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Numerical analysis of conserved field dynamics has been generally performed with pseudospectral methods.
Finite differences integration, the common procedure for nonconserved field dynamics, indeed struggles to
implement a conservative noise in the discrete spatial domain. In this work we present a method to generate
a conservative noise in the finite differences framework, which works for any discrete topology and boundary
conditions. We apply it to numerically solve the conserved Kardar-Parisi-Zhang (cKPZ) equation, widely used
to describe surface roughening when the number of particles is conserved. Our numerical simulations recover
the correct scaling exponents α, β, and z in d = 1 and in d = 2. To illustrate the potentiality of the method,
we further consider the cKPZ equation on different kinds of nonstandard lattices and on the random Euclidean
graph. This is a unique numerical study of conserved field dynamics on an irregular topology, paving the way
for a broad spectrum of possible applications.
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I. INTRODUCTION

In statistical physics, field theories provide a powerful de-
scription of physical systems with many interacting degrees of
freedom [1–3]. The evolution of the system is described via a
stochastic partial differential equation for a mesoscopic field
(or set of fields) ψ , representing the relevant quantity for the
long-time dynamical behavior. Among all field theories, there
is a class where conservation laws play a fundamental role
and must be taken into account in the dynamical description
[4]. The most general form for the dynamical equation of a
conserved (scalar) field ψ (x, t ) can be written as

∂ψ (x, t )

∂t
= −∇ · J + ξ (x, t ). (1)

The first term on the r.h.s of Eq. (1) corresponds to the diver-
gence of a current J(x, t ), as in standard continuity equations.
The functional form of J defines a particular dynamics, and
it depends on the symmetries of the system, the nature of the
interactions, and the presence of constraints. The second term
on the r.h.s corresponds to a conservative noise term, whose
correlator is

〈ξ (x, t )ξ (x′, t ′)〉 = −2D∇2δ(x − x′)δ(t − t ′). (2)

The structure of Eq. (1), together with Eq. (2), ensures that
the field ψ is globally conserved. Examples of stochastic field
dynamics that are described by Eqs. (1) and (2) are the Cahn-
Hilliard-Cook equation (model B) [3,5,6], active model B
[7,8], and the conserved Kardar-Parisi-Zhang equation [9,10].

*Contact author: javier.cristin@uab.cat

The properties of these equations have been extensively stud-
ied analytically with renormalization group (RG) techniques
[4,11–14]. On the other hand, there has also been a great effort
to investigate them numerically [6,8,15]. When dealing with
nonconserved fields, the main tool to perform such numerical
analyses is finite differences (FD) methods [16–21]. FD meth-
ods are based on the discretization of the continuum space into
a lattice, where the continuum derivatives are implemented
by finite increments [22,23]. FD methods, however, are prob-
lematic in the context of conserved field dynamics. More
specifically, there is no obvious way to generate a conservative
noise with finite differences. This is why the standard numer-
ical procedure for conserved field dynamics is the so-called
pseudospectral (PS) methods [8,24–26]. PS methods alternate
between integration in real space and in Fourier space [27,28],
depending on the space in which each term of the equation is
diagonal. The conserved noise in Eq. (2) is then easily ex-
pressed in Fourier space, where it becomes uncorrelated with
variance proportional to the squared wave vector k2.

PS methods are not free of limitations. The change of basis
in the PS procedure requires the knowledge of the eigenfunc-
tions of the Laplacian operator appearing in the dynamical
equation. This can be easily done when the equation is dis-
cretized on a regular lattice with periodic boundary conditions
(PBCs) [29]. On the contrary, it becomes highly nontrivial
or even unfeasible when these conditions are not satisfied,
precluding the analysis of potentially relevant applications of
the considered dynamics. Examples include the effect of arbi-
trary boundary conditions, the dynamical behavior on curved
geometries, the presence of defects, or heterogeneities. Even
more generally, one might want to consider discretizations of
Eq. (1) on specific nonstandard topologies, which are appro-
priate when the underlying microscopic dynamics occurs in
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nonhomogeneous irregular environments. Surface growth on
fractal substrates is one interesting case.

To address all such cases, we propose in this paper a
general scheme to implement a conservative noise satisfy-
ing Eq. (2) in discrete real space, which works for arbitrary
topologies. To do so, we adapt the procedure presented in [30],
which was developed to describe conservative fluctuations in
microscopic spin dynamics. This technique allows to unam-
biguously study numerically equations of the class of (1) with
FD, and it therefore relieves one from the limitations of the
PS methods. To test the scheme and to show its potentiality,
we then apply it to a well-known case study: the conserved
Kardar-Parisi-Zhang (cKPZ) surface growth equation. We
perform a full FD study of the cKPZ equation for both regular
and nonregular lattices, showing that the method correctly
reproduces the growth scaling exponents, while at the same
time being completely flexible and adaptable to generic graph
topologies.

The paper is organized as follows. In Sec. II we describe
how to generate the conservative noise in real space. In Sec. III
we perform the numerical study of the cKPZ equation. We
show that our numerical results are in total agreement with
the theoretical predictions for the cKPZ equation in d =
1 and d = 2, recovering the correct scaling exponents. We
also study the cKPZ equation on more complex lattices, one
of them being the Euclidean random graph, a paradigmatic
example of a nonregular lattice. Finally, in Sec. IV we sum-
marize our work and discuss its future applications.

