7 (35)

5 (re + é) ’
which implies that sin ¢3! is always positive in the stationary
state. Correspondingly, cos /5t may have either sign. To de-
cide on the sign, let us consider Eq. (29). As ry, is a positive
quantity, Eq. (29) has the form d6/dt = wy — o sin 6, with
wy > 0, > 0 and 0 € [0, 27), which evidently has a stable

fixed point in the first quadrant and an unstable fixed point
in the second quadrant, provided we have o > wy. We thus
conclude that for the dynamics df/dt = wy — o sin @, when
the stable fixed point exists, it lies necessarily in the first
quadrant. In our system, Eq. (29), when the fixed point exists,
the stable fixed point [which by definition coincides with
the stationary solution, Eq. (35)] lies necessarily in the first
quadrant. Consequently, we have in the stationary state that
cos ¥t is positive and equals

cosyn = |1— (36)

which together with Eq. (30) gives the quantity rit as solving
the equation

1 K-/ N K21 wp
2 «\2 «\2\2 "
1= () 2 o)t ()
(37)

In Fig. 4(a), we have presented the solution of Eq. (37).
Interestingly, for K > K. = 2, i.e., for K values larger than
the critical threshold of the bare Kuramoto model for the
case of Lorentzian g(w), there exist values of f for which
the dynamics does not support a stationary state. The latter
corresponds to the white region in the density plot of Fig. 4(a).
In this region, instead of reaching a time-independent value at
long times, ry,, as well as ¥, is time dependent; the quantity
roe oscillates as a function of time, with a nonzero time-
independent time average (defining what we refer to as an
oscillatory synchronized state). Thus, the white region cor-
responds to nonstationary states. In contrast, in the colored
region of Fig. 4(a), the system reaches a stationary state at
long times. In this region, both the quantities r,, and v, attain
time-independent values at long times. Referring to Fig. 4(a),
as one tunes f at a fixed K, one observes a transition between
a region supporting stationary states and another supporting
nonstationary states, for K values in the range K > 2. More-
over, we may conclude based on the results discussed above
that similar to the case with wy = 0, the nonreset subsystem
gets synchronized at long times through the act of resetting of
the reset subsystem.

It has been established in Ref. [44] that when subjected to
global resetting, with other details of the resetting protocol
identical to the ones considered in the current work, the dy-
namics always reaches a stationary state at long times. On the
basis of our analysis presented above, we conclude that unlike
the global resetting case, on performing resetting of a subsys-
tem at an infinite rate, one may or may not have a stationary
state depending on the values of the dynamical parameters.
Another interesting conclusion to draw from Fig. 4(a) is that,
in the region where a stationary state exists [colored region
of Fig. 4(a)], the synchronization phase transition of the bare
Kuramoto model gets replaced by a crossover in presence of
resetting. However, a new transition between stationary and
nonstationary states appears, depending on the values of the
parameters f and K.
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FIG. 4. Subsystem resetting with A — oo and Lorentzian g(w) with mean wy # 0 (specifically, wy = 2.0) and width ¢ = 1.0: Panel
(a) shows analytical results for the stationary-state synchronization order-parameter ry of the nonreset subsystem, depicted in terms of a
density plot in the f-K plane. The analytical results are obtained by solving numerically the roots of Eq. (37). In the white region of the
plot, when roots do not exist, r,, instead of reaching a stationary value at long times, oscillates as a function of time, and ¥, remains time
dependent even at long times. Nevertheless, r,, at long times yields a nonzero time-independent time average, thereby defining an oscillatory
synchronized state [representative plots for this case are shown in panels (d) and (e) for K = 4.0 and f = 0.3; here, r,,; and ¥, are obtained
by numerically solving Eqgs. (26) and (29) simultaneously; for our choice of the initial state as given in Sec. II B, we have r,, = 1 and ¥, =0
at the initial time instant # = 0]. In contrast, in the colored region, when roots do exist, the system reaches a stationary state, in which both
the quantities r,, and v, attain time-independent values at long times (a representative plot is shown in panel (¢) for K = 4.0 and f =0.5;
for our choice of the initial state as given in Sec. II B, we have r,, = 1 and ¢,,, = 0 at the initial time instant = 0). In the colored region, as
one tunes K at a fixed f # 0, the quantity r). undergoes a crossover from low to high values. The black line in panel (a) is the curve given
by Eq. (39), denoting the boundary between regions with stationary and nonstationary behavior of r,, at long times. From the density plot in
panel (a), variation of rii with K for representative values of f is presented in panel (b). Here, the black dashed line corresponds to the bare
Kuramoto dynamics, for which one has 7. = 0 for K < K., and one has a synchronization transition as a function of K. In this panel, we also
show by points numerical simulation results for f = 0.8 and A = 100.0, demonstrating agreement with theory. A similar agreement between
theory and simulation is also demonstrated in panel (d). The simulation data correspond to a single realization of the dynamics for a system of
N = 10* oscillators with the integration time step equal to 0.005.

parameter shows identical behavior in the case of the bare
Kuramoto dynamics with wy = 0 and wy # 0. Unlike that, the
dynamics under subsystem resetting at infinite rate as given
by Eq. (11) does not have phase-shift symmetry, the reason
for which is the following. As in this case, reset happens
at an infinite rate, the phases of the oscillators in the reset
subsystem remain frozen at the value zero. As a result, the
attractive interaction between the oscillators in the reset and
the nonreset subsystem tries to make the phases of the oscilla-
tors of the nonreset subsystem take up the value zero. In other

The origin of the aforementioned transition between sta-
tionary and nonstationary states lies in the existence of the
broken phase-shift symmetry in the dynamics, Eq. (11), com-
pared to the bare Kuramoto dynamics [see the discussion
following Eq. (11)]. In the case of the bare Kuramoto dy-
namics, Eq. (1) possesses phase-shift symmetry. As a result,
for the bare Kuramoto dynamics with wy # 0, we can go to a
reference frame rotating with angular velocity w, with respect
to an inertial frame; in such a frame, the dynamics transforms
into that which has @y = 0. This is the reason why the order

