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Thermodynamics of a minimal interacting heat engine: Comparison between engine designs
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Collective effects stemming from many interacting units have attracted remarkable recent interest, not only
for their presence in several systems in nature but also for the possibility of being used for the construction
of efficient engine setups. Notwithstanding, little is known about the influence of the engine design, and
most studies are restricted to the simplest cases (e.g., simultaneous contact with two thermal baths), not
necessarily constituting a realistic setup implementation. In order to investigate the design and its influence
on the performance, we introduce the collisional also referred as sequential description for a minimal model
for interacting heat engines, composed of two coupled nanomachines placed in contact with a distinct thermal
reservoir and subjected to a nonequilibrium work source at each stage. Thermodynamic quantities are exactly
obtained irrespective of the model details. Distinct kinds of work sources are investigated and the influence of the
interaction, temperature, period, and time asymmetry has been undertaken. Results show that a careful design
of interaction provides superior performance than the interactionless case, including optimal power outputs and
efficiencies at maximum power greater than known bounds or even the system presenting efficiencies close to
the ideal (Carnot) limit. As a complementary analysis, we also show that the case of the system simultaneously
placed in contact with two thermal reservoirs constitutes a particular case of our framework.

DOI: 10.1103/PhysRevE.109.064120

I. INTRODUCTION

The construction of nanoscopic steady-state heat engines
has attracted a great deal of recent attention in the realm
of stochastic thermodynamics [1–5], not only for extending
the fundamental concept of the energy conversion (from the
macroscopic to the nanoscopic scale), but also because it
presents three fundamental differences when compared with
the equilibrium thermodynamics. First, there is no need for
moving parts and pistons since the energy conversion comes
from currents of microscopic particles and units. Second,
nanoscopic-engineered setups typically operate far from equi-
librium and, consequently, its performance is expected to be
lower than the ideal case. Third, fluctuations of quantities and
currents can become important in small-scale systems. The
issues above illustrate the search for the optimal protocol as
crucial to ensure its reliability and desired performance.

In the last years, distinct kinds of engines operating far
from equilibrium have been proposed and investigated [1,6–
10]. Under a generic point of view, they are grouped out in
three categories, stemming from fixed thermodynamic forces
[11–17], from the time-periodic variation of external pa-
rameters [18–21] and via sequential or collisional approach
[22–27], in which at each stage the system is subjected
to a different condition (held fixed along the stage). Each
one has been considered as a reliable approach in distinct
contexts, the latter encompassing the presence of distinct
drivings over each member of the system, a weak coupling
between the system with the reservoir, or even for mimicking
the environment for quantum systems. While most of the
above studies are restricted to setups composed of one unit
[19,20,24,25,28], the thermodynamics of systems exhibiting
collective effects and/or those composed of interacting units

has received considerable recent attention as an alternative
strategy for improving the system performance for quantum
systems [29–48] and classical ones, such as interacting Brow-
nian particles [21], work-to-work transducers [49,50], and
heat engines [16,17]. All of them are restricted to cases of
systems operating at equal temperatures [49,50], fixed param-
eters [16,17], or sinusoidal drivings [21].

In this contribution, we conciliate the points above by
investigating a minimal model for collective effects, formed
by two interacting units placed sequentially in contact with
distinct thermal baths at each stage. Previous studies have
tackled different versions, such as its all-to-all (mean-field)
design [16,17] and distinct topology of interactions [15], all
of them restricted to the case of fixed thermodynamic forces
and a large number of units. Our study will focus on the
opposite case, dealing with a minimal collective effect system
composed of two interacting units beyond the fixed forces
context. Hence, its simplicity constitutes an ideal labora-
tory for comparing three fundamental aspects of nanoscopic
engines: the kind of design (sequential versus fixed thermo-
dynamic forces), distinct approaches for the work source (not
considered previously), and under situations collective effects
can improve the system performance when compared with
its interactionless version. The former goal has been inspired
by previous contributions [25,28], whereas the different work
sources addressed here were considered in Refs. [15–17,25].
It is worth mentioning that our system shares some simi-
larities with recent studies about a setup composed of two
interacting quantum dots under repeated interactions [51,52].
Our findings reveal that the interaction between units, to-
gether with a suited design of parameters (energy, period,
duration of each stage), can significantly enhance the system’s
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performance. Such remarkable improvement can result in op-
timal power outputs, efficiencies at maximum power greater
than known bounds, or even efficiencies approaching the ideal
(Carnot) limit. Our minimal model already captures the es-
sential features of the system, including the interplay between
parameters, maximizations of power, and efficiency [15,16].
As a side result, our study shows the simultaneous contact
with two thermal baths case [16] as the ideal limit of fast
switching times.

This paper is organized as follows. In Sec. II the model
and the main expressions for thermodynamic quantities will
be presented. In Secs. III and IV we will analyze in detail two
distinct approaches for our engine setup. Conclusions will be
drawn in Sec. V.

II. MODEL AND THERMODYNAMICS

Our minimal model for collective effects is composed of
two interacting units sequentially placed into contact with
N distinct reservoirs, each one of duration τν − τν−1, with
ν = 1, . . . , N and τ0 = 0. The total time to complete one cy-
cle being τ . At each stage, occurring between τν−1 < t � τν ,
each unit can be in a lower (σk = 0) or upper (σk = 1) state,
with individual energies 0 and εν , respectively. The system is
connected to the reservoir ν, with temperature βν = 1/(kBTν ),
whose total energy is given by the sum of individual and
interaction components:

ε̃ (ν) =Vν[(1 − σ1)σ2 + σ1(1 − σ2)] + Uνσ1σ2 + εν (σ1 + σ2),
(1)

where Uν,Vν correspond to distinct interaction energies, pro-
vided they are in the same and different states, respectively.
Throughout this paper, we adopt kB = 1. In addition, the sys-
tem can be subjected to a nonconservative force.

