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Statistics of quantum heat in the Caldeira-Leggett model
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Nonequilibrium fluctuation relation lies at the heart of the quantum thermodynamics. Many previous studies
have demonstrated that the heat exchange between a quantum system and a thermal bath initially prepared
in their own Gibbs states at different temperatures obeys the famous Jarzynski-Wójcik fluctuation theorem.
However, this conclusion is obtained under the assumption of Born-Markovian approximation. In this paper,
going beyond the Born-Markovian limitation, we investigate the statistics of quantum heat in an exactly
non-Markovian relaxation process described by the well-known Caldeira-Leggett model. It is revealed that the
Jarzynski-Wójcik fluctuation theorem breaks down in the strongly non-Markovian regime. Moreover, we find
the steady-state quantum heat within the non-Markovian framework can be widely tunable by using the quantum
reservoir-engineering technique. These results are sharply contrary to the common Born-Markovian predictions.
Our results presented in this paper may update the understanding of the quantum thermodynamics in strongly
coupled and low-temperature systems. Moreover, the controllable heat may have some potential applications in
improving the performance of a quantum heat engine.
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I. INTRODUCTION

Recently, a lot of interest has been generated in studying
the fluctuation relations for thermodynamic quantities, such
as work [1–6], heat [7–11], and entropy production [12–15],
of small-scale systems away from equilibrium. As a con-
sequence, the study of the traditional thermodynamics has
been extended to the nonequilibrium and the quantum regimes
[16–20]. On the one hand, from the theoretical perspective,
these fluctuation theorems provide an alternative viewpoint
to reexamine the laws of thermodynamics at the microscopic
level [21–23]. On the other hand, from the application per-
spective, fluctuation theorems may aid in the development
of quantum heat machines beyond the classical constraints,
due to the fact that fluctuations are inherent in the thermo-
dynamic cycles of microscopic machines [24–27]. Thus, the
investigation of fluctuation theorems, going beyond the lin-
ear response regime, lies at the heart of the nonequilibrium
thermodynamics.

The fluctuation theorem for heat exchange between two
quantum systems, respectively prepared in their own Gibbs
states at different temperatures, was originally proposed by
Jarzynski and Wójcik in Ref. [7]. The original Jarzynski-
Wójcik fluctuation theorem was derived with a severe
assumption that the coupling between the two quantum sys-
tems is very weak. Under such an assumption, the correctness
of the Jarzynski-Wójcik fluctuation theorem has been ex-
perimentally verified in nuclear-magnetic-resonance setups

*Contact author: wuw@lzu.edu.cn

[28–30]. In several subsequent studies [31–34], the authors
reexamined the validity of the Jarzynski-Wójcik fluctuation
theorem in a relaxation process, in which a quantum har-
monic oscillator exchanges the heat with its surrounding
thermal bath via the system-bath coupling. They found that
the Jarzynski-Wójcik fluctuation theorem can be still satisfied
if the Born-Markovian approximation is employed [31–33].
The Born-Markovian approximation is a combination of the
Born approximation and the Markovian approximation. The
Born approximation neglects the correlations, which are in-
cluded in the expression of the density operator, between the
system and the bath. The Markovian approximation ignores
the memory effect embedded in the convolution kernels which
leads to a time-local master equation. The Born-Markovian
approximation is acceptable when the system-bath coupling
is weak and the characteristic timescale of the bath is much
smaller than that of the system [35]. Situations beyond the
Born-Markovian treatment still remain indistinct. An interest-
ing question naturally arises here: Does the Jarzynski-Wójcik
fluctuation theorem continue to hold in a non-Markovian re-
laxation process?

To address the above question, we investigate the statistics
of heat exchange in a non-Markovian relaxation process de-
scribed by the Caldeira-Leggett model, which is exactly solv-
able [36–38]. The exact solvability of the Caldeira-Leggett
model can provide a reliable insight for the characteristics of
the quantum heat beyond unwanted approximations. By using
the exact solution of the famous Hu-Paz-Zhang equation [37]
in terms of the reduced Wigner function [38,39] as well as the
semiclassical phase-space formulation approach [40,41], we
derive the analytical expression of the characteristic function

2470-0045/2024/109(6)/064134(13) 064134-1 ©2024 American Physical Society

https://orcid.org/0000-0002-7929-7702
https://orcid.org/0000-0002-7984-1501
https://ror.org/01mkqqe32
https://ror.org/044ysd349
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.064134&domain=pdf&date_stamp=2024-06-14
https://doi.org/10.1103/PhysRevE.109.064134


ZE-ZHOU ZHANG, QING-SHOU TAN, AND WEI WU PHYSICAL REVIEW E 109, 064134 (2024)

for the quantum heat. It is found that the Jarzynski-Wójcik
fluctuation theorem generally breaks down due to the non-
Markovian effect. We also find the non-Markovian average
quantum heat is sensitive to the details of the spectral density,
which suggests it can be controlled by using the quantum
reservoir-engineering technique [42–44]. Such an engineered
tunable quantum heat can be useful in optimizing the output
work or the efficiency of a thermodynamic cycle. All these re-
sults are in sharp contrast to previous Born-Markovian studies
[31,32].

This paper is organized as follows. In Sec. II, we first recall
the definition and the fluctuation theorems for quantum heat in
an open system. In Sec. III, we introduce the Caldeira-Leggett
model and give its exact solution in terms of the reduced
Wigner function. The analytical expressions of the character-
istic function and the average quantum heat are presented in
Sec. IV. Using these expressions, we discuss the influence of
the non-Markovian effect on the statistics of quantum heat.
Some related discussions and the main conclusions of this
paper are given in Sec. V. In several Appendices, we provide
some additional materials about the main text. Throughout
this paper, for the sake of convenience, we set h̄ = kB = 1, and
the inverse temperature is accordingly rescaled as β = 1/T .