II. CONSERVATIVE NOISE IN DISCRETE REAL SPACE

To discretize Eq. (1), it is essential to address the discretiza-
tion of the conserved noise with correlator (2). The standard
discrete counterpart of the continuum Laplacian ∇2 is the
discrete Laplacian operator �i j , whose definition is given by

�i j = −ni j + δi j

∑
k

nik, (3)

where ni j is the adjacency matrix defining the lattice’s topo-
logical structure: if two sites are connected with each other
ni j = 1, otherwise ni j = 0. Notice that the discrete Laplacian
is a positive-definite matrix, � ∼ −a2∇2 (a being the lattice
spacing, which we set equal to 1 in the following). The dis-
crete version of Eq. (2) then reads

〈ξi(t )ξ j (t
′)〉 = 2D�i jδ(t − t ′). (4)

The question is at this point of how to generate a discrete noise
term ξi(t ) satisfying such a nontrivial correlator. In analogy
with the continuum case, the natural solution would seem to
build ξi(t ) as the discretized divergence of some white noise,
in such a way as to get back the Laplacian when we take the
correlator,

ξi(t ) = [∇ · η]i, (5)

(where the r.h.s. is intended in discretized form). This intuition
is correct, but it has to be carefully implemented. The gradient
operator in continuum space in fact depends on space in two
different ways: the point where it is evaluated, and the di-
rections along which variations are computed (corresponding
to the different components of the gradient vector). When

considering a discrete version of it, given a site i, one needs
to compute finite differences with nearby sites to reproduce
the possible directions of the continuum case. How to do
this in a consistent way strongly depends on the structure
of the discretized lattice. For a regular lattice in dimension
one, there is only one possible direction, and one can, for
example, assume ξi(t ) = ηi+1(t ) − ηi(t ). If the {ηi} are ran-
dom white variables with 〈ηi(t )η j (t ′)〉 = 2Dδi jδ(t − t ′), and
PBC are considered, it is easy to show that Eq. (4) is then
satisfied. Alternatively, one can use a symmetrized combina-
tion of white noises ξi(t ) = (1/2)[ηi+1(t ) − ηi−1(t )], as done
in [31], and recover Eq. (4) but with a different definition
of discrete Laplacian.1 The same kind of argument can also
be adapted to square lattices in larger dimensions. However,
when considering more complex, even regular, lattices it be-
comes quite tricky to define the appropriate combinations of
finite differences between sites (i.e., a proper definition of the
discrete gradient), such that Eq. (4) holds. How to generalize
to irregular or random lattices is far from clear.

This problem is in fact well known in the context of graph
theory, where it has been solved in an elegant way by a
change of perspective. The crucial observation is that in a
generic graph the relevant notion of distance is defined in
terms of the links between nodes. Given a site (i.e., a node
in the graph), the nearest neighbors are the nodes directly
connected to it, and the minimal variations on the graph occur
along the links defining such connections. This suggests that
a convenient definition of gradient would be in the space
of sites (specifying where the gradient should be computed)
and links (specifying the “directions” along which variations
should be considered). This idea is captured by the concept of
incidence matrix [32], which indeed represents the standard
implementation of derivatives in graph theory.

A. The incidence matrix

The incidence matrix D is defined in the space of sites and
links of the lattice, rather than of sites only. Let us label the
sites of the lattice with {i, j, . . . } and the links with {a, b, . . . }.
Dia is constructed as follows: after arbitrarily assigning a
direction to each link a, we set Dia = +1 if i is at the end
of a, Dia = −1 if i is at the origin of a, and Dia = 0 if site
i does not belong to a. We provide in Fig. 1 an example of
how the incidence matrix D looks like for a nonregular lattice
consisting of four sites.

The “derivative” of a generic funtion ψ = {ψi} along link
a (i.e., the discrete gradient) is then defined as

[∇ψ]a =
∑
sites i

Diaψi. (6)

This notion of derivative correctly reproduces the main
features of the continuous one. For example, since by con-
struction

∑
i Dia = 0, the derivative of a constant function

is zero, as it should. The arbitrariness of the assignment of
directions to the links reflects the inevitable arbitrariness of

1In [31] the authors define a discretized Laplacian that involves
only second nearest neighbors rather than just the first nearest neigh-
bors, as in (3).
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FIG. 1. Schematic depiction of how the conservative noise is
generated for a nonregular lattice consisting of four sites.

defining a derivative on a regular discrete lattice (e.g., as a
forward or backward finite difference). However, the defini-
tion in the link space automatically ensures some important
properties for arbitrary graph topologies. In particular, a cru-
cial property of the incidence matrix is that its square over the
links is equal to the discrete Laplacian,∑

links a

DiaDT
a j = �i j . (7)

Finally, and perhaps more importantly for our purposes, the
incidence matrix also provides a natural definition of diver-
gence in one point. Given a generic function defined on the
links φ = {φa}, the divergence of such function at point i is
given by

[∇ · φ]i = −
∑

links a

Diaφa. (8)

The minus sign in the definition ensures that the usual
convention for the sign of the divergence operator is recovered
in the continuum limit. Besides, in this way we have ∇ ·
∇ψ = ∇2ψ → −∑

a Dia
∑

j D jaψ j = −�i jψ j , consistently
with the definition and sign of the Laplacian matrix.

