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Effect of shape anisotropy on percolation of aligned and overlapping objects on lattices
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We investigate the percolation transition of aligned, overlapping, anisotropic shapes on lattices. Using the
recently proposed lattice version of excluded volume theory, we show that shape-anisotropy leads to some
intriguing consequences regarding the percolation behavior of anisotropic shapes. We consider a prototypical
anisotropic shape—rectangle—on a square lattice and show that, for rectangles of width unity (sticks), the
percolation threshold is a monotonically decreasing function of the stick length, whereas, for rectangles of
width greater than two, it is a monotonically increasing function. Interestingly, for rectangles of width two, the
percolation threshold is independent of its length. We show that this independence of threshold on the length of a
side holds for d-dimensional hypercubiods as well as for specific integer values for the lengths of the remaining
sides. The limiting case of the length of the rectangles going to infinity shows that the limiting threshold value
is finite and depends upon the width of the rectangle. This “continuum” limit with the lattice spacing tending
to zero only along a subset of the possible directions in d dimensions results in a “semicontinuum” percolation
system. We show that similar results hold for other anisotropic shapes and lattices in different dimensions.
The critical properties of the aligned and overlapping rectangles are evaluated using Monte Carlo simulations.
We find that the threshold values given by the lattice-excluded volume theory are in good agreement with the
simulation results, especially for larger rectangles. We verify the isotropy of the percolation threshold and also
compare our results with models where rectangles of mixed orientation are allowed. Our simulation results show
that alignment increases the percolation threshold. The calculation of critical exponents places the model in
the standard percolation universality class. Our results show that shape anisotropy of the aligned, overlapping
percolating units has a marked influence on the percolation properties, especially when a subset of the dimensions
of the percolation units is made to diverge.
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I. INTRODUCTION

Percolation problems have commanded enduring interest
in the realm of statistical physics, finding diverse applications
in fields ranging from material science and polymer chem-
istry to epidemic spreading and financial markets [1–8]. The
fundamental focus of percolation theory lies in investigating
the connectivity properties of random and disordered media.
In the simplest model of lattice site percolation, each site of
a lattice is randomly occupied with a probability p. Clusters
are formed by the nearest occupied sites, and as the occupa-
tion probability is gradually increased from zero, the system
eventually reaches a point where the largest cluster spans the
entire lattice, signaling the occurrence of percolation [9,10].
Percolation models can also be extended to continuum space,
where geometric shapes or objects, which can partially or
fully overlap, are randomly placed in the space with a specific
number density. Some of the commonly considered shapes
include disks, spheres, cubes, squares, and sticks [11–13].
Overlapping objects give rise to distinct clusters and, similar
to lattice percolation, the system exhibits a phase transition,
marked by the emergence of a spanning cluster at a critical
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number density. Identifying the percolation threshold and
characterizing the associated critical behavior constitute a ma-
jor research theme in the study of various percolation systems
[10]. The probability of forming a spanning cluster serves as
one of the order parameters and the critical phenomenon is
characterized by a power-law divergence of specific quantities
close to the percolation threshold. Also, the universality of
critical exponents is seen across many models of percolation
[14].

Among the diverse variants of percolation on lattices,
many recent studies have focused on the percolation of ex-
tended shapes that do not overlap [15–26]. Compared to this,
there are only a few studies on extended shapes that over-
lap [27–30]. The models with overlapping shapes introduce
multisite occupancy and/or multiple occupancy of a site, also
serving as a natural bridge between various lattice and con-
tinuum models. For example, the percolation of overlapping
squares and cubes on lattices was studied by Koza et al.
[27], who focused on calculating the percolation thresholds of
these models and their transition from discrete to continuum
values. Percolation of discrete overlapping hyperspheres on
hypercubic lattices was studied by Brzeski and Kondrat [29].
They studied the discrete-to-continuum transition of hyper-
spheres, which enabled the evaluation of the threshold for
the three-dimensional (3D) and higher dimensional contin-
uum problems with greater accuracy. Apart from these, recent

2470-0045/2024/109(6)/064118(14) 064118-1 ©2024 American Physical Society

https://orcid.org/0009-0005-2658-1338
https://orcid.org/0000-0002-5632-1677
https://ror.org/00a4kqq17
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.064118&domain=pdf&date_stamp=2024-06-07
https://doi.org/10.1103/PhysRevE.109.064118


