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Wave turbulence and the kinetic equation beyond leading order
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We derive a scheme by which to solve the Liouville equation perturbatively in the nonlinearity, which we apply
to weakly nonlinear classical field theories. Our solution is a variant of the Prigogine diagrammatic method and
is based on an analogy between the Liouville equation in infinite volume and scattering in quantum mechanics,
described by the Lippmann-Schwinger equation. The motivation for our work is wave turbulence: A broad class
of nonlinear classical field theories are believed to have a stationary turbulent state—a far-from-equilibrium state,
even at weak coupling. Our method provides an efficient way to derive properties of the weak wave turbulent
state. A central object in these studies, which is a reduction of the Liouville equation, is the kinetic equation,
which governs the occupation numbers of the modes. All properties of wave turbulence to date are based on
the kinetic equation found at leading order in the weak nonlinearity. We explicitly obtain the kinetic equation to
next-to-leading order.
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I. INTRODUCTION

This paper will present a scheme by which to solve the
Liouville equation for a classical weakly nonlinear system in
infinite volume, perturbatively in the nonlinearity. Our expan-
sion will be analogous to the construction of scattering states
in quantum mechanics. We will apply our method to weakly
nonlinear field theories and derive new results for the kinetic
equation governing the occupation numbers of the modes,
which is central to studies of weak wave turbulence [1–3].
Wave turbulence has been shown to occur in an incredible
range of contexts, from surface gravity waves to waves on
vibrating elastic plates; see Refs. [4–23] for some recent work.

The Liouville equation is perhaps most familiar in the con-
text of kinetic theory of a large number of interacting particles.
Under a range of assumptions, primarily that the gas is dilute,
the Liouville equation becomes the Boltzmann equation, gov-
erning the single particle phase space density. The corrections
to the Boltzmann equation away from the dilute gas limit can
be large and give qualitatively new effects [24–26], and they
have been studied in a number of works [27–35].

The Liouville equation can just as well be studied for in-
teracting waves, rather than interacting particles. In the weak
interaction limit it reduces to the wave kinetic equation, the
wave analog of the Boltzmann equation [36]. In addition
to the thermal state there is, surprisingly, a second sta-
tionary solution—a far-from-equilibrium turbulent state (the
Kolmogorov-Zakharov state). The properties of this turbulent
state, such as the occupation numbers of the modes and the
correlations between modes, are largely unknown, except at
leading order in the weak interaction. However, experience
from other contexts, such as the kinetic theory of gases or
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perturbative quantum field theory, suggests that going beyond
leading order is possible, valuable, and can lead to qualita-
tively new effects. There has been a recent push to study the
wave turbulent state beyond leading order [4,5], and this work
is in line with this motivation.

Long ago Prigogine observed that the Liouville equa-
tion can be viewed as a Schrödinger equation, and used
time-dependent perturbation theory to study the approach
to equilibrium, going beyond the Boltzmann equation [34].
We build on Prigogine’s work, with the distinction that we
draw an analogy between stationary solutions of the Liouville
equation and solutions of the time-independent Schrödinger
equation. More specifically, with a continuum of modes, the
Liouville equation is analogous to the Lippmann-Schwinger
equation, used in quantum mechanics to describe scattering
states. We proceed to solve the Liouville equation, formulated
as a Lippmann-Schwinger equation, perturbatively in the non-
linearity. We do this explicitly for field theories with a weak
quartic interaction, to the first two orders in the nonlinearity.

The paper is organized as follows. In Sec. II we view the
Liouville equation as a Schrödinger equation and set up the
perturbation theory for the solution. In Sec. III we specialize
to Hamiltonians for waves with a weak quartic interaction
and work out the perturbative solution of the Liouville equa-
tion at leading order in the quartic interaction, reproducing
the well-known kinetic equation for waves. In Sec. IV we
extend this to next-to-leading order in the interaction and, in
particular, derive the kinetic equation to next-to-leading order.
We conclude in Sec. V.

II. PERTURBATIVE SOLUTION OF THE
LIOUVILLE EQUATION

The statistical mechanics of N degrees of freedom is con-
cerned with solving for the evolution of the phase space
density ρ(Ji, αi, t ), a function of the action, Ji, and angle,
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αi, variables, with i running from 1 to N . The evolution is
governed by the Liouville equation,

∂ρ

∂t
= {H, ρ}. (2.1)

One is often interested in stationary solutions, which describe
the late-time behavior. For almost any interacting system, the
expectation is that this stationary solution is the thermal state.
Surprisingly, for many field theories there is an additional
stationary solution, which is the “wave turbulent” state. Con-
cretely, what is known is this: for a field theory, at weak
coupling, the stationary solution of the Liouville equation is
of the form

ρ(J ) = exp

⎛
⎝−

∑
p

Jp

np

⎞
⎠, 〈Jp〉 ≡

∫
dJ Jp ρ(J ) = np,

(2.2)
where the sum is over all Fourier modes p. The thermal
solution has the occupation numbers,

np = T

ωp
, (2.3)

which is the Rayleigh-Jeans solution, where T is the tem-
perature (this is simply the Bose-Einstein occupation number
at large temperatures) and ωp is the energy of mode p. For
certain Hamiltonians, there is a second solution—the wave
turbulent, or Kolmogorov-Zakharov, solution—with ρ of the
form of Eq. (2.2), but with an np that scales as a power of p,

np ∼ p−γ , (2.4)

where γ depends on the form of the interaction. This is a
stationary solution which is very different from the thermal
solution; it is a state that is far from equilibrium.

The thermal state at finite coupling is similar to the one
at weak coupling: It is of the form of Eq. (2.2), but the ωp

appearing in np in Eq. (2.3) is replaced with the full energy of
mode p. However, the density ρ(Ji, αi ) for the turbulent state
beyond leading order in the coupling is far more interesting
and elaborate: It will be a complicated function of the Ji and
the αi. Finding ρ(Ji, αi ) is a major problem, and this will
be our goal: to systematically solve the Liouville equation,
perturbatively in the coupling, for a time-independent ρ.

