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Exact zeros of fidelity in finite-size systems as a signature for probing quantum phase transitions
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The fidelity is widely used to detect quantum phase transitions, which is characterized by either a sharp
change of fidelity or the divergence of fidelity susceptibility in the thermodynamical limit when the phase-driving
parameter is across the transition point. In this work, we unveil that the occurrence of exact zeros of fidelity in
finite-size systems can be applied to detect quantum phase transitions. In general, the fidelity F (γ , γ̃ ) always
approaches zero in the thermodynamical limit, due to the Anderson orthogonality catastrophe, no matter whether
the parameters of two ground states (γ and γ̃ ) are in the same phase or different phases, and this makes it
difficult to distinguish whether an exact zero of fidelity exists by finite-size analysis. To overcome the influence of
orthogonality catastrophe, we study finite-size systems with twist boundary conditions, which can be introduced
by applying a magnetic flux, and demonstrate that exact zeros of fidelity can be always accessed by tuning
the magnetic flux when γ and γ̃ belong to different phases. On the other hand, no exact zero of fidelity can
be observed if γ and γ̃ are in the same phase. We demonstrate the applicability of our theoretical scheme by
studying concrete examples, including the Su-Schrieffer-Heeger model, Creutz model, and Haldane model. Our
work provides a practicable way to detect quantum phase transitions via the calculation of fidelity of finite-size
systems.
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I. INTRODUCTION

A quantum phase transition represents qualitative changes
in the ground-state properties of quantum systems induced
by varying control parameters [1]. These changes become
nonanalytic around the phase transition point in the infinite-
size limit and can be revealed by the response of physical
quantities to changes in phase-driving parameters. The notion
of fidelity between two pure ground states has become a well-
established method of detection of quantum phase transitions
[2–5]. So far, fidelity and fidelity susceptibility have been
applied to study phase transitions in various systems [2–18].
Given γ is a phase-driving parameter of the system, the fi-
delity is defined as the module of the overlap of two ground
states, i.e.,

F (γ , γ̃ ) = |〈ψ0(γ )|ψ0(γ̃ )〉|, (1)

where |ψ0(γ )〉 is the ground state of the Hamiltonian H (γ )
and γ̃ is a parameter value different from γ . If two parame-
ters are very close, i.e., δ = γ̃ − γ is a small quantity, then
quantum phase transitions are associated with a drop in the
fidelity when γ and γ̃ are in different phases. Hence the
second derivative of the fidelity, called fidelity susceptibility,
is divergent at the quantum phase transition point in the ther-
modynamical limit.

The divergence of fidelity susceptibility at quantum phase
transition point suggests that F (γ , γ̃ ) may have a different
property when γ and γ̃ are in different phase regions. Recent
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studies on dynamical quantum phase transitions [19–28] have
unveiled that the Loschmodt echo can have exact zero points
at some critical times when the postquench parameter and pre-
quench parameter are in different phase regions [19–21,26–
29], whereas it may have no zero point if the postquench
parameter and prequench parameter are in the same phase
region. Motivated by these results, one may ask whether
F (γ , γ̃ ) has (has no) exact zero points when γ and γ̃ are
in different (the same) phase regions. Although the question
seems very natural, it is hard to give a simple answer due to
the existence of the Anderson orthogonality catastrophe (OC)
in the thermodynamical limit. According to the OC, when the
system size increases to infinity, even a slight perturbation
leads to a many-body ground state having zero overlap with
the slightly perturbed state [30]. Therefore, F approaches zero
in the thermodynamical limit as long as γ̃ and γ are not equal,
no matter whether γ̃ and γ are in the same or different phase
regions.

In this work, we unveil that the fidelity exhibits different
features for γ̃ and γ in the same and different phase re-
gions by studying several typical two-band quantum systems,
which display quantum phase transitions. For systems with
translation symmetry, the fidelity can be represented as the
product of Fk , i.e., F (γ , γ̃ ) = ∏

k Fk (γ , γ̃ ), where Fk (γ , γ̃ )
is the fidelity of the k mode, which represents the overlap of
wave funtions in the momentum space with momentum k and
different parameters γ and γ̃ . Although the fidelity is found
to decay exponentially with the increase of L as a result of
the OC and thus always approaches zero in the thermody-
namical limit, we demonstrate that there exists at least one
kc mode so that Fkc = 0 is fulfilled for γ̃ and γ in different

2470-0045/2024/109(6)/064130(10) 064130-1 ©2024 American Physical Society

https://orcid.org/0000-0002-5720-5408
https://orcid.org/0000-0001-5445-3580
https://orcid.org/0000-0003-2605-6128
https://ror.org/05cvf7v30
https://ror.org/05qbk4x57
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.064130&domain=pdf&date_stamp=2024-06-13
https://doi.org/10.1103/PhysRevE.109.064130