064137-11



MAJUMDER, CHATTOPADHYAY, AND GUPTA

PHYSICAL REVIEW E 109, 064137 (2024)

words, the interaction between the oscillators in the reset and
nonreset subsystem tries to freeze the orientation of the syn-
chronization order parameter z,, of the nonreset subsystem at
the angle v, = 0. This effect is captured by the second term
on the right hand side of Eq. (12), whose impact increases
with increasing of the reset fraction f. However, because of
wp being nonzero, mutual interaction between the oscillators
of the nonreset subsystem tries to rotate the oscillator phases
with frequency wp. In other words, interaction among the
oscillators of the nonreset subsystem tries to rotate the syn-
chronization order parameter z,, of the nonreset subsystem
with frequency wy. This effect is captured by the third term on
the right hand side of Eq. (12), whose impact decreases with
increasing of the reset fraction f and increases with increasing
of the magnitude of z,, i.e., of r,. The interplay of these
two opposing effects generates the nontrivial density plot in
Fig. 4(a). For K < K, = 2, the value of r, is small. As a
result, the effect of mutual interaction is very weak and unable
to counter the effects of resetting, leading the system into a
stationary state. However, for K > 2, one has a more involved
situation. For smaller f, the third term on the right hand
side of Eq. (12) dominates over the second term. Thus, the
effect of resetting being small, mutual interaction between the
nonreset oscillators is able to overcome the effect of resetting.
As a result, the quantity z,, keeps rotating in time, without
reaching a stationary state. We see from Eqgs. (26) and (29)
that the time evolution of r,, and i, are coupled to each
other. As a rotating z,, results in ¥, changing with time, it
would in turn mean ry, to also change with time, and one has a
nonstationary state. This explains the white region of Fig. 4(a).
However, as we increase f, the effect of resetting increases,
whereas the effect of the mutual interaction, being a function
of (1 — f), starts decreasing [see Eq. (12)]. As a result, if we
keep increasing f keeping K fixed, then the effect of resetting
becomes dominant after crossing a particular critical value
f = f., beyond which the system has a stationary state.

Let us now obtain an equation relating f. and K. The
solution of this equation will provide us with the boundary
that separates the parameter regions in Fig. 4(a) corresponding
to stationary and nonstationary states. A stationary state exists
if Eq. (37) has a real root. Clearly, the equation will not have a
real root if the term inside the square root is negative. Hence,
to obtain the boundary, we set the quantity inside the square
root equal to zero, yielding

1 K(1—f. K*f2 1 :
_KAoJ) o Kl e g
l_rl%r 2 4 rr%r (1+r§r)
solving which we get the equation for the boundary as
2 K1—=f)=2
K(f_C> — wSL)Z’ (39)
1—fe (KA —f)—1)

while the amount of stationary-state synchronization at the
boundary is given by

Pt = Kd-p-2 (40)
"N K(1-f)

Last, as in the wy = 0 case, our theoretical predictions
obtained in the limit A — oo match reasonably well with

numerical simulation results for finite A as low as 100.0, see
Figs. 4(b) and 4(d).

B. Case of finite-A

Until now, we have considered the case of infinite resetting
rate, i.e., the limit A — oo. We now move on to consider
the case of finite A. At first glance, a straightforward anal-
ysis for our case of subsystem resetting seems significantly
nontrivial than that for global resetting. In the case of bare
evolution, as mentioned earlier, in so far as the behavior of
the synchronization order parameter is concerned, a great
simplification is offered in the continuum limit N — oo by the
OA ansatz [64]. Analysis using the OA ansatz can be extended
to apply in the case of global resetting of the Kuramoto model,
as long as the resetting protocol resets the system globally to
a state that remains on the OA manifold [44]. This situation
may be contrasted with subsystem resetting, wherein even if
we initialize the dynamics on the OA manifold, it no longer
remains on the manifold following a reset event: As we will
show, following a reset, the single-oscillator density function
for the entire system does not any longer satisfy the condition
given in Eq. (20), which defines the OA ansatz.

We will see below that in the case of bare evolution, we
may consider the system to be made up of two subsystems.
If the initial density function of the two subsystems sepa-
rately follows the OA condition (20), then we can apply the
OA ansatz separately to find the time evolution of the order
parameters of the two subsystems, which obviously will be
dependent on one another. We will demonstrate that such
an analysis will pave the way for treating the case of the
Kuramoto model in presence of subsystem resetting.

1. Groundwork for subsystem resetting: Analysis in absence
of resetting

Here, we will consider the bare Kuramoto evolution, and
understand the conditions for the applicability of the follow-
ing two methods of analysis: (i) applying the OA ansatz to the
entire system, and (ii) applying the OA ansatz separately to
two subsystems making up the entire system.

Let us consider the dynamics of our system of Kuramoto
oscillators to be initialized with the condition 6;(0) =0V ;.
The time evolution follows the dynamics defined in Eq. (1). In
the continuum limit, we can write the single-oscillator density
function of the system at time r = 0 as

F,w,0) = g)5(0) = gz(—:) D e 1)

n=-—00

All the Fourier coefficients of this initial density function are
evidently equal, F,(w, 0) = 1V n, with F,(w, 0) being the nth
Fourier coefficient of F (6, w, 0). It is evident, that this initial
condition lies on the OA manifold, as it satisfies the condition
given in Eq. (20):

Fo(@,0) = [Fi(w,0)]" =1Vn. (42)

Provided the density function continues to remain on the OA
manifold under the dynamical evolution, we can apply the OA
analysis to study the density function of the entire system
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and obtain a first-order differential equation for the order
parameter r(t) of the entire system [64].