II. HEAT IN AN OPEN QUANTUM SYSTEM
AND ITS STATISTICS

A. Two-point-measurement-based definition

In this paper, we concentrate on the heat transferred be-
tween a quantum system and a thermal bath. The whole
Hamiltonian of this open system reads Ĥtot = Ĥs + Ĥb +
Ĥint, where Ĥs and Ĥb are, respectively, the Hamiltonian
of the quantum system and the thermal bath and Ĥint de-
notes the system-bath interaction. Following previous studies
[33,45,46], we regard the quantum heat as the energy change
of the bath plus the system-bath interaction. Such an en-
ergy exchange can be detected by measuring the system if
the whole Hamiltonian is time dependent [34]. When the
system-bath coupling strength is so weak that the energy of
the interaction Hamiltonian becomes negligible, our results
naturally reduce to the situations considered in Refs. [31,32].

In the two-point-measurement-based definition
[8,20,47,48], the quantum heat is defined as an energy
difference of Ql ′l = El ′ − El , where El ′ = 〈l ′|Ĥs|l ′〉 and
El = 〈l|Ĥs|l〉 are the energies of the quantum system at
the initial time t = 0 and the final time t = τ , respectively.
Here |l〉 and |l ′〉 are the eigenstates of the quantum system.
We assume the whole Hamiltonian is initially prepared in
a product state ρtot(0) = ρs(0) ⊗ ρb(0), then the probability
of obtaining the energy El at the initial time t = 0 is
P0

l = Trs[ρs(0)|l〉〈l|]. After the first measurement, the system
instantaneously collapses to |l〉〈l|. Thus, the conditional
transition probability of obtaining the energy El ′ at the final
time t = τ is given by

Pτ
l ′l = Tr[|l ′〉〈l ′|Û (τ )|l〉〈l| ⊗ ρb(0)Û †(τ )]

= Trs[|l ′〉〈l ′|�̂τ (|l〉〈l|)], (1)

where Û (τ ) = exp(−iτ Ĥtot ) is the time evolution operator of
the whole Hamiltonian, and

�̂τ [ρs(0)] ≡ Trb[Û (τ )ρs(0) ⊗ ρb(0)Û †(τ )], (2)

is introduced as a dynamical mapping operator (superoper-
ator) of the system from a given initial state ρs(0) to the
reduced density operator at t = τ . From Eq. (1), one can see
that as long as the reduced dynamics of the quantum system or
the mapping operator �̂τ is known, the conditional transition
probability Pτ

l ′l can be accordingly determined in principle.
With P0

l and Pτ
l ′l at hand, the corresponding quantum heat

distribution is derived as [31–34]

Pτ (Q) ≡
∑
l,l ′

Pτ
l ′lP

0
l δ(Q − Ql ′l ). (3)

The characteristic function with respect to Pτ (Q) reads

χτ (ν) =
∫ +∞

−∞
dQe−νQPτ (Q)

= Tr[e−νĤsÛτ eνĤsρs(0) ⊗ ρb(0)Û †
τ ]. (4)

The kth moment (cumulant) of the quantum heat can be com-
puted by using the following formula:

〈Qk (τ )〉 = (−1)k ∂k

∂νk
χτ (ν)

∣∣∣∣
ν=0

. (5)

Equations (4) and (5) fully characterize the statistics of heat
in an open quantum system.

B. Fluctuation theorems for quantum heat

Assuming the system and the bath are initially prepared
in their own Gibbs states at different temperatures, namely
ρs,b(0) = ρG

βs,b
, where

ρG
βς

≡ e−βς Ĥς

Tr(e−βς Ĥς )
= e−βς Ĥς

Zς (βς )
, (6)

with ς = {s, b}, one can demonstrate that the characteristic
function satisfies the following symmetry relation:

χτ (ν) = χτ (βs − βb − ν), (7)

when (i) the system-bath coupling is so weak that the energy
of the interaction can be neglected [7] or (ii) the reduced
dynamics of the system is purely Markovian [31,32]. From
Eq. (7), it is easy to prove that the heat distribution satisfies
the following fluctuation theorem in the differential form [7]:

Pτ (Q)

Pτ (−Q)
= e−(βb−βs )Q. (8)

By setting ν = 0, one can immediately find χτ (0) = χτ (βb −
βs) = 1, from which the heat exchange fluctuation theorem in
the integral form [7],

〈e(βb−βs )Q〉 = 1, (9)

can be derived as well. Equations (8) and (9) establish the
universal fluctuation theorems for quantum heat in the weak-
coupling and the Born-Markovian regimes.
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III. CALDEIRA-LEGGETT MODEL

A. The Hamiltonian and the quantum Langevin equation

The Caldeira-Leggett model is widely used to describe
the dissipative dynamics of a quantum harmonic oscillator
interacting with a bosonic bath via a linear position-position
coupling. This model can be exactly solved by making
use of various methods, for example, the path-integral ap-
proach [37,49], and the stochastic decoupling dynamical
scheme [50–52], the non-Markovian quantum-state-diffusion-
equation technique [53–55], as well as the normal mode
transformation [56–59]. In this paper, we employ the path-
integral approach from which an exact non-Markovian master
equation, which is named as the Hu-Paz-Zhang equation, can
be derived and exactly solved [37–39].

The whole Hamiltonian of the Caldeira-Leggett model is
given by

ĤCL = 1

2
p̂2 + 1

2
ω2

0q̂2 +
N∑

j=1

(
1

2
p̂2

j + 1

2
ω2

j q̂
2
j

)

− q̂
N∑

j=1

c j q̂ j +
N∑

j=1

c2
j

2ω2
j

q̂2, (10)

where q̂ (q̂ j) and p̂ ( p̂ j) are the position and momentum
operators of the quantum system (the thermal bath) with the
corresponding frequency ω0 (ω j), respectively. Parameters c j

quantify the system-bath coupling strengths. The last term in
Eq. (10) is a counterterm that can compensate the frequency
shift induced by the system-bath interaction and can guarantee
the thermodynamically stable of the Caldeira-Leggett model
[60]. All the masses of these quantum harmonic oscillators
are weighted as m0 = mj = 1 in this paper.

Commonly, the coupling strengths are further character-
ized by the so-called spectral density, which is defined by

J (ω) ≡
N∑

j=1

c2
j

ω j
δ(ω − ω j ). (11)

In this paper, we assume that J (ω) explicitly takes the follow-
ing Ohmic form:

J (ω) = 2

π

κωω2
c

ω2 + ω2
c

, (12)

where κ denotes the dimensionless system-bath coupling con-
stant and ωc is the cutoff frequency. It is necessary to point out
that our results presented in this paper can be generalized to
other spectral densities without difficulties.

