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Neural-network quantum-state study of the long-range antiferromagnetic Ising chain
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We investigate quantum phase transitions in the transverse field Ising chain with algebraically decaying
long-range (LR) antiferromagnetic interactions using the variational Monte Carlo method with the restricted
Boltzmann machine employed as a trial wave function ansatz. First, we measure the critical exponents and the
central charge through the finite-size scaling analysis, verifying the contrasting observations in the previous
tensor network studies. The correlation function exponent and the central charge deviate from the short-range
(SR) Ising values at a small decay exponent αLR, while the other critical exponents examined are very close to
the SR Ising exponents regardless of αLR examined. However, in the further test of the critical Binder ratio, we
find that the universal ratio of the SR limit does not hold for αLR < 2, implying a deviation in the criticality. On
the other hand, we find evidence of the conformal invariance breakdown in the conformal field theory (CFT) test
of the correlation function. The deviation from the CFT description becomes more pronounced as αLR decreases,
although a precise breakdown threshold is yet to be determined.
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I. INTRODUCTION

Artificial neural networks and machine learning have been
influencing the paradigm of physics research with a growing
number of applications on various subjects, including phase
transitions and critical phenomena in classical and quantum
many-body systems [1–4]. In particular, the representation of
a quantum wave function by a neural network [5] provides an
alternative numerical platform combined with the variational
Monte Carlo (VMC) method to find the ground state of a
many-body Hamiltonian. The neural-network quantum state
(NQS) has extended its area of applications to the Fermi
and Bose-Hubbard models [6,7], real-time dynamics [5,8–10],
open quantum systems [11–14], quantum state tomography
[15,16], frustrated systems [17–23], and ab initio simulations
of molecules [24–26]. The NQS ansatz offers the high expres-
sive capacity often measured in terms of entanglement scaling
[27–31], proposing a complementary tool to conventional nu-
merical methods for studying quantum criticality.

In this paper, we investigate quantum phase transitions
in the transverse field Ising chain (TFIC) with algebraically
decaying long-range (LR) antiferromagnetic (AF) interactions
by employing the NQS ansatz for the VMC calculations. LR-
interacting quantum systems have attracted growing attention,
both theoretical and experimental [32]. The trapped-ion quan-
tum simulation [33] realized the TFIC Hamiltonian with an
LR interaction that maps to the form of 1/rαLR with a tunable
exponent αLR, providing a controllable experimental platform
to study quantum phase transitions at and out of equilibrium
[34–36]. The nearest-neighbor-interacting short-range (SR)
TFIC is a textbook example of quantum critical behavior in
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one dimension that belongs to the universality class of the
classical two-dimensional (2D) Ising model [37]. However,
such quantum-classical correspondence to the universality of
critical phenomena becomes nontrivial in the presence of LR
interactions. A central question of how criticality depends
on αLR is still an active subject of various numerical and
analytical studies [32,38–65].

We revisit this question on the AF side of the LR inter-
actions for TFIC, where the breakdown of the Ising class
in the critical ground state seems to be very different from
what is established in the ferromagnetic (FM) counterpart
[49–54,59–61]. Because an exact solution is not available,
constructing the picture of how its criticality deviates from the
Ising class as αLR decreases relies primarily on the collection
of numerical observations. Despite various numerical studies
characterizing the quantum phase transition in AF-LR-TFIC
at equilibrium [56–60,62] and out of equilibrium [59,63],
the picture remains incomplete in some parts, which requires
more numerical evidence for clarification. Using the restricted
Boltzmann machine (RBM) for the NQS ansatz [5], we con-
sider the moments of staggered magnetization including the
order parameter and the Binder ratio, the two-point correla-
tion function, and the entanglement entropy to examine the
present picture and improve the characterization of the phase
transition with increasing LR influences along the critical line.

We begin with brief reviews of previous results on the char-
acterization of the criticality. The first study of AF-LR-TFIC
[56] using the time-dependent variational principle (TDVP)
found a phase transition for all αLR > 0, where it turned out
that the critical exponent of the correlation function decreases
from the SR Ising value for αLR � 2. A significant increase
in the central charge from the SR Ising value of 1/2 was
observed for αLR � 1 in the TDVP [56] and density matrix
renormalization group (DMRG) [57] calculations, based on
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which the breakdown of conformal invariance was proposed
[57]. However, more studies are needed because the central
charge is not a sufficient indicator of conformal invariance
[66]. While we focus on the critical ground state, a violation
of the area law for the entanglement entropy was observed in
the off-critical area [56,57,62], and it was shown that the area
law of the noncritical ground state holds for αLR > 2 [67].

