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Interplay of phase segregation and chemical reaction: Crossover and effect on growth laws
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By combining the nonconserved spin-flip dynamics driving ferromagnetic ordering with the conserved
Kawasaki-exchange dynamics driving phase segregation, we perform Monte Carlo simulations of the nearest-
neighbor Ising model. This kind of mixed dynamics is found in a system consisting of a binary mixture of
isomers, simultaneously undergoing a segregation and an interconversion reaction among themselves. Here, we
study such a system following a quench from the high-temperature homogeneous phase to a temperature below
the demixing transition. We monitor the growth of domains of both the winner; the isomer, which survives as
the majority; and the loser, the isomer that perishes. Our results show a strong interplay of the two dynamics
at early times, leading to a growth of the average domain size of both the winner and loser as ∼t1/7, slower
than a purely phase-segregating system. At later times, eventually the dynamics becomes reaction dominated
and the winner exhibits a ∼t1/2 growth, expected for a system with purely nonconserved dynamics. On the other
hand, the loser at first show a faster growth, albeit, slower than the winner, and then starts to decay before it
almost vanishes. Further, we estimate the time τs marking the crossover from the early-time slow growth to the
late-time reaction-dominated faster growth. As a function of the reaction probability pr , we observe a power-law
scaling τs ∼ p−x

r , where x ≈ 1.05, irrespective of the temperature. For a fixed value of pr too, τs appears to be
independent of the temperature.

DOI: 10.1103/PhysRevE.109.064131

I. INTRODUCTION

Nonequilibrium dynamics of a system following a quench
from a high-temperature disordered state to a temperature
below the critical temperature Tc, marking an order-disorder
phase transition, has been an active research topic over the last
few decades [1,2]. Typical examples of order-disorder transi-
tions are ferromagnetic ordering and phase segregation in a
binary mixture. The equilibrium aspects of these transitions,
viz., values of static critical exponents, bear universal features
[3–6]. On the other hand, the corresponding nonequilibrium
kinetics of the transitions may belong to different universality
classes depending on the intrinsic transport mechanism of the
system [7–9]. However, phenomenology of both the transi-
tions is highlighted by the formation and growth of domains
of aligned magnetic spins or like species. Importantly, the
concerned domain growth is a scaling phenomenon [1,2], i.e.,
various morphology-characterizing functions, viz., the two-
point equal-time order parameter correlation function C(r, t )
and the structure factor S(k, t ), respectively, obey the relations

C(r, t ) ≡ C̃(x); x = r/�(t ) (1)

and

S(k, t ) ≡ �(t )d S̃(x); x = k�(t ), (2)

where C̃(x) and S̃(x) are time (t)-independent scaling func-
tions, d is the system dimensionality, and �(t ) is the
time-dependent characteristic length scale measuring the av-
erage domain size. In general, �(t ) grows in a power-law
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fashion as

�(t ) ∼ tα. (3)

The growth exponent α depends on the intrinsic dynamics
of the system. While for ferromagnetic ordering α = 1/2
represents the Lifshitz-Cahn-Allen (LCA) law [10], for a
solid binary-mixture phase segregation α = 1/3 stands for the
Lifshitz-Slyozov (LS) law [11,12].

In ferromagnetic ordering or phase ordering, typically one
starts with a system having magnetization m ≈ 0, and after
the quench the system approaches its new equilibrium state
where m �= 0. The intrinsic dynamics of this phenomenon is
nonconserved, as the order parameter m changes continuously
during the evolution. Conversely, during phase segregation in
a binary mixture following a quench from a homogeneous
or miscible phase, the order parameter, i.e., the concentra-
tion difference χ between the two species, remains constant
throughout the evolution. Thus, its dynamics is said to be
conserved. Monte Carlo simulations (MC) of the nearest-
neighbor Ising model have been used extensively to study
domain growth in both conserved and nonconserved sys-
tems, and the corresponding growth laws have been verified
[1,13–17]. Recently, the interest has shifted toward investi-
gating domain growth in more complex and computationally
demanding systems, e.g., the long-range Ising model with
power-law interaction, using both conserved and noncon-
served order-parameter dynamics [18–21].

In this paper, by means of MC simulations of the Ising
model, we investigate the effects of combining conserved
and nonconserved dynamics on the domain-growth laws. The
motivation of studying such a system stems from understand-
ing the nonequilibrium dynamics of a binary mixture where
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an interconversion reaction among the components occurs
simultaneously with segregation among themselves. A typ-
ical example of such a system undergoing interconversion
reaction is isomeric mixtures, e.g., conversion of cis-isomer
to trans-isomer or conversion between optical isomers or
enantiomers [22]. Either naturally or due to some external
drive, the components of the isomeric mixture do segregate
from each other, and in combination with the interconversion
reaction the mixture gets enriched with one of the isomers
[23–30]. Apart from the segregation of the reacting isomeric
mixture, such a simultaneous presence of both segregation
and reaction dynamics can effectively explain the collective
dynamics of cell-adhesion bonds [31] and opinion-based seg-
regation of social groups [32] using the Schelling model [33].
Numerical simulations based on a similar foundation has also
been successfully employed to explore the dynamics of chem-
ically active droplets whose segregation is vital to structure the
interior of the biological cell [34–36].