After the time duration τν , it is disconnected and recon-
nected to the next reservoir with temperature βν+1 = 1/Tν+1

and subjected to another set of parameters εν+1, Uν+1, Vν+1,
and Fν+1. This process is then repeated until a complete cycle,
after the total time τ . Collisional description usually neglects
the time for changing the contact between the system and
thermal baths and for this reason, we have not considered
the difference of energy due to the change of the stage. We
will assume throughout this paper that τ is large enough for
the collisional approximation to be valid, in such a way that
the difference of energy required for changing the stage is
neglected. As in Refs. [15,16,53], the above system dynam-
ics becomes simpler when characterized by the total particle
number i occupying the upper state, assuming the values
i = 0, 1, or 2, according to whether it is empty, having one
unit, or having two units, with energies ε̃ (ν) = 0,Vν + εν and
Uν + 2εν , respectively. Let p(ν)

i (t ) be the system’s probability
at the state i at the time t when it is placed in contact with the
νth reservoir, governed by the following master equation:

ṗ(ν)
i (t ) =

∑
j �=i

J (ν)
i j , (2)

where p(1)
i (t ) and p(2)

i (t ) describes the system behavior
during 0 � t < τ1 and τ1 � t < τ , respectively, and J (ν)

i j ≡
ω

(ν)
i j p(ν)

j − ω
(ν)
ji p(ν)

i and ω
(ν)
i j accounts to the transition rate

FIG. 1. Sketch of the present setup characterized by a three-state
system specified by the variable i accounting to the occupation of the
upper level. At each stage, specified by distinct colors, the system
can assume distinct values of energy parameters and be subject to a
biased force (see, e.g., main text). The stage change occurs at t = τ1

and the system returns to its initial state at t = τ .

from state j to i, satisfying the condition
∑

i ω
(ν)
i j = 0 for

every stages.
We will restrict our analysis to the simplest case N = 2, as

sketched in Fig. 1, in which the time duration of the first and
second stages read τ1 and τ2 = τ − τ1, respectively. Note that
one has the symmetric time operation when τ1 = τ/2. Given
that the probability distribution is continuous in time, it should
satisfy the following boundary conditions for p(ν)

i (t ) (for all
i = 0, 1, and 2):

p(1)
i (τ1) = p(2)

i (τ1), p(1)
i (0) = p(2)

i (τ ). (3)

The probability flux in the right side of Eq. (2) can also be
expressed in terms of the evolution matrix, W (ν), that, in turn,
can be written in terms of the transition rates,

W (ν) =

⎛
⎜⎜⎝

−ω
(ν)
10 ω

(ν)
01 0

ω
(ν)
10 −ω

(ν)
01 − ω

(ν)
21 ω

(ν)
12

0 ω
(ν)
21 −ω

(ν)
12

⎞
⎟⎟⎠,

whose largest eigenvalue, λ0 = 0, has its associated left and
right eigenvalues given by

∣∣ψ (ν)
0

〉 ≡ ∣∣p(eq,ν)〉 =

⎛
⎜⎜⎝

p(eq,ν)
0

p(eq,ν)
1

1 − p(eq,ν)
0 − p(eq,ν)

1

⎞
⎟⎟⎠

and 〈φ(ν)
0 | = (111), respectively, whereas λ

(ν)
j < 0 ( j > 0) is

the jth nonzero eigenvalue, �
(ν)
j = |ψ (ν)

j 〉〈φ(ν)
j | is the matrix

associated with the product of the jth right and left eigenvec-
tors and the normalization property of eigenvectors implies
that 〈φ(ν)

i ||ψ (ν)
j 〉 = δi j . By resorting to the eigendecomposi-

tion of Eq. (2), along with the periodic boundary conditions
given by Eq. (3), it is possible to obtain the expression for the
probability vector |p(ν)

i (t )〉 at the νth stage:

|p(ν)(t )〉 = |p(eq,ν)〉 +
2∑

j=1

eλ
(ν)
j [t−τν−1]�

(ν)
j |p(ν)(τν−1)〉, (4)

064120-2



THERMODYNAMICS OF A MINIMAL INTERACTING HEAT … PHYSICAL REVIEW E 109, 064120 (2024)

where |p(ν)(τν−1)〉 is the probability vector obtained from the
above boundary conditions and reads

|p(ν)(τν−1)〉 =

⎛
⎜⎜⎝

p(ν)
0 (τν−1)

p(ν)
1 (τν−1)

1 − p(ν)
0 (τν−1) − p(ν)

1 (τν−1)

⎞
⎟⎟⎠.

Despite being exact, expressions for |p(ν)(τν−1)〉 are quite
cumbersome. In Appendix A, we list them for the particular
case τ1 = τ/2. Once the probability distribution is known,
all thermodynamic quantities can be obtained. By integrating
Eq. (2) over a complete cycle and subsequently summing
them, one has that

∑
j �=i J̄ (1)

i j = −∑
j �=i J̄ (2)

i j , where J
(1)
i j =∫ τ1

0 J (1)
i j dt/τ , J

(2)
i j = ∫ τ

τ1
J (2)

i j dt/τ and Eq. (3) was used. At each
time, only transitions i → i ± 1 are allowed, implying that a
transition of type 0 ↔ 2 (both units occupying the lower and
upper states, respectively) is forbidden and hence the system
presents only two independent fluxes, namely J̄ (1)

01 and J̄ (1)
21 ,

whose expressions are given by

J̄ (1)
01 = 1

τ

∫ τ1

0

{
ω

(1)
01 p(1)

1 (t ) − ω
(1)
10 p(1)

0 (t )
}
dt (5a)

J̄ (1)
21 = 1

τ

∫ τ1

0

{
ω

(1)
21 p(1)

1 (t )−ω
(1)
12 p(1)

