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Qubit reset with a shortcut-to-isothermal scheme
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Landauer’s principle shows that the minimum energy cost to reset a classical bit in a bath with temperature
T is kBT ln 2 in the infinite time. However, the task to reset the bit in finite time has posted a new challenge,
especially for quantum bit (qubit) where both the operation time and controllability are limited. We design a
shortcut-to-isothermal scheme to reset a qubit in finite time τ with limited controllability. The energy cost is
minimized with the optimal control scheme with and without bound. This optimal control scheme can provide a
reference to realize qubit reset with minimum energy cost for the limited time.
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I. INTRODUCTION

Quantum information and quantum computation, a frontier
interdisciplinary field of quantum mechanics and computer
or information science, has been developing rapidly in recent
years. One of its key goals is to realize the quantum computer
to complete tasks that cannot be completed by traditional
classical methods [1]. Quantum bit (qubit) is the basic unity
for quantum computer to store, process, and transmit infor-
mation [1]. Different from classical computers, the number of
available qubits is typically limited due to the difficulties of
producing a single qubit. In consideration of the difficulties
and costs of producing qubits, resetting qubits for reuse is
therefore an inevitable step [1–6] for the qubit-demanding
tasks.

The process of bit resetting is to restore its state irreversibly
to one particular state regardless of its initial state. Such an
irreversibility process leads to unavoidable energy cost. Lan-
dauer derived the famous Landauer’s Principle in 1961 [2],
which states that a minimum bound of energy cost of kBT ln 2
is required to reset one bit in a heat bath with temperature
T [2,7–11]. Such bound is reached only in an infinite-time
process. However, we are typically limited by the available
operation time in the quantum computation process, which
should be completed within the coherence time of the qubit
[1]. Such new scenario has posted a quest for the quantum
generalization of the Landauer’s principle for the finite-time
reset processes [1,11–25].

One of the possible protocols is to shorten the reset time
with the shortcut-to-isothermal scheme, where the system is
driven with an auxiliary Hamiltonian Ha in addition to the
original Hamiltonian Ho to evolve along the instantaneous
equilibrium state of Ho within a finite-time process [26,27].
Such scheme has been applied into many fields to reduce the
time to drive the system from one state to another [28–30], to
control biological evolution [31,32], to construct finite-time
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engines [33–36], and to improve the accuracy of free-energy
estimation [37]. Such finite-time process typically accom-
panies additional energy consumption due to irreversibility
produced in the finite-time thermodynamical process. In the
current application into qubit reset, the controllability of the
quantum devices also limits the available auxiliary Hamilto-
nian Ha in the shortcut-to-isothermal scheme. Therefore, we
consider the shortcut-to-isothermal reset process of qubits for
the condition with and without the limits of the controllability,
referred as bounded and unbounded control condition in the
later discussion.

The rest of the current paper is organized as follows. In
Sec. II, we introduce the concept of the qubit reset, design a
shortcut-to-isothermal scheme on the qubit reset, and find the
optimal control protocol to minimize the extra work in the un-
bounded control condition. In Sec. III, we obtain the optimal
scheme for the bounded control condition, and show the cases
where the experimental conditions are regarded as bounded
or unbounded. We also show the existence of the inaccessible
region where the desired reset state is not achievable due to
experimental limitations. The extra work is also calculated
for the unbounded control condition and compared with the
bounded control condition. In Sec. IV, we conclude the paper
with additional discussions.

II. MINIMUM ENERGY COST FOR UNBOUNDED
CONTROL

For the quantum computing devices, qubit is the basic
element whose two quantum states are encoded as the logical
states zero and one, respectively. The two-state system is
described by the Hamiltonian

Ho[λ(t )] = 1
2λ(t )σz, (1)

where the excited state |e〉 represents the logical state one
and the ground state |g〉 represents the logical state zero. σz =
|e〉〈e| − |g〉〈g| is the Pauli operator, and the energy difference
λ(t ) between the two states is tuned by an outside agent under
a given protocol to realize the reset process.
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FIG. 1. Two steps to reset a qubit. In the first step, the energy
difference is raised from λ0 = 0 to λf within the heat bath at the
temperature T to reduce the population of excited state |e〉 with the
precision ε. In the second step, we reset the energy difference and
keep the population unchanged.