There have been a few studies on phase segregating react-
ing binary isomeric mixtures either by using MC simulations
of the Ising model or by solving the corresponding Cahn-
Hilliard-Cook (CHC) equation [37–41]. While most of these
studies were motivated to understand the amplification of one
of the phases, the CHC approach focused on the domain-
growth laws reporting a crossover from an early-time reaction
controlled LCA behavior to a late-time diffusion controlled
LS behavior [40]. Interest has also been laid on considering
reactions in solution via molecular dynamics (MD) simu-
lations [42]. Even studies with forceful preservation of the
compositions being imposed along with the interconversion
reaction have also been conducted, leading to fascinating
pattern formation mimicking morphology of microphase sep-
aration found in the biological world [43]. Lately, using the
Ising model, it has been shown that the Arrhenius behavior
of the interconversion reaction gets significantly affected due
to the simultaneous existence of the segregation process [44].
Technically, studies of these systems using MC simulations
of the Ising model is done by mixing two types of dynamics,
i.e., the nonconserved spin-flip Glauber dynamics [45] and the
conserved spin-exchange Kawasaki dynamics [46].

The effective dynamics of the system described above
is nonconserved, i.e., in the final state one of the reacting
species will survive as the majority which we refer to as
the winner and the other one as loser. Recently, one of us
demonstrated how to disentangle the growth of the winner
from the loser during phase ordering [47]. Importantly, such
a disentanglement allows one to realize the scaling laws as-
sociated with domain growth using systems with relatively
smaller size. Here, adopting the same disentanglement pro-
tocol, we study the growth of the winner and loser in a binary
mixture of isomers which is undergoing both segregation and
an interconversion reaction. This not only allows us to have
an appropriate realization of the associated domain-growth
laws but also to extract a timescale that marks the crossover
between the two types of dynamics present in the system.

The rest of the paper is arranged in the following man-
ner. In the next section, we present details of the model
we used and an elaborate description of the performed MC
simulations. Following that, in Sec. III we present the re-
sults and wherever required also describe the calculations of

relevant observables. Finally, we conclude in Sec. IV by pro-
viding a brief summary and a future outlook.

II. MODEL AND METHOD

To model a binary isomeric mixture (A1 + A2) undergoing
interconversion reaction, we use the nearest-neighbor Ising
model having the Hamiltonian

H = −J
∑
〈i j〉

SiS j, (4)

where the spin Si = +1(or − 1) represents the component
A1(or A2) of the mixture, and J is the strength of interaction.
The sign 〈. . . 〉 denotes that only nearest-neighbor interactions
are considered. We consider our system to be a square lat-
tice (d = 2) having a linear dimension L, and apply periodic
boundary condition (PBC) in all directions. The Ising model
in a square lattice with PBC undergoes a phase transition with
a critical temperature [48]

Tc = 2J

kB ln(1 + √
2)

, (5)

where kB is the Boltzmann constant. For a binary mixture, the
critical temperature is equivalent to the demixing transition
temperature.

We consider that the components are undergoing the fol-
lowing interconversion reaction:

A1 � A2. (6)

At the same time, they are also spontaneously segregating
from each other, for which the energetics is captured by the
Hamiltonian in Eq. (4). As already mentioned, we perform
MC simulations of the above model where one needs to in-
corporate the dynamics of both processes. The dynamics of
the interconversion reaction in Eq. (6) is effectively mimicked
by the Glauber spin-flip move, used for capturing the non-
conserved dynamics of phase ordering [45,49,50]. There one
randomly picks up a spin on the lattice and flips it upside
down. The dynamics of segregation between the components
is introduced via the Kawasaki spin-exchange move, typically
used for simulating phase segregation, where the dynamics is
conserved [46,49,50]. In this move, one randomly picks up a
pair of nearest-neighbor spins and exchanges their positions.
In our simulations, we attempt both moves and accept them
using the Metropolis criterion with the probability [49,50]

pi = min[1, exp(−�E/kBT )], (7)

where �E is the change in energy due to the attempted move
and T is the temperature. For convenience, we choose kB = 1.