2 (t )
}
dt, (5b)

respectively. We pause to make a few comments about fluxes
J̄ (1)

i j ’s. First, for fast switchings τ → 0, each flux J̄ (ν)
i j acquires

a simpler form given by

J̄ (ν)
i j → 1

2

{
ω

(ν)
i j p j − ω

(ν)
ji pi

}
, (6)

for j = 1 and i ∈ {0, 2}, where pi = p(1)
i + p(2)

i , whose ex-
pressions are listed in Appendix B. Such limit is equivalent
to the system being simultaneously placed in contact with
both thermal baths. Second, in the regime of slow switchings,
τ 	 1, fluxes J (ν)

10 and J (ν)
21 can be rewritten in the following

form:

J (ν)
10 = (−1)(ν+1) p(eq,1)

0 − p(eq,2)
0

τ
(7)

J (ν)
21 = (−1)(ν+1) p(eq,1)

2 − p(eq,2)
2

τ
, (8)

which vanishes as τ → ∞, consistent with the case of the
system being placed in contact with a single thermal reservoir.

Until here, all analyses have been carried out without any
thermodynamic consideration. In order to introduce the rela-
tionship between energy exchanged and heat, we follow the
approach commonly considered in the literature (see, e.g.,
Refs. [1,16,17,54,55]) in which the ratio between transition
rates ω

(ν)
i j and ω

(ν)
ji are defined according to the local detailed

balance:

ln
ω

(ν)
i j

ω
(ν)
ji

= −βν

[
ε̃

(ν)
i − ε̃

(ν)
j + d (ν)

i j Fν

]
, (9)

where ε̃
(ν)
i − ε̃

(ν)
j is the energy difference between states i

and j and d (ν)
ji Fν accounts to the influence of a driving force,

where the element d (ν)
ji is dimensionless scalar that has been

introduced in order to describe the existence of a biased force,
that satisfies the anti-symmetric property d (ν)

ji = −d (ν)
i j .

From Eq. (9) we consider the entropy production formula

ν (t ) =
∑
i< j

J (ν)
i j (t ) ln

ω
(ν)
i j p j (t )

ω
(ν)
ji pi(t )

, (10)

whose integration over a complete cycle, together with the
previously mentioned boundary conditions leads to the stan-
dard form σ̄ = −∑

ν βνQ̇ν , where Q̇ν is given by

Q̇ν =
∑
i< j

[
ε̃

(ν)
i − ε̃

(ν)
j + d (ν)

i j Fν

]
J

(ν)
i j . (11)

By expressing Eq. (11) in terms of fluxes J̄ (ν)
01 and J̄ (ν)

21 , the

exchanged heat Q̇ν then reads

Q̇ν =[(
ε̃

(ν)
0 − ε̃

(ν)
1 + d (ν)

01 Fν

)
J̄ (ν)

01 + (
ε̃

(ν)
2 − ε̃

(ν)
1 + d (ν)

21 Fν

)
J̄ (ν)

21

]
.

(12)
Since the system evolves to a nonequilibrium steady-state
regime returning to the initial state after a complete cycle,
the first law of thermodynamics establishes that the average
power is given by P = −(Q̇1 + Q̇2), and hence, its expression
reads

P = −
[∑

i

(
ε̃

(2)
i − ε̃

(1)
i

)(
p(1)

i (τ1) − p(1)
i (0)

)
τ

+
∑
i< j

d (1)
i j

(
F1J

(1)
i j − F2J

(2)
i j

)⎤⎦, (13)

where Eqs. (3) and (12) were used, together the
properties: d (1)

i j = −d (2)
i j , d (ν)

i j = −d (ν)
ji and J

(ν)
i j = −J

(ν)
ji .

The above equation states that the power output comes
from two work sources: the former, from the time
variation of energies (first term) after each stage and
the latter from nonconservative forces (second term). By
expressing in terms of independent fluxes, Eq. (13) reads
P = [(ε̃ (2)

0 − ε̃
(2)
1 ) − (ε̃ (1)

0 − ε̃
(1)
1 )]J̄ (1)

01 + [(ε̃ (2)
2 − ε̃

(2)
1 ) −

(ε̃ (1)
2 − ε̃

(1)
1 )]J̄ (1)

21 − (d (1)
01 J̄ (1)

01 + d (1)
21 J̄ (1)

21 )(F1 + F2).
Finally, by defining the second stage as the hot reser-

voir and choosing parameters properly, the amount of heat
extracted from the hot bath Q̇2 > 0 can be partially con-
verted into power output P < 0 (Q̇2 = −P − Q̇1), consistent
to the heat engine operation. Conversely, the pump regime
is characterized by the amount of power required for deliv-
ering heat from the cold to the hot reservoir, implying that
P = −Q̇1 − Q̇2 with P > 0 and Q̇2 < 0. For characterizing
both regimes, we adopt the efficiency definition η = −P/Q̇2,
implying that the former and latter regimes have efficien-
cies constrained according to 0 � η < ηc and ηc < η � ∞,
respectively, where ηc = 1 − β2/β1 denotes the Carnot effi-
ciency. We stress that efficiencies greater than ηc in the latter
case only mean that power is partly consumed for extracting
heat from the hot to the cold bath, whose real performance is
1/η. Conversely, when P > 0, Q̇2 > 0, no energy conversion
occurs, and the system operation is commonly referred to as
in the dud regime, implying that η < 0 [16,17,21].

064120-3



HAWTHORNE, CLEUREN, AND FIORE PHYSICAL REVIEW E 109, 064120 (2024)

Despite the simplicity, the model presents a great number
of parameters (βν, εν,Vν,Uν, Fν ) and one of our main goals is
to draw a comparison with previous results [16,53] in which
solely units in distinct states interact with each other. For this
reason, we will curb ourselves to the case Uν = 0.

III. DISTINCT INTERACTIONS AT EACH STAGE

Inspired in previous works [25,26], our first approach
consists of building a setup via change of individual and
interaction energies at each stage without nonconservative
drivings. In order to draw a comparison with the previous, the

main features of the interactionless case will be depicted in
the next section.