B. From noise on the sites to noise on the links

The incidence matrix formalism and Eqs. (7) and (8) im-
mediately suggest how to build a conservative noise in a
discrete spatial domain. Picking up the idea of writing ξi as
the divergence of a standard white noise, it is now clear that
we must switch from a white noise defined on the sites to a
white noise defined on the links. More precisely, let us define
on each link a a standard δ-correlated Gaussian noise, εa, with
variance,

〈εa(t )εb(t ′)〉 = 2D δab δ(t − t ′). (9)

The site-conserved noise can finally be constructed as

ξi(t ) =
∑

a

Dia εa(t ) = −[∇ · ε]i, (10)

where we take minus the divergence in order to have a positive
sign in the discrete expression. The noise defined in Eq. (10)

has an immediate interpretation, i.e., it is the sum of all the
link noises incident on site i, and it can be easily and unam-
biguously generated for any kind of discrete lattice.

The variance of this new noise can be immediately
computed,

〈ξi(t )ξ j (t
′)〉 =

∑
ab

DiaDjb 〈εa(t )εb(t ′)〉

=
∑

a

DiaDT
a j 2D δ(t − t ′)

= 2D �i j δ(t − t ′). (11)

We therefore recover the desired correlator (4). Because by
construction

∑
i Dia = 0, we have that the sum over all the

sites is ∑
i

ξi = 0, (12)

which explicitly shows that the noise is globally conserved.

C. Multiplicative conservative noise

The formalism developed in the previous sections can be
generalized to also address conserved stochastic field equa-
tions with multiplicative noise. In this case, the conserved
noise appearing in Eq. (1) depends on the field itself,

ξ (x, t ) = −∇ · ( f [ψ (x, t )]ε(x, t )), (13)

where ε(x, t ) is a Gaussian white noise with variance 〈ε(x, t ) ·
ε(x′, t )〉 = 2dDδ(x − x′)δ(t − t ′), d is the space dimension,
and f [ψ] is a scalar function of the field ( f = 1 reproducing
the additive noise case discussed so far).2 Relevant examples
can be found in the Dean-Kawasaki equation and gener-
alizations [33–35], with potential interesting applications
to reaction-diffusion processes, stochastic density functional
theory, and macroscopic fluctuation theory [35–38]. To dis-
cretize Eq. (13), we first notice that

∇ · ( f ε) = f ∇ · ε + ∇ f · ε. (14)

To implement this expression on a generic discrete lattice
we proceed as before and introduce a white noise defined
on the links, ε(x, t ) → {εa}. The first term on the r.h.s. of
Eq. (14) can then be immediately discretized using the graph
divergence defined in (8). The second term is more tricky, as
it requires a proper definition of local scalar product between
two link-dependent functions, [∇ f ]a = ∑

i Dia fi and εa. How
to do that in a consistent way is explained in Appendix A. The
result is

ξi = fi

∑
a

Diaεa − 1

2

∑
a�i

∑
j

D ja f j εa, (15)

where fi = f [ψi] and the second sum is restricted to the
links a incident on site i. It can be easily verified that this
discrete noise is conserved. Indeed, summing over sites both

2In Eq. (13) we use minus the divergence, in analogy with Eq. (10).
In both equations, being ε a random white noise, the sign is com-
pletely irrelevant, and it can be chosen for convenience.
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members of Eq. (15), and considering that
∑

i

∑
a�i = 2

∑
a,

we immediately get
∑

i ξi = 0.

III. THE CONSERVED KPZ EQUATION

One interesting model that belongs to the class described
by Eqs. (1) and (2) is the conserved Kardar-Parisi-Zhang
equation [9] (cKPZ), a conservative variant of the more widely
known Kardar-Parisi-Zhang equation [39,40]. It describes the
dynamics of a growing surface under the constraint that the
total surface height is conserved. The cKPZ equation reads

∂h(x, t )

∂t
= −∇2(ν∇2h(x, t ) + λ(∇h)2) + ξ (x, t ), (16)

where h(x, t ) represents the surface height field. The main
properties of the surface are described by the height fluctu-
ations and, in particular, by the average surface width W ,

W (L, t ) =
〈 1

Ld

∫
dx [h(x, t ) − h̄(t )]2

〉1/2
, (17)

where h̄(t ) = (1/Ld )
∫

dxh(x, t ) is the average sample height,
d is the dimension of the surface space, and L is the size of the
system. According to dynamic scaling theory, W follows the
Family-Vicsek scaling relation [41]

W (L, t ) ∼ Lα f (t/Lz ), (18)

where the scaling function f (x) approaches a constant for
x 	 1, while f (x) ∼ xβ for x 
 1 with z = α/β. The ex-
ponents α, β, and z are called the roughness, growth, and
dynamic exponent, respectively. The cKPZ equation describes
an inherently out-of-equilibrium dynamics, as it cannot be
derived from a Hamiltonian. A renormalization group (RG)
analysis [9,14,42] has shown that the exponents α, β, and z in
d dimensions are

α = ε

3
, z = 4 − ε

3
, β = α

z
= ε

12 − ε
, (19)

where ε = dc − d , with upper critical dimension dc = 2
[14,42]. We remark that the conservative noise has a fun-
damental role in determining these exponents. Indeed, when
a nonconservative noise is considered the universality class
changes to the Lai-Das-Sarma one [20].

