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We consider a Klein-Gordon chain that is periodically driven at one end and has dissipation at one or both
boundaries. An interesting numerical observation in a recent study [Prem et al., Phys. Rev. B 107, 104304
(2023)] was that for driving frequency in the phonon band, there is a range of values of the driving amplitude
Fd ∈ (F1, F2) over which the energy current remains constant. In this range the system exhibits a traveling wave
solution termed a “resonant nonlinear wave” (RNW). It was noted that the RNW mode occurs over a range
(F1, F2) and shrinks with increasing system size, N . Remarkably, we find that the RNW mode is in fact a stable
solution even for Fd > F2, and that in this regime there exist two attractors, both with finite basins of attraction.
We improve the perturbative treatment for the RNW mode, presented in the earlier work, by including the
contributions of third harmonics. We also consider the effect of thermal noise at the boundaries and find that the
RNW mode is stable for small temperatures. Corresponding to the two attractors for large Fd at zero temperature,
the system can now be in two nonequilibrium steady states. Finally, we present results for a different driving
protocol [Komorowski et al., Commun. Math. Phys. 400, 2181 (2023)] where Fd is taken to scale with system
size as N−1/2 and dissipation is only at the nondriven end. We find that the steady state for this case can be
characterized by Fourier’s law. We point out interesting differences that occur because of our dynamics being
nonlinear and Hamiltonian. Our results suggest the intriguing possibility of observing the high-current-carrying
RNW phase in experiments by careful preparation of initial conditions.

DOI: 10.1103/PhysRevE.109.064124

I. INTRODUCTION

Isolated many-particle systems, described by Hamiltonians
with generic nonlinear interactions, typically have few conser-
vation laws and display chaotic dynamics, and it is expected
that at long times they should show ergodic behavior where
statistically the system is well described by equilibrium Gibbs
ensembles. In the presence of boundary driving and dissi-
pation, these systems evolve to nonequilibrium steady states
(NESSs). One of the most widely studied setups is when
the two ends of a chain of N oscillators are coupled to heat
baths at different temperatures. For the case where all inter-
actions are harmonic [1], one has ballistic transport where
the NESS energy current J is independent of system size
N (for sufficiently large N). For anharmonic systems with
external pinning potentials, transport is in accordance with
Fourier’s law [2] with J ∼ N−1, while for anharmonic chains
with momentum conservation one gets anomalous transport
[3–5] with J ∼ Nα−1, where 0 < α < 1. A second setup of
interest is one where the system is driven through a bound-
ary periodic force instead of thermal noise. This has been
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well studied in the context of supra-transmission [6–8], which
refers to transmission of energy at driving frequencies outside
the phonon bandwidth, observed beyond some critical driv-
ing amplitude. Other interesting results have been obtained
in the context of thermal ratcheting [9] and nonreciprocal
transmission [10,11]. Another relevant class of studies that has
attracted much attention are Floquet systems [12,13] where
typically one considers bulk periodic driving—the boundary
driving that we consider here constitutes a new interesting
class.

Most recently, energy transmission in a periodically driven
Klein-Gordon (KG) chain was studied [14] in the context
of experiments on photon transmission in arrays of quantum
oscillators [15,16]. We will here refer to the work in Ref. [14]
as the Prem-Bulchandani-Sondhi (PBS) setup. This work con-
sidered a KG chain of N particles with dissipation at both ends
and one end of the chain driven by a sinusoidal force F (t ) =
Fd cos(ωdt ). As a result of the driving, the system reaches a
nonequilibrium steady state (NESS), which is characterized
by an average energy current J flowing from the driven end to
the nondriven end. With the driving frequency (ωd ) kept fixed
at some value in the band of the underlying harmonic chain
(neglecting the anharmonic terms), the authors in [14] noted
interesting transitions as one varied the driving force strength
Fd , for a long but finite chain. On increasing Fd from 0, the
system first transits from a chaotic to a periodic state, which
is stable in the regime F1 < Fd < F2, after which the system
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again moves to a chaotic state. In the range F1 < Fd < F2, the
mean energy current was found to be independent of Fd and N
(for not very large N) and depended on the driving frequency
ωd in a nontrivial manner. The periodic state was identified
as a resonant nonlinear wave (RNW) where the bulk particles
(1 << � << N) have the form, q� = 2r cos(ωdt − k�), char-
acterized by a constant phase difference k between successive
particles and with the amplitude r given explicitly by

r =
√

ω2
d − 1 − 2(1 − cos k)

3
. (1)

In simulations, the RNW mode was not seen for Fd > F2,
and it was noted that the system reached a chaotic NESS.
This NESS exhibits a Fourier-like scaling, J ∼ N−1, for the
current, though surprisingly, the chain had a large segment
where there was no local equilibrium.

In another interesting recent work [17], a harmonic chain
with a stochastic energy conserving dynamics was period-
ically driven at one end, and had dissipation and thermal
noise applied only at the other end [we refer to this as
the Komorowski-Lebowitz-Olla (KLO) setup]. The stochastic
part of the dynamics conserved energy but not momentum. It
was shown that in this case, choosing Fd ∼ Na and ωd ∼ Nb

with b − a = 1/2, led to a unique periodic stationary state
where the average current is in accordance with Fourier’s law
(for large N). The temperature profile could be obtained from
the diffusion equation with a Neumann boundary condition
at the driven end and Dirichlet at the other. The problem in
the absence of the stochastic bulk noise has also been studied
[18].

In this work we investigate further the RNW mode, in
particular the question of its stability and the effect of thermal
noise that inevitably accompanies dissipation. Second, we in-
vestigate the KLO setup where the periodic boundary driving
is of the form F (t ) = A√

N
cos(ωdt ) with A being a constant.

