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Compression-induced crossovers for the ground state of classical dipole lattices on a Möbius strip
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We explore the ground-state properties of a lattice of classical dipoles spanned on the surface of a Möbius
strip. The dipole equilibrium configurations depend significantly on the geometrical parameters of the Möbius
strip, as well as on the lattice dimensions. As a result of the variable dipole spacing on the curved surface of
the Möbius strip, the ground state can consist of multiple domains with different dipole orientations which are
separated by domain-wall-like boundaries. We analyze in particular the dependence of the ground-state dipole
configuration on the width of the Möbius strip and highlight two crossovers in the ground state that can be
correspondingly tuned. A first crossover changes the dipole lattice from a phase which resists compression to a
phase that favors it. The second crossover leads to an exchange of the topological properties of the two involved
domains. We conclude with a brief summary and an outlook on more complex topologically intricate surfaces.
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I. INTRODUCTION

Long-range dipole interactions are ubiquitous in physics
and appear in a wide range of systems, ranging from atomic
setups, such as Rydberg arrays [1] or dipolar quantum gases
[2,3], to solid state systems, such as magnets [4] or ferro-
electrics [5,6]. Especially in crystalline lattices, such as in
ferroelectric (FE) materials, the anisotropic character of the
interaction can lead to the formation of complex ordered
phases [7]. For example, the degeneracy of the ground-state
(GS) configuration, i.e., the invariance of the energy under
inversion of all dipoles, can lead to the formation of lo-
cal domains separated by a domain wall (DW) [8]. For FE
materials, experiments have shown a great control of these
DWs, allowing for controlled shifts and even the controlled
creation or annihilation of domains [8,9]. Due to this direct
control of the dipole configurations, FE materials have been
used for applications, such as smart sensors, capacitors, trans-
ducers, actuators, energy harvesting devices, and nonvolatile
memories [8–11].

The ordered phases emerging in lattice systems of inter-
acting dipoles can significantly depend on the underlying
lattice geometry: In certain lattice geometries, the ground
state becomes continuously degenerate [12,13] and allows
for continuous transformations between different ground-state
configurations [14,15]. Other examples include spin-glass
phases emerging in disordered systems [16], and the sup-
pression of long-range order in lattices exhibiting geometric
frustration [17–19]. Besides these well-known examples, in-
teresting geometry-dependent effects can also be found in
lattice systems exhibiting mixed dimensionality: Already in a
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simple one-dimensional (1D) setup consisting of dipoles that
are spaced equidistant along a helical path, the ground state
can be classified by a complex self-similar bifurcation dia-
gram that depends on the helix geometry [20]. For dipoles that
are arranged on two-dimensional (2D) surfaces, the curved
geometries can enforce the presence of topological defects,
as can be seen for self-assembling dipoles on a sphere [21].
Furthermore, it has been demonstrated that dipole lattices on a
2D curved surface can exhibit domains and domain-wall-like
boundaries in their ground state [22]. Here, we build upon
these results and further investigate the properties of classical
dipole lattices in curved geometries. Specifically, we are inter-
ested in the effects arising when a dipole lattice is spanned on
a curved surface that is topologically nontrivial.

It has been demonstrated that spatial curvature or mixed
dimensionality by itself can lead to a variety of intriguing
(and often counter-intuitive) effects. Already for (isotropic)
Coulomb-interacting particles confined to a curved 1D path
a plethora of highly nontrivial static [23–26] and dynamic
[27–31] effects can emerge. Furthermore, in geometries
that are topologically nontrivial, such as the Möbius strip,
the surface topology can induce effects that are absent in
corresponding topologically trivial systems [32,33]. Specif-
ically magnetic dipoles dominated by exchange interactions
have been studied in curved geometries [34–36], including
the Möbius strip [37,38]. This motivates us to investigate
the ground-state properties of a lattice of classical dipoles
spanned on the surface of a Möbius strip. We find that a com-
pression of the strip can lead to two distinct crossovers in the
ground state of the embedded dipole lattice that are detected
as peaks in the compression module. One of the crossovers is
connected to the curvature-dependent changes of the dipole
configurations and corresponds to a change of the system
from resisting to favoring compression. The second crossover
has its origin in the nontrivial Möbius strip topology, and
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FIG. 1. Visualization of the Möbius strip surface and the param-
eters of Eq. (1). The mesh grid corresponds to a lattice with 6 × 26
lattice points.

corresponds to a change of the topological properties of the
ground-state domains.