A. Interactionless case

For the interactionless case, transition rates are defined in
the following form:

ω
(ν)
10 = � exp

{−βνεν

2

}
, ω

(ν)
01 = � exp

{
βνεν

2

}
. (14)

From Eqs. (2) and (13) for F1 = F2 = 0, the system power Ps

is given by Ps = (ε1 − ε2)J̄s where, for τ1 = τ/2, J̄s reads:

J̄s =
∏

μ

{ − 1 + cosh
[
τ cosh

( βμεμ

2

)] + sinh
[
τ cosh

( βμεμ

2

)]}
(eβ1ε1 − eβ2ε2 )−1 ∏

μ′
(
1 + eβμ′ εμ′

)
[−1 + cosh (τX ) + sinh (τX )]

, (15)

where X = cosh(β1ε1/2) + cosh(β2ε2/2). In a similar fash-
ion, the system efficiency reads ηs = 1 − ε1/ε2, which is
independent of fluxes and temperatures. Both of them can
be related through expression Ps = −ε2ηsJs consistent to
heat engine characterized by J̄s > 0 (since β1ε1 > β2ε2),
Ps < 0, 0 � ηs � ηc. Such results are in agreement with
Refs. [25,26,56] for μ1 = μ2 = 0. Conversely, the pump is
characterized by the other way around of conditions J̄s < 0
(since β1ε1 < β2ε2), Ps > 0 and ηc < ηs � 1.

B. Main expressions and general findings

Transition rates ω
(ν)
i j follow Eq. (9) and have been defined

them according to the standard Kramers form [16,55]:

ω
(ν)
10 = 2� exp

{−βν

2
(Vν + εν )

}
, (16)

ω
(ν)
01 = � exp

{−βν

2
(−Vν − εν )

}
, (17)

ω
(ν)
21 = � exp

{−βν

2
(−Vν + εν )

}
, and (18)

ω
(ν)
12 = 2� exp

{−βν

2
(Vν − εν )

}
, (19)

where Vν, εν assume distinct values at each stage and � ex-
presses the coupling between the system and the reservoir.
From Eq. (11), the average heat flux at each stage is given
by

Q̇1 = −[
J̄ (1)

01 (V1 + ε1) + J̄ (1)
21 (V1 − ε1)

]
,

Q̇2 = [
J̄ (1)

01 (V2 + ε2) + J̄ (1)
21 (V2 − ε2)

]
, (20)

whose steady entropy production σ assumes the generic fluxes
times forces form σ = J1X1 + J2X2, where J1 = J̄ (1)

01 and J2 =
J̄ (1)

21 with X1 and X2 given by

X1 = V1 + ε1

T1
− V2 + ε2

T2
,

X2 = V1 − ε1

T1
− V2 − ε2

T2
. (21)

Expressions for the power P and system efficiency η are given
by

P = (ε1 − ε2)
(
J̄ (1)

01 − J̄ (1)
21

) + (V1 − V2)
(
J̄ (1)

01 + J̄ (1)
21

)
, (22)

and

η = − (ε1 − ε2)
(
J̄ (1)

01 − J̄ (1)
21

) + (V1 − V2)
(
J̄ (1)

01 + J̄ (1)
21

)
ε2

(
J̄ (1)

01 − J̄ (1)
21

) + V2
(
J̄ (1)

01 + J̄ (1)
21

) , (23)

respectively. We pause again to make a few comments. First,
Eqs. (20)–(23) are general for the two-stage case, irrespec-
tive of the period, asymmetry and model parameters. Second,
in the absence of interactions (V1 → 0 and V2 → 0), the
system becomes equivalent to the interactionless setup inves-
tigated previously. Third, contrasting with the interactionless
case, there are two independent fluxes, J̄ (1)

01 and J̄ (1)
21 , reveal-

ing that the interaction between units gives rise to a much
richer behavior than the single case [25]. Equations (20)
and (22) impose some constraints on the operation regime.
In particular, the heat engine occurs when both inequalities
(ε2 − ε1)(J̄ (1)

01 − J̄ (1)
21 ) < (V1 − V2)(J̄ (1)

01 + J̄ (1)
21 ) and ε2(J̄ (1)

21 −
J̄ (1)

01 ) > V2(J̄ (1)
01 + J̄ (1)

21 ) are simultaneously satisfied, whereas
the pump regime takes place for opposite inequalities. Fourth,
our system will operate more efficiently than the interaction-
less case (η > ηs) if (ε1V2 − ε2V1)(J̄ (1)

01 + J̄ (1)
21 ) > 0. The ideal

regime operation yields when J̄ (1)
01 , J̄ (1)

21 → 0. For ε1/ε2 or
V1/V2 held fixed, η = ηc when β2V2 = β1V1 and β2ε2 = β1ε1,
respectively, whose efficiency is given by η = 1 − V1/V2, akin
to the interactionless expression. Conversely, maximum ef-
ficiencies ηME < ηc if the condition ε1/ε2 = V1/V2 = β2/β1

is not satisfied. Fifth and last, the occurrence of the pump
regime implies at the following relation between parameters
(β2ε2 − β1ε1)(J̄ (1)

21 − J̄ (1)
01 ) > (β2V2 + β1V1)(J̄ (1)

21 + J̄ (1)
01 ). Fig-

ures 2, 3, and Appendix C illustrate all above general features.

C. System behavior and heat maps for equal switching
times τ1 = τ/2

Once introduced the main expressions, we are now in a
position to depict the system behavior and main results. Pa-
rameters will be defined in such a way that βνVν and βνεν are
dimensionless. For simplifying matters, βνVν > 0 and βνεν >
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FIG. 2. The influence of the interaction parameters over the sys-
tem performance. The top and bottom panels depict the power and
efficiency heat maps. The surfaces highlighted by the color pink rep-
resent the region in which η � ηs. Parameters: β2 = 1, β1 = 10, τ =
1, and ε1/ε2 = 0.5. Symbols HE (left bars) and P (right bars) corre-
spond to the heat engine and pump regimes, respectively, whereas *
and • show to the global maximum of PmP and ηME in the HE regime.
The gray region indicates dud (D) behavior. For this set of parameters
ηME < ηc, whereas the light blue line in the bottom panel indicates
the region in which ηmP = ηCA.