Assuming the initial state of the whole Caldeira-Leggett
model is given by ρtot(0) = ρs(0) ⊗ ρG

βb
, the following quan-

tum Langevin equation can be derived from the Heisenberg
equation of motion [61–63]:

¨̂q(t ) +
∫ t

0
dt ′μ(t − t ′) ˙̂q(t ′) + ω2

0q̂(t ) + μ(t )q̂(0) = f̂ (t ),

(13)
where

μ(t ) ≡
N∑

j=1

c2
j

ω2
j

cos(ω jt ), (14)

is introduced as the memory function and

f̂ (t ) ≡
N∑

j=1

c j

[
q̂ j (0) cos(ω jt ) + p̂ j (0)

sin(ω jt )

ω j

]
(15)

is the so-called stochastic force operator. One easily finds that
〈 f̂ (t )〉 = 0, the correlation function, and the commutator of
f̂ (t ) are [39]

1

2
〈 f̂ (t ) f̂ (t ′) + f̂ (t ′) f̂ (t )〉

= 1

π

∫ ∞

0
dωω Re[μ̃(ω + i0+)] coth

(
ωβb

2

)

× cos[ω(t − t ′)], (16)

[ f̂ (t ), f̂ (t ′)] = 2

iπ

∫ ∞

0
dωωRe[μ̃(ω + i0+)] sin[ω(t − t ′)],

(17)

where the bracket 〈·〉 stands for the quantum expectation value
with respect to ρG

βb
, i.e., 〈Ô〉 ≡ Tr(ÔρG

βb
), and μ̃(ω) is defined

as the modified Laplace transform of the memory function:

μ̃(ω) =
∫ ∞

0
dtμ(t )eiωt . (18)

Using the skills proposed in Ref. [39], the general solution
to the quantum Langevin equation reads

q̂(t ) = Ġ(t )q̂(0) + G(t ) p̂(0) + x̂(t ), (19)

p̂(t ) = G̈(t )q̂(0) + Ġ(t ) p̂(0) + ˙̂x(t ), (20)

where G(t ) is the Green function determined by

G̈(t ) +
∫ t

0
dt ′μ(t − t ′)Ġ(t ′) + ω2

0G(t ) + μ(t )G(t ) = 0,

(21)
with the initial conditions G(0) = 0 and Ġ(0) = 1. And x̂(t )
is introduced as the fluctuating position operator,

x̂(t ) =
∫ t

0
dt ′G(t − t ′) f̂ (t ′). (22)

Based on Eqs. (19) and (20), the analytical expression of the
reduced Wigner function, which is an exact solution of the
Hu-Paz-Zhang equation, can be derived (see Ref. [39] and
Appendix B for details).

B. The reduced Wigner function

By tracing out the degrees of freedom of the thermal bath,
the evolution of the reduced density operator of the system
is governed by the famous Hu-Paz-Zhang equation [37]. This
Hu-Paz-Zhang equation can be exactly solved in the form of
an expression for the Wigner function as (see Refs. [38,39] or
Appendix B for details)

Wt (q, p) = [ρs(t )]w(q, p)

=
∫ +∞

−∞
dq′

∫ +∞

−∞
d p′Pt (q, p, q′, p′)W0(q′, p′),

(23)

where {q, p} represent the point in the classical phase space.
The notation [Ô]w(q, p) denotes the Weyl symbol of a given
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operator Ô, which is defined by [40,41]

[Ô]w(q, p) ≡
∫

dv

〈
q − 1

2
v

∣∣∣∣Ô
∣∣∣∣q + 1

2
v

〉
eipv. (24)

And W0(q, p) = [ρs(0)]w is the initial Wigner function of the
system, Pt (q, p, q′, p′) can be regarded as a propagator, which
is given by

Pt (q, p, q′, p′) = 1

2π

1√
Det(At )

e− 1
2R

T
t A

−1
t Rt , (25)

where

Rt =
(

q
p

)
− Gt

(
q′
p′

)
=

(
q
p

)
−

[
Ġ(t ) G(t )
G̈(t ) Ġ(t )

](
q′
p′

)
, (26)

and At is the covariant matrix with respect to the fluctuating
position operator x̂(t ), i.e.,

At =
[

〈x̂2(t )〉 1
2 〈x̂(t ) ˙̂x(t ) + ˙̂x(t )x̂(t )〉

1
2 〈x̂(t ) ˙̂x(t ) + ˙̂x(t )x̂(t )〉 〈 ˙̂x2(t )〉

]
.

(27)

For the Ohmic spectral density considered in this paper, the
explicit expressions of Gt and At are given in the Appendix A.

If the initial state of the system is a Gibbs state, i.e.,
ρs(0) = ρG

βs
, then the exact expression of the reduced Wigner

function can be derived from Eq. (25) using the formula of the
Gaussian integral,

Wt (q, p) = 2 tanh
(

1
2ω0βs

)
e− 1

2 zT A−1
t z√

Det(At )Det[�(βs) + GT
t A

−1
t Gt ]

× exp

{
1

2
zA−1

t Gt
[
�(βs) + GT

t A
−1
t Gt

]−1

× GT
t A

−1zT

}
, (28)

where z = (q, p)T and

�(βs) = 2

ω0
tanh

(
1

2
ω0βs

)(
ω2

0 0
0 1

)
. (29)

One can check the normalization condition
1

2π

∫
dq

∫
d pWt (q, p) = 1 is satisfied. Equation (28) fully

determines the reduced dynamics of the quantum system.
Next, we use Eq. (28) to derive the analytical expression of
the characteristic function for the quantum heat.

IV. STATISTICS OF QUANTUM HEAT

A. Phase-space formulation approach

To analytically derive the characteristic function of quan-
tum heat in the Caldeira-Leggett model, we employe the
phase-space formulation approach reported in Refs. [40,41].