Our work is structured as follows: The description of
our setup is provided in Sec. II. An overview of the stable
GS equilibrium configurations, as well as their dependence
on the system parameters, is given in Sec. III. In Sec. IV,
the two crossovers are discussed. Finally, we present in
Sec. V our brief summary and conclusions as well as an
outlook.

II. LATTICE OF DIPOLES ON A MÖBIUS STRIP

We consider a lattice of classical dipoles spanned on the
surface a Möbius strip. Each point on the Möbius strip’s sur-
face can be expressed by a parametric function f (u, v) given
by

f (φ, v) :=

⎛
⎜⎝

[R + v cos(φ/2)] cos(φ)

[R + v cos(φ/2)] sin(φ)

v sin (φ/2)

⎞
⎟⎠, (1)

where u and v are the parametric (i.e., the internal) coordinates
of the surface, and R is the “radius” of the center circle of
the Möbius strip. For φ ∈ [0, 2π ) and v ∈ [− L

2 , L
2 ], Eq. (1)

produces a Möbius strip with a width L. Before describing
the dipole lattice on the Möbius strip surface, it is helpful to
introduce the unit vectors

eφ = ∂ f (φ, v)

∂φ

/∣∣∣∣
∣∣∣∣∂ f (φ, v)

∂φ

∣∣∣∣
∣∣∣∣

ev = ∂ f (φ, v)

∂v

/∣∣∣∣
∣∣∣∣∂ f (φ, v)

∂v

∣∣∣∣
∣∣∣∣. (2)

At every point f (φ, v) the two unit vectors eφ and ev

are orthogonal to each other and tangential to the Möbius
strip surface. We will from now on respectively refer to
eφ and ev as the angular and the radial direction on the
Möbius strip. The parametric surface f (φ, v) is shown in
Fig. 1, together with visualizations of the above-described
parameters.

We now place a grid of (N × M ) dipoles on the Möbius
strip. The grid points are equidistant in the parametric coordi-
nates, with (parametric) lattice constants of �φ = 2π/N and

�v = L/M. Consequently the positions of the lattice points
in Euclidean space are given by rnm = f (n�φ, m�v − L/2),
where n ∈ [1, N] and m ∈ [1, M]. An example of such a grid
with N = 26 and M = 6 is visualized on the Möbius surface
in Fig. 1 (thin gray lines). At each position rnm, we place
a dipole with dipole moment dnm. The dipoles can freely
rotate and interact via dipole-dipole interactions. The potential
energy V i j

nm resulting from the interaction between two dipoles
positioned at rnm and ri j is then given by

V i j
nm = dnm · di j

4πε0
(
ri j

nm
)3 − 3

(
dnm · ri j

nm
)(

di j · ri j
nm

)
4πε0

(
ri j

nm
)5 , (3)

where ri j
nm = rnm − ri j is the (Euclidean) distance vector be-

tween the two dipoles, and ri j
nm = |ri j

nm| the corresponding
magnitude. The total energy of the system can then be de-
termined by summing up all pairwise interactions Vtot =∑