YUMENG ZENG, BOZHEN ZHOU, AND SHU CHEN PHYSICAL REVIEW E 109, 064130 (2024)

phases, whereas such a kc mode is absent for γ̃ and γ in the
same phase. Under the periodic boundary condition (PBC),
the momentum k of a finite-size system can take only some
discrete values, which do not cover the whole momentum
space continuously. Therefore, usually the kc mode is only
accessible in the thermodynamical limit, and thus the exact
zero of the fidelity does not exist in finite-size systems. For
the modes k′ located in the vicinity of kc, Fk′ approach zero in
terms of Fk′ ∝ 1/L when γ̃ and γ are in different phases. Due
to the existence of OC, it is hard to distinguish whether the
kc modes exist from the analysis of size-dependent behavior
of F (γ , γ̃ ), as F (γ , γ̃ ) always decays exponentially with
the increase of L no matter whether γ and γ̃ in the same
phase or different phases. In order to reduce the impact of
OC, we shall fix the lattice size L and introduce a magnetic
flux φ into the periodic boundary system, so we can shift the
momentum k continuously to access kc by choosing a proper
twist boundary condition. In this way, we can always access
F (γ , γ̃ ) = 0 by tuning φ, when γ̃ and γ are in different
phase regions, whereas no exact zero of fidelity is accessible
for γ̃ and γ in the same phase region. Therefore, under a
proper twist boundary condition, the fidelity F (γ , γ̃ ) of a
finite-size system does not change continuously with γ̃ and a
discontinuous change from nonzero to zero value occurs at the
phase transition point. As a consequence, the discontinuity of
the fidelity can be viewed as a signature for detecting quantum
phase transition in finite-size systems.

In order to reduce the influence of the system size, it is
convenient to introduce a decay rate function defined by

α = − 1

L
lnF (γ , γ̃ ). (2)

For a finite L, the exact zero of the fidelity means the diver-
gence of α. Therefore, we can observe the divergence of α by
tuning φ when γ̃ and γ are in different phase regions, whereas
no divergence of α can be observed for the case with γ̃ and γ

in the same phase region. This indicates that the emergence
of singularity in the decay rate function of a finite-size system
via the modulation of φ can be used to detect quantum phase
transition.

II. MODELS, SCHEME, AND RESULTS

Consider a general two-band system with the Hamiltonian
in momentum space described by

ĥk (γ ) =
∑

β=x,y,z

dβ,k (γ )σ̂β + d0,k (γ )Î, (3)

where ĥk (γ ) is the Hamiltonian of k mode with momentum
k, γ is a phase transition driving parameter, σ̂β (β = x, y, z)
are Pauli matrices, dβ,k (γ ) and d0,k (γ ) are the corresponding
vector components of ĥk (γ ), and Î denotes the unit matrix.
The fidelity of the system can be represented as

F (γ , γ̃ ) =
∏

k

Fk =
∏

k

∣∣〈ψ0
k (γ )

∣∣ψ0
k (γ̃ )

〉∣∣, (4)

where |ψ0
k (γ )〉 and |ψ0

k (γ̃ )〉 are the ground state of ĥk (γ ) and
ĥk (γ̃ ), respectively. Then we have

Fk =

√√√√∑
β

dβ,k (γ )dβ,k (γ̃ )

2EkẼk
+ 1

2
, (5)

where Ek =
√∑

βd2
β,k (γ ) and Ẽk =

√∑
betad2

β,k (γ̃ ).

To ensure F = 0, one needs at least one k mode fulfill-
ing Fk = 0, which gives rise to the following four constraint
relations:

dx,k (γ )dy,k (γ̃ ) = dy,k (γ )dx,k (γ̃ ), (6)

dx,k (γ )dz,k (γ̃ ) = dz,k (γ )dx,k (γ̃ ), (7)

dy,k (γ )dz,k (γ̃ ) = dz,k (γ )dy,k (γ̃ ), (8)∑
β

dβ,k (γ )dβ,k (γ̃ ) < 0. (9)

The first three equations determine the value of kc, and the
last one determines the phase transition point γc. The four
formulas should be satisfied simultaneously. It means that
�dk (γ ) and �dk (γ̃ ) should be antiparallel on the bloch sphere.
Note that here γ̃ and γ should be in two adjacent phases.

To make our discussion concrete, first we consider the Su-
Schrieffer-Heeger (SSH) model as a showcase example and
give the details of calculation. Then we generalize our study
to the Creutz model and Haldane model.