To this aim, we first rewrite Eq. (4) into

χτ (ν) = 1

Zs(βs)
Tr

[
e−νĤsÛ (τ )e−(βs−ν)Ĥs ⊗ ρG

βb
Û †(τ )

]
=Zs(βs − ν)Zs(ν)

Z (βs)
Tr

[
ρG

ν Û (τ )ρG
βs−ν ⊗ ρG

βb
Û †(τ )

]
=Zs(βs − ν)Zs(ν)

Z∫ (βs)
Trs

[
ρG

ν �τ

(
ρG

βs−ν

)]
, (30)

where Zs(βs) = 1/2 sinh(ω0βs/2) is the partition function
of the quantum harmonic oscillator. Then, using the Weyl
symbol, one can express Eq. (30) in the language of the phase-
space formulation of quantum mechanics as

Trs
[
ρG

ν �τ

(
ρG

βs−ν

)] = 1

2π

∫ +∞

−∞
dq

∫ +∞

−∞
d p

[
ρG

ν

]
w

(q, p)

× [
�τ

(
ρG

βs−ν

)]
w

(q, p). (31)

Thus, as long as the Weyl symbols of ρG
s (ν) and �τ (ρG

βs−ν ) are
obtained, the expression of the characteristic function χτ (ν)
can be accordingly derived by simply performing the integrals
over the classical variables {q, p}.

The Weyl symbol of the Gibbs-like state ρG
ν is given by

(see Ref. [64] and Appendix C for details)

[
ρG

ν

]
w

(q, p) = 2 tanh

(
ω0ν

2

)

× exp

[
− tanh

(
1
2ω0ν

)
ω0

(
p2 + ω2

0q2
)]

. (32)

On the other hand, the Weyl symbol of �τ (ρG
βs−ν ) can be

obtained from Eq. (28) via simply replacing βs by βs − ν.
With these results at hand, we finally find

χτ (ν) = Zs(βs − ν)Zs(ν)

Z (βs)

× 1√
Det

[
Aτ + �(ν) + Gτ�(βs − ν)GT

τ

] , (33)

where

�(ν) = 1

2ω0
coth

(
1

2
νω0

)(
1 0
0 ω2

0

)
. (34)

The corresponding expression of the average quantum heat is
then given by

〈Q(τ )〉 = 1

2

[
ω2

0A11(τ ) + A22(τ )
]

+ 1

2
ω0 coth

(
ω0βs

2

)[
1

2
ω2

0G2(τ ) + Ġ2(τ )

+ 1

2ω2
0

G̈2(τ ) − 1

]
. (35)

Equations (33) and (35) are the main results of this paper,
which is beyond the usual Born-Markovian approximation.
Next, we shall use them to analyze the non-Markovian effects
on the statistics of quantum heat in the relaxation process
describe by the Caldeira-Leggett model.
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FIG. 1. The ratio of RJW(ν, τ ) is plotted as a function of ω0τ with (a) ν = 5 and (b) ν = 6. Other parameters are chosen as ω0 = 1 cm−1,
ω0βs = 2, ω0βb = 0.1, and κ = 0.05. (c) The ratio of RJW(ν, τ ) versus the coupling strength κ with different evolution times: ω0τ = 1 (red
stars), ω0τ = 5 (blue rhomboids), and ω0τ = 100 (purple circles). Other parameters chosen are ω0 = 1 cm−1, ω0βs = 1, and ω0βb = 0.1.
(d) The ratio of RJW(ν, τ ) versus the temperature of the bath βbω0 with different evolution times: ω0τ = 1 (red stars), ω0τ = 5 (blue
rhomboids), and ω0τ = 100 (purple circles). Other parameters chosen are ω0 = 1 cm−1, ω0βs = 1, and κ = 0.2. The circles, rhomboids,
and five-pointed stars are exact results from Eq. (33) and the green solid lines present the numerical results predicted by the normal mode
transformation method proposed in Ref. [33]. The vertical dotted line in (d) highlights the position where ω0βb = ω0βs.

B. The long-time limit

In the exact results of Eqs. (33) and (35), the expressions
of χτ (ν) and 〈Q(τ )〉 are complicated. We leave them to
exact calculations. However, by analyzing their asymptotic
behaviours in the long-time limit, we can obtain some qual-
itative results, which is beneficial for us to establish a clear
physical picture.

In the long-time limit ω0τ → ∞, we have Gt = 02, which
leads to

χ∞(ν) = Zs(βs − ν)Zs(ν)

Zs(ν)

1√
Det[A∞ + �(ν)]

. (36)

The corresponding average quantum heat is given by

〈Q(∞)〉 = 1

2

[
ω2

0A11(∞) + A22(∞)
] − 1

2
ω0 coth

(
βsω0

2

)
.

(37)

The explicit expressions of A11(∞) and A22(∞) are given in
Appendix A. Equations (36) and (37) show that the steady-
state characteristic function and the average quantum heat
heavily depend on the details of the spectral density, which
are involved in the expression of A∞. This result is in sharp
contrast to Markovian results reported in Refs. [31,32,34].

However, in the weak-coupling limit, one has (see
Appendix A)

lim
κ→0+

χ∞(ν) = Zs(βs − ν)Zs(βb + ν)

Zs(βs)Zs(βb)
, (38)

which becomes independent of the details of the relaxation
dynamics and recovers the previous result of canonical ther-
malization in Ref. [34]. Moreover, from Eq. (38), one can
immediately demonstrate the symmetry relation of χ∞(βs −
βb − ν) = χ∞(ν) is satisfied in this weak-coupling case,
which means the fluctuation theorem in the differential form
holds in the Markovian regime.

The corresponding average quantum heat in the same
weak-coupling limit is given by

lim
κ→0+

〈Q(∞)〉 = 1

2
ω0

[
coth

(
βbω0

2

)
− coth

(
βsω0

2

)]
. (39)

The above expression is simply the energy difference for
the quantum harmonic oscillator at temperatures 1/βb and
1/βs. It can be rewritten in terms of the thermal occu-
pation number, namely limκ→0+〈Q(∞)〉 = ω0[n̄(βb, ω0) −
n̄(βs, ω0)] with n̄(βα, ω0) ≡ (eω0βα − 1)−1. This result is con-
sistent with that of Ref. [32] and is physically reasonable when
the quantum system experiences a canonical thermalization
under the usual Born-Markovian approximation [31–34].