n,m �=i, j V i j
nm. We are interested in finding the ground-state

dipole configuration of the lattice, i.e., the configuration
that minimizes Vtot . Since the magnitude of the dipole mo-
ments d only scales the total energy and does not affect
the ground-state dipole configuration, we can - without loss
of generality - set d = |d| = 1. This optimization problem
then depends on 2MN + 4 parameters: The four system pa-
rameters R, L, �φ, and �v (which are held constant for
each individual optimization), as well as the dipole mo-
ments d (characterized by a total of 2MN angles). For the
calculation of the GS configurations we consider all-to-all
interactions. Nevertheless, some of the presented results were
obtained using a nearest-neighbor (NN) approximation. This
NN approximation provides a very good approximation of
the actual equilibrium configurations for systems where the
NN distance is small compared to the curvature radius of the
surface [22]. Results based on NN calculations are specif-
ically referred to as such in the text. Furthermore, to find
the GS configurations we use a principal-axis method. The
principal-axis method is a numerical optimization method
that does not rely on gradients. Instead, the optimizer per-
forms line searches along a set of continuously updated search
directions.

III. GS EQUILIBRIUM CONFIGURATIONS

The ground-state dipole configuration of the above-
described dipole lattice on a Möbius strip differs from the
well-known ground states of dipole lattices in “flat” ge-
ometries. This is because the distances between neighboring
dipoles on the Möbius strip depends on the local geometry of
f (φ, v). This can be easily seen by calculating the Euclidean
distances a and b between neighboring dipoles along the eφ

and ev directions

a(φ, v) = ‖ f (φ, v + �v) − f (φ, v) ‖,
b(φ, v) = ‖ f (φ + �φ, v) − f (φ, v) ‖ . (4)

Inserting the Möbius parametrization of f (φ, v) from Eq. (1)
into the above equations yields

a = �v = L/M (5)
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for the Euclidean distance between next neighbors along the
radial direction ev , and

b2(φ, v) = 8R2 cos

(
�φ

4

)2

+ v2

[
3 + cos(φ)

+ 2 cos

(
φ + �φ

2

)
+ 2 cos(�φ/2)

]

+ v2[cos(�φ) + cos(φ + �φ)]

+ 16Rv cos

(
�φ

4

)3

cos

(
2φ + �φ

4

)
(6)

for the Euclidean distance between next neighbors along the
angular direction eφ . The impact of such a varying nearest-
neighbor distance on the dipole equilibrium configurations
has been previously studied [22]. Following the nomencla-
ture set in Ref. [22], we introduce the parameter γ = a/b.
From Ref. [22], we know that the dipoles will favor aligning
along ev wherever γ < 1 (i.e., a < b), and along eφ wherever
γ > 1 (i.e., a > b). If the parameters are chosen such that
in some part of the Möbius strip γ < 1 and in another part
we have γ > 1, the ground state will feature two domains
with different dipole orientations separated by a domain-wall-
like boundary. A detailed description on the properties and
the mechanism behind the formation of the domain-wall-like
boundary can be found in Ref. [22]. Specifically, the prop-
erties and features discussed in Ref. [22] include the (finite)
thickness of the domain-wall-like boundary, the response of
this boundary to external fields, as well as a demonstration of
the fact that these geometry-induced boundary regions act as
barriers that prevent dynamic excitations from passing from
one domain to another.

An example ground-state dipole configuration on the
Möbius strip with N = 51, M = 9, R = 1, and L = 1.02 is
shown in Figs. 2(a)–2(c). Note, that an odd value of M was
chosen to avoid the presence of (topological) lattice defects.
In contrast, N being even or odd has no discernible impact on
the ground-state configurations. In the figure, the dipoles are
colored depending on their orientation: Dipoles with d ‖ eφ

are colored green, whereas all dipoles with d ‖ ev are colored
blue. Dipoles with significant alignment normal to the surface,
i.e., dipoles for which d ‖ (eφ × ev ), could not be observed in
any of our simulations. From now on, we will use the terms
angular domain and radial domain to, respectively, refer to the
domains where dipoles are dominantly aligned along eφ and
ev . For better visualization of this ground state, the orientation
of the dipoles with respect to the parametric coordinates φ and
v is shown in Fig. 2(d). A corresponding diagram of how the
parameter γ (φ, v) changes with the parametric coordinates is
shown in Fig. 2(e).