A. SSH model

The SSH model [31] is described by the Hamiltonian

H =
L∑

j=1

(t1c†
j,Ac j,B + t2c†

j,Bc j+1,A + H.c.), (10)

where t1 and t2 denote the intracellular and intercellular
hopping amplitudes, respectively, and c†

j,A(B) and c j,A(B) are
fermionic creation and annihilation operators of the A(B)
sublattice on the jth site. By taking a Fourier transformation
c†

j,A(B) = 1√
L

∑
k eik jc†

k,A(B), the Hamiltonian in the momen-
tum space can be written as

H =
∑

k

ψ
†
k ĥkψk, (11)

where ψk = (ck,A, ck,B)T and ĥk takes the form of Eq. (3) with
the vector components

dx,k = t1 + t2 cos k, (12)

dy,k = −t2 sin k, (13)

and dz,k = d0,k = 0. The SSH model possesses two topolog-
ically different phases for t2 > t1 and t2 < t1 with a phase
transition point at t2c/t1 = 1 [32]. Setting γ = t2/t1, the
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(a)

(b)

FIG. 1. (a) The fidelity F of the SSH model versus γ̃ for different
system sizes L = 9, 19, 199, and 999. The vertical dashed line guides
the critical point γ̃c = 1. (b) The image of α versus 1/L. The pink
squares, purple diamonds, blue triangles, and green circles denote
results for γ̃ = 0.8, 0.9, 1.3, and 1.5, respectively. The dot-dashed
pink, solid purple, dotted blue, and dashed green lines represent
the corresponding fitting lines. Here we take γ = 0.5 and use the
periodic boundary condition.

fidelity of the SSH model is

Fk =
√

1 + (γ + γ̃ ) cos k + γ γ̃

2
√

(1 + 2γ cos k + γ 2)(1 + 2γ̃ cos k + γ̃ 2)
+ 1

2
.

(14)

According to Eqs. (6)–(9), the constraint relations for the
occurrence of exact zeros of F are

(γ + 1)(γ̃ + 1) < 0,kc = 0;

(γ − 1)(γ̃ − 1) < 0,kc = π. (15)

For a finite-size system under the PBC, the mo-
mentum k takes discrete values k = 2πm/L with m =
−L/2 + 1,−L/2 + 2, . . . , L/2 if L is even or m = −(L −
1)/2,−(L − 1)/2 + 1, . . . , (L − 1)/2 if L is odd. For the case
of γ > 0 and γ̃ > 0, if γ < 1, then Eq. (15) is fulfilled only
for γ̃ > 1; if γ > 1, then Eq. (15) is fulfilled only for γ̃ < 1. It
means that F = 0 happens only when γ and γ̃ are in different
topological phases which are separated by the phase transition
point γc = 1 and the corresponding k mode is kc = π .

Now we consider the case with odd size L under PBC.
The momentum k enforced by the PBC can take the value
of k = π (1 − 1/L), which approaches kc = π in the limit of
L → ∞. In Fig. 1(a), we display F versus γ̃ by fixing γ = 0.5
for various L. It shows that F is finite for small odd sizes and

(a)

(b)

(c)

FIG. 2. (a) The images of α versus γ̃ for the SSH model with
different system sizes L = 9, 19, 199, and 999. The four red circles
denote values of α in the thermodynamical limit obtained from finite-
size analysis for γ̃ = 0.8, 0.9, 1.3, and 1.5, respectively. (b) The
images of the derivative of α versus γ̃ for the SSH model with
different system sizes L = 9, 19, 199, and 999. The vertical dashed
line guides the critical point γ̃c = 1. (c) The image of the inverse
of the derivative of α versus 1/ ln L for γ̃ = 1. The blue points are
numerical result of L ∈ [100000, 1000000]. The red dashed line is
a fitting line. Here we take γ = 0.5 and use the periodic boundary
condition.

approaches zero with the increase of L for γ̃ and γ either in
the same phase or different phases. In Fig. 1(b), we plot the
image of α versus 1/L. While α is constant for γ̃ and γ in the
same phase, α versus 1/L can be well fitted by an oblique
line with the slope − ln 2 for γ̃ and γ in different phases,
i.e., the fitting curves for γ̃ and γ in the same or different
phase are described by − 1

L lnF = c or − 1
L lnF = c − 1

L ln 2,
respectively, where c represents a constant. The additional
term of − 1

L ln 2 is originated from the existence of the kc mode
(Fkc = 0) [33].

In Fig. 2(a), we plot α versus γ̃ for the SSH model with
fixed γ = 0.5 and different system sizes L = 9, 19, 199, and
999. For γ̃ and γ in the same phase, α is almost the same for
different sizes. For γ̃ and γ in different phases, the value of α

goes up and tends to a fixed value with the increase of L, which
is in accordance with the result of Fig. 1(b). Given γ = 0.5,
for the case of γ̃ < 1, F → 0 in the limit of L → ∞ is purely
caused by the OC. However, for the case of γ̃ > 1, besides the
OC, kc can be approached in terms of min |k − kc| = π/L,
thus Fkc = 0 is achievable in the thermodynamical limit of
L → ∞. In contrast, no k mode fulfills Fk = 0 for the case
of γ̃ < 1. The different scaling behaviors of the decay rate
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function α in the regions of γ̃ < 1 and γ̃ > 1 are due to the
absence and presence of the kc mode in these regions.