A way of organizing the perturbation series is to notice that
the Liouville equation can be viewed as a Schrödinger equa-
tion. Explicitly, after multiplication by i, Eq. (2.1) becomes

i
∂ρ

∂t
= Lρ, (2.5)

where

L = i
∑

j

(
∂H

∂α j

∂

∂Jj
− ∂H

∂Jj

∂

∂α j

)
. (2.6)

A notable difference with the Schrödinger equation is that the
phase space density ρ(Ji, αi ) depends on both the action and
the angle variables, unlike the wave function which depends
on either the positions or the momenta.

We are interested in stationary solutions of the Liouville
equation. This amounts to finding ρ for which Lρ = 0; or, in

the language of the Schrödinger equation, solving the time-
independent Schrödinger equation for eigenfunctions with
zero eigenvalue. There are two kinds of eigenfunctions of
the Schrödinger equation: bound states and scattering states.
It is the scattering states that we are interested in. In quan-
tum mechanics one finds the scattering state eigenfunctions
by solving the Lippmann-Schwinger equation. Let us recall
how this works; we will then do something analogous for the
Liouville equation.

A. Lippmann-Schwinger equation

The Hamiltonian in quantum mechanics is split into a
free part and an interacting part, H = H0 + V , so that the
Schrödinger equation is

(H0 + V )|ψ〉 = E |ψ〉. (2.7)

The solution is formally [37]

|ψ〉 = |ψ0〉 + G(E )V |ψ〉, G(E ) = 1

E − H0 + iε
, (2.8)

where |ψ0〉 is the solution of the free Schrödinger equation,
H0|ψ〉 = E |ψ〉.1 Equation (2.8) is the Lippmann-Schwinger
equation. Iterating the equation gives a perturbative expansion
for the wave function,

|ψ〉 = |ψ0〉 + G(E )V |ψ0〉 + G(E )V G(E )V |ψ0〉 + . . . .

(2.9)
It is useful to write the Lippmann-Schwinger equation in
position space,

ψ (x) = ψ0(x) +
∫

dx′G(x, x′)V (x′)ψ (x′),

G(x, x′) = 〈x|G(E )|x′〉, (2.10)

where the position-space wave function is ψ (x) = 〈x|ψ〉,
and the Green’s function is G(x, x′) = 〈x|G(E )|x′〉, while
the potential is taken to be local, 〈x|V |x′〉 = V (x)δ(x − x′).
For H0 corresponding to a free particle, H0 = p2/2m, the
propagator is

G±(x, x′) =
∫

d3 p

(2π )3

ei �p·(�x−�x′ )

E − p2

2m ± iε
= − m

2π

eik|�x−�x′|

|�x − �x′| ,

E = k2

2m
. (2.11)

1The iε that we added sets the boundary conditions. In particular,
we can view the iε as being added to the energy and making it slightly
complex, E → E + iε. The eigenfunctions have the time evolution
e−iEt , which becomes e−iEt eεt . This vanishes in the far past, which
is what we want: We want the far past to have eigenfunctions of
the free Schrödinger equation. The choice of +iε which we made
corresponds to a retarded propagator. It means that a plane wave
is ingoing and a scattered wave is outgoing. The choice of −iε
corresponds to an advanced propagator. Notice that the iε is absent
once we Fourier transform to position space in Eq. (2.11). If we had
picked −iε in Eq. (2.8), instead of +iε, the exponential in Eq. (2.11)
would have had a minus sign, leading to a scattered wave that is
ingoing.
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Finally, we note that the Lippmann-Schwinger equation ap-
plies to scattering states, which have a continuum of energy
levels. This was important to us when we identified the energy
of the eigenstates of both the free Hamiltonian and the inter-
acting Hamiltonian as E . This is to be contrasted with bound
states: the bound state energy levels are discretely spaced and
change as the Hamiltonian changes.

B. Liouville equation

We now return to the Liouville equation (2.5) and split the
Hamiltonian into a free part, which depends only on the action
variables, and an interacting part,

H = H0(Jj ) + V (Jj, α j ). (2.12)

The Liouville operator is correspondingly L = L0 + δL,
where

L0 = −i
∑

j

ω(Jj )
∂

∂α j
, ω(Jj ) ≡ ∂H0

∂Jj
, (2.13)

δL = i
∑

j

(
∂V

∂α j

∂

∂Jj
− ∂V

∂Jj

∂

∂α j

)
. (2.14)

Our goal is to solve the Liouville equation for a time-
independent phase space density ρ. We denote such a state in
ket notation as |�〉, so that ρ(Ji, αi ) = 〈Ji, αi|�〉. As a result
of the Liouville equation (2.5) |�〉 must satisfy

(L0 + δL)|�〉 = 0. (2.15)

In analogy with the Lippmann-Schwinger equation (2.8), the
solution of Eq. (2.15) is

|�〉 = |�0〉 + GδL|�〉, G = 1

−L0+iε
, (2.16)

where |�0〉 solves L0|�0〉 = 0. This is just like Eq. (2.8)
with L0 instead of H0 and with E = 0. Here the propagator
(or Green’s function) G is the inverse of the free Liouville
operator L0. Let us look at the Green’s function in more detail.
Writing its matrix element as, 〈�α|G|�α′〉 = G(�α−�α′), we have

L0G(�α) = −δ(�α), G(�α) =
∑

�n

ei�n·�α

−�n · �ω + iε
, (2.17)

where δ(�α) ≡ ∏
j δ(α j ). Here �n is a vectors of integers, and

we have switched to vector notation, �J, �α to denote the Ji, αi.
We denote the Fourier transform of the Green’s function by
G(�n),

G(�n) = 1

−�n · �ω + iε
. (2.18)

Notice that the eigenfunctions |�n〉 of the free Liouville opera-
tor L0 are plane waves,

〈�α|�n〉 = exp (i�n · �α), L0|�n〉 = �n · �ω|�n〉. (2.19)

We could multiply this by any function ρ( �J ) of the action
variables and it would continue to be an eigenfunction of L0.
We are particularly interested in the eigenfunctions of L0 with
zero eigenvalue, as they correspond to the solutions |�0〉 of
the free Liouville equation,

〈�α|�0〉 = exp (i�n · �α)ρ( �J ), �n · �ω = 0, (2.20)

where ρ( �J ) is any function of the action variables. Even
though this is a function of the �J variables as well, for nota-
tional simplicity we omit writing an explicit �J on the left-hand
side. Also, to be clear, we wrote the sum in Eqs. (2.13)
and (2.14) to be over a seemingly discrete index j; however,
we really have in mind that j is momentum, which is contin-
uous. For instance, the true meaning of �n · �ω is

�n · �ω ≡
∑

i

niωi =
∑

p

npωp =
∫

dd p np ωp. (2.21)

We will continue to use the �n · �ω notation due to its simplicity.
The �n · �ω is evidently analogous to energy in the discussion of
the Lippmann-Schwinger equation.