V. EXACT RESULTS

In this section, we provide the exact results predicted by
Eqs. (33) and (35). To evaluate the validity of the Jarzynski-
Wójcik fluctuation theorem in the deep non-Markovian
regimes, we define the following ratio of the characteristic
function:

RJW(ν, τ ) ≡ χτ (βs − βb − ν)

χτ (ν)
. (40)

If and only if RJW(ν, τ ) = 1, then one can conclude that
the Jarzynski-Wójcik fluctuation theorem holds to be valid.
However, as long as RJW(ν, τ ) 
= 1, the Jarzynski-Wójcik
fluctuation theorem breaks down.

Alternatively, we also provide the purely numerical simu-
lations from the normal mode transformation method reported
in Ref. [33] as a comparison. As shown below, these two
different methods produce consistent results in physics. This
comparison commendably confirms the reliability of our con-
clusions.

In Figs. 1(a) and 1(b), we plot the time evolution of
RJW(ν, τ ). Our exact results are in good agreement with these
of the normal mode transformation method in Ref. [33].
The results from these two approaches jointly demonstrate
RJW(ν, τ ) 
= 1 in the short-time transient regime, which means
the breakdown of the Jarzynski-Wójcik fluctuation theorem.
In the long-time limit, RJW(ν,∞) = 1 if the coupling is very
weak [say, κ = 0.05 in Figs. 1(a) and 1(b)], which justifies
our previous long-time results discussed in Sec. IV B.

It is well accepted that the non-Markovian characteristic
for the reduced dynamics of the quantum system becomes
negligible when (i) the system-bath coupling is sufficiently
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FIG. 2. (a) The time evolution of the average quantum heat 〈Q(τ )〉 with different coupling strengths: κ = 0.04 (green dashed line), κ =
0.08 (red dot-dashed line), and κ = 0.2 (blue solid line). Other parameters are as follows: ω0 = 1 cm−1, ω0βb = 0.5, and ω0βs = 1. (b) The
steady-state quantum heat 〈Q(∞)〉 is plotted as a function of the coupling strength with different temperatures: ω0βb = 0.65 (green dashed
line), ω0βb = 0.75 (red dot-dashed line), and ω0βb = 0.85 (blue solid line). The temperature of the system is chosen as ω0βs = 3 with ω0 =
1 cm−1. (c) ln〈Q(∞)〉 versus the bath temperature with different coupling strengths: κ = 0.01 (green dashed line), κ = 0.1 (red dot-dashed
line), and κ = 0.6 (blue solid line). The temperature of the system is chosen as ω0βs = 3 with ω0 = 1 cm−1. (d) The dynamics of the average
quantum heat 〈Q(τ )〉. Other parameters are chosen as follows: ω0 = 1 cm−1, ω0βb = 0.1, ω0βs = 1, and κ = 0.2. All the gray circles in
(a)–(c) are the Born-Markovian results presented by Eq. (39).

weak or (ii) the temperature of the bath is very high. In these
two cases, the dynamics of heat exchange becomes Markovian
which validates the Jarzynski-Wójcik fluctuation theorem. To
check this conclusion, we display RJW(ν, τ ) versus βbω0 in
Fig. 1(c) and κ in Fig. 1(d). From these figures, one can
find RJW(ν, τ ) approaches to 1 if ω0βb → 0 or κ → 0. These
exact results meet our expectations. Exceptions can occur
in the vicinities of ω0βb = ω0βs, which corresponds to the
trivial case: There is no heat exchange if the system and
the bath are at the same temperature. The above exact re-
sults decidedly demonstrate the non-Markovian effects can
result in the invalidation of the Jarzynski-Wójcik fluctuation
theorem.

In Fig. 2(a), we display the dynamics of 〈Q(τ )〉 with differ-
ent coupling strengths. One sees that, when the system-bath
coupling is very weak, the long-time result from the exact
simulation is in qualitative agreement with that of Eq. (39).
However, in the strong-coupling regimes [see Fig. 2(b)] or
at low temperature [see Fig. 2(c)], the exact result shows a
relatively large deviation from Eq. (39). Such a difference
from the prediction of the canonical thermalization theory is
induced by the non-Markovian effect.

The oscillations appeared in the dynamics of 〈Q(τ )〉 can be
viewed as an evidence of non-Markovianity [65]. As demon-
strated in many previous articles [66–69], in the Markovian
regime, the quantum heat unidirectionally flows between the
system and the bath; in the non-Markovian regime, an energy
backflow may occur and leads to these oscillations in the
dynamics of the quantum heat. In Fig. 2(d), we clearly observe
such oscillations of during the dynamics of the quantum heat.
This result convinces us that our method truly captures the
non-Markovian behavior of the quantum heat exchange in the
relaxation process described by the Caldeira-Leggett model.

VI. DISCUSSIONS AND CONCLUSIONS

Before concluding our paper, three important remarks shall
be made here.

(i) Our exact results demonstrate Jarzynski-Wójcik fluc-
tuation theorem breaks down in a non-Markovian relaxation
process. This naturally brings about another interesting ques-
tion: Does a generalized fluctuation theorem for quantum
heat exchange exist in strong-coupling or low-temperature
systems? Such a problem has been discussed in our recent
article [70]. In this article, we find the invalidation of the
Jarzynski-Wójcik fluctuation theorem can be traced back to
the violation of the detailed balance condition [71,72] in
non-Markovian regimes, which generally results in an ab-
sence of time-reversal symmetry [72] and an appearance of
noncanonical thermalization [70,73,74]. Regardless of the dis-
appearance of time-reversal symmetry [7] or the occurrence
of noncanonical thermalization [70,75,76] shall contribute to
the breakdown of the Jarzynski-Wójcik fluctuation theorem.
In this non-Markovian case, by introducing an effective tem-
perature and recovering the detailed balance condition, we
establish a generalized fluctuation theorem for quantum heat
being valid for arbitrary system-bath coupling strengths at
arbitrary temperatures [70]. However, it is still an unknown
question whether the scheme proposed in Ref. [70] can be fea-
sible to the Caldeira-Leggett model considered in this paper.