On the other hand, contrasting evidence was found in the
other DMRG calculations [58,59], where the estimates of
the critical exponents ν � 1 and β � 1/8 and the dynamic
exponent z � 1 were in agreement with the SR Ising values
for all examined αLR between 0.4 and 3. However, these
DMRG estimates of the critical exponents have not been fully
verified in different approaches. Linked cluster expansion cal-
culations [60] reported zν = 1.7(5) for αLR = 2 while zν ≈ 1
for αLR = 9/4. Previous quantum Monte Carlo (QMC) calcu-
lations with stochastic series expansion [61] provided lower
values of ν and β in its examined range of αLR � 2. While
partial disagreements exist between these previous estimates,
the TDVP and DMRG results together suggest an interesting
possibility that some of the exponents can still be very close
to the SR Ising values even for a small αLR where the central
charge indicates a deviation, raising the need for verification
with a different numerical approach.

Apart from the question about criticality at a small αLR, an-
other issue we want to address is the possibility of conformal
invariance breakdown that may occur below a certain value
of αLR. The scenario of conformal invariance breakdown was
also proposed in the study of the Kitaev chain with LR pairing
[64,65], which becomes equivalent to the Ising chain in the SR
limit. Along the critical line of a positive chemical potential,
the conformal symmetry is broken for αLR < 2 in the effective
action while the Ising exponent β is unchanged in the test
of a quantity that corresponds to the Ising order parameter in
the SR limit. Although there is no rigorous mapping between
the Kitaev and Ising chains at finite αLR, their empirical sim-
ilarity motivates us to consider the possibility that the same
phenomenon could occur in the AF-LR-TFIC.

Detecting the breakdown of conformal invariance must
go beyond the test of the central charge. As discussed in
Ref. [66], the central charge measured from the entanglement
entropy is not a sufficient tool to examine conformal invari-
ance because the logarithmic system-size scaling behavior of
the entanglement entropy is not exclusive to conformal invari-
ance. A criterion must be set based on a behavior or quantity
fully restricted by conformal field theory (CFT). The scaling
and functional form of the correlation function in cylindrical
geometry was proposed as a strict indicator [66], which we
use in this work to examine conformal invariance.

Our VMC+RBM calculations investigate these questions
about criticality and conformal invariance. First, we examine
the contrasting evidence from the previous TDVP and DMRG
studies [56–59]. In the finite-size scaling (FSS) analysis of the
order parameter, we find that the critical exponents ν, β, and γ

are indeed very close to the SR Ising values for our examined
range of 0.5 � αLR � 3. In contrast, the correlation func-
tion exponent and the central charge exhibit deviations from
the SR Ising values for αLR � 2 and αLR � 1, respectively.
These observations verify the previous results. However, the
change of the criticality is inconclusive in these contrasting

behaviors of the measured exponents, and as discussed above,
the deviation of the central charge is not sufficient to claim the
breakdown of conformal invariance.

We thus provide additional tests for the Ising criticality and
the breakdown of conformal invariance, examining the uni-
versal Binder ratio and the CFT description of the correlation
function, respectively. It turns out that the critical Binder ratio
[42] becomes increasingly different from the universal ratio
of the 2D Ising model as αLR decreases below 2, indicating
the deviation from the criticality of the SR limit. In the CFT
test of the correlation function, we find evidence of the con-
formal invariance breakdown from a mismatch between the
CFT description and our measurement, which becomes very
pronounced for αLR < 2. However, the slope of the scaled
correlation function [66] appears to remain small but nonvan-
ishing for αLR � 2. This raises the possibility the breakdown
threshold of conformal invariance in the AF-LR-TFIC may
differ from the threshold discussed in the Kitaev chain.

This paper is organized as follows. The AF-LR-TFIC
model Hamiltonian and the details of the VMC+RBM calcu-
lations are described in Sec. II. The previous estimates of the
critical exponents and the central charge are verified through
Sec. III A, Sec. III B, and Sec. III C, which is followed by our
tests using different methods. In Sec. III D, the test for the
Ising universality using the Binder ratio is given. In Sec. III E,
the CFT test of the correlation function is given to identify
the conformal invariance breakdown. Conclusions are given
in Sec. IV.