However, if our system dynamics is initialized with the
initial condition in which f fraction of the total number of
oscillators have the phase value zero, whereas the rest of the
oscillators have the nonzero phase value equal to «, then the
initial density function writes as

F (0, w,0) = g)f8(6) + (1 = )30 — a)],

= % [f+ 1= fre™]em. 43)

n=—0o0

In this case, the nth Fourier coefficient, F,(w, 0) does not
satisfy in general the condition given in Eq. (20):

Fi(@,0) =[f + (1 — fle ™ # [Fi(w,0)]".  (44)

Thus, in this scenario, the initial condition of the dynamics
does not lie on the OA manifold. As a result, we cannot apply
the OA ansatz to write a single differential equation for the
order parameter r(z) of the entire system. On the contrary,
if we confine our attention to the oscillators in the individ-
ual subsystems separately, then their initial density functions,
given by F|(6, w, 0) and F,(6, w, 0), respectively, satisfy in-
dependently the condition given in Eq. (20) because of their
mathematical forms as given below:

Fi(0,»,0) = g(@)8(6) = %‘T)) e @49)

n=—00

(0, ,0) = g@)80 —a) = gz(—‘;) D (e ye™. (46)

n=—0o0

Consequently, in this case, we can apply the OA ansatz
separately to the two subsystems, to obtain three coupled
differential equations for the order parameters of the two
subsystems. This is discussed in detail below.

The aforementioned analysis will prove useful in situations
in which the initial density function of the entire system does
not satisfy the OA condition given in Eq. (20), but nevertheless
the initial density functions of the two subsystems satisfy the
OA condition. As resetting a part of the system initialized on
its OA manifold lands the system exactly onto such a state, the
mentioned analysis is going to be useful to analyze the case of
subsystem resetting. Let us now delve into the details of the
mentioned analysis.

We consider the system of N oscillators evolving according
to Eq. (1), as discussed in Sec. Il A. Among these N oscilla-
tors, the ones with the label j = 1, ..., n form our subsystem
marked 1 constituted by the fraction f = n/N of the total
number of oscillators. The rest of the oscillators form our
subsystem 2 containing a fraction 1 — f = (N — n)/N of the
total number of oscillators. In the continuum limit N — oo,
the oscillator frequency distribution of the two subsystems
will be the one referring to the entire system, i.e.,

g1(w) = g2(w) = g(w). (47)

In this limit, we characterize the state of the subsystem 1
by the density function F; (8", ", ¢) and that of subsystem

2 by the density function F>(6®, 0®,t). The condition of
normalization reads as

2
/ ROV, 0V, 0d0" = g1(0) = g@), (48)
0

2
/ RO, 0, 10d6% = g(0?) = gw®). (49)
0

Next, we define the order parameters of the two subsystems
as

2
2= e E/w/ T ROD, o, 1oV do,
—o00 J0
(50)
2
2 =nel = / N / "R 0D, 0, 1doPde?.
—o00 J0
(51

The continuum limit of Eq. (1) yields for the two subsystems
the equations

do® K .«
—m =0+ 2+ (1= fral
K jow * *
—5:¢ [fzi + 1 = Nz, (52)
withk =1, 2.

Similar to what was done in Sec. III A, here also we can
write a continuity equation for each of the density functions
F.(0®, w® t). Using the 27 -periodicity in 8% satisfied by
the two functions, we can expand each of the F; (0%, w®, ¢)’s
in Fourier series. Let F®(w®, ¢) be the nth Fourier coef-
ficient of the function Fi(8%), ) t). Putting the Fourier
expansions into the two continuity equations, we get an in-
finite number of coupled nonlinear differential equations for
the £ (@™, t)’s. For the special choice defining the OA
ansatz [67],

ER@®, 1) = [ax(@®, )], (53)

the mentioned set of differential equations for the two subsys-
tems reduces to two partial differential equations governing
the dynamics of oy (w®, ¢) with k = 1, 2:

8ozk K « % .
? = E[le + (1 = fHzs] — iwoy

K 2
- E[fm + 1 = fHzoley. (54

In the case of the Lorentzian frequency distribution given
in Eq. (4), the integrals in Egs. (50) and (51) can be evaluated
analytically, as discussed in Sec. IIl A; one finally gets z; =
aj(wg — io, t). Consequently, Eq. (54) yields

dzy

E—E[fzwl-( = )zl

K
- E[fzf + (1= 3lz — (0 —iwo)zx  (55)
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for each k = 1, 2. Comparing the real and the imaginary part
on both sides of these two equations, we get the evolution
equations of the order parameters (7, Y1) and (7, ¥») as

dr1 1 - 2
@ :—0r1+K< >[fn+<1—f>rzcosw] (56)
dl’z 1 - r%
— = _o'r2+K( )[fn cosy + (1 — fHrl, (57)
d L+
Z‘ _wO—K(l—f)51n1/f< ;lr )1’2, (58)
d L+
iz =w0+1<fsin¢( 22’2)r1, (59)

where we have ¢ = /| — ¥,. As discussed in Appendix C in
the context of Eqgs. (58) and (59), and for our choice of the
initial condition [namely, 6;(0) = 0V j] together with wy =
0, one has ¥;(¢) =0 and v, () = 0Vz. We then obtain the
stationary-state values of r; and 7, to be satisfying

11— . 20
<ri‘>3+[—ff }[(ri‘)zr;‘ r“]+[,(f }rl—o (60)

S f S st st 20 S
(rzt)3 + |:—1 — f}[rlt(rz )2 —n ] + [K(l——f) - 1}2‘ =0.
(61)

It may be noted that r{' = r§' is a solution of the above two
coupled equations, thereby reducing them into a single equa-
tion for ' = r§' = r*t.