The process to reset the qubit is to drive its state evolution
to the ground state |g〉 regardless of its initial state. A straight-
forward scheme is to increase the energy difference to drive
the major population to the ground state. Here, we denote
pe(t )(pg(t )) as the population of the excited (ground) state.
The goal of the reset process typically lies in two aspects. The
first one is to reduce the population pe on the excited state
to a tolerable precision, i.e., pe(τ ) = ε in the finite time τ .
The second one is to reset the control parameter to its original
value, i.e., λ(τ ) = λ0, for subsequent operations. To achieve
the goal above, we design a two-step scheme, illustrated in
Fig. 1.

(i) Population reduction with the shortcut-to-isothermal
scheme. Raise the energy difference λ(t ) from λ0 to λf to
reduce the population of the excited state |e〉. Such population
reduction is done by the shortcut-to-isothermal scheme pre-
sented later. It is worth mentioning that our shortcut scheme
ensures that the bit is reset to the logical zero with the required
precision

ε = e−βλf

1 + e−βλf
. (2)

(ii) Parameter quench. In this step, the energy difference
of the system is reset to λ0 and the population remains
unchanged.

By the end of the two steps, not only is the population reset
to the logical state zero, but also the system’s parameter is
reset to the initial value. In the normal control process, the
evolution of the system typically has a lag, which prevents
the qubit to reach the desired control precision. To over-
come such lag, we introduce the shortcut to isothermal to
escort the system evolution along the designed path. In the
shortcut-to-isothermal scheme, an auxiliary Hamiltonian Ha is
added into the original Hamiltonian to escort the system evo-
lution as the instantaneous equilibrium states ρ (1)

sc,eq[λ(t )] =
exp(−βHo(t ))/tr(exp(−βHo(t ))) of the original Hamiltonian
Ho. Here β = (kBT )−1 is the inverse temperature with Boltz-
mann constant kB. Normally, we ensure the vanish of the
current auxiliary Hamiltonian Ha(0−) = Ha(τ+) = 0 to re-
move the additional control, where 0− = 0 − δ, τ+ = τ + δ,

and δ is infinitesimal in the standard mathematical definition.

A straightforward auxiliary Hamiltonian for the qubit is

Ha[λa(t )] = 1
2λa(t )σz. (3)

The total Hamiltonian is Htot = 1/2λH (t )σz, where λH (t ) =
λ(t ) + λa(t ) is an effective energy difference. The master
equation for the two-level system is [38]

d

dt
ρ(t ) = − γ

2
(σ−σ+ρ(t ) − 2σ+ρ(t )σ− + ρ(t )σ−σ+)n(λH )

− γ

2
(σ+σ−ρ(t ) − 2σ−ρ(t )σ+ + ρ(t )σ+σ−)

× (n(λH ) + 1), (4)

where σ+ = |e〉〈g|, σ− = |g〉〈e| and γ is the decay rate. Here
n(λH ) = (exp(βλH ) − 1)−1 is the average number for the
thermal bath mode with the frequency λH . With the require-
ment of the instantaneous equilibrium state ρ(t ) = ρ (1)

sc,eq[λ(t )]
in the short cut scheme, the evolution of the excited state
population is given by the following equation:

d pe

dt
= γ

e−βλH (1 − pe) − pe

1 − e−βλH
. (5)

To find the optimal control, we first calculate the energy
cost for the two-step reset process. The energy cost in the first
step W (1)

sc = ∫ τ

0 tr(ρ (1)
sc,eqḢtot )dt [33,39–41] is obtained explic-

itly as

W (1)
sc = 1

β
J + λH (τ )

(
ε − 1

2

)
, (6)

where J = −γ β
∫ τ

0 (e−βλH (1 − pe) − pe)/(1 − e−βλH )λH dt .
In the second step, the state of the system remains unchanged
ρ (2)

qa = ρ (1)
sc,eq[λf ]. The energy cost is obtained as [13]