Numerical integration of the cKPZ equation has been
performed in several works and correctly reproduces the pre-
dicted scaling exponents [26,43]. However, past numerical
studies have been performed only using PS methods, for
the reasons discussed in the Introduction. This restricts them
to the case of regular lattices with PBC. For more general
cases, the method we propose—where the conservative noise
is implemented within a FD framework—provides a natural
way to numerically solve the cKPZ equation. Moreover, as
an additional advantage, FD numerical integration of a lattice
with N sites requires O(N ) operations for each time step,
while the PS method requires O(N log N ) operations [44]. In
the next sections, we discuss how to efficiently integrate the
equation via FD, and we study it on several kinds of graphs.
Since the cKPZ equation is a well-known model that has been
widely investigated on regular lattices, it represents an ideal
benchmark case where testing our method and illustrate its
potentialities.

A. The discretized cKPZ equation

Let us now proceed with the discretization of the cKPZ
equation. In the previous section we already discussed how
to treat the conserved noise. The linear term on the r.h.s.
of Eq. (16) is straightforward to deal with, as we can use
the definition of the discrete Laplacian given in Eq. (3). The
remaining nonlinear term involves a squared gradient (∇h)2.
We therefore encounter, again, the problem of choosing an
appropriate representation of the gradient operator in discrete
space. For square discrete lattices, different definitions have
been used so far in the literature [45–47], where different
prescriptions are considered for taking finite differences be-
tween neighboring sites (e.g., using a forward or backward or
symmetric rule). As long as the considered system is homoge-
neous, small local differences in the definition of the discrete
gradient should not change the large scale behavior. However,
as also discussed before, we seek a discrete representation
of all the operators appearing in the equation that can be
generalized to more complex (even strongly heterogeneous)
lattices and boundary conditions. Besides, it would be desir-
able that all the terms in the equation are treated in a consistent
way, without relying on any arbitrary choice.

To address this issue, we propose a general and simple
method to write the nonlinear term in a way that is au-
tomatically consistent with the Laplacian, and that can be
unambiguously discretized on any lattice.

To do this, we note that for any given scalar field f , the
squared gradient can be expressed as

(∇ f )2 = ∇ · ( f ∇ f ) − f ∇2 f . (20)

The term inside the divergence can be written as

f ∇ f = 1

2
∇( f 2), (21)

and we then get for the squared gradient

(∇ f )2 = 1

2
∇2( f 2) − f ∇2 f . (22)

From Eq. (22) we see that the squared gradient can be rewrit-
ten in terms of the Laplacian operator only; its discretization
is therefore uniquely defined by the corresponding discrete
Laplacian �,

[(∇ f )2]i = −1

2

∑
k

�ik f 2
k + fi

∑
k

�ik fk . (23)

This expression can be used for any topology without am-
biguities, which is a crucial feature if one is interested in
discretizing the continuous equation on nontrivial lattices.

We note that this fairly simple argument leads to the same
discretization of the nonlinear term as the one obtained in [48]
in the context of the standard KPZ equation. In that work
the authors exploited the well-known mapping of KPZ to a
diffusion equation with multiplicative noise [49] to show that
the discrete implementation of the squared gradient is actually
constrained by the definition of the discrete Laplacian. The
mapping to a diffusion equation does not hold in the conserved
case, but relations (22) and (23) are general, and they can
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FIG. 2. Numerical results in d = 1 (upper row) and d = 2 for a square lattice (lower row). (a) Interface width W as a function of time
for different system sizes L. The smallest size L is the one that saturates the fastest, and so on. The black line corresponds to the best fit of
the L = 2000 curve with β = 1

11 . The best free fit gives an exponent βfit = 0.096 ± 0.003. (b) Saturation width Ws for different system sizes
L. The black line corresponds to best fit with α = 1

3 . The best free fit gives an exponent αfit = 0.35 ± 0.02. (c) Saturation time τs, estimated
from the curves in (a) (see text), for different system sizes L. The black line corresponds to the best fit with z = 11

3 . The best free fit gives an
exponent z = 3.7 ± 0.1. (d) Surface width W as a function of time for different system sizes L. The smallest size L is the one that saturates
the fastest, and so on. The black line corresponds to the logarithmic fit. (e) Saturation width Ws for different system sizes L. The black line
corresponds to the logarithmic fit. (f) Saturation time τs, for different system sizes L. The black line corresponds to the best fit with z = 4. The
best free fit gives an exponent z = 4.0 ± 0.2. The number of simulated samples goes from 10 000 for L = 20 to 500 for L = 64, and 20 for
L = 2000 in d = 1; and from 10 000 for L = 8 to 500 for L = 28, and 5 for L = 100 in d = 2.

be applied to all cases where squared gradients appear in the
dynamical equations.3

We therefore write the general discrete cKPZ equation for
any lattice as

dhi

dt
=

∑
k, j

�ik�k j

[
− νh j − λ

2
h2

j + λhkh j

]
+ ξi, (24)

with noise correlator given by Eq. (4), that we rewrite here for
convenience:

〈ξi(t )ξ j (t
′)〉 = 2D�i jδ(t − t ′). (25)

3Using similar kinds of mathematical relations, it is possible solve
the ambiguity issue for the discretization of more complicated non-
linear terms appearing in other equations, like in [26].