From the comparison in Fig. 2, as well as from Ref. [22],
we know that the ground-state dipole configuration can be
accurately predicted from the parameter γ , especially when
the dipole spacing is small compared to the curvature radius
of the surface. Therefore, we can get an intuition of the impact
of parameter variations on the ground state by analyzing the
impact of these changes on γ . For a given dipole lattice of
dimension (N × M ), the local value of γ can be impacted by
the Möbius parameters L and R. To get a first impression of
the overall behavior of γ , we expand b(φ, v) to the first order

FIG. 2. Example ground-state dipole configuration for N = 51,
M = 9, R = 1, and L = 1.02. (a)–(c) Visualizations of the ground
state from different viewpoints. (d) Visualization of the ground-state
dipole alignments within the surface. Dipole positions and align-
ments are given with respect to the parametric coordinates φ and
v. (e) A visualization of the parameter γ = a/b as a function of the
parametric coordinates. See text for details.

in �φ around �φ = 0. Since �φ = 2π/N , this is a good
approximation in the limit of large N . With this, the parameter
γ can be approximated as

γ � L

π

(N/M )√
4R2 + 3v2 + 8Rv cos

(
φ

2

) + 2v2 cos(φ)
. (7)

Consequently, in grids with many lattice points, the parameter
γ will scale globally when the ratio N/M changes. Note that
any change of L will also affect the range of the parameter
v ∈ [−L/2, L/2]. Therefore, it is possible to rewrite Eq. (7)
such that it depends entirely on the ratio L/R by introducing
v′ = 2v/L ∈ [−1, 1]. Changing the ratio L/R will not lead to
a simple global scaling factor for γ . Instead, an increase in
L/R can either increase γ everywhere, or (below a certain
value of L/R) it can lead to an increase of γ in some parts
of the lattice and to a decrease of γ in other parts.

In the following, we will study the ground GS for fixed
values of N/M and R. This reduces the problem of finding all
possible GS configurations on the Möbius strip to finding the
GS as a function of L. The GS configurations, and especially
the distribution of the two domains, are visualized in the lower
four panels of Fig. 3 for various values of L. From these four
panels, it can be seen that by varying L, we are able to tune
the size of the two domains, with the angular domain covering
the entire surface for large L and the radial domain covering it
for small L. In the following, we will analyze the size change
of the domains when L is increased. While we are focusing
on a specific example system, the shown behavior, i.e., the
evolution of the domains when L is varied, is general and
occurs almost exactly the same way regardless of the specific
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FIG. 3. Size Aφ of the angular domain as a function of the
Möbius strip width L for N = 101, M = 11, and R = 1. All data
points were obtained using a nearest-neighbor approximation. The
lower panel shows example configurations from the four regimes for
L ∈ [0.47, 0.6, 0.65, 0.83] obtained from all-to-all calculations.

values of R and N/M. However, before we analyze the domain
size, a final comment on the impact of the ratio N/M is in
order: The overall impact of varying N/M can be described
as follows: For certain values of N/M (especially towards the
extremes N � M or N � M) it may be that (depending on
the case) not all of the shown configurations are accessible,
unless we make L so large that the surface intersects itself.
Furthermore, in those regimes where the surface intersects
itself, significantly different GS configurations can be found.
However, the regime where the surface intersects itself is
outside of the scope of this work.