JASNA C. K. AND V. SASIDEVAN PHYSICAL REVIEW E 109, 064118 (2024)

FIG. 1. (a) Square lattice of size L × L with overlapping rectangles of length k1 = 3 and width k2 = 2 randomly distributed on it.
Rectangles are aligned in the horizontal direction and can overlap. (b) Different possible arrangements of two rectangles with k1 = 3 and
k2 = 1. (1) Two rectangles touching at corners are considered unconnected. (2) Two overlapping rectangles are considered connected. (3) Two
nonoverlapping rectangles. (4) Two rectangles sharing edges are considered connected. (c) A few of the extended shapes possible on a square
lattice are shown with their defining parameters marked. The name for a shape is given based on the shape of its outline.

studies focus on site percolation with extended neighbor-
hoods, which can be mapped onto the problem of lattice
percolation of extended and overlapping shapes like disks,
squares, etc. [27,31,32].

Percolation models involving overlapping shapes, in addi-
tion to their theoretical significance, hold practical relevance
in various applications. These models, applied to both lattice
and continuum structures, serve as valuable tools for repre-
senting the structure of random and disordered media and
investigating their diverse transport properties. The collective
arrangement of overlapping shapes can represent either the
material components or voids within a structure. For example,
overlapping ellipses have been used for modeling composites
of conductive nanoparticles dispersed in insulating matrices
[33]. Similarly, electrical conductivity in nanocomposites has
been studied using both soft-core (noninteracting) and hard-
core (interacting) shapes [34]. Other examples include the
study of nanocomposite materials consisting of conductive
rodlike particles [35,36], systems consisting of conducting
polymers [37,38], and composite fiber systems [39,40]. The
latter gives a comparison between soft-core and hardcore
models for fiber systems. Numerous real-world scenarios in-
volve the flow of fluids or other conductive phenomena, such
as electrical conductivity, in 2D structures [41–44]. In the
past, studies have utilized 2D overlapping aligned rectangles,
integrated with an underlying lattice structure, to analyze
transport properties [45–49]. Apart from these examples, the
fact that image analysis of a disordered material usually in-
volves discretizing a continuous space makes the studies on
lattices very much relevant in the context of random media
[50]. Thus it is evident that the versatility and applicability of
percolation models with overlapping shapes, both in 2D and
3D lattice structures, make them pertinent in understanding
and characterizing various physical systems.

This paper delves into the percolation of overlapping and
aligned anisotropic shapes on lattices. Specifically, as a proto-
typical example of such problems, we consider the percolation
of aligned and overlapping “rectangles” on a two-dimensional
square lattice in detail. In the particular case of either side
of the rectangle being of unit length, we can call the shapes
rods or sticks (see Fig. 1). Apart from their potential practical
relevance, our main motivation behind considering this and
other extended anisotropic shapes stems from the peculiar
behavior of the percolation threshold of aligned and overlap-
ping rectangles in the 2D continuum problem. In the latter,
the percolation threshold remains independent of the rectan-
gles’ aspect ratio due to the affine symmetry of such systems
[51]. In simple words, for such systems, scaling one or both
directions will not change the connectivity properties of the
system and, hence, will not change the percolation threshold.
Similar invariance of percolation threshold under scaling also
exists for disk percolation in continuum [52]. However, on
lattices, such symmetry under scaling cannot be defined and
we show that this leads to intriguing percolation behavior,
which depends not just on the aspect ratio but on the specific
values of the sidelengths of the aligned rectangles and other
shapes.

Employing the excluded volume theory adapted to a lat-
tice setting [27] and employing Monte Carlo simulations, we
analyze the percolation of aligned and overlapping rectan-
gles on the two-dimensional square lattice. We show that the
lattice version of the excluded volume theory gives several
intriguing predictions regarding the percolation threshold of
such systems. For the specific case of aligned and overlap-
ping rectangles, the value of the percolation threshold as we
increase the length of the rectangles depends on its width. For
width one rectangles, the threshold monotonically decreases
with the length and, for width greater than two, it increases
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monotonically. For width two, the threshold is independent
of the length. This independence of threshold on the length
of a side holds for d-dimensional hypercuboids also, for spe-
cific integer values for the lengths of the remaining sides.
Moreover, we get a nonzero percolation threshold, even in
the limiting case where one side of the rectangle extends
to infinity while keeping the other side finite. We show that
similar results hold for other shapes and dimensions as well
and obtain predictions for both qualitative and quantitative
behavior of the threshold for several such systems. The theory
gives us good numerical estimates for the percolation thresh-
olds for rectangles and other anisotropic shapes.