If the dynamics of both the subsystems is initialized with
identical initial conditions, then we can intuitively write
ri(t) = ry(t) and () = Yo (¢) [yielding ¢ (r) = 0] at all
times ¢ > 0, valid in the limit N — oo. In such a case, the
dynamics of the entire system gets initialized also from the
same initial condition, and hence, the order parameter r(¢)
for the entire system will be identical to the quantities r;(¢)
and rp(¢) at all times. Using these facts in either of the two
equations (56) and (57), we get

oy Kl Koo (62)
a7 2] T2 T

which is exactly the equation derived in Ref. [64]. Thus, in
the case of identical initial conditions for the two subsystems,
we can reduce the four equations, i.e., Eqs. (56)—(59), into one
single equation describing the evolution of the order parame-
ter for the entire system.

2. Resetting with @y = 0

We now incorporate resetting into our system dynamics,
as detailed in Sec. IIB. We will consider subsystem 1 to
be the reset subsystem and subsystem 2 to be the nonreset
subsystem. Hence, from now on, while using Egs. (56)—(59),
we are going to use r;(¢) in place of ri(¢), ¥;(¢) in place of
Yy (t), roe(¢) in place of r,(¢), and v, (¢) in place of Yo (2).

Evidently, resetting at finite A promotes the status of the
order parameters, (7;:(¢), ¥ (¢)) and (rn(¢), Yne(2)), to that of a
random variable (in the case of infinite A, by contrast, one has
re(t) =1, ¢:(t) = 0, and also deterministic evolution given
by Eqgs. (26) and (29) for the quantities 7, and v, so that the

latter are not random variables). Therefore, it is appropriate
to consider these quantities when averaged over dynamical
realizations, i.e., the quantities 7.(¢), For(t), ¥ (t) and ¥ ().
Let us first consider the case wy = 0.

As discussed above for the case of bare evolution with
the initial condition ¥, (0) = 1,,(0) = 0 and with wy = 0, we
have 1, (¢) = 0 and ¥,,(¢) = 0V¢. When considering effects
of resetting, the following picture is true. Suppose we start
with a state in which v, (0) = ¥,,(0) = 0. Until the next reset
instant, when the system follows bare evolution, one will
continue to have both ¥, = i, = 0. At the instant of reset,
the reset oscillators are all reset to the phase value zero,
while leaving untouched the nonreset oscillators. Hence, at
the instant of reset, one will continue to have ¥, = ¥, = 0.
In summary, we conclude that ¥, (t) = 0 and ¥, (¢) = O for all
times 7. As a result, Egs. (56)—(59) yield the following equa-
tions for the bare evolution between two successive resets:

Cfirtr =-—orn +K<1 ) [fre + (1 = fHrul, (63)
drm _ K 1_rnr 1 64
7_—07}“—’- (T>[frr+( = foracl. (64)

Let us say that at time ¢, the order parameters of the two
subsystems equal r,(¢) and r,(¢) in a typical dynamical real-
ization. In the time interval [z, ¢ 4 dt], the quantity r, evolves
following Eq. (63) with probability (1 — Adt), while with
probability Adt, it gets reset to the value unity. This yields
the realization average of the change in the order parameters
within the time interval [¢, t + dt], given that their values were
r:(t) and r,.(¢) at time ¢, as

di, = (1 — Adt)dr; + Adt(1 — r,), (65)

Ay = dry, (66)

where the tilde denotes average over all those realizations for
which the order parameters have values r, and ry,, at time z.
Using Egs. (63) and (64) in Egs. (65) and (66), we get to
leading order in dt that

%__Urr+K(l )[frr+(l f)rnr]_’_)‘(l_rr)s
(67)
d;:r O'rnr'i‘Kv<1 >frr (I = fHral. (68)

Now, the values r;, ry, at time ¢ being also random vari-
ables, to get the realization-averaged order parameters, we
have to consider the average of these random variables. This

gives
dr, K, B _ _
=0+ E[frr + (1= fOfwe — fr3 = (1= f)r2ru]
+1(d-r), (69)
dFy . K. ._ . — —
o= 0Tt 3[frr + (1= ffw — frord, — (1= frd].

(70)

Equations (69) and (70) give the exact evolution equation for
the realization-averaged order parameters of the reset and
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FIG. 5. Subsystem resetting with finite A and Lorentzian g(w) with mean wy = 0 and width ¢ = 1.0: Analytical results showing variation of
ri with K for representative values of f are presented in panel (a) for A = 1.0. Here, the black dashed line corresponds to the bare Kuramoto
dynamics. In this panel, we also show by points numerical simulation results for f = 0.1, demonstrating agreement with theory; the data
correspond to the stationary-state value averaged over 100 realizations of the dynamics for a system of N = 10* oscillators with the integration
time step equal to 0.05. Panel (b) shows analytical results for the variation of ;. with K for representative values of A and with f = 0.5. Here,
the black dashed line corresponds to the limit A — oo result reported in Fig. 3(b). The analytical results in both the panels are obtained by

simultaneously solving Egs. (72) and (73).

nonreset subsystems for the case at hand. Note that Egs. (69)
and (70) involve correlations between the quantities . and
ryr as well as their higher-order moments. To solve Eqgs. (69)
and (70), one would require time evolution equations for the

quantities 73, r3., r2ry, and r,rZ., which would involve even
higher-order moments. To make these equations analytically
tractable requires approximations as detailed below.

When A is large, the dynamics of the reset subsystem will
be dominated by resetting, which happens over a very small
timescale of order 1/A. However, the effect of this resetting
will propagate into the nonreset subsystem over the timescale
set by the strength of the interaction between the reset and
the nonreset subsystem, i.e., over the timescale of order 1/K.
For large A, when we have a separation of timescales between
these two processes, assuming the random variables r, and
ror to have sharply peaked distributions, let us invoke the
following approximations:

AR (T1)

P
ey, R T

nro rrzrnr%’_ﬂrzfnrv rxT

nr nr’

Under the above approximations, we obtain from Eqgs. (69)
and (70) the stationary-state values 7' and 7. to be satisfying

1 - st)2=st st
)+ | |l -

20.40) T 20
N [_Kf —l]rr -
—st)3 f ost(=st)2 st
o) + [ e -
+ [2—0 - 1]7:;; —0. (73)
K —f)

As we move on, let us emphasize that for the case at
hand, 7! = 0 cannot be a solution of Egs. (72) and (73), for
any nonzero f and A. As a result, under the approximation

scheme (71) invoked by us, the synchronization phase tran-
sition of the bare model converts into a crossover for any
nonzero f and A.