To conclude this section, we note that the same discrete
equation for an arbitrary graph can be obtained—even though
with considerable more algebra—using the definition of inci-
dence matrix given in the previous section, and writing the
squared gradient in terms of discrete derivatives along the
links (see Appendix A). This provides a further consistency
check on the whole discretization procedure.

B. Validation on regular lattices

Given Eqs. (24) and (25), and the way to generate the
conservative noise described in Sec. II B, we can perform nu-
merical simulations of the cKPZ equation working exclusively
in real space, and on any kind of underlying lattice. As a
starting point, though, we wish to check that the procedure
outlined so far correctly works on known cases. We therefore
initially consider the same kind of standard topologies where
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FIG. 3. Visual representation of the four lattices in d = 2 that have been used to numerically study the cKPZ equation. The study of the
square and random Euclidean lattices is found in the main text, while the numerical study of the triangular and honeycomb lattices can be
found in Appendix B.

previous numerical analysis has been performed. Results are
displayed in Fig. 2 and show that our method provides es-
timates of the scaling exponents that are in full agreement
with the RG predictions (19) and with the numerical results
obtained with PS methods for regular Cartesian lattices in
d = 1 and d = 2 [26,43].

We considered a regular lattice in d = 1, and a regular
square lattice in d = 2. In both cases, the lattice spacing has
been set to a = 1. The size of the system is defined by the
length L. The number of sites is therefore, respectively, N = L
in d = 1 and N = L2 in d = 2. To perform the numerical
integration in time of Eq. (24) we used an Euler integration
scheme with time step �t = 2 × 10−3 and PBC. The initial
spatial distribution of the field hi has been taken randomly
yet ensuring that its total sum is 0. The parameters have
been chosen as ν = 0.5 and λ = 1, in analogy with previous
numerical works [26,43].

As discussed above, the quantity of interest is the average
surface width W (L, t ), whose behavior is characterized by
the three relevant exponents α, β, and z [see Eq. (18)]. W
is displayed in Figs. 2(a) and 2(d), where it is plotted as a
function of time, for different system sizes. The scaling rela-
tion Eq. (18) implies that W should initially grow with time as
tβ , and then saturate over a time τs ∼ Lz to a size-dependent
asymptotic value Ws ∼ Lα . This is well reproduced by our
curves, which also allow us to extract the three exponents.
In particular, a fit of W vs t in the growing regime gives an
estimate of β, while fits of the saturation width Ws and the
saturation time τs vs L give estimates of α and z.

For d = 1, we performed simulations with system sizes
ranging from L = 20 to L = 64. The duration of the runs
(number of time steps) has been chosen to ensure that the satu-
ration width Ws was reached. We also simulated a particularly
large system, with L = 2000, where saturation is not reached
and W remains in the growing regime for the whole simulation
time. This allowed us to accurately estimate the exponent β,
as displayed in Fig. 2(a).

For the smaller sizes, we computed the saturation width Ws

as the average of the stationary region in Fig. 2(a), and the
saturation time τs as the intersection between a power-law fit
of the initial growth regime and the saturation width. The re-
sulting values of Ws and τs are displayed in Figs. 2(b) and 2(c),

as a function of the size L of the system, in log-log scale. As
clearly shown in Fig. 2, the numerical data are fully consistent
with the theoretical predictions, α = 1

3 , β = 1
11 , and z = 11

3 ,
displayed as black lines in the figures. A fit of the curves
in the three top panels gives the numerical estimate αfit =
0.35 ± 0.02, βfit = 0.096 ± 0.003, and zfit = 3.7 ± 0.1.

For the square lattice in d = 2, we followed a similar
strategy. We performed simulations for sizes ranging from
L = 8 to L = 28, where all the W (t ) curves reach the satu-
ration value, and a larger size L = 100 for which only the
growing regime is observed. Again, this largest size is used
to estimate the exponent β. Since d = 2 corresponds to the
upper critical dimension of the cKPZ equation, the theoreti-
cal predicted value for the growth exponent is β = 0, which
implies a logarithmic behavior. It is therefore convenient
in this case to plot the W vs t curves in linear-log scale,
and directly verify the logarithmic dependence, which we
successfully do in Fig. 2(d). The saturation value Ws is com-
puted as the average value of W (t ) in the stationary time
regime, as before. For d = 2 the scaling relation implies
Ws(L) ∼ log(L), corresponding to a theoretical value of the
roughness exponent α = 0. In Fig. 2(e) we plot Ws vs L in
linear-log scale, and show that the numerical data perfectly
satisfy the expected behavior. Finally, we compute the satura-
tion time τs as the intersection between the logarithmic fit of
the initial regime in Fig. 2(d) and the Ws value. τs is shown
in Fig. 2(f) as a function of L in log-log scale. A fit of the
data gives zfit = 4.0 ± 0.2, fully consistent with the theoretical
prediction z = 4.