This corresponds to a = −1/2 and b = 0 in Ref. [17]. We
emphasize that, unlike the study of [17], the bulk dynam-
ics considered by us is purely Hamiltonian. An interesting
question that arises from the KLO paper is whether we can
effectively describe the periodically driven system as one
satisfying the heat diffusion equation in the bulk but with a
Neumann boundary condition at the driven end. In our studies,
in order to verify if the temperature profiles satisfied the heat
diffusion equation (with a temperature-dependent conductiv-
ity) we compared the temperature profile with that obtained
from simulations of a chain driven purely thermally at both
ends (with no periodic driving). The boundary temperatures
of the thermally driven chain were chosen to correspond to
temperatures at points, away from the boundary jumps of the
periodically driven chain.

We summarize the main results of our work for the PBS
and KLO setups:

(i) PBS: Stability of RNW mode in PBS setup: We verify
that for generic initial conditions, the system evolves at long
times to the RNW mode for F1 < Fd < F2, as was observed
in [14]. However, we demonstrate that the RNW is in fact
stable even in the regime Fd > F2. It can be reached by
starting from initial conditions close to an RNW. We also
show that the RNW mode (for Fd > F2) has a finite basin

of attraction, which we numerically estimate by finding the
minimum perturbation required to push it to the chaotic state.
Surprisingly, our numerical results indicate that the size of the
basin of attraction converges to a finite value (see Fig. 3) for
increasing values of the driving force Fd . Thus, we conclude
that for all Fd > F2, the dynamical system has two attractors,
one chaotic and the other periodic. Our results suggest that
there is a unique periodic attractor in the range F1 < Fd < F2

and a unique chaotic attractor in the range Fd < F1.
(ii) PBS: Third harmonic contributions to RNW: It was

shown in [14] that RNW is well described in the bulk by
the form q� = 2Re[reι(ωd t−k�)] with r given in Eq. (1) and
k a numerically determined constant. Near the edges there
are boundary layers in which the amplitude and the phase
difference are site-dependent. In this work, we improve the
proposed form of the RNW by including the contribution of
the third harmonic. More precisely, we assume the solution
q� = Re[a�eιωd t + b�eι3ωd t ]. Inserting this in the original dy-
namical equation and neglecting harmonics at 5ωd , we get a
set of algebraic equations for {a�, b�} which we solve numer-
ically. We find that, in the bulk, the complex amplitudes can
be written as a� = r1e−ιk1� and b� = r3e−ι3k1� with r1 and r3

are given by Eq. (14). The amplitude profile at the boundary
approaches the bulk value exponentially with a rate that is
independent of system size (see Fig. 5).

(iii) PBS: Effect of noise: We study the effects of boundary
thermal noise on the stability of the RNW. We find that the
sharp transitions in the current with changing Fd persist for
small temperatures but disappears at high temperatures. In this
case, the system is expected to go into a time-periodic steady
state. Our results indicate that the signatures of multiple at-
tractors seen for the zero-noise case continue to persist for
the low noise case and there could be nonunique steady states
(see Fig. 9). At higher temperatures the transitions go away,
and we ask whether we obtain diffusive transport, following
Fourier’s law. For this, we computed the kinetic temperature
profiles and the mean current for the case where the boundary
thermal temperature is large. We find that a big temperature
jump appears between the first and second sites, while the
bulk profile is smooth and appears to satisfy Fourier’s law
(from comparisons with a thermally driven chain). The current
shows a N−1 scaling with system size.

(iv) Other boundary conditions in the presence of noise:
Here we considered the case where the left end has periodic
driving but no dissipation, while the right end is driven by a
thermal bath. We discuss two cases:

(1) Fd ∼ A√
N

(KLO setup): This is the setup discussed
in Ref. [17] but with bulk dynamics being Hamiltonian, in
contrast to the stochastic dynamics of KLO. In this case the
temperature profile seems to converge to a limiting form while
the current still decays as N−1. The temperature profile has
a jump between the first and second sites, which decreases
with increasing system size. We find that for the largest
system size, the temperature profiles as well as the current
of the thermally driven chain match the periodically driven
case, thus suggesting the validity of Fourier’s law in this
system.

(2) Fd independent of N: In this case we find that the tem-
perature profile does not attain a limiting form for increasing
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� = 1 � = 2 � = 3 � = N

F (t) = Fd cos ωdt

√
2TLγL ηL(t)

−γLp1

√
2TRγR ηR(t)

−γRpN

FIG. 1. Schematic diagram of the driven Klein-Gordon chain. Springs represent interaction as well as external potential present in the
Hamiltonian given in Eq. (2). The system is attached to two heat baths at the two ends and is periodically driven at the left end.

N . Instead, the temperature of the left end diverges as N1/2.
The current still has a N−1 dependence, and the temperature
profile seems to be in accordance to the heat diffusion equa-
tion (from comparisons with a thermally driven chain).

The rest of the article is organized as follows. In Sec. II we
define the precise model and describe the observables that we
study and the numerical methods used. In Sec. III we discuss
the noiseless case where we provide numerical evidence for
the existence of the RNW mode beyond the second transition
at F2, study its stability, and discuss the corrections to the form
of the RNW mode arising from third harmonic contributions.
Finally, in Sec. IV we study the behavior of the system in
the presence of thermal noise at the ends of the chain, for the
PBS setup and the KLO setup. We end with our conclusions
in Sec. V.

II. MODEL AND OBSERVABLES

We consider a chain of N particles, each with mass m,
where the position and momentum of the �th particle are
respectively denoted by q� and p�. The Hamiltonian of the
chain is

H =
N∑

�=1

p2
�

2m
+ mω2

0

2
q2

� + ν

4
q4

� +
N−1∑
�=1

λ

2
(q�+1 − q�)2. (2)

In addition to the Hamiltonian dynamics, the system is con-
nected to the baths at the two ends, which we model through
Langevin equations having dissipation and noise terms, cor-
responding to baths at temperatures TL and TR. Finally, the
chain is also driven by a periodic force at the left end with
amplitude Fd and frequency ωd . A schematic figure of the
model is shown in Fig. 1. The resulting equation of motion
for the system is thus

mq̈� = −mω2
oq� − νq3

� + λ(q�+1 + q�−1 − 2q�)

+ δ�,1
(−γLq̇� +

√
2kBTLγLηL(t ) + Fd cos(ωdt )