Interestingly, in the A — oo limit, the only solution of
Eq. (72) turns out to be 7' = 1. Using it in Eq. (73), we
retrieve Eq. (33), which we had derived as an exact equation in
the infinite resetting rate limit. Thus, at least in the limit
A — 00, our approximation scheme (71) is correct; this is
consistent with the reasoning behind the approximation that
we give in the paragraph preceding Eq. (71). However, setting
A = 01n Egs. (72) and (73) obtains the stationary state of the
bare evolution given by Egs. (60) and (61).

The results of our analysis are presented in Fig. 5. We
see from Fig. 5(b) that, even for A = 10.0, the quantity 75! is
close to the infinite resetting rate result, denoted by the black
dashed line. We have checked that for A values around 25.0,
the results almost superpose on the & — oo result. Figure 5(b)
also shows that as we decrease A, the amount synchronization
induced in the nonreset subsystem for fixed K and f also
decreases. Moreover, as > — 0, the results approach those for
the bare evolution.

In Fig. 5(a), we plot the finite-A (here we plotted for rep-
resentative A value of 1.0) counterpart of the corresponding
infinite resetting rate plot, Fig. 3(b). In this panel, we also
demonstrate agreement between our approximate theory and
results from direct numerical simulations for f = 0.1.

Interestingly, Egs. (72) and (73) show that different combi-
nations of A, f and K can give identical solutions of 7. For
example, both the combinations A = 1.0, f =04, K =1.5
and 2 =10.0, f = 0.2, K = 1.5 produce 7 ~ 0.28 as the
solution of Eqgs. (72) and (73). This implies that for a given
target value of 75 to be achieved, there is a trade-off between
how fast the resetting events take place, i.e., the value of the
resetting rate A, and how big a part of the system does one
choose to reset, i.e., the value of the reset fraction f.
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3. Resetting with @y # 0

In the case of wy # 0, the relevant equations are Egs. (65)
and (66) together with the following equations for v, and ;:

Ay, = (1 — Adt)dy, — rdti, (74)

AV = dYar. (75)

Using Eqgs. (56)—(59) with the obvious substitution 1 <> r and
2 < nr, and proceeding as in Sec. III B 2, one finally obtains

dar; K . _ - —
-5 = _Grr+_[frr+(1 _f)rnrcos(wr_l//nr)_frrs
dt 2
—(1 = fyrgracos (Yr — Yu) | + A1 = 7),  (76)
Sy cpue——
dt = —0lp + E[frrcos(wr - ‘WHr) +( - f)rnr
— frorZcos (e — Yor) — (L= Porg],  (77)
I 2
ddfr = wy — K(l - f)Sin (wr - Wm)(l ;;rrr >Vnr - )»@Ery
(78)
dVae ) 1472
dr —w0+Kf51n(wr_‘/fnr)< 2 )rr- (79)

Equations (76)—(79) give the exact evolution equation for
the realization-averaged order parameters of the reset and non-

reset subsystems for finite resetting rate A and with wy # 0.
Solving the above equations exactly is a difficult task owing
to the presence of terms involving higher-order moments and
correlations, e.g., the term ry cos (Y — ¥y ). In the hope of
extracting useful analytical results, we now invoke an ap-
proximation scheme, similar to the scheme (71) invoked for
wo = 0, which ignores correlations and converts the above set
of equations into one that is closed. As for the wy = O case,
this approximation will be valid at high A, where a timescale
separation is possible, as discussed in Sec. III B 2. Using the
mentioned approximation, the stationary-state values of the
averaged order parameters may be seen to satisfy the equa-
tions

i _ o Keoo ) o "
E_—armtg[frﬂr( — f)Far cos (Y — Yur) — [T
—(1 = f)F?Fur cOs (Y — %r)] + Al —1), (80)
dfee K. _ o : _
o= Tt E[frr cos (Y — Yrar) + (1 — f )
— [P cos (Y — Yne) — (1 = P)Fs], (81)
i, N AL .
df ZwO_K(l_f)SHl(wr_anr)< _‘__rr)fnr_)\l/fr,
(82)
dl/_fnr

N A R N AW
= wo + K f sin (¥, — wnr)< )rr' (83)

dt 2

Before we move on to discuss the solution of these equa-
tions, let us note that within our approximation scheme,
we have cos (Y, — V) & cos (Yy — ¥y ). This makes the

approximation at hand more restrictive to be true than the
approximation (71) invoked for the wy = O case.

The results of the above analysis are presented in Fig. 6.
The main conclusions are the following: (i) for K < K., both
theory and simulations agree on the fact that the system
reaches a synchronized stationary state at long times, for all
f. (i) for K > K., our approximate theory predicts a syn-
chronized stationary state at large f, which is in qualitative
agreement with numerical simulation results. For small f,
simulations display 7y oscillating with decaying amplitude
and eventually settling to a synchronized stationary state. This
is at variance with our approximate theory that predicts an
oscillatory synchronized state at long times. The reason for
this mismatch between analytical and simulation in certain
parameter regimes, as seen in Fig. 6, could be attributed to
the approximation invoked in obtaining Egs. (80)—(83) from
Egs. (76)—(79), namely, we have ignored the correlations be-
tween the quantities r, and ry,. A better match is expected
on developing an analytical framework that accounts for the
mentioned correlations. This is an issue not easy to address
given the many-body character of the Kuramoto dynamics,
and which can be pursued as part of future studies.