II. MODEL AND VMC+RBM CALCULATIONS

We consider the AF-LR-TFIC Hamiltonian [56] given as

Ĥ = sin θ
∑
i< j

Ji j σ̂
x
i σ̂ x

j + cos θ
∑

i

σ̂ z
i , (1)

where θ is in the range of 0 < θ < π/2 for the AF coupling,
and the site indices i and j run from 1 to L in the chain of
length L. We impose PBC as the boundary conditions that are
necessary for the test of the CFT description of the correlation
function constructed in a cylindrical space-time geometry. In
the implementation of the algebraically decaying LR interac-
tion under PBC, we choose to write Ji j with a range cutoff that
increases with the system size L by adopting the formulation
used in the LR-Kitaev chain [64,65] as

Ji j =
{

|i − j|−αLR for |i − j| < L/2,

(L − |i − j|)−αLR for |i − j| > L/2.
(2)

We choose RBM as an ansatz of a trial wave function for
VMC simulations to find an approximate ground state [5]. A
trial state can be written as |	〉 = ∑

s 	(s; W )|s〉 with the vis-
ible variables s = (s1, s2, . . . , sL ) of RBM, where si indicates
σ x

i for the σ̂ x-basis representation of the given Hamiltonian.
We impose the translation symmetry under PBC to reduce the
number of variational parameters. Following the procedures
of Ref. [5], after integrating out the hidden layer, one can
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express the RBM wave function as

	(s; W ) = ea
∑L

j=1 s j

L∏
m=1

nh∏
i=1

cosh

⎡
⎣bi +

L∑
j=1

Wi jTm(s j )

⎤
⎦,

(3)
where the translation operator T is defined as Tm(s j ) = s j+m

with periodicity s j+L = s j , and nh is the number of filters
given for the symmetry. On a diagram of RBM, one may
illustrate the hidden layer with Nh = Lnh neurons with L-fold
degeneracy of the neural variables enforcing the translation
invariance. In Eq. (3), there are (1 + nh + Lnh) RBM pa-
rameters of W ≡ {a, b, W} to be optimized using the VMC
method. We adopt complex-valued parameters as suggested in
Ref. [5] for better convergence, although the TFIC Hamilto-
nian is stoquastic [68]. We initialize the RBM by setting a = 0
and assigning Gaussian random numbers with zero mean and
variance of 1/(Lnh) to b and W.

In VMC calculations, we optimize the RBM parameters
using the stochastic reconfiguration method to construct the
natural gradient [69–71]. This method can be described as
the imaginary-time evolution of a trial state, providing a new
state projected in the space of {|	〉, ∂1|	〉, ∂2|	〉, . . .}, where
∂i|	〉 ≡ ∂|	〉

∂Wi
. These procedures propose an update of the

variational parameter as W new
i = W old

i + μδWi, where δWi is
determined by solving the linear equation SδW = −f . The
essential numerical procedures are to evaluate the overlap
matrix S and the force vector f ,

Si j = 〈�∗
i � j〉mc − 〈�∗

i 〉mc〈� j〉mc, (4)

fi = 〈�∗
i Eloc〉mc − 〈�∗

i 〉mc〈Eloc〉mc, (5)

where the derivative �i and the local energy Eloc are

�i ≡ ∂i	(s; W )

	(s; W )
and Eloc ≡

∑
s′

〈s|Ĥ |s′〉	(s′; W )

	(s; W )
. (6)

The expression 〈A〉mc ≡ ∑
s P(s)A(s) denotes the Monte

Carlo (MC) measurement of A(s) with probability P(s) ∝
|	(s; W )|2. We use the conjugate gradient algorithm with the
Jacobi preconditioner to solve the linear equation without ex-
plicitly storing the S matrix following the cost-reducing recipe
of Ref. [71]. For numerical stability, we use the regularization
scheme introduced in Ref. [5], where at the pth iteration, Si j

is replaced by Si j (1 + λpδi j ) with λp = max(λ0bp, λmin). We
use the parameters λ0 = 100, b = 0.9, and λmin = 0.01. The
learning rate μ is initially set to 0.1 and increased by 0.1 for
every 10 000 iterations until it becomes unity.

We monitor the convergence of |	〉 to the ground state by
evaluating 〈Ĥ〉 and the relative variance defined as

σ̃E ≡ 〈Ĥ2〉 − 〈Ĥ〉2

〈Ĥ〉2
. (7)

The relative variance σ̃E should be precisely zero when |	〉
becomes an exact eigenstate. However, in practice, it does not
decrease below a certain value in VMC simulations. Probable
systematic causes may include the limited expressive power
of a finite-size neural network with a finite nh, despite the uni-
versal approximation theorem, and the stochastic fluctuations
in MC measurements that can affect the linear solver.