)
+ δ�,N

(−γRq̇� +
√

2kBTRγRηR(t )
)
, � = 1, . . . , N,

(3)

where we consider free boundary conditions q0 = q1, qN+1 =
qN and the thermal noises, ηL/R(t ), have zero mean and vari-
ances 〈ηa(t )ηb(t ′)〉 = δa,b δ(t − t ′) for a, b ∈ {L, R}. Let us
use dimensionless variables by rescaling time and position as

ωot → t and

√
λ

mω2
0

q� → q�, (4)

which results in the following equation of motion:

q̈� = − q� − q3
� + λ(q�+1 + q�−1 − 2q�)

+ δ�,1

(
−γL q̇1 +

√
2TLγL ηL(t ) + Fd cos(ωdt )

)

+ δ�,N

(
−γR q̇N +

√
2TRγR ηR(t )

)
, � = 1, . . . , N,

(5)

where the rescaled system-bath parameters are transformed as

λ

mω2
o

→ λ
γL,R

mωo
→ γL,R,

ωd

ωo
→ ωd

ν1/2(
mω2

o

)3/2 F → Fd ,
kBν

m2ω4
o

TL,R → TL,R,
ηL,R

ωo
1/2

→ ηL,R.

We will only typically look at the behavior of the system
as the parameters Fd , ωd , N , and TL,R are varied while λ

and γL,R are set to the value one (for KLO setup γL = 0).
Note that the spectrum of the harmonic part is given by � =√

1 + 2λ(1 − cos q) and so lies in the range (1,
√

1 + 4λ). In
all our computations we set λ = 1, which corresponds to the
harmonic band (1,

√
5).

To understand the behavior of the system in its steady
state, we look at the steady-state current and local kinetic
temperature, which are given by

J� = 〈λ(q�−1 − q�)p�〉, (6a)

T� = 〈
p2

�

〉
, (6b)

where 〈·〉 denotes a time average in the steady state. More
precisely, we compute the following time average of any
observable, A:

〈A〉 = 1

τ

∫ τ0+τ

τ0

dt A(t ), (7)

for very large τ and τ0. We study the behavior of the cur-
rent and temperature profile as a function of the system size
N and driving parameters Fd , ωd and TL,R. In the following
sections, we consider different periodic driving protocols. We
also consider a thermal driving protocol where we set Fd = 0
and impose different temperatures TL 	= TR at the two ends.

Numerical methods: For our noiseless simulations, we dy-
namically evolve Eq. (5) using the velocity-Verlet algorithm
[19] with time step dt = 0.01, and measure the relevant ob-
servables in the steady state. To push the system into the
steady state we first evolved the system for Rtrans = τ0/dt
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FIG. 2. PBS setup (TL = TR = 0): Variation of steady-state cur-
rent J with driving amplitude Fd for system size N = 500 at different
driving frequencies ωd inside the harmonic band (1,

√
5).

number of transient time steps, and then we computed steady-
state averages from data over the next Ravg = τ/dt steps. We
verified that system had reached the steady state by ensuring
that a flat current profile is attained. For most of our investi-
gations, we used Rtrans = 108 and Ravg = 2 × 108 for a chain
of size N < 1600, while for system size N � 1600 we used a
larger number of averaging steps: Ravg = 109 for N = 1600
and Ravg = 1010 for N = 3200. The simulations with noise
were performed using the stochastic velocity-Verlet [19],
again with dt = 0.01. The numerical solution of Eq. (13b)
was found using SciPy’s root-finding routine [20]. For finding
the solution we used the profiles of r and ϕ found through
simulation.

Equivalent thermal drive: The simulations of a chain driven
purely thermally was done by setting Fd = 0 and TL 	= TR. The
boundary temperature, TR was set to the value T at the site
� = N . The temperature, TL, at the left end of the thermally
driven chain was chosen to correspond to temperatures at
points, away from the temperature jump at the left boundary
of the periodically driven chain.

III. PBS: RESULTS FOR THE NOISELESS CASE

Here we consider the case without noise (TL = TR = 0)
studied by PBS [14]. Taking λ = 1, γL = γR = 1 and T = 0,
the equation of motion becomes

q̈� = −q� − q3
� + (q�+1 + q�−1 − 2q�)

+ δ�,1(−q̇� + Fd cos ωdt ) − δ�,N (q̇�), (8)

for � = 1, 2, . . . , N with q0 = qN+1 = 0. We first discuss the
case where we start from random initial conditions (ICs) and
evolve the system for a long time to reach the steady state.
In Fig. 2 we show the steady-state current as a function of
the driving force for different values of the driving frequency
for a chain of size N = 500. This reproduces one of the
most interesting results of [14], namely, the observation of the
current plateau over a range of force values F1 < Fd < F2. We
also observe from the figure that F1 and F2 are functions of
frequency. We find that the plateau is observed only when ωd

belongs to the harmonic chain phonon band [ωd ∈ (1,
√

5)].

FIG. 3. PBS setup (TL = TR = 0): Variation of steady-state cur-
rent J with driving amplitude Fd at driving frequency ωd = 1.5 and
system size N = 500. The system is initialized either with random
IC [blue (gray) dots] or with RNW IC [orange (light gray) triangle].
With random IC we observe transitions, to and from the RNW mode,
at values of Fd indicated by the vertical black dashed lines. For
RNW IC, we observe that the RNW phase continues beyond F2.
As shown in the inset, the RNW mode beyond F2 is stable against
adding perturbations. The critical perturbation strength 〈εc〉 required
to destabilize the RNW mode for different Fd is plotted (inset), and
we observe that 〈εc〉 seems to saturate at large Fd . This seems to
suggest that the size of basin of attraction of the RNW mode remains
finite for arbitrarily large Fd .