(ii) From Eq. (37), one sees the non-Markovian steady
state of the quantum heat is sensitive to the details of the
spectral density, which is in sharp contrast to the Markovian
result [Eq. (39)]. This result means the steady-state quantum
heat can be widely tunable by using the well-developed quan-
tum reservoir-engineering technique [42–44], in which the
primary parameters or the structure of the spectral density
are experimentally controllable. For example, the coupling
strength of a quantum emitter coupled to a surface-plasmon
polariton as an environment is adjustable by changing the
distance between them [77,78]; and the structure of the spec-
tral density for a reservoir, consisting of ultracold atomic
gases, can be adjusted by regulating the scattering lengths
of these atomic gases via the Feshbach resonance [79].
The rich nonequilibrium character of quantum heat in the
non-Markovian regime may be beneficial for realizing an
engineered quantum heat engine. In fact, several previous
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studies have demonstrated that a controllable quantum heat
during thermodynamic cycles is able to boost the performance
of quantum heat engines [80–83].

(iii) Although the results from our present paper are in
qualitative agreement with those of the normal mode trans-
formation method used in Ref. [33], they are totally different
from a technical point of view. In Ref. [33], one needs to
diagonalize the Caldeira-Leggett Hamiltonian. While, in this
paper, one needs to solve the evolution of the Hu-Paz-Zhang
equation in terms of the Wigner function, which is a pure dy-
namics problem. Compared with that of Ref. [33], the scheme
in this paper is much simpler. As displayed in Appendix A of
the Ref. [33], one needs to handle a large number of numer-
ical integrations and summations of series using the normal
mode transformation method, which may lead to problems
of convergence. These numerical difficulties are effectively
avoided in this paper. In this sense, our present scheme have
an advantage of high efficiency over that of the normal mode
transformation method. On the other hand, the normal mode
transformation is applicable only for a quadratic Hamilto-
nian, say, the Caldeira-Leggett model and the model of an
externally dragged harmonic oscillator linearly coupled to an
assembly of harmonic oscillators [84]. It is generally difficult
to apply the normal mode transformation to the anharmonic
case. In contrast, as demonstrated in Refs. [85–87], the master
equation approach in terms of the Wigner formalism can be
generalized to the general potential cases. In this sense, the
master equation approach enables a more extensive scope of
applicability. It would be interesting to extend our present
study to the anharmonic case in the future. Anyway, we be-

lieve that any alternative analytical and simple approach can
be of importance for a better understanding of the statistics of
quantum heat in a non-Markovian relaxation process.

In summary, by making use of the exact solution of
the Hu-Paz-Zhang equation in terms of the reduced Wigner
function, we investigate the statistics of quantum heat dur-
ing a non-Markovian relaxation process described by the
Caldeira-Leggett model. The exactly analytical expressions
of the characteristic function and the average quantum heat
are derived. With these results at hand, in the non-Markovian
regime, we find (i) the Jarzynski-Wójcik fluctuation theorem
for quantum heat breaks down and (ii) the steady-state av-
erage quantum heat becomes sensitive to the details of the
spectral density, which leads to a rich nonequilibrium char-
acteristics. These results are completely different from those
of the Born-Markovian results in many previous studies. Our
work may improve the understanding of the quantum ther-
modynamics in the strongly coupled or the low-temperature
systems. Moreover, the highly tunable quantum heat may have
potential applications in optimizing the efficiency of quantum
heat engines.
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APPENDIX A: THE EXPRESSIONS OF G(t ) AND A(t )

For the Ohmic spectral density given by Eq. (12), the memory function reads

μ(t ) =
∫ ∞

0
dω

J (ω)

ω
cos(ωt ) = ωcκe−ωct . (A1)

For the sake of convenience, in this paper, we concentrate on the case of ωc/κ � 1, which leads to μ(t ) � 2κδ(t ) [33,88,89].
The corresponding expression of G(t ) is then given by

G(t ) = L−1

(
1

s2 + κs + ω2
0

)
= sin(�t )

�
e− 1

2 κt , (A2)

where L−1 denotes the inverse Laplace transformation and � =
√

ω2
0 − 1

4κ2 is the renormalized frequency. From the above
expression, one finds

G(−t ′) − G(t − t ′) = G(−t ′) − G(t )
[
Ġ(−t ′) + 1

2κG(−t ′)
] − G(−t ′)

[
Ġ(t ) + 1

2κG(t )
]
. (A3)

Using the above equality, one sees

x̂(t ) =
∫ t

0
dt ′G(t − t ′) f̂ (t ′)

=
∫ t

−∞
dt ′G(t − t ′) f̂ (t ′) −

∫ 0

−∞
dt ′G(−t ′) f̂ (t ′) +

∫ 0

−∞
dt ′[G(−t ′) − G(t − t ′)] f̂ (t ′)

= F̂ (t ) − [Ġ(t ) + κG(t )]F̂ (0) − G(t ) ˙̂F (t ), (A4)

where

F̂ (t ) =
∫ t

−∞
dt ′G(t − t ′) f̂ (t ′). (A5)
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Using the fluctuation-dissipation theorem [39], one can find the correlation function of F̂ (t ) is

�(t − t ′) = 〈F̂ (t )F̂ (t ′) + F̂ (t ′)F̂ (t )〉 = 2κ

π

∫ ∞

0
dω

ω(
ω2

0 − ω2
)2 + κ2ω2

coth

(
βbω

2

)
cos[ω(t − t ′)]. (A6)

With Eq. (A4) and Eq. (A6) at hand, the elements of At are given by

A11(t ) = 1
2�(0) − 1

2 �̈(0)G2(t ) + 1
2�(0)[κG(t ) + Ġ(t )]2 − �(t )[κG(t ) + Ġ(t )] + �̇(t )G(t ), (A7)

A22(t ) = − 1
2 �̈(0) − 1

2 �̈(0)Ġ2(t ) + 1
2�(0)[κĠ(t ) + G̈(t )]2 − �̇(t )[κĠ(t ) + G̈(t )] + �̈(t )Ġ(t ), (A8)

A12(t ) = A21(t ) = − 1
2 �̈(0)G(t )Ġ(t ) + 1

2�(0)[κG(t ) + Ġ(t )][κĠ(t ) + G̈(t )] − 1
2�(t )[κĠ(t ) + G̈(t )] − 1

2 [κ�̇(t ) − �̈(t )]G(t ).