Our Monte Carlo simulation results confirm the theoret-
ical predictions regarding the behavior of the percolation
thresholds for aligned and overlapping rectangles. We verify
that isotropy of the percolation threshold holds even with
rectangles of large aspect ratios, just as in the continuum
problem [51]. Additionally, critical exponents are obtained,
demonstrating that the problem lies within the same univer-
sality class of lattice percolation. Furthermore, a comparison
between results for aligned sticks and a mixture of sticks of
varying orientations is presented, providing valuable insights
into the impact of anisotropy on the percolation process.

The paper is organized as follows. In Sec. II, we precisely
define the model of overlapping rectangles on a square lattice.
In Sec. III, we use excluded volume theory adapted to a
lattice setting to analyze the problem. We use the theory to
draw conclusions about the percolation of extended shapes
other than rectangles and also in other dimensions. We give
the results of simulation studies. The percolation threshold is
evaluated and results are compared. Isotropy of percolation
threshold, critical exponents, and effect of mixed orientations
are also given. We conclude in Sec. IV.

II. MODEL DEFINITION

In general, we look into the percolation problem of
aligned, overlapping, anisotropic shapes in lattice systems.
For concreteness, we consider the case in which each unit of
percolating objects is a rectangle with sidelengths k1 in the
horizontal direction and k2 in the vertical direction randomly
positioned on a two-dimensional square lattice of size L × L
(see Fig. 1). Without loss of generality, we will assume that
k1 � k2 so that the rectangles are aligned in the horizontal
direction.

The rectangles are allowed to overlap; hence a site can
be occupied more than once—a feature known as multiple
occupancy. However, the complete overlapping of two rect-
angles is avoided (note that the second rectangle does not
contribute toward the total number of occupied sites). This
will also retain the classical site percolation scenario when
k1 = k2 = 1. Occupied neighboring sites are assumed to be
connected, where the neighborhood is the von Neumann type.
In other words, rectangles that share sites or are adjacent are
considered connected entities and rectangles that touch only at
corners are considered nonconnected [see Figs. 1(a) and 1(b)].

As the density of occupied sites, denoted by φ (the ratio
of the total number of occupied sites and L2), is progres-
sively increased by adding more rectangles to the lattice, a
critical point is reached where a spanning cluster emerges.

We define the spanning cluster as a connected path of rect-
angles in the vertical direction (perpendicular to the direction
of alignment), signifying percolation in the system. Periodic
boundary conditions are imposed in the horizontal direction.
Snapshots of the typical configurations for different values of
φ, with k1 = 3 and k2 = 1, are shown in Fig. 2.

The percolation threshold is the specific value of φ where
the spanning cluster first arises, indicating the transition from
a nonpercolating to a percolating state. φc may be considered
the equivalent of the critical covered volume fraction (CCVF)
in continuum percolation [11]. In continuum percolation the-
ory, we have areal density η and covered area or volume
fraction related to each other through φ = 1 − exp(−η) [11].
Areal density is the net volume of all the objects per unit
volume of the space and covered area fraction is the fraction
of the total volume of space covered by the objects. The
objects are randomly distributed in space; hence the proba-
bility that there are a certain number of objects in an area
follows a Poisson distribution. Hence the probability that a
point in space is not covered by any object is the same as the
probability that there are no objects present within a volume
equal to the volume of the object V (or average volume of
objects if there is a size distribution for the objects) which is
exp(−V n), where n is the number density of objects. η = V n
is the areal density. φ is then the probability that the point in
space is covered by at least one object, which is 1 − exp(−η).
It is easily seen that the same arguments and relation hold for
extended overlapping objects on lattices as well, with n now
denoting the number density of objects on the lattice and V the
“volume” of the object (the number of lattice sites occupied by
one object). η is the equivalent of the area or volume density
in continuum percolation. For convenience, we will use this
terminology for the lattice percolation as well.

Note that when k1 = k2 = k → ∞, the problem cor-
responds to the 2D continuum percolation problem of
overlapping and aligned squares [27,28]. The problem may be
defined with shapes other than rectangles and also for other
types of lattices as well. For example, a few simple shapes
that can be considered on the square lattice are shown in
Fig. 1(c). We will discuss other extended shapes, lattices, and
dimensions later in Sec. III A.