To explore the nonanalytical behavior of α(γ̃ ) at the critical
point, we calculate the derivative of α(γ̃ ) with respect to γ̃ via

α′(γ̃ ) = − 1

2L

∑
k

[
EkẼ ′

k + ∑
βdβ,k (γ )d ′

β,k (γ̃ )

EkẼk + ∑
βdβ,k (γ )dβ,k (γ̃ )

− Ẽ ′
k

Ẽk

]
.

(16)

Here Ẽ ′
k and d ′

β,k (γ̃ ) are derivatives of Ẽk and dβ,k (γ̃ ) with
respect to γ̃ , respectively. In Fig. 2(b), we plot α′ versus γ̃ for
the SSH model with different system sizes L = 9, 19, 199, and
999. Figure 2(c) is the result of finite-size-scaling analysis of
α′ for γ = 0.5 and γ̃ = 1. It shows that α′ gradually diverges
at the critical point γc = 1 as L increases. Therefore, α is non-
analytic at the critical point γc = 1 in the thermodynamical
limit.

Next we unveil that F = 0 can be realized even in a
finite-size system for γ̃ and γ in different phases if we in-
troduce a magnetic flux φ into the system. The effect of
the magnetic flux is equivalent to the introduction of a twist
boundary condition in real space c†

L+1,A(B) = c†
1,A(B)e

iφ[φ ∈
(0, 2π )]. Under the twist boundary condition, the quantized
momentum k = 2πm+φ

L is shifted by a factor φ/L, where
m = −L/2 + 1,−L/2 + 2, . . . , L/2 for an even L or m =
−(L − 1)/2,−(L − 1)/2 + 1, . . . , (L − 1)/2 for an odd L.
Therefore, for an odd L we can always achieve kc by tuning
the flux φ to φc = π . Let 
 = |φc − φ|, we can get

α = − 1

L

(
lnFk∗ +

∑
k �=k∗

lnFk

)
, (17)

where Fk∗ is the k∗ mode which is closest to kc, i.e.,
|k∗ − kc| = 
/L. Let 
 → 0, we can get

Fk∗ ≈ |γ̃ − γ |
2(γ̃ − 1)(1 − γ )L


. (18)

When 
 → 0, Fk∗ → 0 and thus lnFk∗ is divergent, i.e.,
when φ achieves φc, α becomes divergent.

In Fig. 3(a), we plot the fidelity F of the SSH model versus
γ̃ for different boundary conditions φ = 0, 0.9π , and π with
γ = 0.5 and L = 9. It is evident that F immediately equals
zero when γ̃ is across the critical point γc = 1 for φ = π ,
while F stays nonzero for other φ. The existence of the exact
zero of F for a finite odd size system means that the ground
state of one phase can be orthogonal to the ground state of
the other phase by tuning the magnetic flux. At the same time,
Fkc = 0 leads to the divergency of α for a finite L. For a given
γ̃ and γ , tuning φ from 0 to 2π , from Fig. 3(b) we can see
that if γ̃ and γ belong to the same phase, then the value of α

is always small for any value of φ, indicating the absence of
the exact zero of the fidelity; if γ̃ and γ belong to different
phases, then α is divergent at φc/π = 1, which gives a signal
of quantum phase transition. As a consequence, we can judge
whether a quantum phase transition exists by observing the
change of α of a finite system as a function of γ̃ and φ.

(a)

(b)

FIG. 3. (a) The fidelity F of the SSH model versus γ̃ under twist
boundary conditions with flux parameter φ = 0, 0.9π , and π . The
vertical dashed line guides the critical point γ̃c = 1. Here γ = 0.5.
(b) The images of α versus φ/π . The solid blue line corresponds to
γ = 0.5 and γ̃ = 1.5, while the dotted orange line corresponds to
γ = 0.5 and γ̃ = 0.8. The vertical dashed line guides the divergent
point φc/π = 1. Here we take L = 9.