FIG. 1. Convergence test of the RBM wave function in the VMC
search for the ground state. The case with the system of the size
L = 64 for αLR = 0.5 is shown for example. The estimates of (a) en-
ergy density E0/L and (b) relative variance (〈Ĥ 2〉 − 〈Ĥ〉2)/〈Ĥ〉2

measured after 2 × 105 iterations are plotted as a function of nh.
The insets show the same quantities for a fixed number of filters
nh = 16 monitored during the iterations of the parameter updates.
The data points in the insets represent the averages measured in the
logarithmic bins of iteration numbers. The error bars are measured
with ten independent RBM wave function samples.

Figure 1 presents an example of the convergence test per-
formed at the critical point in the system of size L = 64 for
the LR exponent αLR = 0.5. Convergence tends to slow down
as αLR decreases in this LR-AF system. At the critical point,
it typically takes about an order of 105 iterations until the
energy and variance become saturated within the scale of their
fluctuations over the iterations. We find that the accuracy level
indicated by σ̃E after saturation depends essentially on the
number of filters nh. In our VMC calculations for the ground
state, we set the convergence criterion as σ̃E < 10−6, which,
for example, is achieved for nh > 8 in Fig. 1. In our tests,
nh = 16 suffices to satisfy σ̃E < 10−6 for system sizes up to
L = 128 in the range of αLR that we consider.

III. RESULTS AND DISCUSSIONS

Using the RBM wave function 	(s) obtained in the VMC
optimizations at a given θ , we measure the moments of
staggered magnetization including the AF order parameter,
the two-point correlation function, and the second Rényi
entanglement entropy. For a given RBM sample, the MC
averages are calculated with 4 × 108 configurations of s sam-
pled from the probability distribution P(s) ∝ |	(s)|2 using
the Metropolis algorithm. We obtain ten RBM wave function
samples from independent VMC calculations. We find that the
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FIG. 2. FSS analysis of RBM observables. (a) The estimates of the critical exponents ν, β, γ are plotted in the range of αLR between 0.5
and 3. The dotted lines are given for comparison with the SR Ising values. The FSS collapse tests with the critical exponents are demonstrated
at αLR = 0.5 for the data of (b) the Binder’s cumulant U4, (c) the AF order parameter ms, and (d) the susceptibility χs. The inset of (b) shows
the crossing point of U4 locating the critical point θc.

standard error of the measurement based on one RBM sample
is typically smaller than the sample-to-sample fluctuations,
and thus, we estimate the error bar by the standard deviation
of the measurements over the RBM samples.

In this section, we first present the FSS analysis to estimate
the critical exponents and the central charge for comparison
with the previous TDVP and DMRG results. Then, we pro-
ceed to present our additional tests of the universal Binder
ratio and the CFT description of the correlation function to
examine the Ising criticality and the conformal invariance,
respectively.

A. Order parameter and critical exponents

The emergence of the AF order can be detected by mea-
suring the staggered magnetization in the input layer of the
RBM. In the AF phase, the operator M̂s = ∑

i(−1)iσ̂ x
i in each

parity sector of the Z2 symmetry indicates a finite positive or
negative expectation value. Although our MC sampling does
not fix the parity, an alternative quantity Ms(s) = |∑i(−1)isi|
can characterize the order-disorder phase transition at the level
of the RBM wave function. We write the order parameter as

ms = 1

L
〈Ms〉mc. (8)

Near a critical point θc, the order parameter measured in a
finite system of size L is expected to behave asymptotically
as ms(θ, L) ∼ L−β/νM (±)

o (|θ − θc|L1/ν ) with the critical ex-
ponents β and ν, where M (±)

o is a size-independent scaling
function. The corresponding susceptibility can also be defined
by the fluctuations of Ms as

χs = 〈
M2

s

〉
mc − 〈Ms〉2

mc, (9)

which is expected to follow the FSS ansatz of χs(θ, L) ∼
Lγ /νXo[(θ − θc)L1/ν] associated with the exponent γ .

First we determine the critical point θc for a given αLR

by locating a crossing point of the Binder’s fourth-order
cumulant,

U4 = 1 −
〈
M4

s

〉
mc

3
〈
M2

s

〉2
mc

, (10)

between the curves of different L’s. The FSS ansatz of the
cumulant is given as U4(θ, L) ∼ Uo[(θ − θc)L1/ν]. Although
Uo becomes independent of L for a large L, a finite-size
correction can appear for small L’s. The finite-size correction
of the leading order is usually assumed to be in the form of
θ∗

L,2L − θc ∝ L−ω̃ for a crossing point θ∗
L,2L identified between

two adjacent curves of system sizes L and 2L. We determine
θc based on this correction-to-scaling ansatz with the extrapo-
lation to infinite size.