(A9)

In the long-time limit, we have G(∞) = Ġ(∞) = G̈(∞) = 0 which results in

A11(∞) = 1

2
�(0) = κ

π

∫ ∞

0
dω

ω

(ω2
0 − ω2)2 + κ2ω2

coth

(
βbω

2

)
, (A10)

A22(∞) = −1

2
�̈(0) = κ

π

∫ ∞

0
dω

ω3

(ω2
0 − ω2)2 + κ2ω2

coth

(
βbω

2

)
, (A11)

and A12(∞) = A21(∞) = 0. From Eqs. (A10) and (A11), it is clear to see that A∞ heavily depends on the system-bath coupling
strength.

Notice that

lim
κ→0+

κ

π

1(
ω2

0 − ω2
)2 + κ2ω2

= 1

ω2
δ(ω − ω0), (A12)

then, in the weak-coupling limit, we have

lim
κ→0+

A11(∞) =
∫ ∞

0
dω

ω

ω2
coth

(
βbω

2

)
δ(ω − ω0) = 1

ω0
coth

(
βbω0

2

)
, (A13)

lim
κ→0+

A22(∞) =
∫ ∞

0
dω

ω3

ω2
coth

(
βbω

2

)
δ(ω − ω0) = ω0 coth

(
βbω0

2

)
. (A14)

Using the above two equations, one can easily finds Eq. (36) and Eq. (37) reduces to Eq. (38) and Eq. (39), respectively.

APPENDIX B: THE REDUCED WIGNER FUNCTION OF THE CALDEIRA-LEGGETT MODEL

In this Appendix, we show the details of deriving the reduced Wigner function of the Caldeira-Leggett model. By tracing out
the degrees of freedom of the thermal bath, the time-dependent reduced Wigner function of the system reads

W (qt , pt ) = 1

(2π )N

∫ +∞

−∞
dqt

∫ +∞

−∞
d ptWtot(qt , pt , qt , pt ), (B1)

where Wtot(qt , pt , qt , pt ) denotes the Wigner function of the total Hamiltonian, qt = [q1(t ), q2(t ), ..., qN (t )] and pt =
[p1(t ), p2(t ), . . . , pN (t )] are the time-dependent coordinates and the momenta of the thermal bath, respectively. Due to the fact
that the evolution of the total system is determined by the Liouville equation, we have Wtot(qt , pt , qt , pt ) = Wtot(q0, p0, q0, p0),
which leads to

W (qt , pt ) = 1

(2π )N

∫ +∞

−∞
dqt

∫ +∞

−∞
d ptWtot(q0, p0, q0, p0)

= 1

(2π )N

∫ +∞

−∞
dqt

∫ +∞

−∞
d ptW (q0, p0)

N∏
j=1

WG[q j (0), p j (0)], (B2)

with

WG[q j (0), p j (0)] = 2 tanh

(
βbω0

2

)
exp

{
− tanh

(
1
2βbω0

)
ω0

[p j (0)2 + ω0q j (0)2]

}
(B3)

being the Wigner function of the Gibbs state of the jth environmental mode (see Appendix C for the derivation).
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Next, we transform the integration variables from the time-
dependent coordinates of the thermal bath dqt d pt to the initial
coordinates of the thermal bath dq0d p0 with fixed {qt , pt } as
follows [39]

dqt d pt = ∂ (qt , pt , qt , pt )

∂ (qt , pt , q0, p0)
dq0d p0

= ∂ (qt , pt , qt , pt )

∂ (q0, p0, q0, p0)

∂ (q0, p0, q0, p0)

∂ (qt , pt , q0, p0)
dq0d p0

=
[

∂ (qt , pt , q0, p0)

∂ (q0, p0, q0, p0)

]−1

dq0d p0

=
(

∂qt

∂q0

∂ pt

∂ p0
− ∂qt

∂ p0

∂ pt

∂q0

)−1

dq0d p0. (B4)

The relation between {qt , pt } and {q0, p0} can be ob-
tained from Eq. (19) and Eq. (20) by performing the
Weyl-Wigner transformation, which transforms the op-
erators {q̂(t ), p̂(t ), q̂(0), p̂(0), x̂(t )} to classical variables
{qt , pt , q0, p0, xt } as

qt = Ġt q0 + Gt p0 + xt , pt = G̈t q0 + Ġt p0 + ẋt . (B5)

Together with the above equations, we finally have

W (qt , pt ) = 1

(2π )N

1

Ġ2
t − Gt G̈t

×
∫ +∞

−∞
dq0

∫ +∞

−∞
d p0W (q0, p0)

×
N∏

j=1

WG[q j (0), p j (0)], (B6)

where Gt ≡ G(t ). By introducing the Fourier transformation
of W (q0, p0)

W (q0, p0) = 1

(2π )2

∫ +∞

−∞
d q̃0

×
∫ +∞

−∞
d p̃0W̃ (q̃0, p̃0)ei(q̃0 p0+p̃0q0 ), (B7)

and using the relations

q0 = Ġt (qt − xt ) − Gt (pt − ẋt )

Ġ2
t − Gt G̈t

, (B8)

p0 = −G̈t (qt − xt ) + Ġt (pt − ẋt )

Ġ2
t − Gt G̈t

, (B9)

one finds

W (qt , pt ) = 1

(2π )2

1

Ġ2
t − Gt G̈t

∫ +∞

−∞
dq̃0

×
∫ +∞

−∞
d p̃0W̃ (q̃0, q̃0)〈ei(q̃0 p0+p̃0q0 )〉. (B10)