We have therefore shown that our method can easily be
applied to square lattices in d = 2, correctly recovering the
results found in the past with PS [26,43]. Still, among regular
lattices, the square one is the simplest case, as its base vectors
are orthogonal. This is not true for other regular, yet more
complex lattices. Paradigmatic examples are the triangular
and the honeycomb lattices [see Figs. 3(b) and 3(c)]. Already
in the triangular lattice standard directional derivatives do not
have any straightforward expression, as they should involve
multiple neighboring sites. The honeycomb case is even more
complicated, since the spatial inversion symmetry does not
hold. In both these examples, standard FD methods would
require ad hoc complicated prescriptions. On the contrary, our
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FIG. 4. Numerical results for the random Euclidean graph embedded in d = 2. (a) Surface width W as a function of time for different
system sizes N . The black line corresponds to the best logarithmic fit of the largest size. The smallest size N is the one that saturates the fastest,
and so on. (b) Saturation width Ws as a function of the normalized system size L/〈dnn〉. The black line corresponds to best logarithmic fit.
(c) Saturation time τs, which has been estimated from the curves in a), as a function of the normalized system size L/〈dnn〉. The black line
corresponds to the best fit with z = 4. The best free fit gives an exponent z = 4.0 ± 0.2. The number of simulated samples goes from 10 000
for the smallest size to 500 for the largest one. The density is kept fixed to ρ = 4, therefore for each size L = √

N/2.

method to generate the conservative noise works exactly as in
the square lattice case, precisely because it is defined on links
(irrespective of their spatial structure). We therefore investi-
gated numerically Eqs. (24) and (25) on the triangular and
honeycomb lattices (see Appendix B). Since both lattices are
bidimensional, regular, and with local connections, we expect
the exponents to be the same as in the d = 2 square lattice:
this is exactly what we find (see Fig. 5), confirming that the
method works correctly on these less trivial topologies.

C. Random Euclidean graph

A further step forward in the direction of more complex
cases are nonregular lattices. This is the scenario where the
full potentiality of our method comes into play, as no standard
FD nor PS implementations are feasible. On the contrary,
having defined the discretized equations for a generic graph
topology, our method can address this kind of problems as
easily as in the square lattice case.

To show this, we now consider a nonregular exam-
ple in d = 2, namely, the Euclidean random graph [50,51]
[Fig. 3(d)]. The definition of such graph is as follows: one
randomly throws N points in a square of length L; if two points
are separated by less than a given Euclidean distance rc, they
are connected (having ni j = 1), otherwise they are not (i.e.,
ni j = 0). Contrary to a regular lattice, there is no fixed lattice
spacing a in this case. However, we can consider as equiv-
alent microscopic length scale the average nearest-neighbor
distance 〈dnn〉. More details about the Euclidean random graph
are given in Appendix C. Here we note that—even though
this graph is not regular—the connections between sites are
still local in space. Hence, we still expect that the large-scale
phenomenology is the same as in the regular cases described
in the previous sections, even although in this case the test is
significantly less trivial.

In our numerical analysis, we considered graphs with sizes
ranging from N = 100 to N = 1400. For any given value of

N , the length L of the square containing the points is chosen
to keep the density fixed, ρ = N/L2 = 4. The connectivity
distance is set to rc = 1. These values ensure that there is only
one connected cluster and that we are away from the mean
field limit, since πr2

c 
 L2 for all the considered values of
N . Under these conditions, the exponents α, β and z should
be exactly equal to the ones obtained for the square regular
discretization in d = 2 (and for the triangular and honeycomb
lattices). The numerical results are shown in Fig. 4, where,
to compare with previous cases (where the lattice spacing is
a = 1), we use the size L of the system normalized to the
average nearest neighbor distance 〈dnn〉 (computed numeri-
cally). We recover the logarithmic growth both for W (t ) and
Ws, and we get z = 4.0 ± 0.2 for the dynamic exponent. The
fact that we obtain the same exponents in the square, in the
triangular, in the honeycomb, and in the random Euclidean
graph is in perfect agreement with the notion of universality
in the framework of the RG.

IV. CONCLUSIONS

We have proposed a method to generate a discrete conser-
vative noise in real space, a useful tool to numerically solve
conserved stochastic field dynamics with FD. The strength of
our scheme lies in its simple formulation and in its general-
ity, making it the natural way for the analysis of conserved
dynamical equations on any discrete topology. We used the
method to investigate numerically a well-known case of con-
served stochastic dynamics, namely, the cKPZ equation. We
have shown that for the standard regular discretizations in d =
1 and d = 2 it recovers the correct scaling exponents predicted
by RG calculations and found by PS methods. Furthermore,
we extended our analysis to study the cKPZ on more complex
discrete lattices, where it had never been considered before:
the triangular and the honeycomb lattices, and the random
Euclidean graph. This last case represents a unique instance
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where a conserved field dynamics has been addressed on a
nonregular discrete structure. Our analysis provides the ex-
pected results in terms of scaling behavior and universality of
critical exponents.