W (2)
qa = −λH (τ )

(
ε − 1

2

)
, (7)

and the total energy cost in our shortcut-to-isothermal scheme
Wsc = W (1)

sc + W (2)
qa is

Wsc = 1

β
J . (8)

The detailed derivations are in Appendix A.
The energy cost to reset the bit for a quasistatic process Wqs

is the change of the free energy [13]

Wqs = 
F = 1

β
(ln 2 − S(ε)), (9)

where S(ε) = −ε ln ε − (1 − ε) ln(1 − ε) is the Shannon en-
tropy of the final state. For ideal reset ε → 0, S(ε) → 0, the
energy cost reached the Landauer’s limit.

Here we aim to determine the extra energy cost Wex =
Wsc − Wqs to reset the qubit due to finite-time operation
as

Wex = 1

β
(J − (ln 2 − S(ε))). (10)

For the fixed reset precision ε, the task to minimize the extra
work Wex is converted to the question to find the minimum of
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FIG. 2. The optimal control scheme λ∗
H (in units of β−1) as the

function of time t (in units of γ −1) with different reset times τ (in
units of γ −1). The numerical simulation is performed by the shooting
method and the boundary condition is pe(0) = 1/2 and pe(τ ) = ε.
Different markers represent different reset times γ τ = 100 (circle)
and 300 (cross) and the reset precision is set as ε = 10−5. The gray
dashed lines show the final control amplitude λH (τ ). It is clear to
observe that for the optimal control scheme, the control parameter
λ∗

H (t ) monotonically increases, and for fixed reset precision larger
control amplitude λH (τ ) is needed for shorter reset time τ .

the objective function J with constraints as follows:

equation of motion:
d pe

dt
= γ

e−βλH (1 − pe) − pe

1 − e−βλH
,

objective function: J[pe(t ); λH (t )]

= −γ β

∫ τ

0

e−βλH (1 − pe) − pe

1 − e−βλH
λH dt,

boundary conditions:

{
pe(0) = 1

2
pe(τ ) = ε.

To find such minimum, we introduce an effective Lagrange
L(pe; λH ) = −γ β(e−βλH (1 − pe) − pe)/(1 − e−βλH )λH . The
cost function is rewritten as J = ∫ τ

0 Ldt , and the minimum is
obtained by solving the Euler-Lagrange equation ∂L/∂ pe −
d (∂L/∂ ṗe)/dt = 0, which yields an ordinary differential
equation for pe(t ) as follows:

p̈e = γ 2
(
1 − 2pe + 2p2

e

)
ṗ2

e + 2γ ṗ3
e + 2 ṗ4

e

γ (1 − 2pe)(2γ pe(1 − pe) + ṗe)
. (11)

Here, we have used the equation of motion in Eq. (5) to re-
place the parameter λH . The solution of the above equation is
denoted as p∗

e (t ). Substituting p∗
e (t ) back into the equation of

motion, we can get the corresponding control scheme λ∗
H (t ).

In Fig. 2, we show the optimal control scheme λ∗
H (t ) with

different reset time τ . The numerical simulation is performed
by solving Eq. (11) with the shooting method [27] for different
reset times γ τ = 100 and 300 under the reset precision ε =
10−5. The boundary conditions are pe(0) = 1/2 and p(τ ) =
ε. The gray dashed lines show the final control amplitude
λH (τ ).

With these curves, we observe two facts as follows:
(i) For the optimal control scheme, the control parameter

λ∗
H (t ) increases monotonically with time t .

(ii) For fixed reset precision, larger control amplitude
λH (τ ) is needed for shorter reset time τ .