To get an idea of how the domain sizes change with L, we
classify the ground states by the area Aφ ∈ [0, 2πL] occupied
by the angular domain. Note that Aφ refers to the area in
parametric coordinates. For Aφ = 0, the entire strip is occu-
pied by the radial domain, whereas for Aφ = 2πL the entire
strip is covered by the angular domain. The value of Aφ can
be obtained for any GS configuration by simply counting all
dipoles that significantly align along eφ . Simulation results of
the area Aφ occupied by the radial domain as a function of
L are presented in Fig. 3 for numerically determined ground
states on a Möbius strip with N = 101, M = 11, and R = 1.
Note that the data shown in Fig. 3 are obtained using a NN
approximation. In the figure, four clearly distinct regions can
be seen: In region I, only the radial domain exists. In region
II, both the radial and the angular domain coexist, with the
angular domain increasing in size with increasing L. Note,
that the small jumps (or steps) of Aφ (L) arise due to the
discreteness of the underlying dipole lattice and will vanish
for M → ∞. When the angular domain first appears (the
border between regions I and II in Fig. 3), it emerges from
the point (φ, v) = (−π/N,−L/2). From there, the angular
domain will mainly grow along eφ as L is increased. As the
angular domain grows, it will eventually have circled around

the Möbius strip and for L = 2MR sin(π/N ) connect with
itself at the point (φ, v) = (π − π/N, 0). This corresponds to
the border between regions II and III in Fig. 3. At this point
both the angular and the radial domain occupy equal areas of
the strip. Note that due to the finite size of the domain wall
this border between regions II and III occurs for Aφ < 0.5.
Around the border between regions II and III, the domain
sizes change very rapidly - indicating a great sensitivity of
this point to parameter variations. Note, that in the continuum
limit (i.e., N, M → ∞) the slope of Aφ (L) diverges exactly
at the boundary between regions II and III. In region III, the
angular domain increases further in size when L is increased,
until finally in region IV it encompasses the entire strip. For
systems with different N/M, no discernible differences from
the above-described behavior could be observed.

IV. COMPRESSION-INDUCED TOPOLOGICAL
CROSSOVER

We will now demonstrate that the GS dipole configuration
passes through two distinct crossovers if the length L is varied.
The variation of L discussed above can also be interpreted as
an adiabatic compression or stretching of the Möbius strip.
The behavior of the lattice during such a compression can be
analyzed with the 2D compression modulus or, simply, 2D
modulus [39] of the strip. The 2D modulus is defined as

K = A0
d2U

dA2
= L0

2πR

d2U

dL2
, (8)

where A is the area of the strip, A0 and L0 denote the area
and strip width before compression, and U is the total energy
of the system. The 2D modulus describes how a change in
the width changes the force that is required to compress (or
stretch) the strip. Consequently, small values of K indicate
that the required force changes very little when L is varied,
whereas large values of K imply large changes in the required
forces when L is varied.

The 2D modulus of Eq. (8) depends mainly on the behavior
of the total ground-state energy U (L) of the system. This
total energy U (L) as a function of the strip width L is shown
in Fig. 4(a). Interestingly, the curve U (L) exhibits a global
maximum. We will from now on use Lcrit to refer to the width
of the Möbius strip at this maximum. For values L < Lcrit the
energy increases with increasing strip width, implying that
the strip prefers a compressed state and resists stretching.
On the other hand, for L > Lcrit , the energy decreases with
increasing L, implying that in this regime the compression
of the strip requires energy. This crossover from favoring
compression to favoring stretching can be understood from
the dipole alignments in the radial and angular domains. It is a
result of the competition between the angular domain favoring
stretching and the radial domain favoring compression. Within
the radial domain, the dipoles are aligned along ev and will
naturally prefer the distance a to their nearest neighbors along
the ev direction to be as small as possible. Minimizing a can be
achieved globally by decreasing L. Consequently, decreasing
L will decrease the total energy proportional to the number
of dipoles in the radial domain. On the other hand, in the
angular domain, dipoles are aligned along eφ . Consequently,
these dipoles will prefer a decrease in the nearest neighbor
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(a)

(b)

(
)

(
)

FIG. 4. (a) Total energy U as a function of the strip width L.
(b) The 2D modulus K ∼ d2U/dL2 as a function of the strip width L.
Both the energy and the 2D modulus data were obtained for a Möbius
strip with N = 101, M = 11, and R = 1.