0 The analysis will be carried out for the following set of
parameters: β1 = 10, β2 = 1, τ = 1. In order to obtain a first
insight into how the interaction between units influences the
system performance, Fig. 2 depicts the system performance
for ε1/ε2 = 0.5, in which the interactionless case operates as
an engine with power and efficiency given by Ps = −0.1477
and ηs = 0.5, respectively.

We highlight two remarkable changes coming from the in-
teraction, under suitable choices of V1(V2) at stages v = 1(2).
The former is a broad set of parameters, in which η > ηs

and P > Ps. The inclusion of interactions also extends the
regime of operation, giving rise to a pump regime as V2 goes
up. Similar results are found for distinct β1/β2’s, although the
variation of temperatures can favor a given operation regime
(see, e.g., Appendix C). For such choice of parameters, max-
imum efficiency ηME < ηc and PmP yield for negative values
of V1.

The interplay between individual ε1/ε2 and interaction
V1/V2 energies is depicted in Fig. 3, in which η < ηs < ηc for
small V2’s. However, its increase not only extends the heat
regime to the region 0 < ε1/ε2 < β2/β1, in which the inter-
actionless case operates as a pump, but also leads to higher
efficiencies η > ηs as V2 increases and a maximum efficiency
ηME at V2ME. As portrayed in Sec. III B, ηME < ηc for ε1β1 �=
ε2β2 and ηME = ηc at V2 = V2ME when ε1β1 = ε2β2 (e.g., blue
• in Fig. 3) and the interactionless case is efficient in such
latter case. Similarly to η, it is possible to find suitable values
of parameters in which P > Ps (from now on meaning the
absolute value of P) as well as optimize it via a suitable choice
of V2mP providing the maximum power PmP. However, there
is a remarkable difference with respect to η, the existence of
an optimal set of ε1/ε2 and V2 in which (the absolute) P is
simultaneously maximized (see, e.g., symbol ∗ in bottom heat
maps).

The influence of V1 (V2 held fixed) is remarkably different
from left panels (V1 held fixed), and the engine regime and
higher efficiencies are constrained to small values of V1’s
(consistent with the general findings from Sec. III B), hence
pointing out that stronger interactions in the second stage are
more significant than in the first one (second stage operating
as the hot thermal bath). Also, η > ηs for a broader set of
values of V1 as ε1/ε2 is large. The behavior of P is akin
to the previous one and presents a maximum at a (small)
V1mP’s (fixed ε1/ε2) as well as an optimal ε1/ε2 providing its
simultaneous maximization.

As a side analysis, we compare efficiencies at maximum
power ηmP with Curzon and Ahlborn bound ηCA given by
ηCA = 1 − √

β2/β1 [57], which has been verified in distinct
systems [2,17,58]. Despite not constituting a universal result,
it provides a powerful guide about the system operation at
finite power, which is more realistic than the ideal case (η =
ηc and P = 0). In all cases, the interaction among units can
also be chosen for providing efficiencies at maximum power
ηmP > ηCA for a wide range of parameters (see, e.g., light blue
lines in Figs. 2 and 3 in which ηmP = ηCA). Depending on the
parameters the engine is projected, ηmP < ηCA [Figs. 2 and
3 (left panel) ] and ηmP > ηCA (right panel of Fig. 3) at the
simultaneous maximization of power.

Summarizing our findings, the presence of collective ef-
fects between two units makes it possible to conveniently
choose interaction parameters at each stage, providing higher
performances than its interactionless counterpart (for the same
values of individual energies), as well as distinct optimization
routes, such as the maximization of power and efficiency.
Additionally, an extra advantage concerns the possibility of
changing the regime operation, from heat engine to pump and
vice versa, by changing the interactions at each stage.

D. Influence of period τ and asymmetric switchings

The influence of period τ and the inclusion of a different
time duration at each stage, expressed by κ = τ1/τ2 �= 1 will
be considered in this section. Due to the existence of several
distinct parameters, we will focus on parameters ε1/ε2 = 0.6,
V1 = 0.2, β1 = 10, and β2 = 1.

Although Ps increases as τ is lowered, the period plays a
less important role in the interactionless case, in part because

064120-5



HAWTHORNE, CLEUREN, AND FIORE PHYSICAL REVIEW E 109, 064120 (2024)

FIG. 3. The influence of individual energies ε1/ε2 over the system performance. Left and right panels depict fixed V1 and V2, respectively,
while top and bottom panels show η’s and P’s heat maps, respectively. The left and right bars denote HE and P regimes, respectively. Symbols
•, * and � estimate the location of the Carnot efficiency ηc, efficiencies at maximum power ηmP at the heat engine (HE) and pump (P) regimes,
respectively. Light blues in top panels indicate the regions in which ηmP = ηCA. Parameters: β2 = 1, β1 = 10, τ = 1, V2 = 1 (right) and V1 = 1
(left).

ηs is independent of Js and τ [25,56]. On the other hand,
the existence of two independent fluxes, as a consequence
of the interaction between nanomachines makes the influence
of τ more revealing. We highlight two aspects regarding the
influence of τ , as depicted in the left panels of Fig. 4. First, it
significantly affects the system performance, marking the in-
crease of both P (as the interactionless system) and η (unlike
the interactionless), with increasing maximum PmP and ηME

at V2mP and V2ME, respectively, as τ is decreased toward the
limit τ → 0, in which the system becomes equivalent to the
(simultaneous) contact with hot and cold thermal baths (see,
e.g., Appendix B). Second, despite the increase of τ reduces P
and η, it enlarges the heat engine operation. Thus, the period
can be conveniently chosen to obtain a fair balance between
the system performance (power and efficiency) and the range
of the operation regime.