III. RESULTS AND DISCUSSION

A. Lattice version of excluded volume theory

A major quantity of interest in the problem is the per-
colation threshold, i.e., the value of φ at which the system
percolates for given values of k1 and k2. A useful analytical
approximation technique to obtain the percolation threshold
of systems for which the shapes of the percolating units are
similar is the excluded volume theory [53,54]. The excluded
volume theory, initially proposed for continuum percolation
systems, is based on the idea that the product of the number
density of basic percolating units and the average excluded
volume, which gives us the total excluded volume, is an
invariant quantity for “similar systems” at the critical point.
Similar systems here mean geometrically similar shapes that
are distributed with a particular orientation [53]. For example,
systems of squares and rectangles of a particular orientation.
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FIG. 2. Typical configurations obtained for rectangles of side lengths k1 = 3, k2 = 1 distributed randomly on an L = 50 × 50 square
lattice for different values of the density of occupied sites φ. The grid of the lattice is not shown for visual clarity. The gray color corresponds
to the rectangles. The system is considered as percolating if there is connectivity from top to bottom via rectangles. (a) At φ = 0.14 < φc, the
system is nonpercolating. (b) At φ = 0.56 ≈ φc, the system is percolating with the first spanning cluster developed in the vertical direction.
The percolating path connecting the top to the bottom is marked. (c) At φ = 0.64, the system is well above the percolation threshold φc

In the continuum context, this means shapes that can be scaled
to each other and have the same orientation. For shapes con-
sidered on a lattice, since there is no notion of scaling, we can
say that two shapes are similar if their continuum limits can be
scaled to each other and have the same orientation. Therefore,
we expect the total excluded area to be the same for systems
of oriented squares and oriented rectangles (see Ref. [55] for
similar findings in a related context).

For continuum cases, the excluded volume is the volume
around an object into which, if another object is placed, the
two objects will overlap. Recently, the idea has been ex-
tended to lattice models as well, where the excluded volume
is replaced by what is called the connectedness factor—the
number of possible configurations of two basic percolating
units such that they are connected—[27] (see Fig. 3). The
connectedness factor will depend on the shape of the objects
and also on their relative orientation. The lattice version of
excluded volume theory thus says that the product of the
number density of objects and the connectedness factor is
a constant at criticality for similar systems where similarity
refers to the shape and orientation of the basic percolating
units. If n is the number density of objects (total number of
objects divided by the total number of lattice points) and Vex

is the connectedness factor, then

ncVex = Bc, (1)

where nc is the number density at the critical point and Bc is
the average number of connections an object has at criticality,
which is approximately expected to take the same value for
similar objects. Here, the number density n = η/V , where V
is the volume (number of lattice sites occupied) of an object.
Therefore, at criticality, we can write the CCVF,

φc ≈ 1 − exp

(
−Bc

V

Vex

)
. (2)

Now for rectangles of sides k1 and k2, V is simply k1 × k2.
We can find Vex by enumerating the configuration of two
rectangles such that they are connected. It is easily seen
that Vex = (2k1 + 1)(2k2 + 1) − 5 (see Fig. 3). Therefore, the

covered volume fraction at the critical point

φk1,k2
c ≈ 1 − exp

(
−Bc

k1k2

(2k1 + 1)(2k2 + 1) − 5

)
. (3)

So, unlike the continuum case, here the CCVF depends on
the aspect ratio of the rectangles. We can recover the contin-
uum case in the limit of both k1 and k2 much greater than
unity for which the above expression becomes independent of
k1 and k2:

φc ≈ 1 − exp(−Bc/4). (4)

Several interesting inferences can be made from Eq. (3).
Consider the case in which we take k1 to be very large for a

FIG. 3. If the top-left corner site of the rectangle is chosen as the
index site (site with no cross mark), the cross-marked cells constitute
the excluded area of the rectangle shown, which is of length k1 =
3 and width k2 = 2. That is, if the index site of another rectangle
falls within this area, it will overlap with the rectangle shown in the
figure. The excluded volume is Vex = (2k1 + 1)(2k2 + 1) − 5. Note
that exact overlapping of rectangles is not allowed.
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fixed finite value of k2. In the limit of k1 → ∞, the expression
for CCVF becomes

φk1→∞,k2
c ≈ 1 − exp

(
−Bc

k2

2(2k2 + 1)

)
. (5)

Equation (3) gives how the percolation threshold approaches
the limiting value in Eq. (5) as we increase k1. We can easily
see that, for k2 = 1, φk1,k2

c is a decreasing function of k1,
whereas, for k2 > 2, φk1,k2

c is increasing in k1. Now, for k2 = 2,
φk1,k2

c is independent of k1, indicating that for overlapping
and aligned rectangles of width two on a square lattice, the
percolation threshold is independent of its length.