The Liouville equation (2.16), written in the plane wave
basis, is

〈�n|�〉 = 〈�n|�0〉 +
∑

�n′
G(�n)〈�n|δL|�n′〉〈�n′|�〉, (2.22)

where we used that 〈�n|G|�n′〉 = δn,n′G(�n). The transformation
between the state in the two bases, |�α〉 and |�n〉, is as usual
through a Fourier transform,

〈�α|�〉 =
∑

�n
〈�α|�n〉〈�n|�〉 =

∑
�n

ei�n·�α〈�n|�〉. (2.23)

Just as we did for the Lippmann-Schwinger equation (2.9),
we may perturbatively expand |�〉 around |�0〉,
〈�n|�〉 = 〈�n|�0〉 +

∑
�n′

G(�n)〈�n|δL|�n′〉〈n′|�0〉

+
∑
�n′,�n′′

G(�n)〈�n|δL|�n′〉G(�n′)〈�n′|δL|�n′′〉〈�n′′|�0〉+. . . .

(2.24)

This is an expression that builds the solution |�〉 of the full
Liouville equation in terms of a solution |�0〉 of the free
Liouville equation. Let us take a special case: 〈�α|�0〉 which
is independent of �α,2

〈�α|�0〉 = ρ( �J ). (2.25)

The Fourier transform 〈�n|�0〉 is correspondingly only nonzero
for �n = 0, with 〈�n = 0|�0〉 = ρ(J ). We therefore set �n = 0 in
Eq. (2.24) so that it becomes

〈0|�〉 = 〈0|�0〉 + G(0)〈0|δL|0〉〈0|�0〉
+

∑
�n′

G(0)〈0|δL|�n′〉G(�n′)〈�n′|δL|0〉〈0|�0〉 + . . . .

(2.26)

In the next section we will specialize these equations to a field
theory with a quartic interaction.

III. QUARTIC FIELD THEORY: LEADING ORDER

We now turn to our Hamiltonian of interest, for a field
theory with a quartic interaction. Rather than working with

2We do this because later on we will be interested in 〈Jr〉 =∫
dJdα Jr 〈α|�0〉, which will vanish unless 〈α|�0〉 (2.20) is inde-

pendent of α.

064127-3



VLADIMIR ROSENHAUS AND MICHAEL SMOLKIN PHYSICAL REVIEW E 109, 064127 (2024)

real fields φp and momentum conjugate πp, it is common to
work with complex fields ap and their complex conjugate a∗

p,
which we will denote by a†

p.3 The Hamiltonian is taken to
be [2]

H =
∑

p

ωpa†
pap +

∑
p1,p2,p3,p4

λp1 p2 p3 p4 a†
p1

a†
p2

ap3 ap4 , (3.1)

where ωp is an arbitrary real function of p and the cou-
pling λp1 p2 p3 p4 is any complex function of the momenta
p1, p2, p3, p4 which has the symmetry properties λp1 p2 p3 p4 =
λp2 p1 p3 p4 = λp1 p2 p4 p3 = λ∗

p3 p4 p1 p2
. Phase space in these vari-

ables is a function of the ap and a†
p. It is convenient to switch

to action-angle variables, Jp, αp,

ap = √
Jpe−iαp, a†

p = √
Jpeiαp, (3.2)

so that the Hamiltonian becomes

H =
∑

i

ωiJi +
∑

i, j,k,l

λi jkl

√
JiJjJkJl exp(i(αi+α j−αk−αl )),

(3.3)
where we have switched to labeling the momenta p by the
discrete index i, for notational convenience. The advantage of
action-angle variables is that the free part of the Hamiltonian
depends only on the action variables.

Computing the Liouville operator, we have that L0 is
Eq. (2.13) with ω(Ji ) = ωi, while δL in Eq. (2.14) is

δL = −
∑

i, j,k,l

λi jkl

√
JiJjJkJl e−i�ei j;kl ·�α

[
(∂i+∂ j−∂k−∂l ) + i

2

(
∂αi

Ji
+ ∂α j

J j
+ ∂αk

Jk
+ ∂αl

Jl

)]
, (3.4)

where we are using the shorthand ∂i ≡ ∂Ji . In addition, we have defined �ei j;kl , which is a vector that has a −1 in the ith and jth
entry and a +1 in the kth and lth entry, and a zero elsewhere; in other words,

−�ei j;kl · �α = αi+α j−αk−αl . (3.5)

The matrix element of δL trivially follows

〈�n|δL|�n′〉 = −
∑

i, j,k,l

λi jkl

√
JiJjJkJl δ�n+�ei j;kl ,�n′

[(
∂i+∂ j−∂k−∂l

) − 1

2

(
n′

i

Ji
+ n′

j

J j
+ n′

k

Jk
+ n′

l

Jl

)]
. (3.6)

An equivalent way of writing this, which will also be useful, is

〈�n|δL|�n′〉 = −
∑

i, j,k,l

λi jkl δ�n+�ei j;kl ,�n′

[(
∂i+∂ j−∂k−∂l

) − 1

2

(
ni

Ji
+ n j

Jj
+ nk

Jk
+ nl

Jl

)]√
JiJjJkJl , (3.7)

where we used the commutation relation [∂,
√

J ] = 1
2J

√
J to go between the two expressions.