distance b(φ + �φ, v) along the eφ direction. However, the
distance b can change, depending on the position on the strip.
Furthermore, when L is varied, the distance b can increase in
some parts of the strip and decrease in others. However, due to
the strong decay of the dipole-dipole interactions, the impact
of a change in L on the energy is larger for those dipoles
where b is smaller. The distance b(φ + �φ, v) is minimized
at (φ, v) = (−π/N,−L/2), i.e., at the origin of the radial
domain. And around this point, b will decrease further when
L is increased.

Close to the crossover point Lcrit , the 2D modulus varies
rapidly and has a local minimum [see Fig. 4(b)]. This dip in
the 2D modulus, however, corresponds to the border between
regions III and IV in Fig. 3. For different N , M, and R, this
dip does not necessarily coincide with the maximum of U (L).
This dip arises due to the finite thickness of the domain-wall-
like boundary. This has been verified by calculations where
a sharp domain boundary has been (manually) enforced. In
this constructed case of a vanishing domain-boundary thick-
ness, the 2D modulus showed only a sudden (discrete) jump
instead of a dip. Interestingly, a second dip can be seen in
the 2D modulus, indicating a second crossover. This second
dip also originates from the finite thickness of the domain-
wall-like boundary. This second dip appears at a width of
L = 2MR sin(π/N )—corresponding to the transition between
regimes II and III. Although this second dip has no discernible
effect on the total energy of the system, it does mark a signif-
icant change in the structure of the domains. For values of
L < 2MR sin(π/N ) slightly below the dip, the radial domain
not only covers the majority of the Möbius strip, but also
winds around it once, giving the domain a nontrivial topology.
At the same time, the angular domain has a trivial topology
for L < 2MR sin(π/N ). In contrast, for L > 2MR sin(π/N )
above the dip, it is the angular domain that has a nontrivial
topology and the radial domain being topologically trivial.
In summary, the domain which (azimuthally) extends over
the complete Möbius strip inherits its nontrivial topology,
whereas domains covering only a finite azimuthal part of the
Möbius strip are topologically trivial.

As described above, during the crossover, as L is increased,
the angular domain grows and connects with itself at the point
(φ, v) = (π − π/N, 0). To better understand this crossover, it
is helpful to analyze γ in the vicinity of this point. First, we
find

dγ (φ, v)

dφ

∣∣∣∣
φ→π−π/N,v→0

= dγ (φ, v)

dv

∣∣∣∣
φ→π−π/N,v→0

= 0,

(9)
indicating that γ always has a critical point at (φ, v) = (π −
π/N, 0). Furthermore, at (φ, v) = (π − π/N, 0) the Hessian
matrix of second derivatives is indefinite, indicating that the
critical point is a saddle point. Exactly for L = 2MR sin(π/N )
the value of γ at the saddle point becomes γ (π − π/N, 0) =
1. Any small change of L will lift (or lower) γ in the vicinity
of the saddle point. This is why for L < 2MR sin(π/N ) it
is the radial domain that winds around the Möbius strip and
for L > 2MR sin(π/N ) it is the angular domain. For L =
2MR sin(π/N ), the system reaches a transition point where
neither of the two domains winds around the Möbius strip. For
L = 2MR sin(π/N ), both domains are topologically trivial;
whereas for L �= 2MR sin(π/N ), one of them is not.