C. Discussion of our results: Controlling the amount
of synchronization

Here, we discuss the implications of the A — oo results in
answering the following question of practical relevance: What
should be the fraction f of reset oscillators that ensures en-
hanced synchronization in the nonreset subsystem compared
to its bare evolution? We consider separately the cases wy = 0
and wgy # 0.

For wy =0, the quantity rii as a function of K has a
value greater than that for bare evolution for any reset frac-
tion f, however small; see Fig. 3(b). The implication is that
at any K, one can induce enhanced synchronization com-
pared to the bare evolution by choosing f as small as one
wishes. Thus, subsystem resetting offers an efficient mecha-
nism aimed at controlling phase coherence in a synchronizing
system through manipulation of as small a number of the
system constituents as the available resources allow for.

The case of wy # 0 is more intricate. Here, the optimal
choice of f depends on the specific values of wy and K.
Indeed, referring to Fig. 7(a) for wy = 2.0, one finds that
choosing a large f results in enhanced synchrony, while a
similar choice proves detrimental for larger wy, see Fig. 7(b)
for wp = 10.0. From the foregoing discussions, we conclude
that enhancement of r5. compared to the bare evolution is
more easily achieved with wy = 0. For wy # 0, enhanced
synchronization demands resetting the subsystem oscillators
to the phase value wyt, as this would result in a situation
analogous to the wg = 0 case.

IV. RESULTS FOR GAUSSIAN g(®)

In the preceding section, we had taken the distribution
function g(w) for our oscillators to be Lorentzian as given
in Eq. (4). Here, we analyze our system with a g(w) that is
Gaussian instead; see Eq. (4). We will take the width o to be
unity, since results for any other value of ¢ may be obtained
through rescaling of variables, see the discussion following
Eq. (25). We start with the case of infinite resetting rate,
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FIG. 6. Subsystem resetting with finite A (specifically, . = 5.0) and Lorentzian g(w) with mean wy # 0 (specifically, wy = 2.0) and width
o = 1.0: For K = 4.0, panel (a) compares in the main plot theoretical and simulations results for the realization-averaged order parameter 7, as
a function of time ¢ for f = 0.2. The theoretical results are obtained by solving Egs. (80)—(83) simultaneously, while simulations correspond
to N = 10* number of oscillators with integration time step equal to 0.05 and averaging over 100 realizations. Theoretical results in panel
(a) suggest that for small f, the quantity 7, instead of reaching a stationary value at long times oscillates as a function of time, while ¥,
remains time dependent even at long times [see the inset of panel (a)]. However, our simulation results suggest 7, to display oscillations with
decaying amplitude and attaining a stationary value at long times [see the inset of panel (a)]. In contrast, for higher f values, our theoretical
calculations predict that the system reaches a stationary state, in which both the quantities r,, and ¥, attain time-independent values at
long times. Variation of ri. with K for representative values of f is presented in panel (b). Here, the black dashed line corresponds to the
bare Kuramoto dynamics. In this panel, we also show by points numerical simulation results for f = 0.5 and f = 0.8, demonstrating good
agreement with theory in the K < K, region; the agreement gets worsened for higher K values in the K > K, region.

i.e., A = oo. Our analysis using the OA ansatz will remain with
unchanged up to Eq. (21), which we rewrite here: 00
o K = [ @ ngio. (85)
§=5[(1—f)zzr+f]—iwa —o0
and
K ) 2
—5[(1 — Nzne + fla”, (84) 2(@) = 1 exp —(w — ) (86)
Vo 2 '

In this case, the synchronization threshold of the bare
Kuramoto model is obtained from Eq. (5) as K, = 2./2/x.

To arrive at an equation for the time evolution of z,., we
will follow the method outlined in Ref. [65], adapted to our
system that includes subsystem resetting. To this end, we
begin by expanding Eq. (86) in a power series to get

[Se)

1=0

(87)

V2

To proceed further, we truncate the infinite series on the right
hand side by retaining only the first six terms, leading to the
approximate expression

gw) =

(a) wo =2.0

(b) wo = 10.0

FIG. 7. Subsystem resetting with A — oo and Lorentzian g(w)
with mean wy # 0 and width o = 1.0: The plots show for two values
of wy (namely wy = 2.0 in panel (a) and wy = 10.0 in panel (b)) and
in terms of solid lines the stationary value r5. of the synchronization
order parameter in the non-reset subsystem; the data are obtained
by solving numerically the roots of Eq. (37). However, the shaded
regions correspond to oscillatory behavior of r,, as a function of
time at long times, with the extent of the shaded region at a fixed
K denoting the amplitude of oscillations, and broken lines inside the
shaded region denoting the nonzero time-independent value of the

1 26: 1T(w—w)T]
27T =0 1! 2

It is shown in Ref. [65] in the context of the bare Kuramoto
model that an approximation scheme that truncates a Gaussian
g(w) by retaining the first six terms yields results for the

order parameter that are sufficiently close to the actual val-
ues obtained in numerical simulations of the bare dynamics.

gw) = (88)

time average of ry, at long times; the data are obtained by numer-
ically solving Eqgs. (26) and (29) simultaneously. The values of the
parameters w, and f are marked in the figure.