Equation (5) implies that, for rectangles with finite width
and length tending to infinity, the percolation threshold is
finite and depends on the width of the rectangles. Moreover,
unlike squares whose infinite limit gives us the continuum
percolation problem of squares, there seems to be no con-
tinuum problem corresponding to the case of rectangles with
infinite length and finite width. This is true as long as we
consider the case k1 → ∞ keeping k2 a constant. We will
discuss the transition to the continuum picture in more detail
in Sec. III B 4.

It is interesting to note that, for the particular case of
aligned overlapping sticks (k2 = 1), the dependence of per-
colation threshold on stick length k1 is given by φc ∼ 1 −
exp(−Bc

k1
3(2k1+1)−5 ). We may compare and contrast this with

the case of nonoverlapping stick percolation. The latter system
is often predicted to have a power-law dependence of the
percolation threshold on stick length φc ∼ 1/kα

1 [15,19] or an
exponentially decreasing dependence [21].

We can easily see that similar results will hold for extended
shapes in other types of lattices and dimensions. For example,
consider the problem of overlapping and aligned cuboids on a
cubic lattice. If the sidelengths of the cuboids are denoted by
k1, k2, and k3, then CCVF is given by

φk1,k2,k3
c ≈ 1 − exp

(
−Bc

k1k2k3

V k1,k2,k3
ex

)
, (6)

where V k1,k2,k3
ex is

V k1,k2,k3
ex = (2k1 − 1)(2k2 − 1)(2k3 − 1)

+ 2[(2k1 − 1)(2k2 − 1) + (2k1 − 1)(2k3 − 1)

+ (2k2 − 1)(2k3 − 1)] − 1. (7)

When all the sidelengths tend to infinity, we recover the
continuum percolation threshold of aligned and overlapping
cubes in 3D, given by

φc = 1 − exp

(−Bc

8

)
, (8)

with appropriate values of Bc. From Eqs. (7) and (6), we
can verify that, for k2 = 2 and k3 = 4 (or vice versa), the
percolation threshold φc becomes independent of k1. We can
easily show that this set of values is unique. In Eq. (7),
if we set a2 = (2k2 − 1) and a3 = (2k3 − 1); for φc to be
independent of k1, we require to have odd positive integer
values of a2 and a3 greater than or equal to 3 that satisfy the
relation a2 = 2a3+1

a3−2 (or a3 = 2a2+1
a2−2 ). Now if a3 = 3, then a2 =

7. For higher values of a3, the ratio 2a3+1
a3−2 is monotonically

decreasing and tends to 2 for large a3. So for a higher value of
a3 to satisfy the above relation, the only remaining possibility
is a2 = 5. However, it is easy to verify that a2 = 5 will not
satisfy the relation for any integer value of a3. This shows that
the combinations a2 = 3 and a3 = 7 (k2 = 2, k3 = 4) or a2 =
7 and a3 = 3 (k2 = 4, k3 = 2) are the only possible set of
integers which will make the threshold independent of k1. We
can generalize this to hypercuboids in d dimensions, where we
expect φc to be independent of k1 for a particular set of integer
values of k2, k3, . . . , kd . For example, in four dimensions,
k2 = 2, k3 = 4, and k4 = 22 will make φc independent of k1.
Generalization of this result for d-dimensional hypercuboids
and corresponding proof is given in Appendix A.