A second aspect to be investigated in this section relies on
the inclusion of a distinct duration of each stage, measured
by the asymmetry κ . This ingredient has been revealed to be
a powerful ingredient for improving the system power in the
interactionless case [28] or even both P and η in the case of
collisional Brownian engines [23] and is depicted in the right
panels of Fig. 4. Although η typically increases as V2 raises
and κ (or τ1) is reduced, consistent with the system placed

in contact with the hot thermal bath during a larger interval,
there is an optimal κo ensuring optimal power PmP. Thus, like
the interactionless case [28], κ can be conveniently chosen in
order to increase the power output and P > Ps. Since η >

ηs for a broad range of V2’s, the interaction offers an extra
advantage in which κ can be suitably chosen in order to obtain
the desired η (greater than ηs) or even the desired compromise
between P and η.

IV. COLLISIONAL MACHINE UNDER
NONCONSERVATIVE DRIVINGS

A. Main expressions and heat maps

Our second approach encompasses a work source com-
ing from a nonconservative driving, introduced through a
bias to benefit certain transitions. By following the ideas of
Refs. [16,17,49], transitions of type i → i + 1 (i → i − 1) are
favored according to whether the system is placed in contact
with the cold (hot) thermal baths, through a biased driving
force with strength Fν , whereas the remaining parameters (V
and ε) are held fixed. Our study relies on investigating two
important aspects: the role of drivings at each stage and its
relationship with V , temperatures β1/β2 and the influence of
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FIG. 4. Left and right panels depict the influence of period τ (for symmetric time switchings) and distinct κ’s (for τ = 1), respectively, for
P (top) and η (bottom), respectively. The values of τ (left) and κ (right) decrease from top to bottom curves. Symbols ∗ and • denote associate
PmP’s and ηME’s, respectively. Parameters: β1 = 10, β2 = 1, V1 = 0.2, ε1/ε2 = 0.6.

period τ . Transition rates ω
(ν)
i j follow Eq. (9) and are listed

below

ω
(ν)
10 = 2� exp

{−βν

2
(Ea + V + ε + (−1)νFν )

}
(24)

ω
(ν)
01 = � exp

{−βν

2
(Ea − V − ε − (−1)νFν )

}
(25)

ω
(ν)
21 = � exp

{−βν

2
(Ea + ε − V + (−1)νFν )

}
(26)

ω
(ν)
12 = 2� exp

{−βν

2
(Ea − ε + V − (−1)νFν )

}
, (27)

where Fν assumes distinct values at each stage. Parameter Ea

denotes an activation energy and it will be included in order
to draw a comparison with previous results [15,16]. Although
our main findings are independent of Ea, its inclusion makes
the heat engine regime more pronounced. From now on, we
will set Ea = 1 in all analyses.

From Eqs. (12) and (13) and by taking V1 = V2 = V
and ε1 = ε2 = ε, the average power and the heat extracted
exchanged with the hot bath is given by the following
expressions:

P = −(F1 + F2)
(
J̄ (1)

01 − J̄ (1)
21

)
,

Q̇2 = [
(V + ε + F2)J̄ (1)

01 + (V − ε − F2)J̄ (1)
21

]
, (28)

whose system entropy production reads σ̄ = −β1Q̇1 − β2Q̇2
and assumes the bilinear form σ = J1X1 + J2X2, where J1 =
J̄ (1)

01 and J2 = J̄ (1)
21 (as in Sec. III) with thermodynamic forces

X1 and X2 given by

X1 = ε + V + F2

T2
− ε + V − F1

T1
,

X2 = ε − V + F2

T2
− ε − V − F1

T1
. (29)

The efficiency is given by the ratio between P and Q̇2 given
by

η = (F1 + F2)
(
J̄ (1)

01 − J̄ (1)
21

)
(V + ε + F2)J̄ (1)

01 + (V − ε − F2)J̄ (1)
21

, (30)

respectively. The existence of the heat engine and pump
regimes imposes some constraints in the fluxes, implying that
in the former case, parameters have to be adjusted in such
a way that J̄ (1)

01 > J̄ (1)
21 and V (J̄ (1)

01 + J̄ (1)
21 ) > (ε + F2)(J̄ (1)

21 −
J̄ (1)

01 ), whereas the latter (pump) implies opposite inequalities.
A first insight about the influence of drivings is depicted
in Fig. 5 for fixed F1/F2. Efficiency and power curves ex-
hibit an interesting and rich behavior due to the interplay
among parameters ε,V, β1/β2, and τ . While the heat regime
is levered by increasing ε and/or the ratio β1/β2 (left and
middle panels), the pump regime is favored for lower values
of β1/β2 (middle and right). The crossover from the heat
to the pump regimes gives rise to an intermediate regime in
which the system operates “dudly” (see, e.g., middle panels).
In such a case, there are optimal interactions VmP and VME,
marking maximum (absolute) power (PmP) and efficiency
(ηME), respectively. Conversely, only P can be optimized
when the crossover between the above regimes is marked
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FIG. 5. Depiction of power P (top) and efficiency η̂ (bottom) versus V for distinct β1’s. Parameters: β2 = 1, Ea = 1, F2 = 1, F1 = 0.1, and
τ = 1 and β1 = 10 (left), β1 = 20/9 (middle), and β1 = 3/2 (right). Stars and squares denote the location of PmP’s for heat engine and pump,
respectively. Circles denote the location of maximum efficiencies for the engine (0 � η < ηc regime).

by the absence of a dud regime (e.g., left and right panels)
and η monotonically decreases upon V being raised. Figure 6

FIG. 6. Influence of nonconservative drivings and the inter-
action on the performance. Efficiency (top) and power (bottom)
phase diagrams. Symbols P, D, and HE denote pump, dud, and
heat engine regimes, respectively. Parameters: ε = 0.5, β2 = 1, β1 =
20/9, Ea = 1, τ = 1, F2 = 0.45.

extends the above findings by depicting heat maps for the
efficiency and power for distinct ratio F1/F2 and fixed ε. Sim-
ilarly to systems composed of many interacting units under
fixed drivings [15,17] and results from Sec. III, the power
P presents a simultaneous maximization (concerning both V
and F1/F2), whereas η approaches to the ideal regime when
F2/F1 is increased. However, a difference concerning previous
studies concerns the absence of heat engine as F1 = F2. Un-
like Refs. [15–17], in which the heat engine was investigated
for large N’s, our minimal setup of N = 2 interacting units
requires a desirable compromise between Fν’s and parameters
for operating properly as a heat engine.