After locating the critical point θc, we estimate the criti-
cal exponents ν, β, and γ by performing the standard FSS
analysis with the FSS ansatz of ms, χs, and U4 in the critical
region. Figure 2 presents an example of the FSS analysis
for αLR = 0.5, showing that the data points of different L’s
fall well on a common scaling curve with our estimates of
the critical exponents. The numerical estimates of the crit-
ical exponents and errors are measured using the PYFSSA

package [72,73]. We tabulate our estimate of θc and the
critical exponents in Table I. Within the error bars, our es-
timates of the critical exponents are very close to the SR
Ising values for all the values of αLR examined as shown
in Fig. 2(a), which is consistent with the previous DMRG
results [58,59].

TABLE I. List of the critical points and exponents. Critical expo-
nents ν, β, and γ are determined in the FSS analysis of the collapse of
the scaling curve. The exponent η is measured from the scaling of the
spin-spin correlation function along a fixed r/L = 1/4 at the critical
point θc. The central charge c∞ is extracted from the logarithmic
scaling of the second Rényi entropy.

αLR θc ν β γ η c∞

3.0 0.8714(7) 1.00(4) 0.128(5) 1.77(5) 0.2510(4) 0.496(5)
2.5 0.9041(6) 1.01(2) 0.122(3) 1.76(5) 0.2491(2) 0.500(4)
2.0 0.9489(7) 1.00(2) 0.121(7) 1.76(7) 0.2518(7) 0.502(5)
1.5 1.012(1) 1.00(1) 0.126(9) 1.77(4) 0.2450(24) 0.508(4)
1.0 1.103(1) 1.01(3) 0.126(6) 1.78(7) 0.2398(35) 0.490(5)
0.5 1.251(1) 1.01(3) 0.127(5) 1.76(4) 0.2363(15) 0.454(8)
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FIG. 3. Critical exponent of the spin-spin correlation function.
The correlation function Cxx (r) at r = L/4 is plotted as a function of
the system size L. The inset shows the exponent η extracted from the
data fitting to Cxx (L/4) ∝ L−η. The dotted lines given for comparison
indicate the SR Ising exponent η = 1/4.

B. Correlation function exponent

We also examine the critical exponent η of the correlation
function. At the critical point θc given above in Sec. III A, we
measure the spin-spin correlation function,

Cxx(r) = 〈
σ̂ x

i σ̂ x
i+r

〉 = 〈sisi+r〉mc, (11)

where the distance r runs from 1 to L/2 in the periodic chain,
and this expression is independent of the site index i due to the
translational symmetry imposed in our RBM wave-function
ansatz. The asymptotic algebraic decay of Cxx(r) ∝ r−η ex-
pected at a critical point can be written for a finite system of
length L as Cxx(bL) ∝ L−η at r = bL, which is displayed for
our choice of b = 1/4 in Fig. 3. We extract η from the linear
fit of the data in the log-log plot. It turns out that the estimate
of η is consistently smaller than the SR Ising value 1/4 when
αLR decreases below 2, implying that the SR Ising criticality
does not hold for αLR < 2. These observations are consistent
with the previous TDVP result [56], where the threshold at
αLR = 2.25 was suggested.

However, it is worth noting that a change in η is connected
to changes in the other exponents through the hyperscaling
relations γ /ν = 2 − η and 2β/ν = d + z − 2 + η. The latter
implies an apparent conflict between the previous TDVP and
DMRG results [56,58,59]. The TDVP estimate of η decreases
from 1/4 for αLR � 2, whereas the DMRG studies reported
ν � 1, β � 1/8, and z � 1. We have verified some of these
critical exponents, but we cannot reconcile this conflict with
the limited accuracy of our calculations. Thus, the expo-
nents at the present accuracy may be unreliable to determine
whether the Ising criticality of the SR limit survives or breaks
down at a finite αLR. This emphasizes the need for a test that
does not rely on the estimates of the exponents.

C. Second Rényi entropy and central charge

The logarithmic system-size scaling of the entanglement
entropy at a critical point in one dimension is a useful uni-
versal property to measure the central charge of the CFT that
characterizes the phase transition [74–76]. In the previous
estimate of the central charge using the TDVP [56], DMRG
[57], and generalized Hatree-Fock [62] methods, the von Neu-
mann entropy was examined under open boundary conditions
(OBC). Instead, we consider the second Rényi entropy for the
measurement using the RBM wave function under PBC. For
the bipartition of a system into subsystems A and B, the Rényi
entropy of an order n for ρA is written as

Sn(ρA) = 1

1 − n
ln trρn

A, (12)

where ρA ≡ trBρ is the reduced density matrix of A for a pure
state ρ. The von Neumann entropy is recovered at the limit
of n = 1. For the universality class fixed by the CFT, the von
Neumann and Rényi entropies at the critical point indicate the
same central charge c in the leading-order FSS behavior. For
PBC, the asymptotic scaling behavior of Sn [76] for half-chain
bipartition is written as

Sn = c

6

(
1 + 1

n

)
ln L + c′

n, (13)

where c′
n is a nonuniversal constant.

