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We elucidate the universal spatiotemporal scaling properties of the time-dependent correlation functions in a
class of two-component one-dimensional (1D) driven diffusive system that consists of two coupled asymmetric
exclusion processes. By using a perturbative renormalization group framework, we show that the relevant scaling
exponents have values same as those for the 1D Kardar-Parisi-Zhang (KPZ) equation. We connect these universal
scaling exponents with the symmetries of the model equations. We thus establish that these models belong to the
1D KPZ universality class.
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I. INTRODUCTION

Driven diffusive models are paradigmatic nonequilibrium
models that display nonequilibrium universal scaling behav-
ior different from any known dynamical scaling universality
in equilibrium systems. One of the most well-known ex-
amples is the one-dimensional (1D) driven diffusive model
[1] that displays the Kardar-Parisi-Zhang (KPZ) universality
class [2]. Subsequently, this has been generalized to a va-
riety of multicomponent driven diffusive models that yield
a widely varying scaling behavior, ranging from continu-
ously varying universality [3,4], Kolmogorov scaling [5],
and weak dynamic scaling [6] to strong dynamic scaling
belonging to the KPZ universality class. In a recent study
on the dynamical response to small distortions of a 1D lat-
tice drifting through a dissipative medium about its uniform
state, we show that the fluctuations, both transverse and
longitudinal to the direction of the drift, exhibit strong dy-
namic scaling and belong to the KPZ universality class [7].
In spite of this large body of studies, the general question
of universality in 1D multivariable driven diffusive systems
remains open.

A particularly interesting class of models includes mul-
tispecies driven diffusive models that admit more than one
conservation law. While there have been several studies in
this context, a general consensus on the question of univer-
sality is still lacking. For instance, Ferrari et al. [8] studied a
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two-species exclusion process by using a mode-coupling the-
ory and Monte Carlo simulations and found two KPZ modes.
For a similar model, exact finite-size scaling analysis of the
spectrum indicates a dynamical exponent z = 3/2 [9], which
is consistent with the 1D KPZ universality class. In earlier
works on other lattice gas models with two conservation laws,
the presence of a KPZ mode and a diffusive mode was claimed
[6,10], indicating weak dynamic scaling. In Ref. [6], this
occurrence of weak dynamic scaling is shown to be connected
to special symmetries for carefully chosen parameters and
the associated kinematic waves; else only KPZ universality
is observed. This opens a question on how robust or gen-
eral is the KPZ universality in 1D driven diffusive systems.
Furthermore, this opens up to a broader generic issue of the
robustness of a universality class against nonexistence of a
nonlinear coefficient—when vanishing of a particular nonlin-
ear coefficient can affect the universality class obtained with a
nonzero value of it and when cannot and how this is connected
to the symmetry of the model. A classic example is the φ4

Landau-Ginzburg theory with a uφ4, u > 0, anharmonic term
that describes the Ising model near its second-order transition
[11]. However, if u = 0 identically, then the model becomes
the Gaussian model, having critical exponents entirely dif-
ferent from the Ising model in the paramagnetic phase near
the critical point, and in fact shows no phase transition [11].
This opens the question whether a reverse scenario, where
vanishing of a relevant (in the renormalization group or RG
sense) nonlinear coefficient in a dynamical model can leave
the universal scaling and the universality class unchanged.
In the absence of any general framework to study this in
nonequilibrium systems, it is useful to construct simple mod-
els and perform explicit calculations to investigate this issue.
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There have already been some studies in this context by
using various versions of driven diffusive generalized Burgers
models. For instance, Ref. [12] proposed and studied a two-
species driven diffusive model and found a KPZ mode and
a non-KPZ mode with dynamic exponent z = 5/3 within a
mode-coupling theory and dynamic Monte Carlo simulations.
Subsequently, Ref. [13] studied generalized coupled Burgers
model and found the existence of a mode with z = 5/3 in
certain limits when some nonlinear coupling constants vanish
by using mode-coupling methods; see also Ref. [14] in this
context. More recently, Ref. [15] revisited this generic class
of coupled models and obtained within the framework of
mode-coupling theories one mode with z = 5/3 in similar
limits as the other previous related studies. Very recently,
Schmidt et al. [16] in a 1D three species model found
two KPZ modes with z = 3/2 and a third mode with z =
5/3 by employing mode-coupling methods and dynamical
Monte Carlo simulations. The question that naturally arises
is how or whether we can reconcile these results with the
symmetries of the models and renormalization group (RG)
perspectives.

In this work, we revisit this issue. We analyze a series
of related two-species driven diffusive models [8,12,13,16]
and investigate the universal scaling properties of these
models and their symmetries. We analyze the model in
Ref. [12] using perturbative dynamic RG methods which is
well suited to extract universal scaling properties of dynam-
ical models. We also extend this analysis to the models in
Refs. [8,13,16].

Our RG treatment emphatically shows that, contrary to
recent claims [12], there are only two KPZ-like modes ad-
mitted by the model discussed in Ref. [12], implying 1D KPZ
universal behavior.

The rest of the article is organized as follows. In Sec. II,
we describe the model. In Sec. III, we briefly discuss the KPZ
equation and its universal properties in 1D. In Sec. IV, we
set up the continuum equations that we study. We analyze the
scaling properties of one particular case of the two-species
model in Sec. V. In Sec. V A, we present the RG analysis of
the model. In Sec. VI, we summarize. Some of the techni-
cal details are made available in Appendix for the interested
reader.

II. MULTISPECIES MODELS

We use the model studied in Ref. [12], which is a stochastic
lattice gas model of two 1D lattices or “lanes” with periodic
boundary conditions, where particles can hop randomly on
two lanes. Each lane has N sites. The model is defined as fol-
lows. Particles move unidirectionally but without exchanging
the lane. Periodic boundary conditions are imposed on each
lane. Particles can hop from site k to k + 1 if site k + 1 is
empty. Furthermore, n(i)

k is the particle occupation number on
site k in lane i and the particle hopping rate ri in lane i from
site k to k + 1 depends on the occupation numbers on sites k
and k + 1 in the adjacent lane. The hopping rates in the two
lanes are given by

r1 = 1 + γ n(2)/2, r2 = b̃ + γ n(1)/2, (1)

where the coupling parameter γ � −min(1, b̃) and ni = ni
k +

ni
k+1 [12]. This model reduces to the two lane model in

Ref. [17] for b̃ = 1. Total number of particles Mi in each lane
is conserved. Thus, there are two conservation laws in this
model.