The influence of period is depicted in Fig. 7 for the same
parameters from Fig. 6 (left and right panels). In both cases,
P is strongly influenced by the period and approaches to the
simultaneous contact with baths as τ → 0, whose expressions
are evaluated via Appendix B.

Also, depending on the parameters the engine is projected
(right panels), the increase of τ changes the regime operation,
from heat engine to pump. In both cases, the behavior of η

is more revealing and mildly changes with τ . While small
differences are almost imperceptible in the left panels, a some-
what increase of η as τ is lowered is verified. This finding is
remarkable, because it may be used for conveniently choosing
the period to obtain the desirable P with a small variation
of η.

B. Asymmetric time switchings

In the last analysis, we investigate the influence of asym-
metric interaction times in the presence of distinct drivings
at each stage, as shown in Fig. 8. In similarity with Fig. 4,
the asymmetry can be conveniently chosen for enhancing
the power and efficiency or even for obtaining a remarkable
adjustment between them. There is an optimal κo leading to
simultaneous maximization of power while η always increases
as κ is lowered, consistent with the contact with a hot bath for
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FIG. 7. The influence of period τ over the system performance. Depiction of P and η versus V for distinct τ ’s for β1 = 10 (left) and
β1 = 20/9 (right). The values of τ increase from bottom to top curves (top panels) and differences are almost imperceptible in the bottom
panels. Parameters: β2 = 1, Ea = 1, ε = 0.5, F2 = 1, F1 = 0.1.

a larger amount of the period. Despite such similarities, the
asymmetry seems to be less pronounced than in the previous
case, and optimal quantities do not deviate significantly from
the symmetric (κ = 1) case. A possible reason is that power
and efficiency exhibit a more intricate dependence on fluxes
and changes of energy parameters (former approach) than on
driving variations [see, e.g., Eqs. (22)–(28) and (23)–(30)].

V. CONCLUSIONS

Nanoscopic engines operating via collective operation have
attracted considerable attention and posed as potential candi-
dates for the construction of reliable setups. However, given
that most studies are restricted to fixed thermodynamic forces,
little is known about how its construction influences the per-
formance. The present study aimed to fill partially this gap
by investigating the thermodynamic quantities of a minimal-
ist collective model placed sequentially with distinct thermal
baths at each stage. Distinct aspects have been addressed,
such as different work sources, the role of interactions, the
period, and the time durations of each stage. Results indicate
that our minimal approach, together with a suitable choice
of parameters, not only can boost the system performance,
providing optimal power outputs and efficiencies greater than
its interactionless case but also guide the operation regime,
including distinct heat engine and pump regimes. Although
the ideal regime τ → 0 provides higher performances than
for finite τ ’s, the present contribution sheds light on how
the interplay between interaction and individual parameters,
together with a suitable tuning of the interaction time can

optimize both power and efficiency as much as possible under
more a realistic context (finite τ ). Another remarkable finding
concerns that the case of the system simultaneously placed in
contact with two thermal reservoirs, previously investigated in
various works [16,21,53], constitutes a particular case of our
framework for fast switchings. As future extensions of our pa-
per, it might be interesting to extend our sequential framework
to setups composed of a larger number of nanomachines as
well as draw a comparison among their interactions.
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APPENDIX A: OBTAINING THE EXACT SOLUTION FOR
THE BOUNDARY CONDITIONS

As described in the main text, by resorting to the eigende-
composition of the evolution matrix, together above boundary
conditions, we arrive at the following expression for the prob-
ability component p(ν)

i (t ) at the νth stage:

p(ν)
i (t ) = p(eq,ν)

i +
2∑

j=1

eλ
(ν)
j [t−(ν−1) τ

2 ]�
(ν)
j p(ν)

[
(ν − 1)

τ

2

]
,

(A1)
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where p(eq,ν) is the stationary state probability associated with λ0 = 0 and λ
(ν)
j is the jth nonzero eigenvalue and �

(ν)
j =

|ψ (ν)
j 〉〈φ(ν)

j | is the matrix associated with the product of the jth right and left eigenvectors and p(ν)((ν − 1) τ
2 ) is the vector

at each stage given by

p(1)(0) =
−[eτW (1)/2 + eτ (λ(2)

1 +λ
(2)
2 +λ

(1)
1 +λ

(1)
2 )/2]p(eq,1) + ∑

ν,μ,μ′
eτ (λ(2)

1 +λ
(2)
2 +λ(1)

ν )/2�
(1)
μ,μ′[�

(2)
μ′+1p(eq,1) + e−τλ

(2)
μ′+1

/2p(eq,2)]

2[(eτλ
(1)
1 /2 − eτλ

(1)
2 /2)(eτλ

(2)
1 /2 − eτλ

(2)
2 /2)Tr�(1)

2 �
(2)
2 − (eτ (λ(1)

2 +λ
(2)
1 )/2 − 1)(eτ (λ(1)

1 +λ
(2)
2 )/2 − 1)]

(A2)

p(2)
(τ

2

)
=

−[eτW (1)/2 + eτ (λ(1)
1 +λ

(1)
2 +λ

(2)
1 +λ

(2)
2 )/2]p(eq,2) + ∑

ν,μ,μ′
eτ (λ(1)

1 +λ
(1)
2 +λ(2)

ν )/2�
(2)
μ,μ′[�

(1)
μ′+1p(eq,2) + e−τλ

(1)
μ′+1

/2p(eq,1)]

2[(eτλ
(1)
1 /2 − eτλ

(1)
2 /2)(eτλ

(2)
1 /2 − eτλ

(2)
2 /2)Tr�(1)

2 �
(2)
2 − (eτ (λ(1)

2 +λ
(2)
1 )/2 − 1)(eτ (λ(1)

1 +λ
(2)
2 )/2 − 1)]

, (A3)

where

�
(ν)
μ,μ′ = Tr�(ν+1)

μ �
(ν)
μ′ − �(ν+1)

μ �
(ν)
μ′ .