A. Observation of RNW beyond the transition point F2

We now report our first main result, which is a numerical
demonstration that in fact the RNW mode continues to be a
stable solution, even when the driving force is larger than F2.
To observe the RNW mode beyond F2, it is necessary that we
do not start from a random IC. Instead, we increase the force in
small steps (Fd → Fd + �F ). At the new step (with Fd + �F )
we use as initial conditions the set of position and momenta
values from the last time of the previous simulations (at Fd ),
i.e., we always start from initial conditions which are close to
the RNW. We then find that the system current continues to
be on the plateau even for forces as large as Fd ≈ 40, which is
much beyond the transition value F2 ≈ 10 observed when we
start from random initial conditions. This is shown in Fig. 3.
This suggests that for Fd > F2, the long time dynamics of the
system has two attractors, one of which is chaotic (obtained
by starting from random IC) and the other a periodic state
corresponding to the RNW. We now estimate the size of the
basin of attraction of the RNW. We probe this by adding
random perturbations to the initial state of the RNW (specified
by {q j, p j} of the form q′

j = q j + εsq
j , p′

j = p j + εsp
j , for

j = 1, 2, . . . , N , where s = {sq
j , sp

j } is a random unit vector
on a 2N-dimensional unit sphere. Given a value of ε and any
realization, s we evolve the system to see if it goes to the
chaotic state. Since the basin of attraction can have a highly
irregular shape, the value εc at which the system becomes
unstable depends on the direction s. Hence, for each Fd , we
compute 〈εc〉 by averaging over 10 random directions. In
the inset of Fig. 3 we show a plot of 〈εc〉 as a function of the
driving amplitude Fd for N = 500 and ωd = 1.5. We observe
a decrease in 〈εc〉 as Fd is increased, indicating that the size of
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(a)

(c)

(b) (d)

FIG. 4. PBS setup (TL = TR = 0): The insets display the Lya-
punov exponents as functions of time in different regimes indicated
in the main plot (same as in Fig. 3) for system size N = 500 and
driving frequency ωd = 1.5. As expected, the Lyapunov exponents
saturate to zero for RNW modes and to finite positive values in the
chaotic regimes.

the basin of attraction decreases. However, 〈εc〉 seems to sat-
urate to a constant value, suggesting that the size of the basin
of attraction remains finite for arbitrarily large values of Fd . In
Fig. 4 we plot the largest Lyapunov exponent (�) in different
force regimes. For Fd > F2 we see that � vanishes for initial
conditions corresponding to the RNW, while for generic initial
conditions we get a nonzero � implying a chaotic attractor.
As mentioned earlier for F1 < Fd < F2, the system starting
from a generic IC reaches the RNW state after long time.
Consequently, the � in this regime approaches to zero at large
time as expected. On the other hand, the Lyapunov exponent
for Fd < F1 always saturates to a nonzero value indicating
chaotic behavior.

B. PBS: Third harmonic contribution to RNW solution

As noted in [14], we can gain some insight about the RNW
by looking for approximate analytic solutions of the nonlinear
equations of motion. In particular, plugging the ansatz,

q� = Re(a�eιωd t ), (9)

into Eq. (8), and upon equating terms proportional to eiωd t ,
while neglecting higher frequency terms of the form e±ι3ωd t ,
we get (

1 − ω2
d

)
a� + 3|a�|2a� + (2a� − a�+1 − a�−1)

+ δ�,1(ιωd a� − Fd/2) + δ�,N (ιωd a�) = 0, (10)

for � = 1, 2, . . . , N , where we have taken the boundary con-
ditions a0 = a1 and aN+1 = aN . This is a nonlinear set of
equations which can be solved numerically to obtain solutions
in the form a� = r�eιϕ� with real r� and ϕ�. It was observed
in PBS that for sites � in the bulk, the amplitudes were con-
stant and the phase difference was constant, i.e., r� = r and
ϕ� − ϕ�+1 = k where r and k are �-independent. Plugging the
form a� = re−ιk� in Eq. (9) for the bulk points, one obtains
Eq. (1).

(a)

(b)

FIG. 5. PBS setup (TL = TR = 0): Plots of the profiles of ampli-
tude r� and phase ϕ� (inset a) calculated from the numerical solution
of Eq. (10) and extracted from simulation of Eq. (8), for system sizes
N = 100, 200, with F = 10.0 and ωd = 1.5. Note the slight differ-
ence in rl between numerical solution (star and ) and simulation
(square and circle). Inset (b) shows the exponential decay (dashed
line) of the deviation δr� = r� − rbulk.

A nonzero value of k implies a traveling wave solution and
is important to get a finite value of current. From Eq. (6a) one
finds the time-averaged current to be given by [14]:

J = 2r2ωd sin k. (11)

The bulk solution does not determine the phase difference
k, and it could potentially depend on the parameters Fd , ωd ,
and N . A full solution of Eq. (10) including the boundary
conditions would of course also determine completely all r�

and ϕ� (and hence the constant phase difference k in the bulk).
In Fig. 5 we compare the results for r� and ϕ� [see inset (a)],
obtained from a numerical solution of Eq. (10), with those
obtained from direct simulations of Eq. (8) and find quite good
agreement but also observed some discrepancy, which is most
prominent at the driven end. Inset (a) of the figure shows the
exponential decay of the amplitude to the bulk value at the
driven boundary. We also observe that the boundary profile is
independent of system size. In inset (b) we observe that the
phase ϕ� changes linearly with site index � at a rate k, which
is independent of system size.

Even though the ansatz in Eq. (9) provides a good descrip-
tion of the RNW as a single frequency mode, there are some
differences as pointed out above. This is due to the fact that
3ωd contribution for the first particle is much larger than the
rest of the chain. To improve the resonant solution, we now
incorporate the third harmonic corrections—specifically, we
make the following ansatz:

q� = Re[a�eιωd t + b�eι3ωd t ], (12)

which includes a frequency response at 3ωd . Plugging this
ansatz into Eq. (8), and equating coefficients of eιωd t , eι3ωd t

respectively to zero, we get the following sets of coupled
equations for {a�, b�}:(

1− ω2
d

)
a� + 3|a�|2a� + 3(a∗

� )2b� + (2a� − a�+1 − a�−1)

+δ�,1(ιωd a� − Fd/2) + δ�,N (ιωd a�) = 0, (13a)
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FIG. 6. PBS setup (TL = TR = 0): Plot of the amplitude and
phase profiles computed from the solution of Eq. (13), which in-
cludes the contributions of the third harmonics (star and points).
We now see a better agreement (dashed lines connecting the star
points) with simulation results, as compared to the first harmonic
numerical results (black solid line) discussed in Fig. 5.