III. KARDAR-PARISI-ZHANG EQUATION

We briefly revisit the KPZ equation [2] before embark-
ing on our calculations. Consider a 1D model with periodic
boundary condition having one type of particles only that
execute asymmetric exclusion processes. In a coarse-grained
description, the local density ρ(x, t ) is known to follow the
Burgers equation [18], which in turn can be mapped onto the
KPZ equation for a single-valued height field h(x, t ),

∂h

∂t
− λ

2
(∂xh)2 = ν

∂2h

∂x2
+ η, (2)

where ρ(x, t ) = −∂xh(x, t ) and η(x, t ) is a zero-mean,
Gaussian-distributed white noise. The correlator of h shows
universal spatiotemporal scaling in the long-wavelength limit
that are independent of the model parameters [19]. In particu-
lar, in the Fourier space, correlator

Ch(k, ω) ∼ 〈|h(k, ω)|2〉 ∼ q−1−2χh fh(kz/ω). (3)

Here k and ω, respectively, are Fourier wave vector and
frequency; χh, the roughness exponent and z, the dynamic
exponent, are the universal scaling exponents, which char-
acterize the universal scaling of Ch(k, ω); and fh is a
dimensionless scaling function. For 1D KPZ, these exponents
are known exactly: χh = 1/2 and z = 3/2 [19,20].

Consider now a hypothetical dynamical equation,

∂h

∂t
− λ4

2
(∂xh)4 = ν

∂2h

∂x2
+ η, (4)

where λ4 is a coupling constant. Equation (4) has the same
symmetry as (2). However, simple (but actually incorrect)
power counting leads to the apparent conclusion that λ4 is
irrelevant in the RG sense, which then should give the linear
theory scaling to be the asymptotic long-wavelength limit
scaling in this model. However, this conclusion is wrong.
One could write (∂xh)4 = 〈(∂xh)2〉(∂xh)2 to the leading or-
der in fluctuations. Evidently, this generates a (∂xh)2-term
in Eq. (4), ultimately making it statistically identical to
Eq. (2) in the long-wavelength limit. That a (∂xh)2 is gen-
erated by fluctuations is not surprising, as (2) and (4) are
both nonlinear and belong to the same symmetry. Thus the
lesson we can draw from this example is that the mere
presence or absence of a particular relevant nonlinear term
cannot be directly used to infer the universal properties;
one needs to take the symmetries into account and start
by using the most general equation containing all possi-
ble symmetry-permitted relevant nonlinear terms; see, e.g.,
Ref. [21].

IV. CONTINUUM EQUATIONS OF MOTION
FOR THE TWO-SPECIES MODEL

In order to extract the universal scaling behavior of the
two-species model, we take the continuum hydrodynamic
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approach that is particularly suitable to extract long-
wavelength universal scaling properties [11,21]. In this
approach, the equations of motion for the “hydrodynamic
variables,” which have diverging relaxation times in the van-
ishing wave-vector limits, are constructed in expansions in the
fields and gradients about uniform steady states, retaining all
possible symmetry-permitted lowest-order nonlinear terms. In
the present study, the two conserved densities in the two lanes
are the only hydrodynamic variables. We first consider the
continuum coarse-grained equations of motion for the two
densities in the two-species model. We begin by noting that
the stationary currents in two lanes are (see Ref. [12] for
details)

j1(ρ1, ρ2) = ρ1(1 − ρ1)(1 + γ ρ2), (5)

j2(ρ1, ρ2) = ρ2(1 − ρ2)(b + γ ρ1), (6)

where ρi = Mi/N , i = 1, 2 are the particle densities in each
lane [12]. Here Mi is the number of particles on ith lane
and N is the number of lattice sites in each lane. The
coarse-grained local density ρi(x, t ) for component i obey
the continuity equation which can be written in a compact
form as

∂

∂t
ρi + Ai j

∂

∂x
ρ j = 0, (7)

where A is the Jacobian matrix with matrix elements Ai j =
∂ ji/∂ρ j . Local densities can be expanded around its stationary
values: ρi(x, t ) = ρi + ui(x, t ). The normal modes are φi =
Ri ju j where RAR−1 = diag(vi ) with vi’s being the eigenval-
ues of A to the lowest order in spatial gradients; these vi’s
are the characteristic velocities with which local perturbations
move. The transformation matrix R satisfies the normaliza-
tion condition RCRT = 1, where C is a symmetric matrix;
see Ref. [12] for a formal definition. Keeping the lowest-
order nonlinearities, the equations of motion of the normal
modes are

∂tφi = −∂x[viφi + (1/2)〈 �φ, G(i) �φ〉 − ∂x(D �φ)i + (B�η)i] (8)

with i = 1, 2. Here D and B are the transformed diffusion
matrix and transformed noise strength matrix, respectively,
and �η is the noise vector. The mode-coupling matrices, G(i) =
(1/2)

∑
j Ri j (R−1)T H ( j)R−1, depend on the Hessian matrix

with elements H (i) = ∂2 ji/(∂ρ j∂ρk ). The coupling matrices
G(i) are

G(i) =
[

G(i)
11 G(i)

12

G(i)
21 G(i)

22

]
.

In the equations of motion for φ1 and φ2 nonlinearities
appear as an inner product 〈 �φ, G(i) �φ〉 which can be expanded
as

〈 �φ, G(i) �φ〉 = [
φ1 φ2

][G(i)
11 G(i)

12

G(i)
21 G(i)

22

][
φ1

φ2

]

= G(i)
11φ

2
1 + G(i)

12φ1φ2 + G(i)
21φ1φ2 + G(i)

22φ
2
2 .