APPENDIX B: FAST TIME SWITCHINGS τ → 0 and
TWO-RESERVOIRS CASE

In the regime of fast switching dynamics, τ → 0, one gets
the following expressions for fluxes:

lim
τ→0

J̄ (1)
01 = 1

2Z

(
ω

(1)
01 ω

(2)
10 − ω

(1)
10 ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
, (B1)

FIG. 8. Depiction of power P and efficiency η versus V for dif-
ferent κ . Symbols • and ∗ denote the maximization of efficiency and
power, respectively. Except the dashed curve (κ = 0.11), the ratio κ

decreases from top to bottom curves in the top panel and increases
in the bottom one. Parameters: ε = 0.5, β2 = 1, β1 = 20/9, Ea =
1, τ = 1, F1 = 0.1, F2 = 1.

and

lim
τ→0

J̄ (1)
21 = 1

2Z

(
ω

(1)
21 ω

(2)
12 − ω

(1)
12 ω

(2)
21

)(
ω

(1)
10 + ω

(2)
10

)
, (B2)

where Z = (ω(1)
01 + ω

(2)
01 )(ω(1)

12 + ω
(2)
12 ) + (ω(1)

10 + ω
(2)
10 )(ω(1)

12 +
ω

(2)
12 ) + (ω(1)

10 + ω
(2)
10 )(ω(1)

21 + ω
(2)
21 ). The above expressions can

be understood from the fact the system relaxes infinitely
fast to its steady state at each stage, allowing us to rewrite
Eq. (2) in the following form: ṗ(ν)

i (t ) = ∑
j �=i{ω(ν)

ji pi(t ) −
ω

(ν)
i j p j (t )}, where pi(t ) = p(1)

i (t ) + p(2)
i (t ). Thus, the total dy-

namics is described by ṗi(t ) = ∑
j �=i{� ji pi(t ) − �i j p j (t )},

where �i j = ω
(1)
i j + ω

(2)
i j , which is equivalent to the simulta-

neous contact with both thermal reservoirs. A second way of
understanding such a limit comes from the time integration of
Eq. (2) over each stage by taking into account the boundary
conditions from Eq. (3). In such cases, the steady-state regime
is given by the following relations (ω(1)

01 + ω
(2)
01 )p1 − (ω(1)

10 +
ω

(2)
10 )p0 = 0 and (ω(1)

20 + ω
(2)
20 )p0 + (ω(1)

12 + ω
(2)
12 )p2 − (ω(1)

01 +
ω

(2)
01 + ω

(1)
21 + ω

(2)
21 )p1 = 0. By solving above system of linear

equations, together with the condition p0 + p1 + p2 = 1, one
finds the following expressions for the probabilities:

p0 = 1

Z

(
ω

(1)
01 + ω

(2)
01

)(
ω

(1)
12 + ω

(2)
12

)
, (B3)

p1 = 1

Z

(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
12 + ω

(2)
12

)
, (B4)

p2 = 1

Z

(
ω

(1)
10 + ω

(2)
10

)(
ω

(1)
21 + ω

(2)
21

)
. (B5)

It is worth mentioning that pi’s can be alternatively obtained
via the spanning tree method for a system of two interacting
units. From pi’s, fluxes are promptly obtained, providing the
same results as Eqs. (B1) and (B2). Thermodynamic quanti-
ties are straightforwardly evaluated, whose main expressions
for P , Q̇2, and η and have been shown along the main
text. We close this section by pointing out above expressions
are general and hold valid in both Secs. III and IV when
τ → 0.

APPENDIX C: GLOBAL PHASE DIAGRAM FOR DISTINCT
INTERACTIONS AT EACH STAGE

In this section, we depict the system phase diagram
(Fig. 9, top panel) built from inequalities, (ε2 − ε1)(J̄ (1)

01 −
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FIG. 9. Top: The phase diagram β2/β1 × V1/V2 × ε1/ε2. The green line represents the points where β2/β1 = V1/V2 = ε1/ε2. Bottom panels
depict, for β1 = 10 (left), β1 = 10/3 (middle), and β1 = 10/4 (right), the phase diagrams in the V1/V2 × ε1/ε2 plane. P and HE denote,
respectively, the pump and heat engine regimes. The white region shows the dud regime, whereas green bullets correspond to the ideal
efficiency ηc.

J̄ (1)
21 ) < (V1 − V2)(J̄ (1)

01 + J̄ (1)
21 ) and ε2(J̄ (1)

21 − J̄ (1)
01 ) > V2(J̄ (1)

01 +
J̄ (1)

21 ), shown in the main text for the heat engine (HE) regime
and the other way around for the pump (P). In particular, the
crossover between HE and P regimes will be characterized
by ideal efficiency provided ε1/ε2 = V1/V2 = β2/β1 (green

symbols). The bottom panels of Fig. 9 show, for different
sets of temperatures, the phase diagram V1/V2 × ε1/ε2. As
discussed in the main text, while larger β1/β2 favors the HE
regime, its decrease increases the region in which the system
operates as a pump.
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