For the special case of thin sheets (say k2 → ∞ and k3 →
∞ with finite k1), we get φk1

c = 1 − exp(−Bc
k1

(8k1+4) ). For the
special case of sticks in 3D (say k2 = k3 = 1 and finite k1),
we get φk1

c = 1 − exp(−Bc
k1

5(2k1−1)+1 ). Letting the length of
the sticks go to infinity, i.e., considering k1 → ∞, we get
the finite limiting value φc = 1 − exp(−Bc/10). As in the
case of rectangles on a 2D square lattice, where the limiting
case of rectangles with finite width on the lattice does not
give the continuum model of rectangles, the limiting case of
anisotropic shapes in a 3D cubic lattice also does not give the
corresponding continuum model. For example, for cubes and
cuboids on a continuum, φc = 1 − exp(−Bc/8), whereas the
limiting value obtained for k1 → ∞ for sticks (k2 = k3 = 1)
on a cubic lattice is φc = 1 − exp(−Bc/10).

Considering the general case of overlapping and aligned
sticks of length k1 randomly placed on a hypercubic lattice in
d dimension, we can write the dimension-dependent expres-
sion for the excluded volume of sticks,

Vex = (2d − 1)(2k1 − 1) + 1. (9)

In this case, as the length of the sticks tends to infinity, we get
the limiting threshold value in d dimensions as

φc = 1 − exp

(
−Bc

1

2(2d − 1)

)
. (10)

Now, for the continuum problem where aligned hypercubes
are placed randomly in d-dimensional space, we have the
percolation threshold φc = 1 − exp (−Bc

1
2d ) [27]. Assuming

Bc to be the same, we have the curious observation that the
percolation threshold of sticks whose length tends to infinity
and that of hypercubes (squares in 2D) whose sides tend to
infinity have the same value in d ≈ 3.66 dimensions. In other
words, for dimensions three and less, the percolation threshold
of the infinite hypercubes is larger than that of infinite sticks,
whereas for dimensions greater than three, the percolation
threshold of infinite sticks is larger than that of infinite hy-
percubes.

We can see that similar results, as discussed above, will
also hold for other lattices. For example, on a triangular lat-
tice, for objects of width k2 and length k1 (a “parallelogram”)
(see Fig. 4), Vex = (2k1 + 1)(2k2 + 1) − 3. In this case, we
can see that φc is independent of k1 for k2 = 1 (sticks).
Considering the limit k1 → ∞, we get φc = 1 − exp(−Bc

1
6 ),

whereas, if we consider parallelograms of equal sidelengths,
say k1 = k2 = k, we get φc = 1 − exp(−Bc

1
4 ) in the limit of

k → ∞.
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FIG. 4. (a) Overlapping trimers (sticks of length k1 = 3 and
width k2 = 1) on a triangular lattice. (b) A parallelogram of k1 = 4
and k2 = 3 on a triangular lattice. The excluded volume will be
Vex = (2k1 + 1)(2k2 + 1) − 3.

The above results show that on N-dimensional lattices,
when we are considering the percolation of aligned overlap-
ping shapes that can be described by M independent length
parameters, the following holds. (a) For a specific choice
of values for (M − 1) of these parameters, the percolation
threshold can become independent of the remaining param-
eter. (b) Whenever we let a subset of the M parameters go
to infinity while keeping the remaining parameters finite, we
expect a finite percolation threshold, which depends upon the
finite parameter values. (c) These limiting threshold values, in
general, will differ from the corresponding continuum results.

We can perform the excluded volume theory calculations
for other shapes in Fig. 1(c). For diamonds of size k [see
Fig. 1(c)], the area of the diamond is V = ( k2+1

2 ), where k
must be odd. If we choose the central site of the diamond
as the index site, the shape of the excluded area will be a
bigger diamond of size (2k + 1). We can calculate the areas
and excluded areas of isosceles triangles, and hexagons in a
similar way. If we choose the central site of the base of the
isosceles triangle as the index site, the shape of the excluded
area will be a hexagon of dimensions (2k + 1) and (k + 1)/2.
For the hexagon, the shape of the excluded area will also be a
hexagon of dimensions (2k1 + 1) and (2k2 + 1).

In Table I, we provide a summary of the expressions for the
percolation thresholds obtained for a few different shapes us-
ing the discrete version of excluded volume theory. Wherever

possible, we have included numerical values for the limiting
cases, where Bc values for different shapes are taken from
existing studies of the continuum percolation problem of the
corresponding shapes. Note that the diamond shape on an
upright square lattice is equivalent to a square shape on a
diagonal square lattice [56]. Hence we expect that the Bc

values for the two are the same. In fact, Gouker and Family
[57] have studied the percolation of diamond shapes on a
square lattice. In Table II, we compare the theoretical predic-
tions with the simulation values given in [57]. We can see an
excellent agreement between the two at larger diamond sizes.