We consider the normal modes for constant particle densi-
ties ρ1 = ρ2 = ρ in each lane and coupling parameter γ = 1.
The equations of motion for φ1 and φ2 are

∂tφ1 = − ∂x(v1φ1) − 1

2
∂x

{
G(1)

11 φ2
1 + [

G(1)
12 + G(1)

21

]
φ1φ2

+ G(1)
22 φ2

2

} + D1∂
2
x φ1 − ∂x(B1η1), (9)

∂tφ2 = − ∂x(v2φ2) − 1

2
∂x

{
G(2)

11 φ2
1 + [

G(2)
12 + G(2)

21

]
φ1φ2

+ G(2)
22 φ2

2

} + D2∂
2
x φ2 − ∂x(B2η2). (10)

We retain only the diagonal terms from the diffusion matrix
since the pure diffusive terms make more dominant contri-
butions than the cross-diffusive terms to the eigenvalues (see
Appendix for the details).

The above equations are decoupled at the linear level. We
consider the case for which b̃ = 2. In this case, the character-
istic velocities are v1 = 1 − ρ − 3ρ2 and v2 = 2 − 3ρ − ρ2.
For b̃ = 2, γ = 1, and ρ1 = ρ2 = ρ we can calculate the G
matrix using its definition above. The matrix elements of
the coupling matrices are G(1)

11 = −2g0(6ρ4 − 8ρ3 + 5ρ2 +
ρ − 1), G(1)

12 = G(1)
21 = g0(4ρ3 − 10ρ2 + 8ρ − 1), G(1)

22 =
−2g0ρ(1 − ρ)(2ρ2 − 6ρ + 3) and G(2)

11 = 4g0ρ(1 − ρ),
G(2)

12 = G(2)
21 = −g0(1 − 2ρ2)2, G(2)

22 = 4g0[1 − 3ρ(1 − ρ)]
with g0 = − 1

2 {ρ(1 − ρ)/[1 − 2ρ(1 − ρ)]3}1/2 [12]. We study
three possible cases depending on the mode-coupling matrix.

A. Case A

We note that if G(1)
11 and G(2)

22 are nonzero, then the equa-
tions for φ1 and φ2 are same as Eqs. (9) and (10). Now
we make a change of variable φ1 = −∂xh1, φ2 = −∂xh2 and
rewrite the above equations which will be of the form

∂h1

∂t
= − v1

∂h1

∂x
+ G(1)

11

2

(
∂h1

∂x

)2

+
[
G(1)

12 + G(1)
21

]
2

∂h1

∂x

∂h2

∂x

+ G(1)
22

2

(
∂h2

∂x

)2

+ D1
∂2h1

∂x2
+ B1η1, (11)

∂h2

∂t
= − v2

∂h2

∂x
+ G(2)

11

2

(
∂h1

∂x

)2

+
[
G(2)

12 + G(2)
21

]
2

∂h1

∂x

∂h2

∂x

+ G(2)
22

2

(
∂h2

∂x

)2

+ D2
∂2h2

∂x2
+ B2η2. (12)

Both of these equations contain nonlinear terms identical to
those that appear in the 1D KPZ equation, in addition to other
potentially relevant nonlinear terms. Equations (11) and (12)
have no particular symmetry. These equations were shown
to exhibit KPZ dynamics in the long-wavelength limit [7].
Thus the dynamic exponents z1 = z2 = 3/2, corresponding
to strong dynamic scaling, together with the corresponding
roughness exponent χ1 = χ2 = 1/2, the same as for the 1D
KPZ equation. We note that both Eqs. (11) and (12) are
invariant only under arbitrary constant shifts of h1 and h2,
in addition to spatial translation and rotation; however, these
equations have no invariance under inversions of space and/or
the fields, i.e., no invariance under x → −x together or sepa-
rately with h1 → −h1, h2 → −h2.
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B. Case B

If G(1)
11 = G(1)

22 = 0 but G(2)
22 �= 0, then with the same change

of variables, these equations can be written as

∂t h1 = − v1∂xh1 +
[
G(1)

12 + G(1)
21

]
2

(∂xh1)(∂xh2)

+ D1∂
2
x h1 + B1η1, (13)

∂t h2 = − v2∂xh2 + G(2)
11

2
(∂xh1)2 + G(2)

22

2
(∂xh2)2

+
[
G(2)

12 + G(2)
21

]
2

(∂xh1)(∂xh2) + D2∂
2
x h2 + B2η2.

(14)

Thus Eq. (13) for h1 does not contain any KPZ-like nonlin-
earity, but the corresponding Eq. (14) still has a KPZ-like
nonlinearity. The overall symmetry of Eqs. (13) and (14) are
same as (11) and (12) above. On symmetry ground, therefore,
Eqs. (13) and (14) should belong to the same universality class
as (11) and (12), which obviously has a larger set of model
parameters. This expectation can be justified as follows.

We begin by noting that Eqs. (13) and (14) have the same
symmetry as the general equations (11) and (12), which means
no symmetry at all, except for the invariance under constant
shifts of h1 and h2. The equivalence between these two sets of
equations may be established by using the general arguments
given below. We note that Eqs. (13) and (14) are obtained by
expanding around the uniform states. This is justified so long
as all the coefficients of the leading-order terms are nonzero,
as in that case all higher-order nonlinear terms (i.e., nonlinear
terms with more fields or more gradients) are irrelevant in the
scaling or RG sense. If some of the coefficients of the leading-
order nonlinear terms vanish, then further careful analysis is
required. Before we do that, we consider a simpler but well-
known example. Consider the Landau-Ginzburg free energy
for the Ising model near its critical point. It is is given by [11]

FIsing =
∫

dd x

[
1

2
rφ2 + 1

2
(∇φ)2 + uφ4 + vφ6

]
. (15)