We believe that our method has a broad range of possible
applications for the analysis of conservative field dynamics;
its implementation is straightforward not only for the cKPZ
considered here, but also for the Cahn-Hilliard-Cook equa-
tion, for active model B, for the Dean-Kawasaki equation,
or for any other conserved equations either with additive or
multiplicative noise. A most promising outlook is the study
of conservative dynamics on complex topologies, where pre-
vious FD and PS methods cannot be applied; in these cases,
link noise is the only way to proceed. Some examples of phys-
ical relevance to be investigated in the future include, among
others, conserved dynamics on a spherical surface, where any
discretization involves triangular loops [52]; random pinning
in bulk properties, when there are isolated missing sites; and
the study of fixed boundary conditions and of the surface
effects induced by them. One final case of particular interest
is the study of conserved dynamics on fractal substrates. Such
structures exhibit a noninteger dimension, and it is not yet
fully understood whether or not RG predictions involving an
ε expansion apply to this case. A numerical analysis may
therefore provide useful insights for a deeper theoretical un-
derstanding of critical phenomena.
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APPENDIX A: LOCAL SCALAR PRODUCTS ON THE
GRAPH VIA THE INCIDENCE MATRIX

In stochastic field equations there are sometimes terms
involving a scalar product between the gradient of the field
and some other vectorial function, evaluated at the same point
in space. In this paper we encountered two such instances:
the term ∇ f · ε appearing in stochastic equations with mul-
tiplicative noise (see Sec. II C) and the (∇h)2 term present
in the current of the cKPZ equation (see Sec. III A). In this
Appendix we illustrate how to discretize in a coherent way
such contributions using the incidence matrix formalism.

As discussed in Sec. II A, on a graph the derivatives are
defined along links, rather than along cartesian directions,
e.g., [∇ f ]a = ∑

i Dia fi and [∇h]a = ∑
i Diahi. The noise also

becomes a random function εa on the links rather than on the
sites. To implement the discrete version of the terms men-
tioned above, we therefore need to construct a scalar product
between link functions. More specifically, what we seek is a
definition of scalar product that reproduces the features of the
continuous one. To this end, it must (1) be local and (2) be
consistent with the continuum limit on a regular lattice. Fol-
lowing these guidelines, given two generic functions g = {ga}

and l = {la} on the links, we define the scalar product between
them at site i as

[g · l]i = 1

2

∑
a�i

gala, (A1)

where the sum is restricted to the links a incident on site i
(to ensure locality), and the factor 1/2 is due to consistency
with the continuum limit from a regular discretization (where
cartesian coordinates are half the number of the connected
neighbors). Let us now apply this definition to the two cases
encountered in this paper.

Discretization of the multiplicative noise term: When ad-
dressing the case of multiplicative noise, a term ∇ f · ε appears
in the stochastic part of the dynamical equation, where f =
f [ψ] is a scalar function of the field and ε is a white delta-
correlated Gaussian noise [see Eq. (14)]. Following definition
(A1), on a discrete lattice this product becomes

[(∇ f ) · ε]i = 1

2

∑
a�i

[∇ f ]aεa = 1

2

∑
a�i

∑
j

D ja f jεa, (A2)

which is precisely what appears in the r.h.s. of Eq. (15).
The squared gradient term in the cKPZ equation: In

Sec. III A we discussed how to express the (∇h)2 term of
the cKPZ equation in terms of the Laplacian, leading to an
unambiguous discretization. Here we address the same prob-
lem within the formalism of the incidence matrix. Given that
(∇h)2 = ∇h · ∇h, we can directly apply Eq. (A1), and we get

[(∇h)2]i = 1

2

∑
a�i

[∇h]a[∇h]a

= 1

2

∑
a�i

∑
j

D jah j

∑
k

Dkahk . (A3)

Expression (A3) can be rewritten in a clearer way by exploting
the definition and the properties of the incidence matrix. In
particular we have

DiaDja =
⎧⎨
⎩

0 if i, j /∈ a
−1 if i, j ∈ a ∧ i �= j
1 if i, j ∈ a ∧ i = j

. (A4)

Then we have
1

2

∑
a�i

∑
j

D jah j

∑
k

Dkahk

= 1

2

∑
a

D2
ia

⎡
⎣∑

k �= j

D jaDkah jhk +
∑

k

D2
kah2

k

⎤
⎦

=
∑

a

∑
k �=i

DiaDkahihk + 1

2

∑
a

∑
k

(DiaDka)2h2
k

= hi

∑
k �=i

�ikhk + 1

2

⎡
⎣−

∑
k �=i

∑
a

DiaDkah2
k +

∑
a

D2
iah2

i

⎤
⎦

= hi

∑
k �=i

�ikhk + 1

2

⎡
⎣−

∑
k �=i

�ikh2
k + �iih

2
i

⎤
⎦

= hi

∑
k

�ikhk − 1

2

∑
k

�ikh2
k , (A5)
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FIG. 5. Numerical results for the triangular lattice (upper row) and the honeycomb lattice (lower row). (a, d) Surface width W as a function
of time for different system sizes L. The black line corresponds to the best logarithmic fit. The smallest size L is the one that saturates the
fastest, and so on. (b, e) Saturation width Ws as a function of the system size L. The black line corresponds to best logarithmic fit. (c, f)
Saturation time τs, estimated from the curves in (a) and (d), as a function of the system size L. The black line corresponds to the best fit with
z = 4. The best free fit gives an exponent z = 4.0 ± 0.2 for the triangular lattice, and z = 3.9 ± 0.2 for the honeycomb one. For both lattice
types the number of samples goes from 10 000 for the smallest size, to 500 for the largest size reaching saturation, while five samples have
been used for the simulations where saturation is not reached [red curves in panels (a) and (d)].