The following section presents simulation results for
aligned and overlapping rectangles that closely agree with
the predicted behavior. In particular, the agreement between
the theory and simulation results seems exact for the limiting
cases.

B. Simulation results

We simulate the model of aligned and overlapping rect-
angles on a two-dimensional square lattice and study its
percolation properties. To construct the model, aligned rect-
angles of size k1 × k2 are distributed uniformly and randomly
on a square lattice of size L × L. The percolation probability
is determined by detecting the presence of a spanning cluster
in the vertical direction using the standard Hoshen-Kopelman
algorithm [58]. Later in Sec. III B 1, we verify that the results
remain unchanged if we consider the horizontal direction for
defining the spanning cluster. For each system size and density
of occupied sites, we generate a number of samples and the
percolation probability is evaluated as the fraction of samples
that are percolating. The number of samples considered varies
between 103 for L � 256 and 102 for higher values of L. Per-
colation probability is plotted against the density of occupied
sites for different system sizes L and, by fitting each curve
with the function 1+erf[φ−φc (L)/�(L)]

2 , we obtain the effective
percolation threshold φc(L) for system size L and width of
the transition region �(L) [59]. We have the linear scaling
relation,

φc(L) = B ∗ �(L) + φc(∞), (11)

where φc(∞) is the percolation threshold in the limit of infi-
nite system size L → ∞ and B is a constant [10]. A typical

TABLE I. Expressions for CCVF φc for various shapes and lattices from discrete excluded volume theory. For obtaining the numerical
values in the last column, the Bc value for a shape is assumed to be that of the continuum percolation problem of the same shape.

Shape Lattice CCVF φc from discrete excluded volume theory Limiting values of φc

Rectangles of size k1 × k2 2D square 1 − exp(−Bc
k1k2

(2k1+1)(2k2+1)−5 ) 1 − exp(−Bc
k2

4k2+2 ) (k1 → ∞, finite k2)

Squares (k1 = k2 = k) 2D square 1 − exp(−Bc
k2

(2k+1)2−5
) 0.6667 (k → ∞), Bc = 4.3953711(5) [27]

Diamonds of linear size k 2D square 1 − exp(−Bc
k2+1

4k(k+1) ) 1 − exp(−Bc/4) (k → ∞)

Triangles (isosceles of base k) 2D square 1 − exp(−Bc
k2+2k+1

2(3k2+6k−1)
) 1 − exp(−Bc/6) (k → ∞)

Hexagon with dimensions
k1 and k2 2D square 1 − exp(−Bc

k1+2k2 (k1−k2−1)
(2k1+1)+2(2k2+1)(2k1−2k2−1)−1 ) 1 − exp(−Bc

k2
4k2+2 ) (k1 → ∞, finite k2)

Cubes (k1 = k2 = k3 = k) 3D cubic 1 − exp(−Bc
k3

(2k−1)3+6(2k−1)2−1
) 0.2773 (k → ∞), Bc = 2.5978(5) [27]

Sticks of length k1 3D cubic 1 − exp(−Bc
k1

5(2k1−1)+1 ) 0.22877 (k1 → ∞), Bc = 2.5978(5) [27]

Parallelograms of size k1 × k2 2D triangular 1 − exp(−Bc
k1k2

(2k1+1)(2k2+1)−3 ) 1 − exp(−Bc
k2

4k2+2 ) (k1 → ∞, finite k2)
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TABLE II. Comparison of discrete excluded volume theory results for diamond shapes on a square lattice with previous simulation results
[57]. pc is the critical number of objects per site and is related to φc = 1 − exp(−ηc ) via the relation pc = 4ηc

z [31]. Interaction range R in [57]
is related to k by k = 2R + 1. z is the coordination number [57].

k φc using the expression in the third row of Table I z pc Simulation results for pc from previous studies [57]

5 0.61416 12 0.3174 0.290 ± 0.005
9 0.63255 40 0.100117 0.105 ± 0.005
13 0.6417 84 0.04888 0.049 ± 0.005
17 0.6470 144 0.028927 0.028 ± 0.005
21 0.6505 220 0.01911 0.019 ± 0.005

example of the plot of percolation probability against the
density of occupied sites for k1 = 3, k2 = 1 rectangles for
different values of L and the corresponding plot of φc(L)
against �(L) is shown in Fig. 5. Y intercept of the latter
plot gives the percolation threshold in the L → ∞ limit. The
percolation threshold is determined for rectangles of widths
k2 = 1, 2, and 3 for increasing values of k1 and is shown in
Table III along with the values based on the lattice version of
excluded volume theory discussed in Sec. III A. For the value
of Bc, we take that obtained from continuum simulations of
aligned squares or rectangles [Bc = 4.3953711(5) [27]] to get
numerical estimates of percolation thresholds.