Here r = a(T − Tc), where Tc is the mean-field critical tem-
perature. With u > 0, the vφ6 term is irrelevant in the scaling
or RG sense near the critical point. However, i f we start
with a bare scalar field free energy having u = 0 but v > 0,
then should this Ising model have a critical scaling behavior
different from the conventional Ising universality class with
u > 0? While naively one is tempted to conclude that, with
u = 0, the Ising spins should display universal scaling differ-
ent from the standard Ising universality class, it is generally
not true. It can be seen from the fact that we can write φ6 by
decomposing it as 〈φ2〉φ4 (here 〈. . . 〉 refers to an underlying
equilibrium distribution), giving rise to an effective φ4 term
in FIsing. While this seems contradictory to the expectation
that the φ6 term is irrelevant (in the scaling or RG sense)
near dimension d = 4 for the Ising model, it is actually not
contradictory. The coefficient of the fluctuation-generated φ4

term ∼ 〈φ2〉 is finite near d = 4 and hence would have no
effect on the scaling i f a uφ4, u > 0 term had been present.
In the absence of a φ4 term, i.e., with u = 0, such a “finite”
correction is actually “infinitely” larger than a correspond-

ing bare coefficient u, as the latter vanishes. Hence, such a
fluctuation-generated φ4 term cannot be discarded and instead
should be retained. This ultimately yields the standard Ising
universality class for the second-order transition. This is not
unexpected, since both φ4 and φ6 belong to the same symme-
try, and even if the φ4 term is absent microscopically, it gets
generated by the fluctuations from the φ6 term. Indeed, there
is no symmetry ground to exclude the φ4 term, as its absence is
not symmetry protected [22]. Now coming back to our model,
the absence of the term (∂h2/∂x)2 term is also not symmetry
protected. Note that expanding around uniform steady states,
one would naturally generate all possible symmetry-permitted
nonlinear terms, including nonlinear terms which are higher
than those kept in (11) and (12) on the ground that they are
irrelevant in the scaling or RG sense. However when some
of the leading-order nonlinear terms are absent (which is not
symmetry protected), then further careful attention is neces-
sary. Just as in our Ising model example discussed above, a
lower-order relevant nonlinear term can be generated from
a higher-order one in the present model. Such a fluctuation-
generated lower-order nonlinear term would be irrelevant if
the theory originally included this lower-order nonlinear term.
However, if a particular lower-order relevant nonlinear terms
is not included, i.e., the corresponding nonlinear coupling
constant vanishes, then a corresponding fluctuation-generated
contribution from the higher-order nonlinear terms must be in-
cluded for the same reasons as in our dicsussions on the Ising
model with u = 0. With this conceptual discussion in mind,
we note that a possible such symmetry-permitted higher-order
nonlinear term is ( ∂h1

∂x )2( ∂h2
∂x )2 in the present model. We then

replace ( ∂h1
∂x )2 or ( ∂h2

∂x )2 by their averages (over the steady
states), thereby producing quadratic nonlinearities ( ∂h1

∂x )2 or
( ∂h2

∂x )2 in the respective equations of motion. Notice that if
the corresponding lower-order nonlinear terms were already
present, then such fluctuation-corrected contributions make no
difference to the scaling. Presenting the above argument in a
different but equivalent way, we can phenomenologically as-
sume v2 is not just a constant but depends on ∂h2/∂x via v2 ∼
v0

2 + v1
2∂h2/∂x, a possibility not ruled out by any symmetry

considerations. This produces a (∂h2/∂x)2 term. We can also

assume U ≡ (G(2)
12 +G(2)

21 )
2 to depend on ∂h1

∂x
∂h2
∂x , which produces

a ( ∂h1
∂x )2( ∂h2

∂x )2 term. As mentioned above, replacing ( ∂h1
∂x )2

or ( ∂h2
∂x )2 by their averages (over the steady states) produces

quadratic nonlinearities ( ∂h1
∂x )2 or ( ∂h2

∂x )2 in the respective equa-
tions of motion. The resulting effective equations of motion
are then identical in forms with the general equations (11) and
(12). We then conclude that Eqs. (13) and (14) belong to the
1D KPZ universality class, similarly to Eqs. (11) and (12).

Consider now a related case, if G(1)
11 �= 0, G(2)

22 = 0 and
G(2)

11 = 0, G(1)
22 = 0. The resulting dynamical equations are of

the form

∂h1

∂t
= − v1

∂h1

∂x
+ G(1)

11

2

(
∂h1

∂x

)2

+
[
G(1)

12 + G(1)
21

]
2

∂h1

∂x

∂h2

∂x

+ D1
∂2h1

∂x2
+ B1η1, (16)

∂h2

∂t
= − v2

∂h2

∂x
+

[
G(2)

12 + G(2)
21

]
2

∂h1

∂x

∂h2

∂x
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+ D2
∂2h2

∂x2
+ B2η2. (17)

Since Eqs. (16) and (17) have the same symmetry as the
general equations (11) and (12), a similar argument can be
used to generate any missing terms in (16) and (17) relative
to the general equations (11) and (12). These suggest that
Eqs. (16) and (17) should belong to the same universality class
as (11) and (12), a statement which can be justified by setting
arguments similar to the previous example.

There is yet another, more explicit way to demonstrate that
Eqs. (13) and (14) and also that Eqs. (16) and (17) belong to
the same universality class as (11) and (12). This is based on
a perturbative approach that we illustrate with a specific case
below.

A special case of (13) and (14) is when the cross-nonlinear
term in (14) vanishes, i.e., G(2)

12 + G(2)
21 vanishes. In this case,

Eqs. (13) and (14) are jointly invariant under x → x, h1 →
−h1, h2 → h2, as has been discussed in Das et al. [6] in detail.
For this case, both dynamic RG and one-loop self-consistent
(OLSC) schemes predict z1 = 2 and z2 = 3/2, implying weak
dynamic scaling [6].