B. Creutz model

Next we consider the Creutz model [34,35] described by
the Hamiltonian:

H = −
L∑

j=1

[
Jh

(
eiθ cp†

j+1cp
j + e−iθ cq†

j+1cq
j

)

+ Jd
(
cp†

j+1cq
j + cq†

j+1cp
j

) + Jvcq†
j cp

j + H.c.
]
. (19)

The model describes the dynamics of a spinless electron
moving in a ladder system with cp(q)†

j and cp(q)
j denoting

fermionic creation and annihilation operators on the jth site
of the lower (upper) chain. Jh, Jd , and Jv are coupling strength
for horizontal, diagonal, and vertical bonds, respectively, and
θ ∈ [−π/2, π/2] denotes the magnetic flux per plaquette in-
duced by a magnetic field piercing the ladder. After a Fourier
transformation, the Hamiltonian in the momentum space can
be expressed as H = ∑

k ψ
†
k ĥkψk with ψk = (cq

k , cp
k )T . The

vector components of the Hamiltonian in momentum space
are given by

dx,k = −2Jd cos k − Jv, (20)

dz,k = −2Jh sin k sin θ, (21)

d0,k = −2Jh cos k cos θ, (22)

and dy,k = 0. For simplicity, we focus on the case of Jh =
Jd = J and Jv/2J < 1 and take J = 1 as the energy unit. It
is known that the Creutz model has two distinct topologically
nontrivial phases for −π/2 � θ < 0 and 0 < θ � π/2 with a
phase transition occurring at θc = 0.
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(a)

(b)

(c)

FIG. 4. (a) The fidelity F of the Creutz model versus θ̃/π for
different system sizes L = 10, 50, 500, and 2000. The vertical dashed
line guides the critical point θ̃c = 0. (b) The images of α versus θ̃/π

for the Creutz model with different system sizes L = 10, 50, 500, and
2000. The four red circles denote valus of α in the thermodynamical
limit obtained from finite-size analysis for θ̃ = −0.3, −0.1, 1.1,

and 1.5, respectively. (c) The images of the derivative of α versus
θ̃/π for the Creutz model with different system sizes L = 10, 50,
500, and 2000. The vertical dashed line guides the critical point
θ̃c = 0. Here we take θ = 0.3 and Jv/(2J ) = 0.6, and use the peri-
odic boundary condition.

The fidelity of the Creutz model is given by

F =
∏

k

√
[cos k + Jv/(2J )]2 + sin2 k sin θ sin θ̃

2εk ε̃k
+ 1

2
, (23)

where εk =
√

[cos k + Jv/(2J )]2 + sin2 k sin2 θ and ε̃k =√
[cos k + Jv/(2J )]2 + sin2 k sin2 θ̃ . We notice that the con-

straint relations for ensuring F = 0 are

sin θ sin θ̃ < 0, kc,± = ± arccos [−Jv/(2J )]. (24)

If θ < 0, then Eq. (24) is fulfilled only for
θ̃ > 0. On the other hand, if θ > 0, then Eq. (24) is fulfilled
only for θ̃ < 0. It means that the exact zeros of the fidelity
exist only when parameters θ̃ and θ are across the underlying
phase transition point and the corresponding k mode is
kc,± = ± arccos[−Jv/(2J )].

It is clear that kc,± are usually not equal to the quantized
momentum values k = 2πm/L enforced by the PBC. This

(a)

(b)

FIG. 5. (a) The fidelity F of the Creutz model versus θ̃/π under
twist boundary conditions with φ = 0, 0.5π , 0.952π , and 1.048π .
The solid blue line and the dotted green line have the same image
and therefore overlap each other. The vertical dashed line guides
the critical point θ̃c = 0. Here θ = 0.3. (b) The images of α versus
φ/π . The solid blue line corresponds to θ = 0.3 and θ̃ = −0.3,
while the dotted orange line corresponds to θ = 0.3 and θ̃ = 1.1. The
vertical dashed lines guides the divergent points φc,−/π ≈ 0.952 and
φc,+/π ≈ 1.048. Here we take Jv/(2J ) = 0.6 and L = 10.

means that the exact zeros of F of a finite-size system gen-
erally do not exist for arbitrary θ̃ and θ . As shown in Fig. 4(a),
the fidelity F is not equal to zero for L = 10 but approaches
zero with the increase of L as long as θ̃ �= θ . Figure 4(b)
displays the images of α versus θ̃ for the Creutz model with
different system sizes L = 10, 50, 500, and 2000. For θ̃ and θ

in the same phase, α is almost the same for different sizes. For
θ̃ and θ in different phases, since it has two kc modes Fkc,+
and Fkc,− , the value of α changes and tends to a fixed value
at a rate of 2 ln 2/L as the system size increases. Figure 4(c)
demonstrates that α′ is divergent at the phase transition point
θc = 0 in the thermodynamical limit of L → ∞.