(
1− 9ω2

d

)
b� + 3|b�|2b� + 6|a�|2b� + a3

�

+(2b� − b�+1 − b�−1)

+δ�,1(ι3ωd b�) + δ�,N (ι3ωd b�) = 0, (13b)

where we assume free boundary conditions a0 = a1, aN =
aN+1, b0 = b1, bN = bN+1. We solve these equations numer-
ically to find a� and b�. Again, we write these complex
numbers in terms of their real amplitudes and phases as a� =
r (1)
� eιϕ

(1)
� and b� = r (3)

� eιϕ
(3)
� .

In Fig. 6 we show a comparison of the values of r (1)
� and

ϕ
(1)
� , obtained from direct simulations with those from the

numerical solution of Eqs. (13a) and (13b), and find improved
agreement [compared to the first harmonic results presented in
Fig. 5]. We observe that in the bulk r (1)

� saturates to the value
r1. The linear dependence of ϕ

(1)
� on � (in the inset of Fig. 5)

suggests that the phase difference between consecutive sites
δ

(1)
� = ϕ

(1)
� − ϕ

(1)
�+1 is a constant, i.e., independent of � inside

the bulk, which we denote by k1. We also compute r (3)
� and

δ
(3)
� = ϕ

(3)
� − ϕ

(3)
�+1 from simulation and find that they also are

� independent inside the bulk and are denoted by r3 and , k3

respectively. However, the constant value r3 of r (3)
� in the bulk

is much smaller than that of r1 as can be seen from Fig. 7.
We also find interestingly that k3 = 3k1 inside the bulk (also
shown in Fig. 7). This condition immediately follows writing
the bulk equations, which then leads to the following relations
between the constant amplitudes and phase differences:(

r2
1 − r2) + r1r3 = 0,( − 3B2r3 + 3r3

3 + 6r2
1r3

) + r3
1 = 0, (14)

where r is given by Eq. (1) and B2 = r2(9 + 10�/3) with
� = (12 − 9 cos k1 + cos 3k1)/5r2. These equations can be
solved to give expressions for r1 and r3 in terms of ωd and k1

and are equivalent to Eq. (1) obtained from the first harmonic
approximation. While r1 and r3 can be computed analytically,
the bulk phase difference k1 still needs to be obtained by

0.00

0.08

r
(3)
�

r
(1)
�

(a)

N = 500 N = 250

0 250 500
�

0

3

6

δ
(3)
�

δ
(1)
�

(b)

FIG. 7. PBS setup (TL = TR = 0): To show the relative contribu-
tion of the third harmonics to first harmonic, we plot the ratios of the
amplitudes in (a) and of the phase differences in (b) as functions of
�. We observe that both the ratios saturate to values r3/r1 = 0.02 and
k3/k1 = 3. The profiles are calculated from simulation of Eq. (8), for
Fd = 5.5 and ωd = 1.5 for N = 250 and N = 500.

solving the full set of equations (13a) and (13b) along with
the boundary conditions. Finally, incorporating all the contri-
butions from the third harmonics, we get an improved version
of Eq. (11) for the current given by

J = 2ωd r2
1 sin k1 + 6ωd r2

3 sin 3k1. (15)

We evaluated this numerically and in Fig. 8 plot this as a
function of ωd for fixed parameters Fd = 10.0 and N = 100.
We have also shown comparisons with the results obtained
from direct simulations and from the first harmonic result in
Eq. (11) and see that at higher frequencies the third harmonic
computation gives a better agreement to the simulations. The
inset in Fig. 8 shows the dependence of the wave number k1 on

FIG. 8. PBS setup (TL = TR = 0): Variation of steady-state cur-
rent J with driving frequency ωd for system size N = 100 and
driving amplitude Fd = 10.0. We compare the simulation results
(plus points) with those obtained from first harmonic (solid line) and
third harmonic (dashed line) numerical computations. Note the im-
proved agreement of the third harmonic numerical computation with
simulation results. The inset shows the variation of phase difference
k1 between consecutive particles in the bulk with driving frequency
ωd . In this case there is no visible difference between the first (solid
line) and third harmonic numerical computation. They both match
very well with the simulation data.
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ωd , and in this case we see no noticeable difference between
the first and third harmonic computations.

To conclude this section, we note that our numerical study
shows that the solution of the form in Eq. (9) is valid at all
points in the chain. However, the form of a traveling wave
solution is seen only for the bulk points where we find a� =
r1ek1�, and so we have q� ∼ cos(k1� − ωdt ). The traveling
wave form is no longer accurate close to the boundaries,
where we have no analytic solutions. One probably needs to
incorporate waves reflected from the boundaries.

IV. EFFECTS OF FINITE TEMPERATURE
BOUNDARY BATHS

So far we have studied the system in the absence of any
thermal noise. In this section we study the effect of thermal
noise on the observed transitions and the RNW mode. Apart
from the PBS setup, we also consider the KLO setup, where
the boundary damping and the form of driving are some-
what different. Thus, we consider the set of equations given
in Eq. (5) with λ = 1, for three cases: (1) PBS case: γL =
γR = 1, TL = TR = T 	= 0; (2) KLO case: γL = 0, γR = 1
and TR = T 	= 0, Fd = A/N1/2; and (3) γL = 0, γR = 1, and
TR = T 	= 0 but with system-size-independent Fd .