Next, we define two new variables ξ and ζ as

q̃0 = Ġtξ + Gtζ , p̃0 = G̈tξ + Ġtζ , (B11)

which leads to dq̃0d p̃0 = (Ġ2
t − Gt G̈t )dξdζ and q̃0 p0 +

p̃0q0 = ξ (pt − ẋt ) + ζ (qt − xt ), so that

W (qt , pt ) = 1

(2π )2

∫ +∞

−∞
dξ

∫ +∞

−∞
dζW̃ (Ġtξ + Gtζ , G̈tξ + Ġtζ )ei(ξ pt +ζqt )〈e−i(ξ ẋt +ζxt )〉

= 1

(2π )2

∫ +∞

−∞
dξ

∫ +∞

−∞
dζW̃ (Ġtξ + Gtζ , G̈tξ + Ġtζ )ei(ξ pt +ζqt )e− 1

2 (〈ẋ2
t 〉ξ 2+〈x2

t 〉ζ 2+〈xt ẋt +ẋt xt 〉ξζ ), (B12)

where we have used the Gaussian property of xt . Inserting the inverse Fourier transform of W̃ (q̃0, p̃0), namely

W̃ (q̃0, p̃0) =
∫ +∞

−∞
dq0

∫ +∞

−∞
d p0W (q0, p0)e−i(q̃0 p0+p̃0q0 ) (B13)

into Eq. (B12), we have

W (qt , pt ) = 1

(2π )2

∫ +∞

−∞
dq0

∫ +∞

−∞
d p0W (q0, p0)

×
∫ +∞

−∞
dξ

∫ +∞

−∞
dζe−i[(Ġt ξ+Gt ζ )p′

t +(G̈t ξ+Ġt ζ )q′
t ]ei(ξ pt +ζqt )e− 1

2 (〈ẋ2
t 〉ξ 2+〈x2

t 〉ζ 2+〈xt ẋt +ẋt xt 〉ξζ )

= 1

(2π )2

∫ +∞

−∞
dq0

∫ +∞

−∞
d p0W (q0, p0)

∫ +∞

−∞
dye− 1

2 yAt yT +iRt y, (B14)

where y = (ξ, ζ )T . Then, using the following Gaussian integral formula:

∫ +∞

−∞
dye− 1

2 yAt yT +iRt y =
√

(2π )Dim(At )

Det(At )
e− 1

2RtA
−1
t Rt , (B15)
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to work out the integrals over ξ and ζ , we finally arrive at

W (qt , pt ) = 1

2π

∫ +∞

−∞
dq0

∫ +∞

−∞
d p0

1√
Det(At )

e− 1
2RtA

−1
t Rt W (q0, p0)

=
∫ +∞

−∞
dq0

∫ +∞

−∞
d p0Pt (qt , pt , q0, p0)W (q0, p0). (B16)

The above expression recovers Eq. (23) in the main text by using {qt , pt , q0, p0} in place of {q, p, q′, p′}.

APPENDIX C: THE WELY SYMBOL OF THE GIBBS STATE

In this Appendix, we show how to derive the Wely symbol of the Gibbs state. According to the definition of the Weyl symbol
(Eq. (24) in the main text), one has

[
ρG

s

]
w

(q, p) =
∫ ∞

−∞
dv

〈
q − 1

2
v

∣∣∣∣ρG
s

∣∣∣∣q + 1

2
v

〉
eipv

= 1

Zs(βs)

∞∑
n=0

e−βsω0(n+ 1
2 )

∫ ∞

−∞
dv

〈
q − 1

2
v

∣∣∣∣n
〉〈

n

∣∣∣∣q + 1

2
v

〉
eipv

= 1

Zs(βs)

∞∑
n=0

e−βsω0(n+ 1
2 )

∫ ∞

−∞
dvun

(
q − 1

2
v

)
un

(
q + 1

2
v

)
eipv,

(C1)

where un(x) is the wave function of the Fock state in the position representation, i.e.,

un(x) =
(

ω0

π

)1/4 1√
2nn!

Hn(
√

ω0x)e− 1
2 ω0x2

, (C2)

with Hn(x) being the Hermite polynomials. By introducing a new variable γ = √
ω0v, Eq. (C1) can be reexpressed as

[
ρG

s

]
w

(q, p) = 1√
π

∞∑
n=0

1

2nn!
e−βsω0(n+ 1

2 )−ω0q2
∫ ∞

−∞
dγ Hn

(√
ω0q + 1

2
γ

)
Hn

(√
ω0q − 1

2
γ

)
e
− ipγ√

ω0
− 1

4 γ 2

. (C3)

Notice that

−
(γ

2

)2
− ipγ√

ω0
−

(
ip√
ω0

)2

−
(

p√
ω0

)2

= −
(

γ

2
+ ip√

ω0

)2

−
(

p√
ω0

)2

, (C4)

and by introducing another new variable λ = γ /2 + ip/
√

ω0, Eq. (C3) becomes

[
ρG

s

]
w

(q, p) = 2√
π

∞∑
n=0

1

2nn!
e−βsω0(n+ 1

2 )−ω0q2− 1
ω0

p2
∫ ∞

−∞
dλHn

(√
ω0q + λ − ip√

ω0

)
Hn

(√
ω0q − λ + ip√

ω0

)
e−λ2

= 2√
π

∞∑
n=0

(−1)n

2nn!
e−βsω0(n+ 1

2 )−ω0q2− 1
ω0

p2
∫ ∞

−∞
dλHn

(
λ + √

ω0q − ip√
ω0

)
Hn

(
λ − √

ω0q − ip√
ω0

)
e−λ2

, (C5)

where we have used the symmetry relation of the Hermite polynomials Hn(−x) = (−1)nHn(x).
Next, by using the following integral formula of the Hermite polynomials:

1√
π2nn!

∫ ∞

−∞
dλHn

(
λ + √

ω0q − ip√
ω0

)
Hn

(
λ − √

ω0q − ip√
ω0

)
e−λ2 = Ln

[
2

ω0

(
p2 + ω2

0q2)], (C6)

where Ln(x) denotes the nth Laguerre polynomial and the generating function of the Laguerre polynomials,

(1 − θ )
∞∑

n=0

Ln(x)θn = exθ/(θ−1), (C7)

we finally arrive at

[
ρG

s

]
w

(q, p) = 2 tanh

(
βsω0

2

)
exp

[
− tanh

(
1
2βsω0

)
ω0

(p2 + ω2
0q2)

]
, (C8)

which reproduces Eq. (32) in the main text.
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