FIG. 3. (a) The minimum extra work Wex (in units of β−1 ln 2) vs
the reset precision ε in linear-log plot. Different colors and markers
represent different reset times γ τ = 100 (circle), 300 (cross), and
500 (plus sign), respectively. We can see that the lower reset precision
we desire, the higher extra work we need to down. And when the
reset precision ε → 0, the extra work approaches a constant. (b) The
minimum extra work Wex (in units of β−1 ln 2) vs the reset time τ

(in units of γ −1) in the log-log plot. A line with a slope of −1,
shows the inverse relation between the minimum extra work Wex

and the reset time τ . Different colors and markers represent different
reset precisions ε = 10−1 (dashdot), 10−3 (dashed), and 10−5 (solid),
respectively.

With the optimal control scheme λ∗
H , we calculate and

show the extra work Wex as functions of the reset precision
ε in Fig. 3(a) and the control time τ in Fig. 3(b). In Fig. 3(a),
different markers represent difference reset times γ τ = 100
(circle), 300 (cross), and 500 (plus sign), respectively. For a
fixed reset time, the lower the reset precision we desire, the
larger the extra work is needed. In Fig. 3(b), different markers
represent different reset precisions ε = 10−1 (dashdot), 10−3

(dashed), and 10−5 (solid), respectively. The curves show that
the extra work is inversely proportional to reset time τ for
fixed reset precision. The choice of parameters ensures the
visible difference in the reset process.

Noticing the second fact, we find the control parameter λH

may reach the maximum value of the bounded control condi-
tion, i.e., λH ∈ [0, λm] in some situations, which is discussed
in the next section.

III. MINIMUM ENERGY COST FOR BOUNDED CONTROL

In this section, we consider the energy minimization in
the bounded control condition λH ∈ [0, λm], which is deter-
mined by the detailed condition of the experimental setup.
In some of the experimental setup, the energy difference
λH cannot be raised to infinity. For example, considering a
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FIG. 4. The optimization of the touch time t∗. All the curves
AM1, AM2, and AM3 are the solution of Euler-Lagrange equa-
tion λ

(opt)
H (t ) = λ∗

H (t ) and all the lines M1B, M2B, and M3B are on the
boundary λ

(opt)
H (t ) = λm. Different points M1, M2, and M3 represent

different touch times t∗
1 , t∗

2 , and t∗
3 , respectively. It is proved that the

touch time t∗ is optimized by the continuity of λ
(opt)
H and p(opt)

e in
Appendix D.

transmon superconducting qubit in an LC resonant circuit
with a nonlinear Josephson junction, the energy difference
is controlled by changing the Josephson energy EJ , the ca-
pacitive energy EC , and the inductive energy EL [42–49].
Naturally, the technological limits of the Josephson junction,
capacitor, and inductor, such as materials choice, junction
area of the Josephson junction, and insulator thickness, limit
the energy difference [44,46]. A specific example of energy
difference control is to replace the single Josephson junction
with the so-called dc-SQUID loop. “SQUID” stands for su-
perconducting quantum interference device and a dc-SQUID
loop is a superconducting loop with two junctions in parallel.
By applying a magnetic field on the dc-SQUID loop, the
critical current IC of the Josephson junction can be controlled.
In other words, the Josephson energy EJ can be tuned by
the magnetic flux on the dc-SQUID, since for the Josephson
junction we have EJ = �0IC/(2π ) where �0 = 2π h̄/(2e) is
the magnetic flux quantum [43,50]. In this example, the limit
of magnetic flux on dc-SQUID limits the energy difference.
Under such constraint, the typical experimental parameter is

FIG. 5. The optimal control scheme with (solid line) and without
(dashed line) bound as the function of time t . The gray line is the
bound βλm = 17. Reset precision is set to ε = 10−5. In this situation,
γ τc1 = 10.8239 and γ τc2 = 38.2281. The reset time is set as γ τ =
10.8321. At the bound control condition, the optimal scheme stays
on the boundary once it touches the boundary and stays on it after
the touch time t∗ = 6.2715/γ .

FIG. 6. Diagram of cases for the bounded control problem. The
circle and the cross lines represent the boundary lines τc1 and τc2

divided three cases. The boundary is set to βλm = 17. The reset tasks
which is represented by the point in inaccessible region cannot be
accomplished. The untouched region means that those reset tasks can
be accomplished and do not touch the boundary. The touched region
represents those reset tasks which can be accomplished but touch the
boundary.