A. PBS setup at nonzero bath temperatures

In this case, the equation of motion in Eq. (8) is modified
to

q̈� = −q� − q3
� + (q�+1 + q�−1 − 2q�)

+ δ�,1(−q̇� +
√

2T ηL + Fd cos ωdt )

+ δ�,N (−q̇� +
√

2T ηR(t )), (16)

for � = 1, 2, . . . , N with q0 = qN+1 = 0. In Fig. 9(a) we
present simulation results for the steady-state current as a
function of the driving force for fixed driving frequency ωd =
1.5 and for a set of temperatures. Surprisingly, we find that
at the lowest observed temperature (T = 0.1), the form of
the current dependence on force is similar to the zero-noise
case—we still see sharp transitions, though the plateau region
now has a decreased range. The current has a smaller value,
and in fact we observe a small slope [see inset of Fig. 9(a)].
At higher temperatures, T > 0.2 we do not see the plateau
region, implying that the RNW mode either is not present or
has a negligible effect.

We next explore whether (for temperatures T � 0.1) mul-
tiple nonequilibrium steady states exist even in the presence of
noise, beyond the transition point F2. For this we again start
from initial conditions taken when the system is in the plateau
region, and then we increase the force in small steps. Again,
somewhat surprisingly, we find that the plateau region has an
extended domain of stability, as shown in Fig. 9(b). However,
now the extended region of stability shows a clear decrease
with increasing temperature. All this implies that there are
two NESS states, one corresponding to the RNW mode, with
a sharp power spectrum peaked at ωd (see Fig. 10), and the
other to the low-current chaotic state, with a broad power
spectrum. As further evidence of the extended stability and
existence of a second NESS, we show in Fig. 11 the results

0 4 8 12 16 20
Fd

0.0

0.1

0.2

0.3

J

(a) T = 0.0
T = 0.05
T = 0.1

T = 0.2
T = 0.4
T = 0.6

2 8Fd

0.28

0.30

J

b

FIG. 9. PBS setup (TL = TR = T ): Variation of steady-state cur-
rent J with driving amplitude Fd at different bath temperatures for
system size N = 500 and ωd = 1.5. (a) In this case the system was
initialized with random ICs. We observe that for small enough tem-
peratures the sharp transitions observed for T = 0 still persist, but
over a smaller range and a reduced value of J in the RNW regime.
However, in this regime the current J has a small slope (see inset)
in contrast to the T = 0 case. With increasing T , the RNW regime
ceases to exist. (b) We explore if the flat regime corresponding to
RNW mode persists beyond the second transition point F2 even at
nonzero temperature as happens for T = 0 (see Fig. 3). For this, the
system is again initialized with RNW IC, and we observe that the
RNW phase continues to exist beyond F2 (triangles). However, the
range becomes smaller as T increases. The solid lines correspond to
the profiles obtained from random IC [as plotted in (a)].

of simulations where the noise is switched on after starting
from the zero noise RNW initial condition. We see that over a
range of Fd [which is the same as seen in Fig. 9(b)], the system
transits to the RNW state. It is possible that the RNW state is
a metastable state, but our simulations do not see a transition
to the low-current state even at very long times.

It was observed by PBS [14] that in the chaotic phase for
Fd > F2, while the current obeyed the Fourier behavior J ∼
1/N , the temperature profile in the bulk of the chain was far
from that expected from Fourier’s law.

We now ask if things are different in the presence of
boundary noise (at high temperatures) and in particular if the
bulk temperature profiles follow Fourier’s law. To check this,
we first evaluate the temperature profile in the driven KG
chain, and the results are shown in Fig. 12(a) at different bath
temperatures for N = 500 and in Fig. 12(b) for different N at
fixed temperature T = 2.0. The profiles show a jump at the
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FIG. 10. PBS setup (TL = TR = T ): Average power spectrum of
the positions of the particles in a chain with N = 500, ωd = 1.5,
and Fd = 10.0 at bath temperature T = 0.01. The power spectrum,
S(ω) = √〈|q�(ω)|2〉, is computed for each particle, and then an av-
erage 〈· · · 〉 is taken over all the particles. The line connecting the
circles corresponds to the RNW IC, and the line connecting the
points corresponds to the random IC. For both cases, S(w) has a
large peak at w = wd and a very tiny secondary peak at w = 3wd

(indicated by the black dashed vertical lines). The peak for the RNW
case is very sharp, whereas the peak is broadened for the random IC
case.

driven end and then a slowly varying profile. We compare
these profiles with those obtained from simulations where
there is no external force but only an imposed temperature
gradient (see end of Sec. II). Specifically, we consider a chain
of length N − is and fix the temperature at the first site to
be that of the temperature at the is site of the driven chain
(we choose is = 20, i.e., far from the left boundary) and the
temperature of the right end to be the same as in the driven
chain. In Fig. 12 we compare the temperature profile and the
local current profile (inset) of the thermally driven chain with

FIG. 11. PBS setup (TL = TR = T ): We test the stability of the
zero temperature RNW mode beyond F2 by observing how the
current in the steady state gets affected upon addition of thermal
noise with T = 0.1. Until some critical Fd , which is the same as
in Fig. 9(b) at T = 0.1, the system remains in the RNW phase
characterized by a lower value of the current. For larger Fd , the
addition of noise causes a transition to the chaotic phase (indicated
by vertical arrows). This is further indication of the stability of the
RNW phase even at small finite temperatures. In this plot N = 500
and ωd = 1.5.

(a)

(b)

FIG. 12. PBS setup (TL = TR = T ): Comparison of tempera-
ture and current (inset) profiles obtained from periodic driving
(lines) and equivalent thermal drive (symbols). (a) These profiles
for N = 500 at three different temperatures T = 1, 1.5, and 2.
While the temperature profiles show reasonable agreement, the
agreement for the current profiles is not so good but gets better
with increasing temperature. (b) Plot of the profiles at T = 2 for
two system sizes N = 800 and N = 1600, and we observe that
the temperature profiles have converged, and the agreement of the
current profiles with the equivalent thermal drive case improves with
increasing N .

the corresponding segment in the periodically driven chain.
We find that there is reasonable agreement which improves
with increasing N , implying that the transport in the bulk is in
accordance to the Fourier diffusion equation.