V. SUMMARY AND CONCLUSIONS

We investigated a lattice of interacting dipoles that is
spanned on the surface of a Möbius strip. The curved ge-
ometry of the lattice can, already for the ground state, lead
to the presence of domains with different dipole orientations,
as well as domain-wall-like boundaries separating these do-
mains. Specifically, the GS of the Möbius strip contains up to
two domains, referred to as the angular and the radial domain,
respectively. We discussed the dependence of the ground state
on the system parameters and subsequently analyzed the de-
pendence of the GS on the width L of the Möbius strip. We
demonstrated that by varying L, we are able to tune between
different GS configurations. For large and small L, the en-
tire Möbius strip is exclusively covered by either the radial
or the angular domain. For intermediate L, both domains
can be present simultaneously. In this intermediate regime,
the relative size of the domains can be tuned by varying L.
For a lattice with dimensions N × M and a given Möbius
strip radius R, one notable GS configuration is reached for
L = 2MR sin(π/N ). Any increase or decrease of the width
from this value will lead to a drastic change in the domain
topology. Specifically, for wider strips [L > 2MR sin(π/N )],
the angular domain will wind around the entire strip, thereby
being topologically nontrivial. And for narrower strips [L <

2MR sin(π/N )], it is the radial domain that winds around the
entire strip. We explained this behavior with the presence of
a saddle-point structure in the γ parameter which classifies
the domain structure of the entire Möbius strip. Furthermore,
we showed that this crossover in the domain topology can be
detected as a dip in the 2D compression modulus. Addition-
ally, the rapid change in the domain sizes that accompanies
this crossover highlights the sensitivity of the crossover point
to possible variations of the Möbius geometry.

In addition to this topological crossover, we also detected
a second crossover that can be tuned by varying the width L
of the Möbius strip. The crossover point coincides with the
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maximum of the total (width-dependent) ground-state energy
U (L). During the crossover, the system changes from a state
that resists compression to a state that favors compression.
Consequently, this crossover point will be quite sensitive to
variations of the Möbius strip width L—and by extension to
variations of the system parameters R, N , and M.

While our analysis of the dipolar lattice on a Möbius strip
shows already an intricate structure formation for the ground
state there is several open future directions of research. An im-
mediate case of investigation would be the low-lying excited
states and their properties. How and where do topological
and nontopological defects and possibly kinks emerge in the
dipolar lattice and how do they “interact” with the domain
walls? Quenches of the geometrical parameters across the
phase boundaries would be promising candidates for dynam-
ical and transient structure formation in the higher-energy
regime. As a longer term and promising perspective we en-
visage the investigation of dipolar lattices on geometrically
and topologically more complex curved surfaces. While there
is a plethora of such surfaces in particular in the framework
of (multiply-periodic) minimal surfaces [40] the impact of the
dipolar interaction on self-intersecting surfaces is an open and
intriguing problem to be explored in the future.

A final remark concerning the experimental preparation
of such surfaces is in order. A near-future possible experi-
mental realization of interacting dipoles on a curved lattice
can be based on dipolar ultracold molecules or Rydberg
atoms which are the workhorses of modern quantum simu-
lation [41,42]. The latter can be captured in arrays of optical

tweezers which can be arranged in almost arbitrary geome-
tries and in particular in the here-considered curved manifold.
Single atom deterministic loading and controlled excitation
to Rydberg states is nowadays achieved routinely in corre-
sponding experiments [41,42]. Their interaction can be of
dipolar character due to the resonant exchange process be-
tween, e.g., s and p Rydberg states. A competing time scale
is then the de-excitation due to, e.g., radiative decay which
happens typically on the time scale of dozens to hundreds of
microseconds for principal quantum numbers n � 60, leav-
ing ample time for preparation, processing, and detection.
Beyond that, curvilinear flat architectures can be prepared
in the framework of nanostructures using conventional tech-
niques based on thin-film deposition and lithographic methods
[43]. Ion-beam writing techniques represent another al-
ternative. Fabrication of complex 3D nanoarchitectures is
challenging and requires even more advanced and specialized
preparation tools in particular if it comes to the combi-
nation with magnetic sublattices [43]. As a conclusion,
we remark that while the experimental implementation of
the dipolar lattices on curved surfaces is certainly highly
demanding, the richness of their phenomenology and per-
spectives render them highly promising candidates for future
investigation.
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