λm ∼ 2π × 10 GHz or βλm ∼ 5 for superconducting qubit’s
typical working temperature T = 10mK [46].

To simplify the discussion for the bounded control condi-
tion, we first introduce a proposition with its proof presented
in Appendix B.

Proposition. For the optimal reset scheme, if λH touches
the upper boundary λm at the touch time t∗, then λH will
remain λm for later time t∗ < t < τ in the control protocol.

With this proposition, there are two critical reset times
τc1 and τc2, by which the reset time τ is categorized into
three cases as inaccessible, untouched, and touched for given
reset precision ε as in Table I [51]. The first reset time τc1

is determined by the extreme optimal control λH (t ) = λm,
and the second reset time τc2 is determined by the boundary
condition λH (τ ) = λm. Detailed derivations are presented in
Appendix C. The three cases are described as follows.

FIG. 7. Minimum extra work done in the reset process as the
function of reset time τ in the log-log plot with (solid line) and
without (dashed line) bound. The parameters are the same as Fig. 5.
The circle and the cross lines represent τc1 and τc2, respectively. In
the untouched region, the solid and the dashed lines are coincident.
In the touched region, the bound minimum extra work is larger than
the unbound minimum extra work with a deviation from the inverse
relation. Their difference increases with the decrease of the reset
time.
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TABLE I. Reset time τ is categorized into three cases for given
reset precision ε with two critical reset times τc1 and τc2. λ∗

H (t ) is the
solution of Eq. (11). The calculations of τc1 and τc2 are presented in
Appendix C. The touch time t∗ is discussed in Fig. 4.

Case Reset time τ Reset process

Inaccessible τ < τc1 not accomplish

Touched τc1 < τ < τc2 λ
(opt)
H (t ) =

{
λ∗

H (t ) t < t∗

λm t > t∗

Untouched τ > τc2 λ
(opt)
H (t ) = λ∗

H (t )

(i) Inaccessible, where τ < τc1. In the inaccessible case,
one cannot drive the system to the final state with the precision
ε with any possible reset process, so the reset task is not
accomplished when τ < τc1.

(ii) Touched, where τc1 < τ < τc2. In the touched case, the
energy difference λH reaches the boundary λm at touch time
t∗, which is an additional parameter variable to be optimized
as illustrated in Fig. 4. Before the touch time, the optimal reset
scheme follows the solution of Eq. (11) with λ

(opt)
H (t ) = λ∗

H (t ).
After the touch time, the optimal reset scheme is on the bound-
ary with λ

(opt)
H (t ) = λm. It is proved that the touch time t∗ is

optimized by the continuity of λ
(opt)
H and p(opt)

e at the touch
time t∗ in Appendix D.

(iii) Untouched, where τ > τc2. In the untouched case, the
reset process is the same with the unbounded control condition
with λ

(opt)
H (t ) = λ∗

H (t ).
Figure 5 shows the difference in optimal control schemes

with and without bound in the touched case. The parameters
are set as βλm = 17 and ε = 10−5. In this situation, we obtain
the two critical times as γ τc1 = 10.8239 and γ τc2 = 38.2281.
We show the touched case with τ = 10.8321/γ . The solid
line and dashed line represent the optimal control scheme with
and without bound, respectively. For the bounded control, the
optimal scheme (the solid line) λ

(opt)
H (t ) touches the bound (the

gray line) and stays on it after the touch time t∗ = 6.2715/γ .
Figure 6 shows the diagram of cases for the bounded con-

dition with βλm = 17 on the plane of [τ, ε]. The circle and
cross lines represent the boundary lines τc1 and τc2 divided
the three cases. The choice of parameters is based on the
experimental conditions of superconducting qubits. With the
choice of these parameters, the difference between unbound
and bound conditions is clearly demonstrated. The extra work
is calculated via equation Eq. (10). For the touched case, the
objective function is calculated in the two time intervals [0, t∗]
and [t∗, τ ] as

J = J (1) + J (2). (12)