As the initial condition for our simulation, we prepare a
homogeneous 50:50 binary mixture of A1 and A2 by placing
them randomly on the lattice sites. This mimics a high-
temperature disordered state. We then set the temperature to
T < Tc in our simulations, where we also introduce a relative
weightage between the nonconserved and conserved moves
using a parameter called the reaction probability pr . It denotes
the probability of attempting the Glauber spin-flip move at
each MC step. Thus, the Kawasaki spin-exchange attempt is
performed with a probability 1 − pr . We perform simulations
for a range of values of pr ∈ [10−4, 10−1]. We choose the unit
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of time to be one MC sweep (MCS), which corresponds to
L2 attempted MC moves. In our simulations, J sets the unit
of energy and J/kB the unit of temperature. All the results are
for a system with L = 128 containing L2 = 16 384 number
of spins or isomers. All the simulations are run until 107

MCS, which is sufficient to extract meaningful results for the
chosen system size considering the covered variations of T
and pr . Except for the time evolution snapshots, all subse-
quently presented results are averaged over 20 independent
initial configurations, obtained by using different seeds in the
random number generator. Given that the system size is rather
large, the use of a statistically small number of independent
realizations is sufficient for our study. This is due to the self-
averaging nature of the primary quantity of interest, i.e., the
average domain size.

In the past, nonequilibrium dynamics of systems with
such mixed dynamics have been studied reasonably well in a
slightly different context [51–56]. In these studies, an ather-
mal Kawasaki-exchange move was introduced along with
the spin-flip moves in a magnetic system. The athermal
Kawasaki-exchange move takes into account an energy flux
into the system while the Glauber dynamics simulates the
contact of the system with the a heat bath. This leads to a
different class of nonequilibrium steady states than what is
considered here.

III. RESULTS

In this section, we present our main results. It is further
divided into two subsections. In the first subsection, we deal
with simulation results at a fixed temperature T = 0.5Tc. In
the second, we present results obtained for a variation of T .

A. Dynamics at T = 0.5Tc

Here we present results for a fixed quench temperature T =
0.5Tc. The effect of slow dynamics at low T and difficulty of
estimating various observables at high T due to thermal noise
are negligible at such a moderate T . In Figs. 1(a)–1(d), we
present time-evolution snapshots for different reaction prob-
abilities pr . As expected, the time evolution at the largest
pr , shown in Fig. 1(a), bears almost a perfect resemblance
with time evolution during ferromagnetic ordering. There
one can hardly notice any effect of phase segregation as
the dynamics of the chemical reaction dominates through-
out the evolution, and one eventually ends up with one of
the isomers as the majority or winner, equivalent to the fi-
nal magnetized state obtained during ferromagnetic ordering.
As pr decreases, gradually the effects of phase segregation
show up. For pr = 10−3 and 10−4, one can clearly notice
the bicontinuous domain morphology at early times, a classic
signature of spinodal decomposition in a phase-segregating
system [13,15,16]. Eventually, the reaction takes over at later
times and the system approaches toward a state where one
of the isomers emerges as the winner. For very small pr , this
dynamics slows down as one can appreciate from the snapshot
shown at the latest time for pr = 10−4. Since the focus of
this paper is on the domain-growth laws and its crossover
dynamics, here we do not explore the kinetics of the inter-
conversion reaction and rather refer to Ref. [44] for that.

It is clear from the time evolution snapshots that the pattern
morphologies while the system is evolving is affected by the
two competing dynamics. As a first check, we calculate the
two-point equal-time correlation function,

C(r, t ) = 〈SiS j〉 − 〈Si〉〈S j〉, (8)

where r = |i − j| is the distance between the spins at lattice
sites i and j, and 〈. . . 〉 indicates averaging over all the sites.
Following the traditional approach [1,2,40], we extract the
average domain length �(t ) using the criterion

C[r = �(t ), t )] = 1
2C(0, t ). (9)

Using this �(t ), in Figs. 2(a)–2(d) we plot C(r, t ) against the
scaled variable r/�(t ) at different times to verify the scaling
quoted in Eq. (1) for different values of the reaction probabil-
ity pr . For the largest pr , presented in Fig. 2(a), we obtain a
reasonably good collapse of data for different times until the
finite-size effect is experienced at t ≈ 104. Such a behavior
is expected for ferromagnetic ordering. As pr decreases, one
notices that in Fig. 2(b) the data collapse is reasonable only for
intermediate times. Absence of data collapse for t = 10 and
102 suggests that the system is still under the effect of phase
segregation. At the latest time, the data again are affected by
the finite size of the system. With further decrease of pr , the
data in Figs. 2(c) and 2(d) show reasonably good collapse until
t = 104, however, with an oscillating behavior around zero at
large r, typical of conserved dynamics of phase segregation.
Note that since the dynamics for very small pr is slow, the
system is not expected to experience any finite-size effects
until t ≈ 105. Thus, the noncollapsing behavior of the data
at t = 105 in Figs. 2(c) and 2(d) can only be attributed to the
dominance of the interconversion reaction. In all cases, the
dip of C(r, t ) to small negative values at large r/�(t ), i.e., at
r beyond the average domain length is due to the alternate
presence of domains of different species (see Fig. 1) as one
moves across the lattice.