Now, using these matrix elements in Eq. (2.26) gives

〈0|�〉 = 〈0|�0〉 + G(0)
∑
i jkl

|λi jkl |2G(�ei j;kl )(∂i+∂ j−∂k−∂l )JiJjJkJl (∂k+∂l−∂i−∂ j )〈0|�0〉 + . . . , (3.8)

where we used that, for the matrix element 〈�0|δL|�n′〉 to be nonzero, the intermediate state |�n〉 has to take the form |i j; kl〉, by
which we mean the mode occupation numbers are: ni = n j = −1 and nk = nl = 1, and all other na = 0.

Notice that the second term in Eq. (3.8) has a G(0). From the form of G(�n) given in Eq. (2.18), we see that G(0) diverges in
the limit that ε goes to zero. This means that the quantity multiplying G(0) must vanish,∑

i jkl

|λi jkl |2 1

ωi+ω j−ωk−ωl+iε
(∂i+∂ j−∂k−∂l )JiJjJkJl (∂k+∂l−∂i−∂ j )ρ( �J ) = 0, (3.9)

where we used the explicit form of G(�ei j;kl ) and replaced 〈0|�0〉 with ρ( �J ). Next, we note that

1

x + iε
= P

1

x
− iπδ(x), (3.10)

where P denotes principal value. Since the principal part of 1/(ωk+ωl−ωi−ω j ) is odd under exchange of i, j with k, l , whereas
the other terms in Eq. (3.9) are even, we are left with the δ function piece,∑

i jkl

|λi jkl |2δ(ωi+ω j−ωk−ωl )(∂i+∂ j−∂k−∂l )JiJjJkJl (∂k+∂l−∂i−∂ j )ρ( �J ) = 0. (3.11)

Before proceeding further with analyzing this equation, let us take stock of where we are. Our problem was to solve the
Liouville equation. We wrote this in the form of Eq. (2.16) resembling the Lippmann-Schwinger equation, which gives the
solution as a series built off of the solution of the free Liouville equation. We took a special solution of the free Liouville

3The relation between them is, as usual, φk = 1
2
√

ωk
(ak + a†

k ) and πk = i
2
√

ωk
(a†

k − ak ).

064127-4



WAVE TURBULENCE AND THE KINETIC EQUATION … PHYSICAL REVIEW E 109, 064127 (2024)

equation 〈�α|�0〉 = ρ( �J ) (2.25) which is independent of the angles �α. However we found that, rather than Eq. (2.16) giving us
corrections to this, perturbatively in the coupling, as one is used to in quantum mechanics, it gave us a constraint on ρ( �J ): at
leading order it must satisfy Eq. (3.11).

Equation (3.11) is not new: it was found by Prigogine [34]. He studied what one might call the analog of time-dependent
perturbation theory for the Liouville equation, whereas we are studying the analog of time-independent perturbation theory.
Prigogine found,

dρ( �J )

∂t
= −4π

∑
i jkl

|λi jkl |2δ(ωi+ω j−ω j−ωl )(∂i+∂ j−∂k−∂l )JiJjJkJl (∂k+∂l−∂i−∂ j )ρ( �J ), (3.12)

which of course agrees with Eq. (3.11) if one is looking for stationary ρ( �J ), as we are. Let us see how Eq. (3.12) reduces to the
kinetic equation. Defining the expectation values,

〈Ji〉 =
∫

dJJi ρ(J ), 〈JiJjJk〉 =
∫

dJJi Jj Jk ρ(J ), (3.13)

and multiplying Eq. (3.12) by Jr and integrating with respect to �J we get

∂〈Jr〉
∂t

= −4π

∫
dJJr

∑
i, j,k,l

|λi jkl |2δ(ωi+ω j−ωk−ωl )(∂i+∂ j−∂k−∂l )JiJjJkJl (∂k+∂l−∂i−∂ j )ρ(J ). (3.14)

We integrate by parts to the left (twice) and identify the resulting integrals as expectation values,

∂〈Jr〉
∂t

= 4π
∑

i, j,k,l

(δir+δ jr−δkr−δlr )|λi jkl |2δ(ωi+ω j−ωk−ωl )(〈JjJkJl〉+〈JiJkJl〉−〈JiJjJl〉−〈JiJjJk〉), (3.15)

where δi j is the Kronecker δ function. Now, if we take ρ(J ) to be an exponential,

ρ(J ) = 1∏
i ni

exp

(
−

∑
i

Ji

ni

)
, 〈Ji〉 = ni, (3.16)

then all the correlation functions factorize into one-point functions and we are left with

∂nr

∂t
= 4π

∑
i, j,k,l

(δir+δ jr−δkr−δlr )|λi jkl |2δ(ωi+ω j−ωk−ωl )

(
1

ni
+ 1

n j
− 1

nk
− 1

nl

)
nin jnknl . (3.17)

This is the standard (leading order) kinetic equation for
waves [2].

Using our perturbative (in the coupling) solution of the
Liouville equation analog of the Lippmann-Schwinger equa-
tion, we can go beyond the leading order kinetic equation,
and compute the kinetic equation to any order in the coupling.
Generalizing what we just did, from Eq. (2.22) we have that

〈�0|�〉 = 〈�0|�0〉 + G(�0)
∑

�n′
〈�0|δL|�n′〉〈n′|�〉. (3.18)

Since G(�0) is divergent, it must be the case that∑
�n′

〈�0|δL|�n′〉〈n′|�〉 = 0. (3.19)

We will refer to this as the master equation. We may multiply
this by Jr and integrate over �J , and identify the resulting
quantity as proportional to ∂nr

∂t ,

∂nr

∂t
∝

∫
dJ Jr

∑
�n′

〈�0|δL|�n′〉〈n′|�〉. (3.20)

This is the kinetic equation: for a stationary state, both sides
vanish, as should be the case. We therefore have a clear
procedure for computing the kinetic equation to any order in
the interaction strength: we perturbatively solve Eq. (2.16) for

|�〉 with the initial condition that |�0〉 is angle independent,
i.e., 〈�n|�0〉 is nonzero for �n = 0, and insert the result into
Eq. (3.20). This is what we will do in the next section.