In the time interval [0, t∗], the optimal control scheme is
λ

(opt)
H (t ) = λ∗

H (t ), p(opt)
e (t ) = p∗

e (t ), and the function is explic-
itly obtained as

J (1) = −βγ

∫ t∗

0

e−βλ∗
H (1 − p∗

e ) − p∗
e

1 − e−βλ∗
H

λ∗
H dt . (13)

In the time interval [t∗, τ ], the optimal control scheme is
λ

(opt)
H (t ) = λm. Substituting it into the motion equation, we get

p(opt)
e (t ) = n(λm)

2n(λm) + 1

+
(

ε − n(λm)

2n(λm) + 1

)
e−γ (2n(λm )+1)(t−τ ), (14)

which is calculated in Appendix D. And J (2) is computed
analytically

J (2) = − βγ

∫ τ

t∗

e−βλm
(
1 − p(opt)

e
) − p(opt)

e

1 − e−βλm
λmdt . (15)

For the untouched case, the extra work is the same as that in
the unbound control condition.

Figure 7 shows the extra work with and without bound.
In the untouched case, the energy cost in the bound control
condition is the same as in the unbound control condition. In
the touched case, Wex,b is larger than Wex,ub with a deviation
from the inverse relation, and their difference increases with
the decrease of the reset time. In the inaccessible case, the
reset task cannot be accomplished.

IV. CONCLUSION

In this paper, we design a finite-time reset scheme based
on the shortcut-to-isothermal approach, and find the optimal
control scheme for the minimum extra energy cost with and
without bound λH ∈ [0, λm]. The scheme is a two-step scheme
including population reduction and parameter quench. We
find out the optimal reset scheme λ∗

H (t ) and the extra energy
cost Wex as the function of the reset precision ε and the
reset time τ . The extra energy cost Wex follows the inverse
proportional relationship as Wex ∝ 1/τ .

The bounds on the controllability make a difference to the
problem of minimizing the extra work. In this condition, the
system has three possible cases: inaccessible, untouched, and
touched. We show the existence of the first critical reset time
τc1 and the second critical reset time τc2. When τ < τc1, the
reset task is inaccessible. When τ > τc2, the reset task can be
accomplished without being any different from the unbound
control condition. When τc1 < τ < τc2, the reset task can be
accomplished but the optimal reset scheme λ

(opt)
H is not the

same as λ∗
H (t ). There exists an additional parameter touch

time t∗ to be optimized, dividing the optional reset scheme
λ

(opt)
H into two stages. The first stage is λ

(opt)
H (t ) = λ∗

H (t ), while
t < t∗. The second stage is the boundary value λ

(opt)
H (t ) = λm,

while t > t∗.
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APPENDIX A: DETAILED DERIVATIONS
OF THE ENERGY COST

In the first step, the system is on the instantaneous equilib-
rium states of the original Hamiltonian Ho as

ρ (1)
sc,eq[λ(t )] =

(
e−βλ(t )

1+e−βλ(t ) 0
0 1

1+e−βλ(t )

)
, (A1)

which is the basic requirement of the shortcut scheme. The
energy cost in the first step is

W (1)
sc =

∫ τ

0
tr
(
ρ (1)

sc,eqḢtot
)
dt (A2)

=
∫ τ

0

1

2
λ̇H (2pe − 1)dt

= 1

2
λH (2pe − 1)

∣∣∣∣
t=τ

t=0

−
∫ τ

0

1

2
λH d2pe − 1

= λH (τ )

(
ε − 1

2

)
− γ

∫ τ

0

e−βλH (1 − pe) − pe

1 − e−βλH
λH dt

= 1

β
J + λH (τ )

(
ε − 1

2

)
, (A3)

where J = −γ β
∫ τ

0 (e−βλH (1 − pe) − pe)/(1 − e−βλH )λH dt .
This is Eq. (6) in the main context. The first term J/β is
the driving energy and the second term λH (τ )(ε − 1/2) is the
change of free energy. The first term vanishes (J → 0) when
the reset time approaches to infinity τ → +∞.