Eventually, in this section, we will also verify that a similar
statement holds for our system by matching our analytical
results with numerics. To start off with implementation of
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FIG. 8. Subsystem resetting with A — oo and Gaussian g(w)
with both zero and nonzero mean wy and width o = 1.0: Analytical
results for the variation of 5. with K for representative values of f is
presented in panel (a) for wy = 0. The analytical results are obtained
by solving simultaneously Eqs. (90) and (91). The black dashed
line corresponds to the bare Kuramoto dynamics. In this panel, we
also show by points numerical simulation results for f = 0.03 and
f=0.5 and X = 50.0, demonstrating agreement with theory; the
data correspond to the stationary state of a single realization of the
dynamics for a system of N = 10* oscillators with the integration
time step equal to 0.01. In panel (b), we present analytical results for
roe versus time ¢ for K = 2.5 > K. = 24/2/m in the case wy = 2.0,
and for f = 0.1 and f = 0.8.

the mentioned approximation scheme, let us replace g(w) in
Eq. (85) with g(w) of Eq. (88) to get

-1
R 8 1 [ (w—wp)? 7
ZHF_E/;OOO[ (w,t){gﬂ[T] dw.
(39)

Similar to our analysis following Eq. (24), we will now
extend the integral in Eq. (89) to the complex w-plane by
assuming that o(w, t) can be analytically continued from real
o into the complex w-plane for all# > 0. Also, we assume that
one has |a(w, t)] = 0 as Im(w) - —oo and that |a(w, t)| <
1 for real w. The integral in Eq. (89) will now have six poles,
instead of a single pole as was the case with Lorentzian g(w).
Let the poles of g(w) be denoted by €2, withm = 1,2, .., 6.
Then, Eq. (89) can be evaluated to give

6
Zor = =271 ) o* (R, DRes[F(@)]og, (90)

m=1

where Res[g(w)],=q, denotes the residue of g(w) at w = .
From Eq. (84), we obtain a system of six coupled nonlinear
differential equations, one for each pole €2, of g(w):

d0(R1) K . .
T = E[(l — f)Zm +f] - lQma(Qm’ t)

K 2
5 [ = Hzne + fla (€. 1), O

with m =1, 2, .., 6 and z, given by Eq. (90). Equation (90)
together with Eq. (91) and the initial condition (24) are solved
numerically to obtain r5t(= |z3\|) for our system for a given

resetting fraction f and a given value of the coupling con-
stant K. The results so obtained are presented in Fig. 8, in
which we also show a comparison with results from numerical
simulations. For wy = 0, both our theory and numerical sim-
ulations verify stationary-state behavior of r, at long times;
see Fig. 8(a). However, for wy # 0, we find the existence of
both oscillatory and stationary behavior of r, at long times;
see Fig. 8(b).

For a finite value of the resetting rate A, the analysis is
more intricate. One may proceed as in Sec. III B 1, in which
all equations up to Eq. (54) remain valid. However, unlike
the Lorentzian case in which Eq. (54) leads to two coupled
differential equations for z;, z» given in Eq. (55), we get in-
stead twelve coupled differential equations arising from the
six poles of g(w). We have however checked in simulations
that our results for a finite resetting rate and Gaussian g(w) are
qualitatively similar to those obtained for the case Lorentzian
g(w) in Sec. III B.

V. CONCLUSIONS

In this work, we highlight the effects of subsystem resetting
in the Kuramoto model of coupled phase-only oscillators of
distributed natural frequencies, which is a paradigmatic model
employed in studying spontaneous synchronization. Subsys-
tem resetting is a new protocol in the domain of resetting
studies, whereby a fraction of the total number of system con-
stituents in an interacting model system undergoes evolution
according to the bare dynamics of the model and which is
interspersed with simultaneous resetting at random times. By
contrast, the remaining fraction evolves solely under the bare
dynamics. The framework offers a contrasting dynamical sce-
nario for the oft-studied case of global resetting, wherein the
entire system undergoes simultaneous resets at random times.
Nontrivial effects are expected on the basis of the fact that in
the case of global resetting, each reset event initiates afresh the
dynamics of the entire system, resulting in all memory of dy-
namical evolution getting completely washed away each time
a reset happens. Consequently, what matters in determining
the state of the system at any given time instant is when did the
last reset event take place. This may be contrasted with what
happens under the introduced protocol of subsystem resetting,
where evidently the part of the system not undergoing resets
retains memory of its entire dynamical evolution.

Within the ambit of the Kuramoto model, we implement
subsystem resetting by repetitively initializing a fraction of the
total number of oscillators at random times to a synchronized
state, which is followed by the bare dynamics of the Kuramoto
model. These oscillators constitute the reset subsystem, while
the nonreset subsystem is constituted by the remaining frac-
tion of the total number of oscillators that undergoes solely
the bare evolution of the Kuramoto model. Unlike the bare
Kuramoto model, in our case of subsystem resetting, the mean
wy of the natural frequency distribution of the oscillators plays
a key role in determining the dynamics of the system at long
times. When one has wy = 0, one has a synchronized station-
ary state at long times: the synchronization order parameter
ror Of the nonreset subsystem reaches a stationary state at
long times and has then a nonzero value, irrespective of the
fraction of the total number of oscillators that are being reset.
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However, when we have wy # 0, one has at long times either
a synchronized stationary state or an oscillatory synchronized
state, with the latter characterized by an oscillatory behavior
of ryy at long times, with a nonzero time independent time
average. One thus concludes that the nonreset subsystem is
always synchronized at long times through the act of resetting
of the reset subsystem. Remarkably, one is able to induce
synchronization in the nonreset subsystem even in param-
eter regimes in which the bare dynamics does not support
synchronization.

In the infinite resetting rate limit, i.e., A — 0o, we map
our nonreset subsystem to a system of forced Kuramoto os-
cillators. This feature helps us to apply the Ott—Antonsen
ansatz to the nonreset subsystem and analytically derive an
equation for the time evolution of r,, for two representative
frequency distributions, namely, a Lorentzian and a Gaussian.
The predictions of our analysis match well with numerical
simulation results.

When A is finite, we are again able to derive an equa-
tion for the evolution of r,; by applying the Ott—Antonsen
ansatz separately to the reset and the nonreset subsystem and
invoking an approximation that suitably decouples the evo-
lution of the order parameters of the two subsystems. These
equations are found to describe the stationary-state behavior
of ryy quite accurately, as verified by a direct comparison with
numerical simulation results. However, as regards the oscil-
latory behavior of r,, one has only a qualitative agreement
between numerical simulation results and those predicted by
our approximate theoretical analysis.