The second Rényi entropy S2 can be reliably measured in
QMC calculations by using the replica trick [77], which has
been successfully applied to the VMC calculations with the
RBM wave function [15]. We consider only S2, but a method
was proposed to compute Sn of the higher n and to approxi-
mate S1 in a different NQS representation [78]. Measuring S2

requires two copies of the RBM state, namely s(1) and s(2),
sampled from the joint probability distribution P(s(1), s(2) ) ∝
|	(s(1) )|2|	(s(2) )|2. Each copy can be rewritten in a bipartite
basis of s ≡ (sA, sB), where sA and sB are associated with the
subsystems A and B. Then, one can obtain e−S2 by measuring
the swapping operator on A as

e−S2 =
〈

	
(
s(2)

A , s(1)
B

)
	

(
s(1)

A , s(1)
B

) 	
(
s(1)

A , s(2)
B

)
	

(
s(2)

A , s(2)
B

)
〉

mc

. (14)

Figure 4(a) shows the measurements of S2 for different L’s
at the critical point. While the expected asymptotic behavior
of S2(L) = c

4 ln L + c′
2 is apparent, a finite-size correction that

decays with increasing L may exist. To estimate c from the S2

data of finite L’s, we define the effective central charge as

ceff (L) = 4

ln 2
[S2(L) − S2(L/2)], (15)

where the central charge can be estimated by the extrapolation
of ceff (L) to L = ∞ along a model curve of the finite-size
behavior. According to the previous FSS analysis at a second-
order phase transition [79], the finite-size correction of S2

would be proportional to L−ν under PBC. Since Eq. (15)
inherits the correction of S2, we fit the data to the line of
ceff (L) = c∞ + aL−ν as shown in Fig. 4(b), where the fitting
parameter c∞ is our estimate of the central charge.

In Fig. 4(c), the estimate of c∞ for αLR � 1 indicate a
deviation from c = 1/2 of the 2D Ising CFT. While such a
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FIG. 4. Estimate of the central charge. (a) The second Rényi
entropy S2 of a half-chain is plotted at the critical point θc as a
function of system size L. (b) The effective central charge ceff (empty
symbols) is plotted as a function of 1/L. Solid symbols and their error
bars indicate our estimate of the central charge c∞ and its standard
error obtained from the linear fit (dotted lines) of the ceff data. In (c),
c∞ is plotted as a function of αLR.

deviation in the central charge was also previously observed
for a similar range of αLR [56,57], it is worth noting that
the direction of a deviation appears to vary depending on
the types of entanglement entropy or boundary conditions.
In the present work based on S2 under PBC, we observe
the decrease of c∞ that goes below 1/2 for a small αLR. In
contrast, the use of S1 under OBC in the previous studies
showed a large increase in central charge as αLR decreases
below 1.

So far, we have verified the previous TDVP and DMRG re-
sults on the critical exponents and the central charge [56–59].
However, questions remain about the Ising criticality and the
conformal invariance. As discussed through the hyperscaling
relations, we still need to go beyond the estimate of the critical
exponents to see whether the 2D Ising universality class gen-
uinely holds for any finite αLR or if there is a criterion for how
large αLR should be to retain the criticality of the SR limit.
On the other hand, the deviation of the central charge does
not provide a sufficient condition to identify the breakdown of
conformal invariance [66]. In the following sections, we thus
provide additional stringent tests of the criticality change and
the conformal invariance breakdown.

D. Critical Binder ratio

For an alternative test for the Ising criticality, we con-
sider the Binder ratio, Q ≡ 〈M2

s 〉2
mc/〈M4

s 〉mc, of the second and
fourth moments of the staggered magnetization. The Binder
ratio at a critical point exhibits a particular value contributing
to the universality of the critical behavior, while the value
depends on the boundary conditions and the aspect ratio of
the system (see, for instance, Refs. [80,81] and references

FIG. 5. Test of the critical Binder ratio. The self-combined ratio
S∗

SR and the Binder ratio Q∗ at the critical point are plotted as a
function of αLR. The data points are extrapolated to infinite size. The
horizontal solid lines indicate the SR limit.

therein). The critical Binder ratio has been used as a reliable
ingredient to identify the universality class in the classical
long-range Ising model [42], which inspires us to perform
the same test of how the Binder ratio depends on αLR for the
critical RBM wave function in the AF-LR-TFIC.