We end this section with a comment. Perturbatively solving
the Liouville equation is equivalent to perturbatively comput-
ing integrals of motion; see Refs. [38–40]. The connection
with the Lippmann-Schwinger equation gives a systematic
and unambiguous scheme by which to compute the kinetic
equation to any order in the nonlinearity. It is important that
we are studying field theories in the continuum, which have
an infinite number of degrees of freedom. One might have
worried that once one goes away from the free limit, integra-
bility will be broken (perturbation theory will break down)
and there will be no conserved quantities. However, since we
have a field theory, any function ρ( �J ) is conserved for the free
theory; once interactions are turned on most functions indeed
stop being conserved, but some remain conserved: those that
satisfy the equations, such as Eq. (3.9), that our perturbation
theory forces on us.

IV. QUARTIC FIELD THEORY: NEXT-TO-LEADING
ORDER

In this section we continue the discussion in the previous
section, but go to next-to-leading order in the nonlinearity. To
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recap: our goal is to solve the Liouville equation for the phase
space distribution �( �J, �α), which is a function of the action
Ji and angle αi variables of all the modes, which have been
grouped into vectors, �J and �α. We work perturbatively in the
interaction, starting with the solution �0( �J, �α) of the Liouville
equation for a free Hamiltonian.

We are particularly interested in the case in which �0 is
independent of the angle. It is convenient to change basis,
from angles �α to the Fourier transform variables of occupation
numbers �n. The �0 that is �α independent then only depends
on the zero mode, �n = 0. Writing �0 in ket notation, it is
〈�n = 0|�0〉. Going back to our perturbative expansion (2.26)
for 〈0|�〉, we add the next-to-leading order term,

〈0|�〉 = 〈0|�0〉 + G(0)((δL)first + (δL)second + . . .), (4.1)

where we have dropped the 〈0|δL|0〉 term, since it vanishes
for our δL, and we defined

(δL)first =
∑

�n′
〈�0|δL|�n′〉G(�n′)〈�n′|δL|0〉〈0|�0〉, (4.2)

(δL)second

=
∑
�n′,�n′′

〈�0|δL|�n′〉G(�n′)〈�n′|δL|�n′′〉G(�n′′)〈�n′′|δL|0〉〈0|�0〉.

(4.3)

As argued in the previous section, since G(0) diverges we
must have the master equation

(δL)first + (δL)second = 0, (4.4)

to third order in the coupling.
In the previous section we computed the first term (δL)first;

see Eq. (3.11). Here we will compute the next order term,
(δL)second. Before proceeding, it is useful to streamline our
notation and give graphical representations of the terms
that appear. We will label modes by 1, 2, 3, . . . instead of
i, j, k, . . .. In addition, we can make use of the specific form of
δL for a field theory with a quartic interaction to specify which
states can appear in the perturbative expansion. Namely, δL
acts by “creating” two particles and “destroying” two other
particles, and its matrix element was given earlier in Eq. (3.6).
We have that (δL)first (4.2) reduces to

(δL)first =
∑
1,...,4

G(�e12;34) 〈�0|δL|12; 34〉〈12; 34|δL|0〉〈0|�0〉.
(4.5)

FIG. 1. A diagrammatic representation of (δL)first in Eq. (4.5).
We start with vacuum |0〉. The interaction δL, which occurs at the
left vertex, turns this into the state |12; 34〉. The two “particles” and
two “holes” each propagate to the right. The interaction δL then
transforms the state back into the vacuum |0〉.

FIG. 2. A diagrammatic representation of the contributions to
(δL)second.

Our notation is such that when we write |12; 34〉 we mean
a state in which modes 1 and 2 have occupation number
−1 and modes 3 and 4 have occupation number 1. We may
represent Eq. (4.5) graphically, as shown in Fig. 1. One can
imagine a vertical dashed line running through the center of
the figure which represents the intermediate state |12; 34〉.
The arrows on the lines indicate the direction of flow of
occupation number: an arrow pointing to the right corresponds
to occupation number plus one, while an arrow pointing to the
left corresponds to occupation number minus one. In this new
notation, Eq. (4.5) in explicit form is

(δL)first =
∑
1,...,4

G(�e12;34)λ1234λ3412(∂1+∂2−∂3−∂4)

× J1J2J3J4 (∂3+∂4−∂1−∂2)〈0|�0〉. (4.6)

Let us now look at the next-order term (δL)second (4.3).
To compute this we need to enumerate all the possible in-
termediate states |�n′〉 and |�n′′〉. The most efficient way to do
this is with the aid of diagrams describing the process. The
diagrams will have three vertices, one for each δL. There are
four diagrams to consider. Two of the diagrams are shown
in Fig. 2. We also need to add the same diagrams, with all
the arrows reversed. These are shown in Fig. 3. We split
(δL)second into

(δL)second = (δL)a
second + (δL)b

second, (4.7)

FIG. 3. The same diagrams as in Fig. 2, but with all arrows
reversed, also contribute to (δL)second.
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where (δL)a
second denotes the contribution that is the sum of

the diagrams in Figs. 2(a) and 3(a), and (δL)b
second denotes

the contribution that is the sum of the diagrams in Figs. 2(b)
and 3(b). Let us start with Fig. 2(a). This diagram can be cut in

two different ways, producing two distinct intermediate states;
see Fig 4.

We start with Fig. 4(i), which corresponds to a sequence of
states |0〉 → |12; 34〉 → |56; 34〉 → |0〉. Its contribution is

∑
1,...,6

G(0)G(�e12;34)G(�e56;34) 〈0|δL|12; 34〉〈12; 34|δL|56; 34〉〈56; 34|δL|0〉〈0|�0〉. (4.8)

Let us evaluate this explicitly, making use of the matrix elements (3.6). We get

−
∑
1,...,6

G(0)G(�e12;34)G(�e56;34)λ1234λ5612λ3456(∂1+∂2−∂3−∂4)J1J2
√

J3J4J5J6

[
(∂5+∂6−∂1−∂2) + 1

2

(
1

J5
+ 1

J6

)]√
J5J6J3J4(∂3+∂4−∂5−∂6)〈0|�0〉, (4.9)

where we used the matrix element in the form of Eq. (3.7) for 〈�0|δL|12; 34〉, and in the form of Eq. (3.6) for 〈12; 34|δL|56; 34〉
and 〈56; 34|δL|0〉. It is convenient to commute through the J5 and J6 to combine them. Using [∂,

√
J] = 1

2J

√
J , this gives

−
∑
1,...,6

G(0)G(�e12;34)G(�e56;34)λ1234λ5612λ3456(∂1+∂2−∂3−∂4)J1J2J3J4(∂5+∂6−∂1−∂2)J5J6(∂3+∂4−∂5−∂6)〈0|�0〉. (4.10)

Next, we note that from Fig. 3(a) we will have an identical
contribution, but with all the arrows reversed. Rather than redo
the computation, it is useful to understand how to get the result
by a symmetry transformation.