In fine, we mention some interesting directions of research
that may be pursued as immediate extensions of the current
work. The first extension could be to systematically improve
the approximate scheme employed by us in studying subsys-
tem resetting for a finite value of the resetting rate, with the
view to having a quantitative agreement with numerical simu-
lation results for the case in which ry,; at long times oscillates
as a function of time. The subsystem resetting is applied here
to a Kuramoto model with mean-field (all-to-all) coupling. It
would be interesting to investigate subsystem resetting in a
version of the Kuramoto model defined on a network, which
is a more realistic (but a more involved) dynamical setup
to study subsystem resetting. In such a scenario, additional
complexity would be brought in by the network topology, but
which would obviously generate interesting long-time proper-
ties carrying explicit signatures of the topology.

APPENDIX A: DETAILS OF NUMERICAL SIMULATION
OF THE KURAMOTO MODEL SUBJECT TO SUBSYSTEM
RESETTING

Here, we detail the various steps involved in implement-
ing numerical simulation of the Kuramoto model subject to
subsystem resetting. The steps are as follows:

(1) Choose representative values of the total number of os-
cillators N, the fraction f of reset oscillators, the resetting rate
A, the coupling constant K, and the total simulation time 7.
Next, one chooses the frequency distribution g(w) for which
one wishes to study the dynamics. In our simulations, we

choose 7 between 2 x 10! and 4 x 10? depending upon the
value of A. Also, we choose N = 10* and take the width of the
frequency distribution to be o = 1.0, which is tantamount to
rescaling of time, as explained in the text following Eq. (25).

(2) Choose a disorder realization {w;} of the individual
oscillator frequencies, by appropriately sampling them inde-
pendently from the given distribution g(w).

(3) Choose the initial state {#;(0)} (which is also the reset
state for the resetting oscillators) and the subset n = fN of
reset oscillators. According to our scheme of things detailed in
the main text, we reset the oscillators labeled j = 1,2, ..., n,
while the ones with label j =n+ 1,n+ 2, ..., N constitute
the set of nonreset oscillators. In our implementation of the
dynamics, we make the choice 6;(0) =0V j.

(4) Starting from the initial state, we let the system evolve
under the bare Kuramoto dynamics (1) for a random time 7
sampled from the exponential distribution (6). This step is im-
plemented in numerics by integrating the equations of motion
of the bare model with a fourth-order Runge-Kutta algorithm.
At the end of the evolution, the phases of the n resetting
oscillators are all reset back to the value zero instantaneously
in time, while leaving unchanged the phases of the remaining
oscillators. This sequence of bare evolution for a random time
followed by an instantaneous reset is repeated the required
number of times to ensure that the total duration of evolution
equals the chosen value 7.

(5) Step 4 is repeated several times (typically of order
10%) to implement different realizations of the dynamics for
the same disorder realization {w;}. Note that the reset times
vary across the different dynamical realizations. In this way,
one obtains the values of r, and r, as a function of time ¢
and averaged over different dynamical realizations, for a fixed
disorder realization. With our choice of large N, the results do
not change appreciably across different disorder realizations.

(6) One may use a uniform random-number generator to
sample a Lorentzian g(w) by using standard procedure [68],
while a Gaussian g(w) may be sampled by using the standard
Box-Muller algorithm [68].

APPENDIX B: EXACT SOLUTION OF EQ. (33)

In this Appendix, we solve Eq. (33) to obtain an exact
expression for rit, the stationary-state synchronization order
parameter of the nonreset subsystem, in the limit A — oo and
for the case of the mean frequency wy = 0. We achieve this
by finding the roots of Eq. (33). To unclutter the notations, we
rewrite the equation as

() +a(r) +ery—a=0, (B1)

where we have

(%) =l
a= , c= —-1]. (B2)
1—f K(1—-1)

Equation (B1) is a cubic equation, whose roots can be
expressed as a function of the coefficients a and c¢. From
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Cardano’s formula [69], the general solution of Eq. (B1) can be written as

« a+3 a+ac a3 N a+ac a’ 2+ c a2\’
T = —— —_ _——— —_ _——— _———
nr 3 2 6 27 2 6 27 3 9

where a and ¢ are given by Eq. (B2).

APPENDIX C: IMPLICATIONS OF EQS. (58) AND (59)

We show here by considering Egs. (58) and (59) that in the
case of wy = 0, if we start from a state with vr;(0) = ¥, (0) =
0, then we will have () = (1) = 0Vt. Using wy = 0 in
Egs. (58) and (59), we get

dvn _ —K(1 —f)s1n¢(

dt
dyr
dt

where we have v = i
equations to write

ay 1+r} 1
E__K[< o )(1—f)"2+<

Using the fact that r; and r, are intrinsically positive quan-
tities, we find that Eq. (C3) has the form df/dt = —a sin9,
with « > 0 and 0 € [0, 2rr), which evidently has one stable

2
tri )rz, 1)
ry

”2) - (C2)

)

2 —Kfsi w(

— ¥r». We can combine the above two

2
+ r2>fr1i| sin .

(C3)

+ac a’ 2+ c a2\’ (B3)
6 27 3 9/’

fixed point at & = 0. We thus conclude from Eq. (C3) that the
long-time solution of i is given by

Yt — 00) =0=1(0). (C4)

Thus, ¥ (¢) is zero both initially and at long times. If ()
takes nonzero values at intermediate times, then it would im-
ply then that ¥ (¢) is a nonmonotonic function of time. This in
turn would imply that dv/ /dt has multiple values at any given
value of 1, which is not allowed by the form of Eq. (C3).
Hence, we conclude that one must have ¢ (¢) = 0Vt. Then,
from Egs. (C1) and (C2), we get

dyn _ _dn

=0Vr, C5
dr dt ©5)
which yields the desired result:
Y1(t) = ¥1(0) =0V, (C6)
Ya(t) = ¥2(0) =0Vr. (C7)
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