C. Case C

If G(1)
11 = 0 but G(1)

22 �= 0 and G(2)
22 �= 0, then Eq. (9) for φ1

does not contain ∂xφ
2
1 term, but it contains the ∂xφ

2
2 term. We

rewrite the equations in terms of h1 and h2 (as defined above)
as

∂t h1 + v1∂xh1 + b1(∂xh1)(∂xh2) + c1(∂xh2)2

= D1∂
2
x h1 + B1η1, (18)

∂t h2 + v2∂xh2 + a2(∂xh1)2 + b2(∂xh1)(∂xh2) + c2(∂xh2)2

= D2∂
2
x h2 + B2η2, (19)

where b1 = −G(1)
12 , c1 = −G(1)

22
2 , a2 = −G(2)

11
2 , b2 = −G(2)

12 , and

c2 = −G(2)
22
2 . Notice that Eqs. (18) and (19) have no symmetry

except being invariant under constant shifts of h1 and h2

and have two conservation laws for the densities φ1 and φ2,
which are exactly same as Eqs. (11) and (12). Principles of
hydrodynamics, which basically says that “anything” (i.e., any
nonlinear term) that is symmetry allowed will be generated,
then tells us that the pair of Eqs. (18) and (19) should belong
to the same universality class as (11) and (12), which is the
1D KPZ universality class for both h1 and h2. Unexpectedly,
in an OLSC study, φ1 is predicted to exhibit superdiffusive
mode with dynamic exponent z1 = 5/3 and φ2 shows KPZ
dynamics with dynamic exponent z2 = 3/2 [12]; see also
Refs. [13–15] for related studies. Clearly, Ref. [12] contradicts
the general principles of hydrodynamics, which necessitates
further detailed studies. Should Eqs. (18) and (19) belong to
the same 1D KPZ universality class, or not, is the question
that we seek to answer below.

As in case B, we can phenomenologically argue that
Eqs. (18) and (19) should belong to the 1D KPZ universality
class. To do this, we consider the possibility that in general the
coefficient b1, instead of being a constant, can be a function
of (∂xh1)(∂xh2), giving a nonlinear term (∂xh1)2(∂xh2)2. Now
replacing (∂xh2)2 by 〈(∂xh2)2〉 produces a term of the form

(∂xh1)2. Once this term is included, (18) becomes identical
with (11) suggesting that Eqs. (18) and (19) should belong to
the same universality class as (11) and (12), which is the 1D
KPZ universality class. There are other similar phenomeno-
logical arguments that lead to the same conclusion of the 1D
KPZ universality class; see also below.

Alternatively, this can also be addressed by explicit use of
perturbative approaches, which we discuss below.

V. UNIVERSAL SCALING IN CASE C

We focus on the scaling behavior in case C and systemati-
cally study the equations of motion. First we consider its linear
limit, for which the correlation functions can be calculated
exactly. The linearized equations for the normal modes have
the generic forms

∂t h1 + v1∂xh1 = D1∂
2
x h1 + B1η1, (20)

∂t h2 + v2∂xh2 = D2∂
2
x h2 + B2η2. (21)

Both Eqs. (20) and (21) have underdamped kinematic waves.
Since these equations are mutually decoupled, these waves
can be removed in both Eqs. (20) and (21) by going to the re-
spective comoving frames. In the respective comoving frames,
the correlation functions of h1 and h2 in the Fourier space then
read

Ch1 (q, ω) = 〈|h1(q, ω)|2〉 ∼ q−1−2χ1 f1(qz1/ω), (22)

Ch2 (q, ω) = 〈|h2(q, ω)|2〉 ∼ q−1−2χ2 f2(qz2/ω), (23)

in any dimension d . Unsurprisingly, these yield χ1 = 1/2 =
χ2 as the two roughness exponents in 1D and z1 = 2 = z2 as
the two dynamic exponents in all d . We now set out to find
how the nonlinear terms modify these exactly known values
of the scaling exponents.

A. Nonlinear effects on scaling in case C

Nonlinear terms, if relevant (in a scaling sense), alter the
scaling exhibited by the linear theory. For instance, in 1D
KPZ equation, the dynamic exponent z = 2 in the linear the-
ory, whereas for the full nonlinear KPZ equation, z = 3/2.
Equations (24) and (25) contain nonlinear terms that have
structures similar to the nonlinear term in the KPZ equation. It
is, thus, reasonable to expect that these nonlinear terms should
change the scaling obtained in the linearized limit.

Before we embark on any detailed analysis, we notice
that due to the mutual couplings, there is no single frame
where the kinematic wave terms in both Eqs. (20) and (21)
can be removed. We further note that Eqs. (18) and (19) are
invariant separately under the shift h1 → h1 + const, h2 →
h2 + const.

Nonlinear terms preclude any exact analysis. Thus pertur-
bative approaches are adopted. Naive perturvative approaches
yield corrections to the model parameters that diverge in the
long-wavelength limit that can be successfully within the
framework of the dynamic RG method [23,24]. We restrict
here ourselves to low-order (one-loop) RG calculations. The
perturbative expansion in powers of the nonlinear coefficients
results in diverging corrections in the long-wavelength limit.
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FIG. 1. Symbols that are used in the RG calculations. Solid lines
correspond to h1 field and dashed lines correspond to h2 field.

These long-wavelength divergences can be systematically
treated by using a perturbative one-loop Wilson momentum
shell dynamic RG [19,25,26]. Dynamical fields h1,2(q, ω)
with higher wave vectors (�/b < q < �, b > 1) are inte-
grated out pertubatively up to the one-loop order, where �

is the upper wave-vector cutoff. Wave vectors are rescaled as
q′ = bq so that the upper wave-vector cutoff is restored to
�. We perform the following scale transformations: x → bx
(corresponding to q′ = bq), t → bzt , h1 → bχ1 h1, and h2 →
bχ2 h2.