The scaling behavior in the kinetics can be also probed by
another quantity, i.e., the structure factor which is determined
by the Fourier transform:

S(k, t ) =
∫

drC(r, t )eikr. (10)

In Figs. 3(a)–3(d), we verify the scaling of S(k, t ), embedded
in Eq. (2). Like the data for C(r, t ), for pr = 10−1 the behavior
of S(k, t ) in Fig. 3(a) is reminiscent of a typical ferromagnetic
ordering. However, with decreasing pr , the data presented in
Figs. 3(b)–3(d) show reasonably good collapse, i.e., the data
cannot unambiguously capture the interplay of the conserved
phase segregation dynamics and the nonconserved dynamics
due to the interconversion reaction. Noticeable is, of course,
the power-law behavior of the tail, independent of time and
pr . The dashed lines in Fig. 3 show the consistency of this
power-law decay with the generalized Porod law for scalar
order parameter given as [57,58]

S(k, t ) ∼ k−(d+1). (11)

Here the power-law exponent is d + 1 = 3, mentioned next to
the dashed lines. Thus, it seems that the Porod-tail behavior
is unaffected by the interplay of the two dynamics. The Porod
law was originally derived in the general context of scattering
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FIG. 1. Snapshots at different times representing the evolution of a binary mixture of isomers (A1 + A2), where an interconversion reaction
is occurring simultaneously with segregation. The initial system is a homogeneous 50:50 mixture of the two isomers in a square lattice of linear
dimension L = 128, mimicking a configuration above the critical temperature Tc, which is then quenched to a temperature T = 0.5Tc. Results
are presented for different values of the reaction probability pr , as indicated. The two colors correspond to the location of the two different
isomers on the lattice.

from two-phase media [57,58]. Later, it was shown that for an
ordering system, it originates from the short-distance singular-
ities [1], i.e., for k� 
 1. There, the solely presence of sharp
interfaces was assumed, and for k� 
 1 it was considered
that S(k, t) should scale as the total volume of the defect
core. Given that in d = 2 for scalar order parameter the defect
dimension is 1, the amount of defect per unit volume scales as
�−1. Extracting this factor from the general scaling relation
in Eq. (2), one arrives at S(k, t ) ∼ �−1k−3, the Porod law.
Since the basic assumption of the sharp interface presence is
independent of the dynamics, the Porod law has been realized
individually for both the conserved and the nonconserved
Ising model [2]. Hence, it holds true even for a system with
mixed dynamics.

Next, we move on to explore the interplay of dynamics via
the time dependence of the growing sizes of the domains. As

shown previously by one of us that disentanglement of the
kinetics of the winner from the loser allows one to realize the
growth laws unambiguously, here also we rely on the same
[47]. Thus, rather than using the average domain size �(t ), at
a given time we estimate the average domain size �1(t ) of the
winner and also �2(t ) of the loser. For details on how these
lengths are estimated, we refer to Ref. [47]. The measured
domain lengths of the winner for different pr are presented
in Fig. 4(a) on a double-log scale. The data for pr = 10−1

show a single growth regime, consistent with a �1(t ) ∼ t1/2

power-law behavior, i.e., the LCA law. The flat behavior fol-
lowing the power-law growth indicates that finite-size effects
have started showing up. At even later times, one sees a jump
that corresponds to an avalanche [47,59]. As pr decreases, an
initial regime with a much slower growth emerges by virtue
of the dominance of phase segregation dynamics over the
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FIG. 2. Plots of the two-point equal-time correlation function C(r, t ) as a function of the scaling variable r/�(t ) at different times for
different values of the reaction probability pr , as indicated. Here, the average domain length �(t ) is calculated from the crossing of the
unscaled data of C(r, t ), using the condition prescribed in Eq. (9). See text for details. All results are at a temperature T = 0.5Tc for a system
of size L = 128.

interconversion reaction dynamics. At later times, one sees
again a growth consistent with the LCA law. The duration
of the initial slow regime gets extended as pr decreases. In
fact, for pr = 10−4, within the given maximum simulation
time, the slowest regime appears to be longer lived. The data
for pr = 10−3 follow the data for pr = 10−4 until t ≈ 500,
when the reaction dynamics takes over. For pr = 10−4 the
data continue to grow slowly, consistent with a �1 ∼ t1/7 be-
havior, which is much slower than the expected LS behavior
�1 ∼ t1/3 for a phase-segregating system. This implies that
the growth of the domains slows down significantly in the
presence of an interconversion reaction. On the other hand,
when the domains of the two isomers are well separated, phase
segregation seizes and the dynamics is entirely controlled by
the interconversion reaction. Hence, at late times the LCA
behavior is always realized, as shown by the data for all pr .