In the second step, the state of the system remains
unchanged

ρ (2)
qa =

(
e−βλf

1+e−βλf
0

0 1
1+e−βλf

)
. (A4)

The energy cost in the second step is

W (2)
qa = 1

2

e−βλf − 1

1 + e−βλf

∫ 0

λH (τ )
dλ (A5)

= −λH (τ )

2

e−βλf − 1

1 + e−βλf

= −λH (τ )

(
ε − 1

2

)
, (A6)

where ε = e−βλf/(1 + e−βλf ) is the reset precision. This is
Eq. (7) in the main context. It corresponds to the change of
free energy. For the total energy cost Wsc = W (1)

sc + W (2)
qa , the

change in free energy of the system in Eq. (6) and Eq. (7)
cancel each other and only the driving energy J/β remains as

Wsc = 1

β
J . (A7)

APPENDIX B: THE PROOF OF THE PROPOSITION

By rewriting the motion equation as the equation of λH ,
we get

λH = −β ln
ṗe + γ pe

ṗe + γ (1 − pe)
. (B1)

By differentiating Eq. (B1), we get

dλH

dt
= 2(1 − pe(1 + e−βλH ))(pe − e−βλH (1 − pe))

β(1 − 2pe)(pe(1 − e−βλH ) + e−βλH )(1 − e−βλH )
.

(B2)

Noticing 0 < e−βλH < 1, 0 < pe < 1/2, we observe that the
following factors in the right side of Eq. (B2) are lager than
zero

(i) (1 − pe(1 + e−βλH )) > 0,
(ii) (1 − 2pe) > 0,
(iii) (pe(1 − e−βλH ) + e−βλH ) > 0,
(iv) (1 − e−βλH ) > 0.
And with the factor (pe − e−βλH (1 − pe)) > 0 noticing

λH > λ, we prove that λ∗
H (t ) is a monotonically increasing

function with dλH/dt > 0.

If λ∗
H touches the upper boundary λm at the time t∗, it stays

larger than λm in the interval [t∗, τ ]. Thus, for the optional
reset scheme, if the optimal control λ

(opt)
H touches the upper

boundary λm at touch time t∗, λH stay on it for all times t > t∗.

APPENDIX C: THE TWO CRITICAL RESET TIMES

The extreme optimal control is λH (t ) = λm for the whole
control process t ∈ [0, τc1] with the touch time t∗ = 0. With
this control scheme, the motion equation becomes

d pe

dt
= γ (−(2n(λm) + 1)pe + n(λm)), (C1)

whose solution is

pe(t ) = n(λm) + 1
2 e−γ (2n(λm )+1)t

2n(λm) + 1
def= φ(t ). (C2)

The first critical reset time is obtained by setting pe(τc1) = ε

as

τc1 = 1

γ (2n(λm) + 1)
ln

1

2(ε(2n(λm) + 1) − n(λm))
. (C3)

For any τ < τc1, the reset task with precision ε cannot be
accomplished in the reset time τ .

According to the proposition in the main content, the con-
dition for λ∗

H not to touch the boundary is λ∗
H (τ ) < λm. The

critical condition is that λ∗
H touches λm at the end of the

control process t = τ . And the second critical reset time τc2

is given by λ∗
H (τc2) = λm.

APPENDIX D: USING CONTINUITY CONDITION
TO CALCULATE TOUCH TIME t∗

In Fig. 4, all the curves AM1, AM2, and AM3 are the solu-
tion of Euler-Lagrange equation λ

(opt)
H (t ) = λ∗

H (t ) and all the
lines M1B, M2B, and M3B are on the boundary λ

(opt)
H (t ) =

λ∗
H (t ). Different points M1, M2, and M3 represent different

touch times t∗
1 , t∗

2 , and t∗
3 , respectively. In this section, we

derive the condition for the optimal control in the touched
case.