where we used the property [derived from (A4)]
(DiaDka)2 = −DiaDka(1 − δi,k ) + D2

iaδi,k and the relation
�i j = ∑

a DiaDja. From this we finally get

[(∇h)2]i = −1

2

∑
k

�ikh2
k + hi

∑
k

�ikhk, (A6)

which is Eq. (23). The definition of local scalar product given
in this Appendix is therefore fully consistent with the rela-
tionships between the gradient and the divergence operators
in the continuum, exploited in Sec. III A to arrive at the same
expression.

APPENDIX B: TRIANGULAR
AND HONEYCOMB LATTICES

As we have mentioned in the main text, the triangular
and honeycomb lattices are paradigmatic examples of regular
lattices in d = 2 for which the implementation of FD methods
is far from trivial. However, our method for generating con-

servative noise and our technique for expressing the squared
gradient in terms of the discrete Laplacian �i j allow us to
straigtforwardly implement FD on these lattices.

We have therefore studied numerically Eqs. (24) and (25)
on the triangular and honeycomb lattices. For the triangu-
lar case, we performed simulations of system sizes ranging
from L = 8 to L = 28 all reaching saturation within simu-
lation time, together with a very large size L = 50, where
saturation is not reached. Similarly, for the honeycomb case,
we considered system sizes ranging from L = 9 to L = 24
all reaching saturation, and L = 30, where saturation is not
reached. We then followed the same procedure detailed for the
d = 2 square lattice in the previous section to analyze data
and estimate the exponents. Results are displayed in Fig. 5.
We note that both lattices are bidimensional and regular, with
local connections between sites. We therefore expect that the
large-scale behavior is exactly the same as for the d = 2
square lattice. Indeed, this is what we find: a logarithmic
growth is observed for W (t ) in the initial regime [Figs. 5(a)
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FIG. 6. (a) Distribution of the number of interacting neighbours
in the random Euclidean graph for two different sizes, with density
ρ = N

L2 = 4 and rc = 1 (the values used in the main text). The red
(upper) line corresponds to the Binomial distribution (with N = 100
and r = πr2

c /L2; see text), and the blue (lower) line corresponds
to the Poisson distribution (with 〈n〉 = ρπr2

c ; see text). (b) Average
distance of the nearest neighbor as a function of the density ρ.

and 5(d)], the saturation width Ws depends logarithmically
on the system size [Figs. 5(b) and 5(e)], and the dynamic
exponent z is very close to the theoretical prediction z = 4 [we
find zfit = 4.0 ± 0.2 in the triangular case, and zfit = 3.9 ± 0.2
in the honeycomb one; see Fig. 5(c) and 5(f)].

APPENDIX C: THE RANDOM EUCLIDEAN GRAPH

As discussed in the main text, a random Euclidean graph
in d = 2 is defined by the following procedure. N points are
randomly and uniformly placed in a square of length L, giving
a density of nodes ρ = N

L2 . The links between nodes are then
generated according to a simple local rule: if two points are
separated by a distance smaller than rc they are connected,
otherwise they are not. In terms of the adjacency matrix, this

reads

ni j = 1 if ri j � rc ni j = 0 if ri j > rc. (C1)

Given a node in the graph, one can ask how many other
sites are connected to it, i.e., what is the number n of “in-
teracting” neighbors (also called the “degree” of the node).
Since points are uniformly drawn in space, the probability of
this quantity is given by a Binomial distribution,

p(n) =
(

N

n

)
rn(1 − r)N−n, (C2)

where r is the probability that two nodes are connected, r =
πr2

c

L2
(when PBC are considered and rc <

L

2
) [50,51]. In the

limit of large N and low r, p(n) tends to a Poisson distribution
of the form

p(n) = 〈n〉n exp (−〈n〉)

n!
, (C3)

where 〈n〉 is the average number of interacting neighbors,
given by 〈n〉 = ρπr2

c .
In general, if the spatial density of points is too low (i.e.,

if the average nearest-neighbor distance between points is
much larger than the connectivity threshold rc) the procedure
described above might generate graphs that are divided into
separate nonconnected components. This is obviously not
what we want. In our analyses we therefore considered values
of N , L, and rc such that there is only one connected cluster
(as we also verified numerically). In Fig. 6(a) we show the
distribution of interacting neighbors for two different sizes
N (one in which we are far from the Poisson limit and one
in which we are in the Poisson limit) for density ρ = 4 and
rc = 1, i.e., the values used in the main text. The average
number of interacting neighbors is 〈n〉 = ρπr2

c = 12.56.
Due to the intrinsic irregular distribution of points in space,

there is no fixed lattice spacing. One can, however, consider as
reference microscopic length scale the mean distance between
closest neighbors 〈dnn〉. This quantity scales with the density
as ρ− 1

2 [50,51], as illustrated in Fig. 6(b).
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