In Fig. 4(b), we show the time dependence of the average
domain size �2(t ) of the loser for different pr . There also,
for pr = 10−1 one sees a single growth regime followed by
a plateau before it suddenly vanishes due to the avalanche
effect, also observed as a corresponding abrupt increase of
�1(t ) in Fig. 4(a). In the power-law regime, the growth is
consistent with �2(t ) ∼ t0.45, albeit slower than what is ob-
served for the corresponding �1(t ). With decreasing pr a
slower early-time regime emerges like in the time dependence
of �1(t ). Here, also, the early-time regime gets extended as
pr decreases. For pr = 10−4, the growth in this early-time

regime is consistent with a �2(t ) ∼ t1/7 behavior, similar to
what is observed for the corresponding �1(t ) in Fig. 4(a). This
indeed confirms that in this early-time regime the dynamics is
controlled by the phase segregation, however, the occurrence
of the interconversion reaction every now and then makes the
dynamics slower than the LS growth, expected for an ideal
phase-segregating system. For smaller pr the very late-time
behavior is not observed within the given maximum simula-
tion time. Overall, from the plots presented in Figs. 4(a) and
4(b), we infer that, during the evolution, initially the phase
segregation is dominant with occasional involvement of the
interconversion reaction, and thus the growth of the domains
of the isomers in this regime is even slower than LS law. How-
ever, at later times phase segregation is no more capable of
driving the system, as either the system has completely phase
segregated or the domains of the individual isomers are very
well separated. Hence at reaction-dominated late times, the
dynamics is perfectly consistent with the LCA law, expected
for ferromagnetic ordering.

The other important aspect of the kinetics is, of course,
the timescale when the system crosses over to the reaction
dominated regime. This crossover is more clearly visible if
one plots the time dependence of the difference between the
domain length of the winner and loser, i.e., �1 − �2, as pre-
sented in Fig. 4(c) for the data in Figs. 4(a) and 4(b). In this
case, the behavior is almost similar for all pr . Initially, for a
certain period, �1 − �2 remains constant followed by a steady
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FIG. 3. Scaling plots of the structure factor S(k, t ) at different times for different values of the reaction probability pr , as indicated. Here
also, the average �(t ) used is obtained from C(r, t ). The dashed line at large k represents the Porod tail. The results are for the same systems as
presented in Fig. 2.

growth consistent with the solid line representing

�1 − �2 ∼ t, (12)

i.e., linear behavior with time. It can be easily noticed that
the time when the flat behavior of �1 − �2 switches over to a
linear growth shifts toward the right with decrease in pr . From
this time onward, the growth of �1 is significantly faster than
the corresponding growth in �2, thus indicating a crossover to
the reaction dominated dynamics. Based on this observation,
we define the crossover time τs from segregation to reaction
dominated regime such that it satisfies the relation

�1(τs) − �2(τs) = η, (13)

where η prescribes how much difference between �1 and �2

is considered. Finding out the inflection point where the data
in Fig. 4(c) change from a roughly constant behavior to a
linear scaling would have been a more natural estimate for the
crossover time. However, a close look at Fig. 4(c) reveals that
for smaller pr in the segregation dominated region, �1 − �2 is
not really constant. Hence, technically it would be ambiguous
to determine the inflection point. On the other hand, a proper
choice of η in Eq. (13) provides a consistent estimate of the
crossover time.

In Figs. 5(a)–5(c), we show the plots of τs as a function of
pr for three different choices of the parameter η in Eq. (13).
There the errors are estimated from a Jackknife analysis,
where τs is calculated independently for each Jackknife bin
that contains all but data from one of the 20 initial realizations
we used [60]. The apparent linear behavior of the data on a

double-log scale implies a power-law dependence of τs on pr .
To quantify this power-law behavior we write the following
ansatz:

τs = Ap−x
r , (14)

where A is a prefactor and x is the power-law exponent. We
fit this ansatz to our data, the results of which are tabulated
in Table I. In Figs. 5(a)–5(c), the dashed lines represent the
obtained best fits. The results suggest that although the pref-
actor A increases with η, the estimated exponent x ≈ 1.07
is very weakly dependent on the choice of η. Hence, for
all subsequent estimations of τs we rely only on the choice
η = 1.