A. Particle-hole symmetry

Let us understand what it means to have the arrows run
in the opposite direction. For the couplings, it means λi jkl →
λkli j = λ∗

i jkl . It also means that the sign of the angles is re-
versed, �α → −�α. In terms of G(�α), reversing the sign of �α
corresponds in Fourier space to sending G(�n) to G(−�n). Since
with our notation our occupation numbers are either plus or
minus one, reversing arrows means G(�ei j;kl ) → G(�ekl;i j ) =
−G∗(�ei j;kl ).

Now, to see the effect of reversing the arrows on the matrix
elements: we are swapping particles and holes, i.e., |i j; kl〉 →

FIG. 4. The diagram shown in Fig. 2(a). We use a vertical dashed
line to represent an insertion of an intermediate state. Depending on
the two ways in which we rotate Fig. 2(a), we produce different inter-
mediate states, as shown here in (i) and (ii). In (i) the first (leftmost)
intermediate state that the vertical dashed line crosses is |12; 34〉 and
the second is |56; 34〉. In (ii) the first state is also |12; 34〉, but the
second is |12; 56〉.

|kl; i j〉. We also need to understand the effect of swapping the
arrows on the explicit form of the matrix elements. In terms
of the variables, we see from Eq. (3.6) that flipping the sign of
�α corresponds to �J → − �J .

There is an easier way of understanding the mapping: it
follows from a symmetry of the Hamiltonian Eq. (3.3). In
particular, the Hamiltonian is invariant under4

ωi → −ωi, Ji → −Ji, αi → −αi,

λ1234 → λ−1−2−3−4 ≡ λ∗
1234, i = 1, 2, 3, 4. (4.11)

It is also invariant under a flip in sign of just two of the indices,

ωi → −ωi, Ji → −Ji, αi → −αi,

λ1234 → λ1−2−34 ≡ λ1324, i = 2, 3. (4.12)

Now, returning to Eq. (4.10) and performing the described
transformation gives the complex conjugate of Eq. (4.10),
with a minus sign. Summing the two gives what (with fore-
sight) we denote as 1

2 (δL)a
second, where

(δL)a
second = − 4i

∑
1,...,6

Im(G(�e12;34)G(�e56;34)λ1234λ5612λ3456)

× (∂1+∂2−∂3−∂4)J1J2J3J4

× (∂5+∂6−∂1−∂2)J5J6(∂3+∂4−∂5−∂6)〈0|�0〉.
(4.13)

We also need to include the diagram in Fig. 4(ii). We notice
that it is the same as Fig. 4(i) with 1, 2 ↔ 3, 4 and the arrows

4We have introduced the notation that if one of the indices of the
coupling appears with a minus sign in the first two slots, it means
the same as the index appearing without a minus sign in one of the
last two slots, and likewise if an index appears with a minus sign in
the last two slots, it means the same as the index appearing without
a minus sign in one of the first two slots, i.e., λ1−2−34 ≡ λ1324 and
λ−1−2−3−4 = λ3412.
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going in the opposite direction. But 1, 2, 3, 4 are just dummy
variables, so for that contribution we can simply change vari-
ables 1, 2 ↔ 3, 4. So we just need to have the arrows go in the
opposite direction. But to get Eq. (4.13) we already took the
arrows to go in both directions, so this gives back the same
thing: 1

2 (δL)a
second. In total we thus have (δL)a

second.
Next we turn to the diagram in Fig. 2(b). We notice

Fig. 2(b) can be obtained from Fig. 2(a) by swapping 2 and
3 and then reversing the arrows on 2, 3, 6. We must also
multiply by a combinatorial factor of 4 (because 1 and 2
can be exchanged, and 3 and 4 can be exchanged). Perform-
ing this transformation, 2 → −3, 3 → −2, and 6 → −6, on

(δL)a
second we get (δL)b

second

(δL)b
second = 16i

∑
1,...,6

Im(G(�e12;34)G(�e52;46)λ1234λ5316λ4625)

× (∂1+∂2−∂3−∂4)J1J2J3J4

× (∂5+∂3−∂1−∂6)J5J6(∂4+∂6−∂2−∂5)〈0|�0〉.
(4.14)

We have now computed all the terms appearing in the master
equation (4.4) to third order in the coupling.

B. Kinetic equation

As we established in the previous section, the kinetic equation is found by integrating the master equation,

∂nr

∂t
= −4i

∫
dJ Jr ((δL)first + (δL)second). (4.15)

This is straightforward to carry out; the details are in Appendix A. The result for the first order term is∫
dJ Jr (δL)first = −

∑
1,...,4

G(�e12;34)λ1234λ3412(δ1r+δ2r−δ3r−δ4r )
4∏

i=1

ni

(
1

n1
+ 1

n2
− 1

n3
− 1

n4

)
, (4.16)

and for the second order term is∫
dJ Jr (δL)a

second = −4i
∑
1,...,6

Im(G(�e12;34)G(�e56;34)λ1234λ5612λ3456)(δ1r+δ2r−δ3r−δ4r )
6∏

i=1

ni

(
1

n1
+ 1

n2

)(
1

n3
+ 1

n4
− 1

n5
− 1

n6

)
,

(4.17)

and something similar for
∫

dJ Jr (δL)b
second which is obtained by an index interchange. Now, for G(�e12;34) recall its defini-

tion (2.18),

G(�e12;34) = 1

ω1+ω2−ω3−ω4+iε
= P

1

ω1+ω2−ω3−ω4
− iπδ(ω3+ω4−ω1−ω2), (4.18)

where we split the term into a principal part and a δ function, using Eq. (3.10). A potentially more useful form of the kinetic
equation is one in which one makes use of Eq. (4.18) to write the terms, grouping them by the number of δ functions. Doing this,
along with some permutations of the indices to combine and simplify terms (see Appendix A for details) we get for the kinetic
equation,

dn1

dt
= 16π

∑
2,3,4

δ(ω12;34)λ2
1234

4∏
i=1

ni

(
1

n1
+ 1

n2
− 1

n3
− 1

n4

)⎡
⎣1 + 4

∑
5,6

λ1256λ5634

λ1234

n5+n6

ω12;56
+ 16

∑
5,6

λ1635λ2546

λ1234

n6−n5

ω46;25

⎤
⎦, (4.19)

where here we have taken the couplings to be real and we defined ωi j;kl ≡ ωi+ω j−ωk−ωl , and when we write 1/ω we really
mean the principal part of 1/ω. This matches the next-to-leading order kinetic equation we found in Ref. [5].