In the SR limit, at the exact critical point θc = π/4, we
obtain the value of Q∗

SR = 0.689(4) from the power-law ex-
trapolation of Q(L) to infinite L. This particular value of the
ratio has not previously been known for the AF-TFIC, but it
turns out that the corresponding value of the cumulant U ∗

4 =
0.516(3) is in good agreement with the previous MC estimate
of U ∗

4 = 0.514(1) reported in the classical 2D Ising model
subject to the mixed boundary conditions where the system
is periodic in one direction and open in the other direction
[82]. The implicit connection between the mixed boundary
conditions and the cylindrical geometry of our periodic chain
under the imaginary-time evolution at zero temperature may
expect the universal value of the Binder ratio in the SR limit.

For a finite αLR, we consider the indicator called the self-
combined Binder ratio proposed in Ref. [42],

SSR(L) = 1

Q∗
SR

Q(L) + 1

Q(L)
Q∗

SR − 2, (16)

which removes the leading-order finite-size correction in Q(L)
and thus exhibits better convergence with increasing L if
an accurate value of Q∗

SR is provided. Figure 5 displays the
value of S∗

SR ≡ limL→∞ SLR(L) obtained from the power-law
extrapolation to infinite L. It turns out that while S∗

SR is al-
most zero for αLR = 3 and 2.5, the deviation of S∗

SR appears
for αLR � 2 and increases as αLR decreases. The estimate of
Q∗ ≡ limL→∞ Q(L) shows a similar increase from the value
of the SR limit as αLR decreases, although it still indicates a
slight deviation even for αLR = 2.5 and 3 where S∗

SR � 0. This
is consistent with the observation in Ref. [42], verifying that
SLR(L) converges better at a finite L. Our data suggest that
the threshold for the SR Ising criticality is possibly around
αLR = 2 above which S∗

SR is zero within the error bars.

064123-6



NEURAL-NETWORK QUANTUM-STATE STUDY OF THE … PHYSICAL REVIEW E 109, 064123 (2024)

FIG. 6. FSS analysis of the spin-spin correlation function. The data collapse of L2�σ |Cxx (r)| is examined as a function of the scaled chord
length �/L ≡ sin(πr/L) with the measured exponent η = 2�σ . The solid line indicates the CFT-predicted form of a(�/L)−2�σ given for
comparison with the scaled curve of the measured correlation function.

E. CFT test of the correlation function

We detect the breakdown of conformal invariance by
identifying a mismatch between the measured correlation
function and the CFT description, following the strategy of
Ref. [66]. The CFT in a cylindrical space-time geometry
restricts the scaling and functional form of the correlation
functions [83,84]. In the presence of conformal invariance at
a critical point, the spin-spin correlation function in Eq. (11)
must behave asymptotically as

Cxx(r) ∝ �−2�σ =
[
L sin

(
π

r

L

)]−2�σ

, (17)

where the scaling variable � ≡ L sin(πr/L) is the chord
length, and the scaling dimension �σ corresponds to a half
of the decay exponent η. The test of Eq. (17) requires the
estimate of the exponent η = 2�σ , which we have already
measured in the FSS analysis of Cxx(L/4) ∝ L−η along r =
L/4 for different L’s in Sec. III B. Using the estimate of η

obtained for each αLR, we present how the measured Cxx

deviates from the CFT form of Eq. (17) as αLR changes.
Figure 6 shows a good FSS collapse of the data points of

L2�σ |Cxx(r)| on a common scaling curve with the measured
value of η = 2�σ , which is plotted as a function of �/L.
This allows us to make a graphical comparison with the CFT
curve of L2�σ |Cxx(r)| ∝ (�/L)−2�σ . We find that the deviation
between the data and the CFT curve becomes pronounced for
αLR < 2, indicating the breakdown of conformal invariance.
This observation also implies that the central charge is indeed
unreliable in detecting the breakdown of conformal invariance
because the deviation from the CFT curve already occurs in
the range of αLR > 1 where the central charge is found to be
very close to 1/2.

A more quantitative CFT indicator can be provided by the
scaled correlation function [66], which is the ratio between the
measured correlation function and the CFT prediction,

Csc(�/L) =
[
L sin

(
π

r

L

)]2�σ |Cxx(r)|. (18)

In Fig. 7, we specify the measured value of η = 2�σ for
each αLR examined. The appearance of a nonzero slope tail in
the scaled correlation function Csc signals the breakdown of
conformal invariance. Our data shows that Csc(�/L) exhibits

a tail that is almost linear in �/L, which allows us to measure
the slope from a straight-line fit of the tail part.