B. Temperature dependence of the dynamics

In this subsection, we investigate the temperature de-
pendence of the kinetics. For that purpose, we perform
simulations for different values of the reaction probability pr

at different temperatures below Tc.
Here, we do not present the time evolution snapshots for

different temperatures, and rather straight away move on to
the time dependence of the average domain sizes. We start
with plots of the average domain size �1(t ) of the winner in
Fig. 6 for five different temperatures. For the largest reaction
probability, i.e., pr = 10−1, presented in Fig. 6(a), the growth
of �1(t ) consists of a single regime for all T . At moderate
temperatures, i.e., T = 0.4Tc, 0.5Tc, and 0.6Tc, this growth
seems to be consistent with the LCA law �1 ∼ t1/2. However,
for higher T , a significant deviation from the LCA law is
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FIG. 4. Double-log plots of the time dependence of the average
domain size (a) of the winner �1(t ) and (b) the loser �2(t ), for
different reaction probabilities pr , obtained from simulations using
a system of size L = 128 at T = 0.5Tc. In (c), we show the corre-
sponding time dependence of the difference �1 − �2, for different pr .
The solid lines in all panels represent different power-law behaviors
as mentioned next to them.

observed as the growth becomes slower with increase in T .
The inconsistency of the data with the other solid line im-
plies that the slow growth is certainly faster than the LS
growth �1(t ) ∼ t1/3. Also, at high T there is no chance of
dynamic freezing [61]. Thus, the apparent slow growth can be
attributed to the presence of significantly large noise clusters
at high T that do not allow estimation of �1(t ) from a pure
domain morphology of the winner. This reasoning can further
be appreciated from the fact that at very late times when the
reaction has almost finished, �1(t ) is supposed to be saturated
at a value ≈ L, at high T this happens at �1(t ) < L. This
problem can of course be tackled by appropriate noise re-
moval technique [15–17]. Nevertheless, we abstain ourselves

FIG. 5. Double-log plots of the crossover time τs as a function
of the reaction probability pr , at T = 0.5Tc using a system of size
L = 128, for different choices of the parameter η in Eq. (13). The
dashed lines are the best fits obtained using the ansatz in Eq. (14).
For details, see the main text.

from doing so and rather stress that the observation of a
single growth regime independent of T suggests a reaction-
dominated dynamics for pr = 10−1 at all T .

TABLE I. Fitting results for τs vs pr data presented in Fig. 5,
using the ansatz in Eq. (14).

η A x

1.0 11.12 ± 1.1 1.08 ± 0.02
1.5 15.53 ± 1.6 1.08 ± 0.02
2.0 21.63 ± 2.1 1.06 ± 0.02
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FIG. 6. Double-log plots of the time dependence of the average domain size of the winner �1(t ) at different temperatures for different
reaction probability pr , using a system of size L = 128. The two solid lines representing power laws �1 ∼ t1/2 and �1 ∼ t1/3 are, respectively,
the LCA and LS growths. In (c) and (d), an additional solid line representing the power-law �1 ∼ t1/7 is also shown for the initial growth
regime.

As pr decreases, one can clearly see the emergence of
an initial slow-growth regime for �1(t ) at all temperatures.
As shown in Fig. 6(b), for pr = 10−2 the initial slow-growth
regime is very short-lived as there still the reactions start to
control the dynamics from early time. Followed by the slow
growth, �1(t ) shows a faster growth that is again consistent
with the LCA law at moderate temperatures. Again, for higher
temperatures the growth, although faster than the LS growth,
is apparently significantly slower than the LCA law which
again could be attributed to the effect of noisy clusters while
estimating �1(t ).

For even smaller pr , presented in Figs. 6(c) and 6(d),
the initial slow regime of �1(t ) is long-lived and prominent.
Consistency of the data at all T with the power-law behavior
�1 ∼ t1/7 suggests its robustness. At later times, the data cross
over to a faster growth when the dynamics is dominated by
the interconversion reaction. The growth then again is consis-
tent with the LCA law for moderate T . At high T , for both
pr = 10−3 and 10−4 the data again show significant deviation
from the LCA law. For pr = 10−4 at T = 0.8Tc, the data even
seem to be consistent with a �1(t ) ∼ t1/3 behavior. However,
we stress that this is just a mere coincidence and should not
be treated as the realization of the LS behavior. In fact, this
slow growth at late times, as already mentioned, is an artifact
of the estimation of �1(t ) from impure domain morphology at
high T .