V. DISCUSSION

We have studied classical field theories with weak non-
linearity. A fundamental object is the kinetic equation,
describing the time evolution of the occupation number nk of
a mode of momentum k. We presented a scheme to find the
kinetic equation perturbatively in the nonlinearity, and found
it explicitly to next-to-leading order for a field theory with
a quartic interaction. Our method amounts to perturbatively
solving the Liouville equation, which we did by analogy with
the Lippmann-Schwinger equation used in scattering in quan-
tum mechanics.

The expansion we found is analogous to perturbation
theory in many-body quantum mechanics or quantum field

theory. In particular, the phase space density is a function of
the action and angle variables of every mode p. The effect
of a quartic interaction on the Liouville operator is that it
adds one unit of angular dependence for some modes p1 and
p2, and subtracts one unit for modes p3 and p4; it is as if
the interaction creates particles of momenta p1 and p2 and
destroys particles of momenta p3 and p4. In this way, each
term in the perturbative expansion is represented by a Feyn-
man diagram. Our seed for the perturbative expansion was a
phase space density that only depends on the action variables.
Order by order in perturbation theory, angular dependence for
an increasing number of modes is acquired.

More broadly, the standard approach to solving the
Liouville equation is through time-dependent perturbation
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theory [34]. In contrast, our method is like time-independent
perturbation theory and works by analogy with scattering,
which is far simpler. This approach may be useful in other
contexts.

Rather than doing a phase space average, an alternative
way to derive the kinetic equation is to introduce external
Gaussian-random forcing and dissipation, perform an average
over the forcing, and at the end take both the forcing and
dissipation to zero while maintaining a fixed ratio [41]. This
is what we did in earlier work [5], streamlining earlier older
attempts [42] by using Martin-Sigga-Rose to integrate out the
forcing. The method in this paper is technically far simpler, al-
though the method of Ref. [5] is perhaps conceptually simpler.

One motivation for studying weakly nonlinear field theo-
ries is the existence of turbulent cascades (the Kolmogorov-
Zakharov state). The state is found by looking for stationary
solutions of the wave kinetic equation. This is always done
for the part of the kinetic equation that is leading order in the
nonlinearity. It will be interesting to see how accounting for
the next-to-leading order term in the kinetic equation modifies

the turbulent state. Some discussion of this will appear in
Ref. [43].

Although we focused on the occupation numbers of modes,
the method presented here allows one to compute much more:
it systematically gives the entire state, as a function of all the
action and angle variables, perturbatively in the coupling of
the nonlinear term. An important problem is to decide which
quantity in particular provides an insightful characterization
of the turbulent state, and to then compute it.
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APPENDIX A: FROM THE MASTER EQUATION TO THE KINETIC EQUATION

In this Appendix we fill in some of details involved in getting the kinetic equation to next-to-leading order. In particular, we
start with the kinetic Eq. (4.15), make use of (δL)first in Eq. (4.6) and (δL)second in Eqs. (4.7), (4.13), and (4.14) to obtain the
final form of the kinetic equation in Eq. (4.19).

We first look at the integral of (δL)first, given in Eq. (4.6),∫
dJ Jr (δL)first =

∫
dJ Jr

∑
1,...,4

G(�e12;34)λ1234λ3412(∂1+∂2−∂3−∂4)J1J2J3J4 (∂3+∂4−∂1−∂2)ρ( �J ), (A1)

where 〈0|�0〉 ≡ ρ( �J ). As shown in Sec. III, we repeatedly integrate by parts to the left and then use the exponential distribution
for ρ( �J ), as given in Eq. (3.16), so that this turns into

∫
dJ Jr (δL)first = −

∑
1,...,4

G(�e12;34)λ1234λ3412(δ1r+δ2r−δ3r−δ4r )
4∏

i=1

ni

(
1

n1
+ 1

n2
− 1

n3
− 1

n4

)
. (A2)

Next we look at the integral of (δL)a
second, given in Eq. (4.13),∫

dJ Jr (δL)a
second = − 4i

∫
d �J Jr

∑
1,...,6

Im(G(�e12;34)G(�e56;34)λ1234λ5612λ3456)(∂1+∂2−∂3−∂4)

× J1J2J3J4(∂5+∂6−∂1−∂2)J5J6(∂3+∂4−∂5−∂6)ρ( �J ). (A3)

We repeatedly integrate by parts to the left so that this turns into∫
dJ Jr (δL)a

second = − 4i
∫

d �J
∑
1,...,6

Im(G(�e12;34)G(�e56;34)λ1234λ5612λ3456)(δ1r+δ2r−δ3r−δ4r )

× J1J2J3J4J5J6

(
1

J1
+ 1

J2

)(
1

J3
+ 1

J4
− 1

J5
− 1

J6

)
ρ( �J ). (A4)

Evaluating using an exponential distribution for ρ( �J ), as given in Eq. (3.16), turns all the Ji into ni,

∫
dJ Jr (δL)a

second = −4i
∑
1,...,6

Im(G(�e12;34)G(�e56;34)λ1234λ5612λ3456)(δ1r+δ2r−δ3r−δ4r )
6∏

i=1

ni

(
1

n1
+ 1

n2

)(
1

n3
+ 1

n4
− 1

n5
− 1

n6

)
.