In the comoving frame of h1, the dynamical equations (18)
and (19) take the form

∂t h1 + b1(∂xh1)(∂xh2) + c1(∂xh2)2 = D1∂
2
x h1 + B1η1 (24)

∂t h2 + v∂xh2 + a2(∂xh1)2 + b2(∂xh1)(∂xh2) + c2(∂xh2)2

= D2∂
2
x h2 + B2η2, (25)

where the relative wave speed v = v2 − v1. The noises η1 and
η2 are assumed to be zero-mean Gaussian distributed with
variances

〈η1(x, t )η1(x′, t ′)〉 = 2A1δ(x − x′)δ(t − t ′), (26)

〈η2(x, t )η2(x′, t ′)〉 = 2A2δ(x − x′)δ(t − t ′). (27)

We need to solve Eqs. (24) and (25) perturbatively and obtain
the fluctuation corrections to the model parameters. Symbols
that are used in dynamic RG calculations are shown in Fig. 1.

From the linear part of Eqs. (24) and (25) we calculate
G1

0(k, ω) and G2
0(k, ω), the bare propagators of h1(k, ω) and

h2(k, ω), respectively. Bare propagators are

G1
0(k, ω) = 1

D1k2 + iω
, (28)

G2
0(k, ω) = 1

D2k2 + i(ω − kv)
. (29)

Now notice that Eq. (24) for the dynamics of h1 does not
contain the KPZ-like nonlinear term (∂xh1)2, although it
is not prohibited by any symmetry arguments. In contrast,
Eq. (25) contains all possible symmetry permitted bilinear
nonlinearities of ∂xh1 and ∂xh2. Unsurprisingly, in an iterative,
bare perturbation theory such KPZ-like nonlinear terms are
indeed generated in Eq. (24). These terms are represented

FIG. 2. Generation of KPZ-like nonlinear terms with coefficient
a1 in Eq. (30) in the iterative expansions of Eq. (24). Terms (a)–
(c) originate from the vertex b1, and terms (d)–(g) are generated from
the vertex c1.

graphically in Fig. 2. Let a1 be the effective coefficient of
the term (∂xh1)2 that is generated in iterative expansions. We
are thus obliged to add this term to Eq. (24) for consistency
reasons before applications of RG methods:

∂t h1 + a1(∂xh1)2 + b1(∂xh1)(∂xh2) + c1(∂xh2)2

= D1∂
2
x h1 + B1η1. (30)

The form of a1 as obtained in the lowest-order iterative ex-
pansion is given in Appendix. That a term of the form (∂xh1)2

is generated under iterative expansion is not surprising. Equa-
tions (24) and (30) have the same symmetries; in other words
the absence of (∂xh1)2 in (24) is not symmetry protected, i.e.,
there is no symmetry that forbids the existence of this term in
(24). Since Eqs. (30) together with (25) and correspondingly
the pair Eqs. (24) and (25) have exactly the same symmetries,
they must belong to the same universality class. Furthermore,
from the explicit forms of the one-loop expressions as given
in Appendix, it is clear that these are inhomogeneous, which
means a1 = 0 is not a fixed point at all of this model. This
remains an important technical conclusion from the present
study.

The presence of the term (∂xh1)2 in Eq. (30) has been
motivated phenomenologically above. Alternatively, it can
be further motivated phenomenologically as follows. Con-
sider Eq. (18). Since the hydrodynamic equations are actually
written down by expanding around uniform steady states as-
suming small fluctuations, the phenomenological coefficient
v1, assumed constant here, can actually depend on the local
fields in ways that respect the overall symmetries of the dy-
namics, i.e., invariance under constant shifts of h1 and h2.
This consideration allows us to generalize v1 and replace
it by a field-dependent coefficient v′

1 ≡ v1 + ã1∂xh1, where
ã1 is a phenomenological constant coefficient. We now use
this in Eq. (18); the resulting equation has the same form as
Eq. (30). Here, two short technical comments are in order:
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(i) The coefficient v′
1 can depend not only on ∂xh1 but also

on ∂xh2 and all other terms that involve more fields and/or
more derivatives. Inclusion of these terms do not generate any
new relevant (in the RG sense) terms in the resulting final
equations. (ii) Second, all the other coefficients in Eqs. (18)
and (19), too, can depend on the local fields, subject to the
overall symmetries. Again, inclusion of these contributions
do not affect the physics in the long-wavelength limit. We,
therefore, ignore all these irrelevant contributions.

We work with the following effective equations, which
are the most general equations with all possible symmetry-
permitted nonlinear terms, written in the comoving frame of
h1:

∂t h1 + a1(∂xh1)2 + b1(∂xh1)(∂xh2) + c1(∂xh2)2

= D1∂
2
x h1 + η1, (31)

∂t h2 + v∂xh2 + a2(∂xh1)2 + b2(∂xh1)(∂xh2) + c2(∂xh2)2

= D2∂
2
x h2 + η2, (32)

where the factors of B1 and B2 have been absorbed in η1 and
η2, respectively, for convenience, and v ≡ v2 − v1. Since a
term (∂xh1)2 is symmetry permitted and is generated under
iterative expansion, and has the same scaling dimension as the
existing nonlinear terms [7], any RG analysis must start with
an equation that already includes this term, even though the
naive hydrodynamic theory may not have it. Thus Eqs. (31)
and (32) should be the starting equations for any dynamic RG
analysis for this problem. Equations (31) and (32) are identical
to those studied in Ref. [7] by means of RG and Monte
Carlo simulations. We do not repeat the calculation which is
straightforward and instead refer the reader to Ref. [7] for
details and briefly revisit the conclusions of Ref. [7] below.
It has been shown in Ref. [7] that the model belongs to the
1D KPZ universality class where χ1 = χ2 = 1/2, together
with a single dynamic exponent z = 3/2. These led us to
conclude that case C in the present study belongs to the 1D
KPZ universality as well.