The temperature dependence of the average domain size of
the loser �2(t ) corresponding to the cases discussed above are
presented in Fig. 7. For the largest value of pr = 10−1, shown
in Fig. 7(a), the comparative behavior among different T is
similar to what is observed for �1(t ) in Fig. 6(a). At the lowest
T , the data are consistent with the LCA law. At later times,
the data show a flat behavior before they eventually decay
and almost vanish. As T increases, the behavior is similar,
except for the fact that the growth becomes slower, which
again is due to the fact that the estimated �2(t ) is not from
a pure domain morphology. Noticeable is that the time taken
by �2(t ) to almost vanish, decreases as T increases. This is a
signature of the fact that for pr = 10−1, the total reaction time
or kinetics of the reaction follows an Arrhenius behavior [44].

The behavior of the data for pr = 10−2, presented in
Fig. 7(b), is similar to what is observed for pr = 10−1. At low
T , in the growth regime, again the data are almost consistent
with the LCA law and deviate significantly as T increases.
Following a brief period of flat behavior, �2(t ) start to de-
cay and almost vanish at late times. The trend of the data
again indicates an Arrhenius behavior. With further decrease
of pr , within the growth regime there exists two subregimes
as shown by the plots presented in Figs. 7(c) and 7(d), like
what is observed for �1(t ) in Figs. 6(c) and 6(d). The initial
slow-growth regime here is consistent with the power law
�2(t ) ∼ t1/7, similar to how �1(t ) behaves. This confirms that,
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FIG. 7. Double-log plots of the time dependence of the average domain size of the loser �2(t ) at different temperatures for different reaction
probability pr , using a system of size L = 128. The solid line representing the power law �2 ∼ t1/2 is for the LCA growth. In (c) and (d), the
initial growth regime of �2(t ) ∼ t1/7 is also shown as a solid line.

irrespective of T , when the reaction probability pr is small,
initially the dynamics is almost conserved due to the dominant
effect of segregation, however, it is much slower than the LS
growth. At later times when the interconversion reaction starts
to dominate, the growth becomes faster for a brief period,
albeit slower than the LCA growth, before eventually starting
to decay. Within the maximum simulation time of 107 MCS,
for pr = 10−3 and 10−4 the data for �2(t ) do not reach the
point where they almost vanish. Hence, from this data it is not
possible to infer anything about the Arrhenius behavior of the
interconversion reaction. In this regard, we refer to Ref. [44],
where it has been shown that for lower pr values, the Arrhe-
nius behavior of the interconversion reaction gets disrupted.

In the segregation dominated regime, naively, one would
expect that the power-law exponent should sit somewhere
between 1/3 and 1/2. Results at different T clearly confirm
that is not the case, for which we provide the following
heuristics. For low pr , it is expected that the dynamics is
dominated by the Kawasaki-exchange moves. However, oc-
casionally some Glauber spin-flip moves also get accepted.
Once the domains are considerably big in size, the growth due
to segregation occurs via merging of domains. The occasional
Glauber moves disrupt this merging of domains by flipping
the spins connecting the big domains when they are slightly
in contact with each other, as illustrated in the upper panel of
the schematic in Fig. 8. Energetically, this is more likely than
flipping of the in-between spins of two approaching domains
(shown in the lower panel of Fig. 8) to enhance the growth by
connecting them. Hence, instead of having a growth exponent
somewhere between 1/3 and 1/2, one ends up getting 1/7,

smaller than the LS exponent. Nevertheless, an appropriate
theoretical understanding is needed to further substantiate this
heuristics and the exact value of the observed exponent.

Now we move on to investigate the effect of temperature
on the crossover time τs that marks the switchover to a com-
pletely reaction dominant dynamics. As already mentioned, τs

is calculated using the prescription embedded in Eq. (13) with
η = 1. In Fig. 9(a), we show the plots of the τs as a function
of pr , at different T . All the data seem to be parallel to each
other except for the data points at pr = 10−1 for T = 0.7Tc

and 0.8Tc. Possibly, the crossover is not so sharp at high T , as

FIG. 8. Schematic representing the heuristics to explain the
early-time slow growth of domains in the segregation dominated
regime. The upper panel shows the likely spin-flip events where two
adjacent domains get detached from each other and thereby slow
down the domain growth compared to the LS growth. The lower
panel depicts the unlikely spin-flip events speeding up the growth
by merging of two approaching domains.
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FIG. 9. (a) Double-log plots of the crossover time τs as a function
of the reaction probability pr at different T using a system of size
L = 128. The dashed line represents Eq. (14) with A = 17.97 and
x = 1.05. (b) Variation of τs as a function of T , for fixed pr as
mentioned.

the rate of both phase segregation and interconversion reaction
get enhanced due to huge thermal fluctuations. Hence, the
criterion used in Eq. (13) fails to unambiguously extract the
crossover time τs. Nonetheless, we obtain reasonable results
when we fit the ansatz in Eq. (14) to the data at different
T , the results of which are tabulated in Table II. From the
values quoted there, we calculate the average prefactor A =
17.97 ± 3.1 and x = 1.05 ± 0.07, which, of course, have sig-
nificant error bars. Nevertheless, in Fig. 9(a) we plot a dashed
line representing Eq. (14) with the above quoted values. The
data indeed look more or less parallel to the dashed line except
for the points representing pr = 10−4 at T = 0.7Tc and 0.8Tc.