For a finite-size system under PBC, kc,± is usually not
achievable. Nonetheless, with the increase in the system size,
kc,± can be approached in terms of min |k − kc,±| � π/L,
and thus the exact zeros of F can be achieved in the limit
of L → ∞. Since the quantized momenta k usually do not
include kc,± under the PBC, we introduce the twist boundary
condition cp(q)†

L+1 = cp(q)†
1 eiφ[φ ∈ (0, 2π )] here. For a system

with a given finite size L, we can always achieve kc,+ or kc,−
by using the twist boundary condition with

φc,+ = mod[Lkc,+, 2π ] or φc,− = mod[Lkc,−, 2π ].
(25)

For Jv/(2J ) = 0.6 and L = 10, it is easy to get kc,± =
±0.705π , φc,+ ≈ 1.048π and φc,− ≈ 0.952π from Eqs. (24)
and (25).
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(a)

(b)

FIG. 6. (a) The illustration of the Haldane model. (b) The phase
diagram of the Haldane model. The solid blue lines represent the
critical lines. The dashed red line represents parameters at M/t2 =
4.5. The red circle denotes the point (θ/π, M/t2) = (0, 4.5). Here
we take t1 = 1.

Let 
 = |φ − φc,±|, we can get

α = − 1

L

(
lnFk∗ +

∑
k �=k∗

lnFk

)
, (26)

where Fk∗ comes from the contribution of the k∗ mode which
is closest to kc,±, i.e., |k∗ − kc,±| = 
/L. Let 
 → 0, and we
can get

Fk∗ ≈ −| sin θ − sin θ̃ |
2 sin θ sin θ̃L


. (27)

This means when 
 → 0, i.e., φ → φc, Fk∗ ∝ 
. When φ

reaches φc,±, we can get a k∗ mode which satisfies k∗ = kc,±
and Fk∗ = 0, and thus α becomes divergent.

In Fig. 5(a), we show the fidelity F of the Creutz
model versus θ̃ for different boundary conditions φ = 0,
0.5π , 0.952π , and 1.048π with θ = 0.3, Jv/(2J ) = 0.6, and
L = 10. It demonstrates that F becomes 0 for θ̃ < 0 when φ is
tuned to the critical value φc,− ≈ 0.952π and φc,+ ≈ 1.048π .
For a pair of given θ̃ and θ , Fig. 5(b) exhibits that if θ̃ and θ

belong to the same phase, then α barely changes with φ, which
means the absence of QPT; if θ̃ and θ belong to different
phases, then α diverges at φc,− ≈ 0.952π and φc,+ ≈ 1.048π ,
indicating the occurrence of QPT.

C. Haldane model

The Haldane model is schematically depicted in Fig. 6(a).
The red points and blue circles denote A and B sublattice

sites, respectively. The displacements are â1 = (0, 1), â2 =
(−

√
3

2 ,− 1
2 ), â3 = (

√
3

2 ,− 1
2 ), b̂1 = (

√
3, 0), b̂2 = (−

√
3

2 , 3
2 ),

and b̂3 = (−
√

3
2 ,− 3

2 ). The Hamiltonian of the Haldane model
in the real space is described as

H = t1
∑
〈i, j〉

(c†
A,�ri

cB,�r j + H.c.)

+ t2
∑
〈〈i, j〉〉

(
e−iθ c†

A,�ri
cA,�r j + eiθ c†

B,�ri
cB,�r j + H.c.

)

+ M
∑

j

(
c†

A,�r j
cA,�r j − c†

B,�r j
cB,�r j

)
. (28)

Here c†
A(B),�r j

and cA(B),�r j denote fermionic creation and annihi-
lation operators of A(B) sublattice on the position �r j , M (−M )
is the on-site potential on A(B) sublattice sites, symbols 〈i, j〉
and 〈〈i, j〉〉 denote nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hoppings, θ is the additional effective phase
of hopping between NNN sites, and t1 and t2 are amplitudes
of NN hopping and NNN hopping, respectively. Taking the
periodic boundary condition along the x axis and y axis and
using the Fourier transformation, the Hamiltonian of the Hal-
dane model in the momentum space can be expressed as
H = ∑

k ψ
†
k ĥkψk, where ψk = (ck,A, ck,B)T and ĥk is given

by [36]

ĥk = 2t2 cos θ
∑

i

cos(k · b̂i )I

+ t1
∑

i

cos(k · âi )σx + t1
∑

i

sin(k · âi )σy

+ [M − 2t2 sin θ
∑

i

sin(k · b̂i )]σz, (29)

where i = 1, 2, 3 and k = (kx, ky) with kx = 2πmx√
3Lx

(mx =
1, 2, . . . , Lx ) and ky = 4πmy

3Ly
(my = 1, 2, . . . , Ly). It is easy to

get

dx,k = t1

(
cos ky + 2 cos

√
3kx

2
cos

ky

2

)
,

dy,k = t1

(
sin ky − 2 cos

√
3kx

2
sin

ky

2

)
,

dz,k = M − 2t2 sin θ

(
sin

√
3kx − 2 sin

√
3kx

2
cos

3ky

2

)
,

and

d0,k = 2t2 cos θ

(
cos

√
3kx + 2 cos

√
3

2
kx cos

3

2
ky

)
.