We now briefly revisit the results of Ref. [7]. Our scheme of
calculations follow the scheme outlined in Refs. [6,7]. Under
perturbative RG, no new relevant terms are further generated.
We obtain the fluctuation corrections up to the one-loop order.
As in Ref. [7], each model parameter receives corrections that
either originate from only the KPZ-like nonlinearities result
(equivalently, from one-loop diagrams that are identical to
those in the RG for the KPZ equation) or nonlinearities other
than the KPZ type. For reasons identical to those elaborated
in Ref. [7], the former class of the diagrams are more relevant
than the other diagrams in the long-wavelength limit. As in
Ref. [7] coupling constants do not receive any fluctuation
corrections at the one-loop order in the long-wavelength limit.
We retain only these most dominant corrections. Rescaling
space, time, and fields as mentioned above the different RG
flow equations read

dD1

dl
= D1[z − 2 + g],

dA1

dl
= A1[z − 1 − 2χ1 + g],

dD2

dl
= D2

[
z − 2 + 1

2
mnrg

]
,

dA2

dl
= A2[z − 1 − 2χ2 + pn2g], (33)

where the coupling constant g = A1a2
1

πD3
1

and dimensionless con-

stants m = D1
D2

, p = A1
A2

, n = a2
a1

, and r = b1
a1

. Unsurprisingly,
these are identical to those derived in Ref. [7]. We therefore
conclude z = 3/2, χ1 = χ2 = 1/2. Thus, the model belongs
to the KPZ universality class.

It remains to be seen how one may arrive at the same
conclusion from an OLSC study of case C. In an OLSC treat-
ment, in principle one is required to solve all the correlation
functions and propagators, and also the nonlinear vertices self-
consistently, which receive corrections that are unbounded
or diverge in the thermodynamic limit at the one-loop order
relative to their bare values in the theory [27]. OLSC further
necessitates that at the one-loop order no new term should
appear that would change the OLSC scaling if it were al-
ready present in the original theory. This consideration yields
z = 3/2 and χ = 1/2 for the 1D KPZ equation [6]. Applying
this to case C here, we note that Eq. (24) does not contain
any (∂xh1)2 term, i.e., the “bare” value of a1 is zero. On the
other hand, as stated above, a term of the form (∂xh1)2 with a
finite coupling coefficient a1 is generated at the one-loop or-
der. This conclusion remains unchanged even when one uses
the self-consistent scaling forms for the correlation functions
and the propagators. Since the “bare” value of a1 is zero,
self-consistent generation of a finite a1 at the one-loop order
implies a generation of a one-loop correction that, relative to
its bare value, is infinitely large and hence cannot be dropped.
In other words, not retaining this correction would result a non
self-consistent solution. Since the presence of a “bare” term
of the form (∂xh1)2 can affect the scaling exponents, we are
required to include it before embarking on OLSC calculations.
Once included, the OLSC calculations should reproduce [7]
directly that give z = 3/2, χ1 = χ2 = 1/2, in agreement with
the RG analysis discussed above.

Finally, we make one technical comment. We have argued
above that even if the “bare” value of a1 is zero, it is generated
due to fluctuation effects. However, in order for it to be effec-
tive or relevant, it must be large enough, i.e., O(1). The size of
the fluctuation-induced a1, as shown in Appendix, depends on
all the other parameters and also on the system size. We thus
expect that to extract the true asymptotic long-wavelength
scaling behavior, the system size should be sufficiently large
enough. Further numerical investigations should be helpful in
this context.

VI. SUMMARY AND OUTLOOK

In summary, we have revisited the universal scaling prop-
erties of the density fluctuations in two-species periodic
asymmetric exclusion processes. We argue that the continuum
hydrodynamic equations of motion that one naively writes
down may not include all the symmetry-permitted nonlinear
terms. In fact, simple perturbative expansions produce any
missing relevant nonlinearity, so long it is symmetry per-
mitted. Hence, we argue that it should be included before
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undertaking any dynamic RG analysis on this model. Once
this nonlinearity is considered, the effective equations of mo-
tion become identical to those analyzed in Ref. [7]. This
in fact immediately allows us to conclude that the univer-
sal scaling exponents are identical to those for the 1D KPZ
equation. That we get 1D KPZ scaling, in spite of hav-
ing two conservation laws (corresponding to two conserved
species), should not be surprising. This happens because
the coupled equations that include the extra nonlinear term,
added on symmetry grounds, decouple in the long-wavelength
limit into two independent 1D KPZ equations [6]. We note
that our conclusions are at variance with Ref. [12], where
the OLSC method was employed to calculate the univer-
sal scaling exponents. They did not consider the missing
symmetry-permitted nonlinear term while applying OLSC
and obtained different values of the scaling exponents. In-
deed, if the OLSC method is employed after inclusion of
this missing nonlinear term, then it should yield the same
results as here, for reasons similar to Ref. [6]. Our results
can be confirmed by solving the stochastically driven hydro-
dynamic equations numerically. Last, it is possible to explore
scaling in the renormalized theory, after dropping renormal-
ized versions of some of the coefficients, e.g., by imposing
renormalized G(1)

11 or G(1)
22 to zero. These would correspond

to special points in the parameter space and would be ac-
cessible only by additional fine-tuning, akin to accessing a
tricritical point in equilibrium systems. The long-wavelength
scaling behavior at these special points can in general
be different.

The OLSC method used elsewhere intrinsically ignores
the vertex corrections and can work well where the vertex
correction is absent due to some symmetry reasons, e.g., the
KPZ equation. In the present problem, there are no symmetry
reasons that prohibit fluctuation corrections to all the coupling

constants. However, due to the presence of the underdamped
waves, the vertex corrections turn out to be finite [7] and hence
can be ignored so far as the universal scaling is concerned.
The RG framework can handle the vertex corrections, whether
relevant (in the RG sense) or not systematically. The generic
question to what degree the universal scaling is affected by a
missing coupling constant can occur in a theory with relevant
vertex corrections as well. In such cases, applications of RG
methods would in fact be unavoidable.