The variation of τs with T for fixed values of the reaction
probability pr are shown in Fig. 9(b). The almost flat behavior
of the data for all cases indicate that the crossover is very

TABLE II. Fitting results for τs vs pr data at different tempera-
tures using the ansatz in Eq. (14).

T A x

0.4Tc 26.54 ± 18.8 0.92 ± 0.08
0.6Tc 12.74 ± 1.7 1.06 ± 0.02
0.7Tc 13.64 ± 6.4 1.13 ± 0.06
0.8Tc 25.81 ± 12.8 1.07 ± 0.07

weakly dependent on the temperature, although for a purely
segregating system it has been shown that the relaxation time
shows an Arrhenius behavior [44]. This, of course, is courtesy
of the effect of the presence of interconversion reaction even
when the dynamics is dominated by segregation.

IV. CONCLUSION

To summarize, we have presented results on the effects
of interplay of phase segregation and interconversion reac-
tion on the kinetics of domain growth. For that purpose, we
have performed Metropolis MC simulations of the nearest-
neighbor Ising model in a square lattice, governed by both
conserved and nonconserved dynamics. The system mimics
a phase-segregating isomeric binary mixture. Starting from
such a homogeneous binary mixture, we have studied the
nonequilibrium kinetics when the system is quenched below
the demixing or critical temperature. Due to the presence of
the reaction, in the asymptotic limit one of the isomers will
emerge as the winner, i.e., it will be present as the majority,
and the other isomer will perish, which we refer to as the loser.
Instead of monitoring the average domain size of both iso-
mers, we have studied the kinetics of both of them separately.

Our results show that for higher reaction probability pr ,
the dynamics of the system resembles ferromagnetic ordering
throughout the evolution. There one observes the usual scaling
of the two-point equal-time correlation function C(r, t ) and
the structure factor S(k, t ). As pr decreases, these quantities
show a signature of the strong interplay between the seg-
regation dynamics and the reaction dynamics; thereby the
overall scaling picture does not hold anymore. For very low
pr , instead one observes an early-time scaling that resembles
the conserved dynamics due to phase segregation. However,
the universal Porod-tail behavior of S(k, t ) ∼ k−3 remains
unaffected for any choice of pr .

While for large pr the time dependence of the average
domain size of the winner �1(t ) and loser �2(t ) show behavior
consistent with ferromagnetic ordering, with decrease of pr

the interplay of the conserved and nonconserved dynamics
show up. In fact, one observes a crossover in the growth from
an initial slow �1(t ) ∼ t1/7 behavior to the usual �1(t ) ∼ t1/2

growth at late times. The time dependence of �2(t ) for small
pr also shows a similar crossover with initially growing sim-
ilarly with the power law �2(t ) ∼ t1/7. Afterward, of course,
�2(t ) grows slower than �2(t ) ∼ t1/2. At very late times, �2(t )
starts to decay and asymptotically almost vanishes. We have
provided a heuristics to explain the surprisingly slow growth
∼t1/7 in the early-time regime. Nonetheless, a proper theoret-
ical understanding of this phenomenon is still required.

The observation of the crossover in the growth prompted us
to also calculate a crossover time τs from the time dependence
of the difference between average domain size of the winner
and loser, which at late times grows as �1 − �2 ∼ t . Our data
for τs as a function of pr appear to follow the power-law
scaling τs ∼ p−x

r , where we obtained x = 1.05, almost inde-
pendent of temperature. The crossover time τs also appears to
be independent of temperature for fixed values of pr .

A facile adaptation of the methods presented here would
be to consider a more complex reaction involving more than
two species, for which MC simulation of an analogous q-state
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Potts model seems to be an automatic choice [62–64]. In
the future, it would also be interesting to study the effect
of such interplay of phase segregation and interconversion
reaction on the other aspect of nonequilibrium dynamics
of phase transition, i.e., aging and related scaling [65–67].
Given recent growing interest in nonequilibrium dynamics of
long-range systems, it would certainly be worth investigat-
ing this interplay of conserved and nonconserved dynamics
using the long-range Ising model with power-law interaction
[18–21,68,69]. Lastly, to invoke more real effects of modeling
such a system, it would be challenging to construct a similar

model where the reaction is happening in solutions. For that,
one needs to perform MD simulations of a fluidlike system
where the role of hydrodynamics has to be taken into account
[70,71].
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