Figure 6(b) shows the phase diagram of the Haldane model.
The critical lines of the Haldane model are described by
M/t2 = ±3

√
3 sin θ , which separate topologically different

phases characterized by the Chern number with C = 0 or
C = ±1 [36]. The corresponding constraint relations for the
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occurrence of zeros of fidelity are

(M/t2 + 3
√

3 sin θ )(M/t2 + 3
√

3 sin θ̃ ) < 0, kxc = 4π

3
√

3
, kyc = 4π

3
;

(M/t2 − 3
√

3 sin θ )(M/t2 − 3
√

3 sin θ̃ ) < 0, kxc = 2π

3
√

3
, kyc = 2π

3
. (30)

According to the above constraint relation, if we
choose θ = 0, t1 = 1, M/t2 = 4.5, then zeros of fidelity
can be accessible in the thermodynamic limit for θ̃ ∈
(−2π/3,−π/3) ∪ (π/3, 2π/3), which is in accordance with
the red dashed line in Fig. 6(b). Next we consider the finite-
size system. For θ̃ ∈ (−2π/3,−π/3), kyc = 4π

3 is always
accessible. For θ̃ ∈ (π/3, 2π/3), kyc = 2π

3 is accessible for
even Ly, while a twist boundary condition c†

A(B),�r j+Ly (b̂2−b̂3 )/2
=

c†
A(B),�r j

eiφy along the y direction is needed such that ky =
2(2πmy+φyc )

3Ly
with φyc = π can give rise to kyc = 2π

3 for odd Ly.
For simplicity, we choose Ly = 2n (even), so that kyc is acces-
sible with no need of the introduction of the twist boundary
condition along the y direction.

By applying the twist boundary condition c†
A(B),�r j+Lxb̂1

=
c†

A(B),�r j
eiφx along the x direction, we demonstrate that exact

zeros of F can be accessible by tuning the twist flux φx when
θ̃ ∈ (−2π/3,−π/3) ∪ (π/3, 2π/3). In Fig. 7(a), we show
the images of the fidelity F of the Haldane model versus
θ̃ for systems with different twist flux, where θ = 0, t1 =
1, M/t2 = 4.5, Lx = 4, and Ly = 4. It is shown that F drops
to zero abruptly at the points θ̃ = −2π/3 and θ̃ = −π/3
for φx = 4π/3 and at the points θ̃ = π/3 and θ̃ = 2π/3 for
φx = 2π/3, while the fidelity for other φx is analytic every-
where. Under the twist boundary condition, the momentum
kx is shifted and we have k = (kx = 2πmx+φx√

3Lx
, ky = 4πmy

3Ly
). For

θ̃ ∈ (π/3, 2π/3), the kc mode can be accessed by tuning the
twist flux to φxc,1 = 2π/3, whereas for θ̃ ∈ (−2π/3,−π/3),
the kc mode can be accessed by tuning the twist flux to φxc,2 =
4π/3. Actually, for all cases of Lx = 3n + 1 with n being a
positive integer, we have φxc,1 = 2π/3 for θ̃ ∈ (π/3, 2π/3)
and φxc,2 = 4π/3 for θ̃ ∈ (−2π/3,−π/3). For cases with
Lx = 3n, we have φxc = 0. For cases with Lx = 3n + 2, we
have φxc,1 = 4π/3 for θ̃ ∈ (π/3, 2π/3) and φxc,2 = 2π/3 for
θ̃ ∈ (−2π/3,−π/3). To see it clearly, we show the case of
Lx = 6 and Lx = 8 in Figs. 7(b) and 7(c), respectively. Al-
though the value of φxc may depend on the size of the system,
it is clear that the exact zero of the fidelity can be always
accessed by continuously tuning the twist flux φx as long as θ̃

and θ are in different phase regions.

D. Interacting SSH model

To exhibit the applicability of our theoretical scheme, here
we study one more example by taking into account interac-
tion. We shall explore the fidelity of the SSH model with

interaction. The Hamiltonian of the interacting SSH model is

H =
L∑

j=1

(c†
j,Ac j,B + γ c†

j,Bc j+1,A + H.c.)