B. KLO setup at nonzero bath temperatures

We now discuss the KLO setup with dissipation only at
one end, i.e., γL = 0, γR = 1, and a forcing with amplitude
Fd = A/

√
N where A is a constant. In addition, we have

thermal noise at the right end. One of the main results of
[17], for the case where the system is a harmonic chain with
an energy-conserving stochastic dynamics, was to show that
transport in the chain is diffusive. Here we explore if a similar
transport behavior is observed in the KG chain with Hamil-
tonian dynamics and a similar driving protocol. In Fig. 13(a)
we present results for the temperature profile and (in the inset)
the size dependence of the current. For the driving force of the
form Fd = A/

√
N , we took A = 1, ωd = 1.5, and T = 1.0.

We see that the current scaling, J ∼ 1/N , is consistent with
diffusive transport [see inset of Fig. 13(a)]. With increasing N ,

064124-8



OBSERVATION OF MULTIPLE ATTRACTORS AND … PHYSICAL REVIEW E 109, 064124 (2024)
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FIG. 13. KLO setup (γL = 0, TR = 1.0): (a) In this case the tem-
perature profiles are plotted for different system sizes with driving
amplitude Fd = A/

√
N with A = 1 and driving frequency ωd = 1.5.

The temperature profiles seem to converge to a limiting form for large
N . The inset verifies the Fourier scaling of the current with system
size. (b) Comparison of temperature profile and current profile (inset)
between the periodic driving case with A = 1 and the equivalent ther-
mally driven chain for N = 1600 and N = 3200. We again observe
good agreement between the temperature profiles for each N , while
the agreement for the current profiles gets improved with increasing
N .

the temperature profiles show a slow convergence to a limiting
profile, as one might expect from the results of Ref. [17].
To check the validity of the diffusion equation, we compare
the temperature and current profiles (in the bulk) of the pe-
riodically driven chain with that of a thermally driven chain
with temperatures at the boundaries made identical at the end
points (see Sec. IV A for details). The results are shown in
Fig. 13(b). We see that the agreement between the profiles
of the thermal and periodically driven cases gets better with
increasing system size, indicating again that Fourier’s law is
satisfied in the bulk of the system.

C. Case with zero dissipation at driving end and unscaled force

Finally, we consider again setup with dissipation and ther-
mal noise only at the right end and with no system-size
scaling of the driving force, i.e., with a constant drive Fd = 1.
The temperature profile for different system sizes is shown
in Fig. 14(a), and in the inset we again observe the Fourier
scaling for the current, i.e., J ∝ 1/N . In this case the temper-
ature profile does not seem to converge with increasing N ,

0.0 0.2 0.4 0.6 0.8 1.0

�/N

2

4

6

8

10

T�

(a)

N = 100
N = 200
N = 400

N = 800
N = 1600
N = 3200

102 103
N

10−3

10−1

J

(ii)

∝ N−1.10

102 103

N

1

10

T1
∼ N

0.56(i)

b

FIG. 14. Unscaled drive (γL = 0, TR = 1.0 and Fd = 1.0):
(a) The temperature profiles at different system sizes with ωd = 1.5
and fixed driving amplitude Fd = 1.0. In this case the temperature
profiles do not converge with increasing N , and the temperatures
of the particles at the left end keep increasing with N . In inset
(i), we show that the kinetic temperature of the first particle grows
as N0.56. In inset (ii), we observe that the current seems to show
Fourier scaling with N . (b) Comparison of the temperature profiles
and current profiles (inset) in the periodically driven case and the
equivalent thermally driven chain for N = 1600 and N = 3200. We
again observe good agreement between the temperature profiles for
each N , while the agreement for the current profiles improves with
increasing N .

and in fact the kinetic temperature of the first particle grows
approximately as N1/2 [see inset of Fig. 14(a)]. In Fig. 14(b)
we once again compare the temperature and current profiles
of the periodically driven chain with the purely thermally
driven chain for which the temperature at the left end is
fixed following the same procedure as discussed at the end
of Sec. IV A. The good agreement of both the temperature and
current profiles between the two methods at the largest system
size suggests that Fourier’s law is satisfied in the bulk of the
chain in this case also.

V. CONCLUSION

We revisited the recently studied problem of transport
through a KG chain [14] that is periodically driven at one
of the boundaries and with dissipation at both ends, and we
presented an improved understanding of the resonant nonlin-
ear wave (RNW) mode. We establish that the RNW mode
has an extended domain of stability in the driving parameters
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(Fd , ωd ) space and that, in certain parameter regions, there can
be multiple attractors. At lowest order, the RNW mode is a
periodic wave at frequency ωd . We provided a quantitative
estimate of the corrections coming from the third harmonic
contributions. It is interesting to note that two stable attractors
(bistability) were also observed in Ref. [8] for the case of
a periodically driven Fermi-Pasta-Ulam chain. Some notable
differences with that study are the facts that transmission
was observed only for driving frequency outside the phonon
bandwidth (hence supra-transmission) and transport was via
moving solitons. Some of the interesting observations for
supra-transmission were observation of a finite current beyond
a threshold driving amplitude and hysteresis effects. In our
case we do not find these effects, while the most surprising
observations are the current plateau and the corresponding
resonant nonlinear wave form.

Finally, we looked at the effect of thermal noise on the
RNW mode and on transport properties. We found that at
low temperatures, the features of RNW mode survives, while
at high temperature the transport accords with the diffusion
equation and Fourier’s law with some effective temperature at
the (periodically) driven end. We point out the effect of bound-
ary conditions on the effective (purely) thermally driven chain
problem by studying two setups, including the one recently
studied in [18].

The robustness of the RNW mode means that it is amenable
to being observed in experimental setups such as those in
[15,16], in macroscopic mass-spring chains such as the one
studied in [21] and in the other broad class of one-dimensional
transmission line problems [22,23].

There remain several open questions. For the noiseless
case, establishing the existence of multiple stable attractors,
determining the transition points F1, F2, and the analytic de-
termination of the wave number k of the RNW mode are
interesting problems. In the presence of thermal noise, the
naive expectation would be that the system goes to a unique
time periodic Floquet NESS [12,13], while our results indi-
cate the existence of multiple steady states—how does one
understand this? Finally, for the case where the noise strength
is large, an interesting problem is to establish that transport is
diffusive, that Fourier’s law is satisfied in the bulk of the chain,
and that the periodic driving can be replaced by an effective
boundary condition.