Our work can be extended in a variety of ways. It will
be interesting to extend our analysis to multicomponent
models; see, e.g., Ref. [16]. It will also be interesting to
construct a suitable higher-dimensional version of the two-
species asymmetric exclusion and obtain the corresponding
higher-dimensional hydrodynamic equations. One can then
ask whether the higher-dimensional version of the present
model belongs to the higher-dimensional KPZ universality
class. Second, one can introduce “mass conserving reactions”
of various kinds that will reduce the number of conservation
laws from two to one in the present model. How that affects
the long-wavelength universal scaling properties is an inter-
esting question to study in the future. One may additionally
introduce lane exchanges by the particles and see whether the
conclusions drawn here still remain valid in the presence of
exchange. Effects of quenched disorder on the universal scal-
ing properties can also be studied. It has recently been shown
that in a single-component periodic TASEP with quenched
disordered hopping rates, the disorder is irrelevant (in a RG
sense) when the system is away from half-filling, and the
scaling properties of the fluctuations in the long-wavelength
limit belong to the 1D KPZ universality class. In contrast,
close to half-filling a new universality class emerges [28]. We
hope our work will inspire future theoretical work along these
directions.

APPENDIX A: LINEAR STABILITY ANALYSIS: CONTRIBUTION OF THE PURE DIFFUSIVE TERMS

We consider Eqs. (18) and (19) with cross-diffusive terms. These equations can be written as

∂t h1 + v1∂xh1 + b1(∂xh1)(∂xh2) + c1(∂xh2)2 = D11∂
2
x h1 + D12∂

2
x h2 + B1η1, (A1)

∂t h2 + v2∂xh2 + a2(∂xh1)2 + b2(∂xh1)(∂xh2) + c2(∂xh2)2 = D21∂
2
x h1 + D22∂

2
x h2 + B2η2. (A2)

Fourier transforming the both sides of the above equations we get[
∂t h̃1

∂t h̃2

]
= M−1

[
B1η1

B2η2

]
,

where h̃1, h̃2 are the Fourier transforms of h1 and h2, respectively, and

M =
[−ikv1 + D11k2 D12k2

D21k2 −ikv2 + D22k2

]
.

Eigenvalues of matrix M are

λ1,2 = 1

2
[−ik(v1 + v2) + (D11 + D22)k2] ± 1

2

√
α1k2 + 2iα2k3 + α4k4 (A3)

α1 = −(v1 − v2)2, α2 = (v1D22 + v2D11 − v1D11 − v2D22), and α4 = [−4D12D21 + (D11 − D22)2]. For small k, terms contain-
ing k4 and k3 are negligible compared to that with k. For small k, the eigenvalues are

λ1 = 1

2
[−2ikv2 + (D11 + D22)k2], (A4)
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λ2 = 1

2
[−2ikv1 + (D11 + D22)k2]. (A5)

This confirms that the pure diffusive terms have more dominant contributions than the cross-diffusive terms to the eigenvalues.

APPENDIX B: GENERATION OF THE KPZ-LIKE NONLINEAR TERM WITH COEFFICIENT a1 AT ONE LOOP ORDER

We give below the value of the coefficient a1 in Eq. (30) obtained in the one loop expansions of Eq. (24); see Fig. 2:

a1 = �1 + �2 + �3 + �4 + �5 + �6 + �7, (B1)

where

�1 = 2A2b1b2

πD2
2

∫ (
4q2 − k2

1

)
dq[

k2
1 + 4k2

2 − 4k1q − 8k2q + 8q2
] ,

× 1

[4D2(k2 − q)2 − 2iv(k1 + 2q) + D1(k1 + 2q)2]

×
[−2iv(k1 + 2q) + D1(k1 + 2q)2 + D2

(
k2

1 + 8k2
2 − 4k1q − 16k2q + 12q2

)]
[D2(k1 − 2q)2 + D1(k1 + 2q)2 − 2iv(k1 + 2q)]

(B2)

�2 = −4A2b1b2

πD2
2

∫
(k2 + q)(k1 + 2q)dq[

k2
1 + 4k2

2 − 4k1q + 8q(k2 + q)
] (B3)

× 1

[D2(k1 − 2q)2 − 2iv(k1 + 2q) + D1(k1 + 2q)2]
, (B4)

�3 = 16A1a2b2

π

∫
(k1 − 2q)2(k2 + q)(k1 + 2q)

{2v(k1 − 2q) − i[D1(k1 − 2q)2 − 4D2(k2 + q)2]}

[−4iv(k1 − 2q) + D2
(
k2

1 + 4k2
2 + 4k1q + 8q(k2 + q)

)]
{2v(k1 − 2q) + i[D1(k1 − 2q)2 + 4D2(k2 + q)2]}

× 1

{2v(k1 − 2q) − i[D1(k1 − 2q)2 − D2(k1 + 2q)2]}
1

{2v(k1 − 2q) + i[D1(k1 − 2q)2 + D2(k1 + 2q)2]} , (B5)

�4 = 32A1a2
2

π

∫ (
k2

1 − 4q2
)
(q − k2)2dq

D2
(
k2

1 + 4q2
){4[−iv + D1(k2 − q)](k2 − q) + D2(k1 + 2q)2}

× 1

{−4[iv + D1(k2 − q)](k2 − q) + D2(k1 + 2q)2} , (B6)

�5 = 2A2b2
2

π

∫ (
4q2 − k2

1

)
dq

D3
2

(
k2

1 + 4q2
)[

k2
1 + 4k2

2 − 4(k1 + 2k2)q + 8q2
]

(
k2

1 + 4k2
2 − 8k2q + 8q2

)
[
k2

1 + 4k2
2 + 4(k1 − 2k2)q + 8q2

] , (B7)

�6 = −8A2a2b1

π

∫
(k2 + q)(k1 + 2q)dq

D2
2

(
k2

1 + 4q2
){D2(k1 − 2q)2 + 4(k2 + q)[−iv + D1(k2 + q)]} , (B8)

�7 = −4A2b2
2

π

∫
(k2 + q)(k1 + 2q)dq

D3
2

(
k2

1 + 4q2
)[

k2
1 + 4k2

2 − 4k1q + 8q(k2 + q)
] . (B9)
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