(A5)
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The other term,
∫

dJ Jr (δL)b
second, is obtained by the transformation discussed previously: 2 → −3, 3 → −2, and 6 → −6, and

multiplying by a combinatorial factor of 4, giving∫
dJ Jr (δL)b

second = 16i
∑
1,...,6

Im(G(�e12;34)G(�e52;46)λ1234λ5316λ4625)(δ1r+δ2r−δ3r−δ4r )
6∏

i=1

ni

(
1

n1
− 1

n3

)(
1

n4
+ 1

n6
− 1

n2
− 1

n5

)
.

(A6)

Combining all these terms gives, via Eq. (4.15), the next-to-leading order kinetic equation. We would like to make sure that
it matches the result we found previously in Ref. [5]. Focusing on Eq. (A5), we see that we can replace (δ1r+δ2r−δ3r−δ4r ) →
2(δ1r−δ3r ) because of the symmetry of everything else under 1 ↔ 2 or 3 ↔ 4. For the term coming with δ3r we do a change of
variables, (1, 2) ↔ (3, 4),∫

dJ Jr (δL)a
second = − 8i

∑
1,...,6

δ1r

6∏
i=1

ni

{
Im(G(�e12;34)G(�e56;34)λ1234λ5612λ3456)

(
1

n1
+ 1

n2

)(
1

n3
+ 1

n4
− 1

n5
− 1

n6

)

+ Im(G(�e12;34)G(�e12;56)λ1234λ5612λ3456)

(
1

n3
+ 1

n4

)(
1

n1
+ 1

n2
− 1

n5
− 1

n6

)}
, (A7)

where we used that G(−�e) = −G∗(�e). Next, we insert the relation

G(�e12;34)(G(�e56;34) + G(�e12;56)) = G(�e56;34)G(�e12;56) (A8)

into Eq. (A7). Writing the G(�ei j;kl ) in Eq. (A7) explicitly, we have

∫
dJ Jr (δL)a

second = − 8i
∑
1,...,6

δ1r

6∏
i=1

niIm

[
λ1234λ5612λ3456

{(
1

n1
+ 1

n2

)(
1

n3
+ 1

n4

)
1

ω34;56−iε

1

ω56;12−iε

−
(

1

n5
+ 1

n6

)(
1

n1
+ 1

n2

)
1

ω34;12−iε

1

ω34;56−iε
−

(
1

n5
+ 1

n6

)(
1

n3
+ 1

n4

)
1

ω34;12−iε

1

ω56;12−iε

}]
, (A9)

where we defined the shorthand ωi j;kl ≡ ωi+ω j−ωk−ωl . This precisely reproduces what we had in the kinetic equation in
Ref. [5].5 There we proceeded by using Eq. (4.18) on all the G(�ei j;kl ) terms, grouping terms together based on the number of
δ functions of the ωi, and performing the change of variables (3, 4) ↔ (5, 6) on some of the terms to show that they are either
zero due to antisymmetry, or to combine them with other terms. The end result is the kinetic equation (4.19).

APPENDIX B: FREQUENCY RENORMALIZATION

In the Hamiltonian Eq. (3.3),

H =
∑

i

ωiJi +
∑

i, j,k,l

λi jkl

√
JiJjJkJl exp(i(αi+α j−αk−αl )), (B1)

it is useful to split off the term in the interaction in which some pair of indices are equal,

H =
∑

i

ωiJi +
∑

(i, j)=(k,l )

λi jkl

√
JiJjJkJl exp(i(αi+α j−αk−αl )) + Hren,

Hren = 2
∑
i =k

λikikJiJk +
∑

i

λiiiiJ
2
i . (B2)

The corresponding matrix element of (δL)ren for Hren is, from Eq. (2.14),

〈�n|(δL)ren|�n′〉 = 4 δ�n,�n′
∑
i =k

λikikJkni + 2 δ�n,�n′
∑

i

λiiiiJini. (B3)

Switching to notation in which we call mode i to be 1 and mode k to be 5, we have that the contribution at order λ3 which
involves one insertion of (δL)ren is

(δL)ren = −4
∑
1,...,5

G(�e12;34)2|λ1234|2(∂1+∂2−∂3−∂4)J1J2J3J4J5(λ1515+λ2525−λ3535−λ4545)(∂3+∂4−∂1−∂2)〈0|�0〉, (B4)

5In particular, in Ref. [5] insert Eq. (4.25) into Eq. (4.32) and use that the Im(x∗) = −Im(x).
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where we have accounted for the fact that (δL)ren can be inserted along any of the lines 1, 2, 3, 4. The contribution to the kinetic
equation is∫

dJ Jr (δL)ren = i
∑
1,...,4

Im(G(�e12;34)2)|λ1234|2(δ1r+δ2r−δ3r−δ4r )
4∏

i=1

ni

(
1

n1
+ 1

n2
− 1

n3
− 1

n4

)
(δω1+δω2−δω3−δω4), (B5)

where we used that the term with Re(G(�e12;34)2) gives zero due to the symmetry under 1, 2 ↔ 3, 4, and where

δωa = 4
∑

5

λa5a5n5. (B6)

We note that

G(�e12;34) = 1

ω12;34+iε
, ⇒ Im(G(�e12;34)2) = − ∂

∂ω12;34
Im

1

ω12;34+iε
= πδ′(ω12;34). (B7)

The contribution to the kinetic equation of Eq. (B5) is therefore(
dnr

∂t

)
ren

= 4
∑
1,...,4

πδ′(ω12;34)|λ1234|2(δ1r+δ2r−δ3r−δ4r )
4∏

i=1

ni

(
1

n1
+ 1

n2
− 1

n3
− 1

n4

)
(δω1+δω2−δω3−δω4). (B8)

The reason we interpreted this as a frequency renormalization is because if one takes the leading order kinetic equation,

∂nr

∂t
= 4

∑
1,...,4

(δ1r+δ2r−δ3r−δ4r )πδ(ω12;34)|λ1234|2
4∏

i=1

ni

(
1

n1
+ 1

n2
− 1

n3
− 1

n4

)
, (B9)

and sets ωa → ωa + δωa, then the change is precisely Eq. (B8).
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