ACKNOWLEDGMENTS

We thank Vir Bulchandani, Shiva Darshan, Sergej Flach,
Joel Lebowitz, Stefano Olla, and Abhinav Prem for useful
discussions. A.K. would like to acknowledge the sup-
port of DST, Government of India grant, under Project
No. ECR/2017/000634 and the MATRICS Grant No.
MTR/2021/000350 from the SERB, DST, Government
of India. We acknowledge the Department of Atomic
Energy, Government of India, for their support under
Project No. RTI4001. We acknowledge the ICTS program
“Periodically and quasi-periodically driven complex sys-
tems” (code ICTS/pdcs2023/6) for enabling very useful
discussions.

[1] Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a harmonic
crystal in a stationary nonequilibrium state, J. Math. Phys. 8,
1073 (1967).

[2] A. Dhar and H. Spohn, Fourier’s law based on microscopic
dynamics, C. R. Phys. 20, 393 (2019).

[3] S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical
low-dimensional lattices, Phys. Rep. 377, 1 (2003).

[4] A. Dhar, Heat transport in low-dimensional systems, Adv. Phys.
57, 457 (2008).

[5] G. Benenti, S. Lepri, and R. Livi, Anomalous heat transport
in classical many-body systems: Overview and perspectives,
Front. Phys. 8, 292 (2020).

[6] F. Geniet and J. Leon, Energy transmission in the forbidden
band gap of a nonlinear chain, Phys. Rev. Lett. 89, 134102
(2002).

[7] F. Geniet and J. Leon, Nonlinear supratransmission, J. Phys.:
Condens. Matter 15, 2933 (2003).

[8] R. Khomeriki, S. Lepri, and S. Ruffo, Nonlinear supratransmis-
sion and bistability in the Fermi-Pasta-Ulam model, Phys. Rev.
E 70, 066626 (2004).

[9] N. Li, P. Hänggi, and B. Li, Ratcheting heat flux
against a thermal bias, Europhys. Lett. 84, 40009
(2008).

[10] O. Narayan and A. Dhar, Nonreciprocity and the second law
of thermodynamics: An exact relation for nonlinear media,
Europhys. Lett. 67, 559 (2004).

[11] S. Lepri and G. Casati, Asymmetric wave propagation in non-
linear systems, Phys. Rev. Lett. 106, 164101 (2011).

[12] L. D. Marin Bukov and A. Polkovnikov, Universal high-
frequency behavior of periodically driven systems: From
dynamical stabilization to Floquet engineering, Adv. Phys. 64,
139 (2015).

[13] S. Higashikawa, H. Fujita, and M. Sato, Floquet engineering of
classical systems, arXiv:1810.01103.

[14] A. Prem, V. B. Bulchandani, and S. L. Sondhi, Dynamics
and transport in the boundary-driven dissipative Klein-Gordon
chain, Phys. Rev. B 107, 104304 (2023).

[15] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and
A. A. Houck, Observation of a dissipative phase transition in
a one-dimensional circuit QED lattice, Phys. Rev. X 7, 011016
(2017).

[16] G. P. Fedorov, S. V. Remizov, D. S. Shapiro, W. V. Pogosov,
E. Egorova, I. Tsitsilin, M. Andronik, A. A. Dobronosova, I. A.
Rodionov, O. V. Astafiev, and A. V. Ustinov, Photon transport
in a Bose-Hubbard chain of superconducting artificial atoms,
Phys. Rev. Lett. 126, 180503 (2021).

[17] T. Komorowski, J. L. Lebowitz, and S. Olla, Heat flow in a
periodically forced, thermostatted chain, Commun. Math. Phys.
400, 2181 (2023).

[18] P. L. Garrido, T. Komorowski, J. L. Lebowitz, and S. Olla,
On the behaviour of a periodically forced and thermostatted
harmonic chain, J. Stat. Phys. 191, 30 (2024).

064124-10

https://doi.org/10.1063/1.1705319
https://doi.org/10.1016/j.crhy.2019.08.004
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1080/00018730802538522
https://doi.org/10.3389/fphy.2020.00292
https://doi.org/10.1103/PhysRevLett.89.134102
https://doi.org/10.1088/0953-8984/15/17/341
https://doi.org/10.1103/PhysRevE.70.066626
https://doi.org/10.1209/0295-5075/84/40009
https://doi.org/10.1209/epl/i2004-10094-8
https://doi.org/10.1103/PhysRevLett.106.164101
https://doi.org/10.1080/00018732.2015.1055918
https://arxiv.org/abs/1810.01103
https://doi.org/10.1103/PhysRevB.107.104304
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevLett.126.180503
https://doi.org/10.1007/s00220-023-04654-4
https://doi.org/10.1007/s10955-024-03243-6


OBSERVATION OF MULTIPLE ATTRACTORS AND … PHYSICAL REVIEW E 109, 064124 (2024)

[19] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, Oxford, 2017).

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright et al., Scipy 1.0: Fundamental algorithms for scientific
computing in Python, Nat. Methods 17, 261 (2020).

[21] Y. Watanabe, T. Nishida, Y. Doi, and N. Sugimoto, Experi-
mental demonstration of excitation and propagation of intrinsic

localized modes in a mass–spring chain, Phys. Lett. A 382,
1957 (2018).

[22] E. Kengne, W.-M. Liu, and B. A. Malomed, Spatiotemporal
engineering of matter-wave solitons in Bose-Eeinstein conden-
sates, Phys. Rep. 899, 1 (2021).

[23] E. Kengne and W. M. Liu, Exact solutions of the derivative
nonlinear Schrödinger equation for a nonlinear transmission
line, Phys. Rev. E 73, 026603 (2006).

064124-11

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.physleta.2018.04.055
https://doi.org/10.1016/j.physrep.2020.11.001
https://doi.org/10.1103/PhysRevE.73.026603