+ U
L∑

j=1

(n j,An j,B + n j,Bn j+1,A), (31)

where U is the magnitude of the interaction strength be-
tween fermions on nearest-neighboring sites and nj,A(B) =
c†

j,A(B)c j,A(B). Here we only consider the half-filling case.
Reference [37] has analyzed topological phase transitions in

(a)

(b)

(c)

FIG. 7. The fidelity F of the Haldane model versus θ̃/π under
twist boundary conditions with various φ. The vertical dashed lines
guides the critical points θ̃c/π = ±1/3, ±2/3. (a) Lx = 4, Ly =
4. (b) Lx = 6, Ly = 4. (c) Lx = 8, Ly = 4. Here we take t1 =
1, M/t2 = 4.5, θ = 0.
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(a)

(b)

FIG. 8. (a) The fidelity F of the interacting SSH model versus
γ̃ under twist boundary conditions with φ = 0, 0.9π , and π . The
vertical dashed line guides the critical point γ̃c = 1. Here γ = 0.2.
(b) The images of α versus φ/π . The solid blue line corresponds
to γ = 0.2 and γ̃ = 2, while the dotted orange line corresponds to
γ = 0.2 and γ̃ = 0.7. The vertical dashed line guides the divergent
point φc/π = 1. Here we take L = 5, U = 0.1.

the interacting SSH model. For large U , the system is in a
density-wave phase, whereas for small U , there is still a phase
transition through varying the parameter γ . We have obtained
the approximate value of the phase transition point γc ≈ 1.038
for U = 0.1 through the finite-size-scaling analysis of the
fidelity. The numerical result suggests that the transition point
is close to γ = 1.

We numerically calculate the fidelity F (γ , γ̃ ) versus γ̃

via exact diagonalization of a system with L = 5 by fix-
ing γ = 0.2 for U = 0.1 under the twist boundary condition
c†

L+1,A(B) = c†
1,A(B)e

iφ with various flux φ. Our numerical re-
sults are displayed in Fig. 8. In Fig. 8(a), for γ = 0.2, we find
that the fidelity abruptly drops to zero at γ̃ = 1 only under
the antiperiodic boundary condition (φ = π ), suggesting that
the phase transition point is given by γc = 1 for U = 0.1. In
contrast, no sharp drop occurs and no exact zero of fidelity
can be obtained for other φ. In Fig. 8(b), the images of α

demonstrate that φc = π when γ̃ and γ belong to different
phases. Our numerical results indicate that exact zeros of
the fidelity obtained via the tuning of φ can provide a clear
signature of the quantum phase transition even by studying a
small size system of interacting SSH model.

III. SUMMARY AND DISCUSSION

In summary, we proposed a theoretical scheme for de-
tecting quantum phase transition by seeking exact zeros of
fidelity of finite-size systems with twist boundary conditions.

By considering the SSH model, the Creutz model and Haldane
model as concrete examples, we demonstrated that exact zeros
of fidelity of finite-size systems can be always accessed for
γ̃ and γ in different phases under a proper twist boundary
condition, whereas no exact zero exists for γ̃ and γ in the
same phase. Consequently, we can observe a discontinued
behavior of fidelity at the phase transition point by tuning
the twist flux parameter φ. Changing φ continuously, we
unveiled that the decay rate function α of the fidelity is diver-
gent at the critical magnetic flux φc for γ̃ and γ in different
phases, while α is smooth everywhere for γ̃ and γ in the same
phase. We also exhibited the applicability of our theoretical
scheme to the interacting SSH model.

Our work provides an efficient way for detecting quantum
phase transition by studying small-size systems via the intro-
duction of an additional magnetic flux. A natural question
concerns whether such a scheme is applicable to a general
context of models with quantum phase transitions, including
correlated systems, the Ising model with finite/infinite interac-
tion range, and models without a spatial lattice interpretation,
e.g., the Lipkin-Meshkov-Glick model [38,39]. Although we
show the applicability of our theoretical scheme to the inter-
acting SSH model in Sec. II D, our scheme does not always
work for general correlated systems and models without spa-
tial interpretation, for which the momentum is even not well
defined. In the present work, the gap between the first excited
state and ground state is a function of momentum for all the
studied models, and thus we can tune the gap to approach zero
by tuning the magnetic flux properly. For systems without
spatial interpretation, the gap of a finite-size system is not
necessary to be a function of momentum, and thus our scheme
is not necessary to be applicable to these systems.

Our scheme also suggests an alternative way for experi-
mentally detecting signature of QPT in finite-size quantum
systems, which, however, relies on the ability of creating
tunable magnetic flux in quantum simulators. For the exper-
imental setup in a trapped-ion quantum simulator [40,41], it
is still a great challenge to create tunable magnetic flux in
the setup. However, it seems that cold atomic system is a
promising platform for producing tunable magnetic flux. By
using multifrequency Bragg lasers, the SSH model on a mo-
mentum lattice was experimentally realized [42], where the
synthetic magnetic flux through the ring are tunable [43]. Thus
we expect it to be a promising platform to observe signature
of QPT by using the theoretical scheme proposed in this work.
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