Figure 7 shows a notable increase in slope as αLR decreases
below 2, which justifies the graphical deviation of the data
from the CFT curve in Fig. 6. However, for 2 � αLR � 3,
where the data and the CFT curve appear to match in Fig. 6,
it turns out that the slope decreases with increasing αLR but
remains finite in the range of αLR examined. This can be
compared with the benchmark case of the SR limit, where
the slope is near zero within the error bar. Although it is
challenging to locate the threshold of the precise zero slope
within the limited accuracy of our calculations, the nonvanish-
ing slope raises the possibility that the breakdown threshold
in the AF-LR-TFIC may differ from the threshold in the
Kitaev chain, where the conformal symmetry was argued to be
broken at αLR = 2 in the approximate renormalization group
approach [65].

Accurate correlation function calculations on the power-
law decaying tail are crucial to determine the threshold.
However, apart from the common finite-size issues, our RBM
wave function has its limitations in accuracy. The bench-
mark in the SR limit indicates the measured exponent η =
0.2518(6) that is slightly deviated from the exact value 1/4,
implying a bias in the optimized wave function. Although in-
creasing the number of filters nh can enhance the expressivity
and hence the accuracy of the RBM ansatz, our implementa-
tion is practically limited to nh = 16 due to the computational
time costs for the FSS analysis. Moreover, because of the
same time costs, only a few samples of the optimized RBM
wave function are generated to measure fluctuations across
independent VMC optimizations. These sample-to-sample
fluctuations tend to increase with the system size and cause
a significant uncertainty in the scaled correlation function for
L = 128, as shown in Fig. 7(b). These practical limitations
pose numerical challenges for our VMC+RBM simulations to
find the precise breakdown threshold of conformal invariance.

IV. SUMMARY AND CONCLUSIONS

We have investigated criticality and conformal invariance
at a quantum phase transition in the AF-LR-TFIC using the
VMC calculations with the RBM trial wave function ansatz.
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FIG. 7. The CFT test of the scaled correlation function. Equa-
tion (18) is examined using ten RBM wave function samples
obtained from independent VMC optimizations at a critical point.
(a) The slope of Csc(�/L) is measured from the straight-line fit to the
data of L = 128 for �/L > 0.6. (b) The symbols indicate the data of
L = 64 where the sample-to-sample fluctuations are smaller than the
symbol size. The solid line is the average over the RBM samples
for L = 128. The shade fills the area between the minimum and
maximum magnitudes of the data in the RBM samples for L = 128.

Our main findings are from the tests of the universal Binder
ratio [42] and the CFT description of the spin-spin correlation

function [66]. The critical Binder ratio exhibits an increasing
deviation from the universal ratio of the SR limit when αLR

decreases below 2, implying that the criticality for αLR < 2
is different from the 2D Ising class. On the other hand, in
the test of the correlation function, we found evidence of the
conformal invariance breakdown from the deviation between
the form of the correlation function and the CFT description.
The deviation from the CFT description becomes more pro-
nounced as αLR decreases, although the precise threshold of
the breakdown is yet to be determined.

These findings present progress in characterizing the phase
transition in the AF-LR-TFIC beyond the observations of the
critical exponents and the central charge. In the FSS analysis
to extract the critical exponents, we observed that the expo-
nents ν, β, and γ are very close to the SR Ising exponents
for the examined range of 0.5 � αLR � 3. In contrast, the
decay exponent η of the correlation function and the cen-
tral charge extracted from the second Rényi entropy differ
from the SR Ising values when αLR becomes small enough.
Although these observations are consistent with the previous
TDVP and DMRG calculations [56–59], the central charge is
insufficient to diagnose the conformal invariance breakdown
[66], and the critical exponent estimates in the present accu-
racy are inconclusive on the change of the criticality.

Our VMC+RBM calculations have demonstrated the
practical applicability of the NQS framework for studying
quantum phase transitions. However, there are also unsolved
issues in our calculations that need further numerical advance-
ment. Finding the precise breakdown threshold of conformal
invariance needs high-precision calculations of the correlation
function or more sensitive indicators of conformal symmetry,
such as Klein bottle entropy [85]. In addition, the apparent
mismatches between the correlation function exponent and the
other critical exponents need careful investigation to examine
their hyperscaling relations with higher numerical accuracy.
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