We show that the p(opt)
e (t ) and λ

(opt)
H (t ) is continuous at the

optimal touch time t∗. The continuity of p(opt)
e (t ) is natural be-

cause of the physical reason that the population is continuous.
The motion equation Eq. (B1) ensures the continuity of the
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control scheme λ
(opt)
H once ṗ(opt)

e is continuous in the whole
process. The continuity of ṗ(opt)

e is proved as the result of the
so-called one-sided variational problem as follows.

We write the objective function into two parts with respect
to the touch time t∗:

J[pe(t )] =
∫ t∗

−

0
L(pe, ṗe)dt +

∫ τ

t∗+
L(φ, φ̇)dt . (D1)

In the second part, pe(t ) is replaced with the defined function
in Eq. (C2) as pe(t ) = φ(t ) to avoid the misunderstanding.
The variation of the functional Eq. (D1) is obtained as

δJ = L(pe, ṗe)|t∗−δt∗ +
∫ t∗

−

0

(
∂L

∂ pe
δpe + ∂L

∂ ṗe
δ ṗe

)
dt

− L(φ, φ̇)|t∗+δt∗. (D2)

With the integration by parts, we get

δJ = (L(pe, ṗe)|t∗− − L(φ, φ̇)|t∗+ )δt∗

+ ∂L

∂ ṗe
δpe

∣∣∣∣
t∗−

+
∫ t∗

−

0

(
∂L

∂ pe
− d

dt

∂L

∂ ṗe

)
δpedt . (D3)

The continuous condition pe(t∗
−) = φ(t∗

−) results in the
δpe(t∗

−) = φ̇|t∗−δt∗. Noticing δpe(t∗
−) = δpe|t∗− + ṗe|t∗−δt∗, we

get δpe|t∗− = (φ̇ − ṗe)|t∗−δt∗. And the variation is simplified as

δJ =
∫ t∗

−

0

(
∂L

∂ pe
− d

dt

∂L

∂ ṗe

)
δpedt (D4)

+
((

L(pe, ṗe) + (φ̇ − ṗe)
∂L

∂ ṗe

)∣∣∣∣
t∗−

− L(φ, φ̇)
∣∣
t∗+

)
δt∗.

(D5)

In the time interval [0, t∗
−], the optimal control scheme ensures

pe(t ) = p∗
e (t ) with the the Euler-Lagrange equation from

Eq. (D4):

∂L

∂ pe
− d

dt

∂L

∂ ṗe
= 0. (D6)

At the time point t∗, we get the so-called transversality condi-
tion from Eq. (D5) to connect the two parts and point out the
optional t∗:

−L(φ(t∗), φ̇(t∗)) + L(p∗
e (t∗), ṗ∗

e (t∗))

+ (φ̇(t∗) − ṗ∗
e (t∗))

∂L

∂ ṗe
( ṗ∗

e (t∗), ṗ∗
e (t∗)) = 0. (D7)

With the mean value theorem on the first two terms, we get

(φ̇(t∗) − ṗ∗
e (t∗))

(
∂L

∂ ṗe
(p∗

e (t∗), k) − ∂L

∂ ṗe
(p∗

e (t∗), ṗ∗
e (t∗))

)

= 0, (D8)

where k is a value satisfying the condition
min( ṗ∗

e (t∗), φ̇(t∗)) < k < max( ṗ∗
e (t∗), φ̇(t∗)). Using the

mean value theorem again, we get

(φ̇(t∗) − ṗ∗
e (t∗))(k − ṗ∗

e (t∗))
∂2L

∂ ṗ2
e

(p∗
e (t∗), l ) = 0, (D9)

where l is a value satisfying the condition min(k, ṗ∗
e (t∗)) <

k < max(k, ṗ∗
e (t∗)). It is clear that

φ̇(t∗) = ṗ∗
e (t∗). (D10)

Therefore, λ
(opt)
H is also continuous λ∗

H (t∗) = λm because of
the motion equation Eq. (B1).

Explicitly, we get the optimal control as

p(opt)
e (t ) =

{
p∗

e (t ) 0 < t < t∗,
φ(t ) t∗ < t < τ ,

(D11)

and the optional t∗ is obtained with the above condition
λ∗

H (t∗) = λm.
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