Plots of the percolation threshold against k1 for rectangles
of width k2 = 1, 2, and 3 are shown in Fig. 6, confirming
the trends predicted by the theory. As predicted by the ex-
cluded volume theory, for k2 = 1, the CCVF is monotonically
decreasing, whereas for k2 = 3, it is monotonically increasing
with k1. For k2 = 2, critical density is nearly a constant. Per-
colation thresholds for the limiting case of k1 → ∞ are also
shown in the figure.

1. Isotropy of percolation threshold

When considering k1 × k2 rectangles on the square lat-
tice, we fixed k2 and varied k1. For k1 > k2, this means
that there is a preferred direction for the percolation to hap-
pen in finite systems; i.e., along the horizontal direction. In
the last section, we defined the system as percolating when

there is a spanning cluster in a direction perpendicular to
the direction of alignment. A natural question is whether the
percolation point is different if we define a configuration as
percolating when there is a spanning cluster in the direction of
alignment. In continuum percolation models, previous studies
suggest isotropy of the percolation threshold even for highly
anisotropic systems like rectangles with large aspect ratios
[51]. It is found that the effective percolation threshold for
a finite system size in the direction of alignment will al-
ways be smaller compared to that in the orthogonal direction.
However, this difference will decrease with increasing system
size and finally vanish in the infinite system size limit. We
verify that this isotropy of the percolation threshold holds for
aligned rectangles on the square lattice as well. The critical
density of occupied sites evaluated (see Fig. 7) shows that the
percolation threshold is also isotropic in the case of lattices.
Just as in the continuum case, this isotropy may be explained
based on the uniqueness of the spanning cluster in percolation
problems [51].

2. Critical exponents for aligned stick model

Critical exponents are evaluated using finite size scaling
methods [9,10]. If Smax is the size of the largest cluster and S
is the total size of the remaining clusters, we have the scaling
relations,

Smax ∼ Ld f , (12)

S ∼ L
γ

ν , (13)

FIG. 5. (a) Variation of the percolation probability with the density of occupied sites φ for k1 = 3, k2 = 1 rectangles for different system
sizes L. Solid lines are best-fit functions (see text). (b) Variation of the corresponding effective percolation threshold φL

c with the width of the
transition region �(L) along with the best straight-line fit. Y intercept of the graph yields the threshold in the limit of infinite system size.
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TABLE III. Percolation thresholds of aligned and overlapping rectangles of length k1 and width k2 = 1, 2, and 3 on a square lattice
determined from simulations. The corresponding results from the discrete excluded volume theory for k2 = 2 and 3 are also given for
comparison. For k2 = 2, the theory gives a constant value for φk1

c = 0.5848.

Length k1 φk1
c , k2 = 1 φk1

c , k2 = 1 theory φk1
c , k2 = 2 φk1

c , k2 = 3 φk1
c , k2 = 3 theory

1 0.5927(4) 0.6667
2 0.5715(18) 0.5848 0.5837(2)
3 0.5615(1) 0.5614 0.5864(5) 0.5948(6) 0.5930
4 0.5523(9) 0.5503 0.5903(5) 0.5965(4) 0.5972
5 0.5497(19) 0.5438 0.5916(5) 0.597(2) 0.5997
7 0.5422(6) 0.5366 0.5909(26) 0.603(3) 0.6027
9 0.5402(46) 0.5326 0.5933(8) 0.6048(7) 0.6043
11 0.540(1) 0.5302 0.5922(27) 0.605(2) 0.6053
13 0.539(4) 0.5285 0.5950(16) 0.606(2) 0.6061
15 0.538(4) 0.5272 0.592(4) 0.608(2) 0.6066
17 0.536(4) 0.5263 0.593(7) 0.609(2) 0.6070
19 0.529(6) 0.5255 0.5927(41) 0.609(1) 0.6073
21 0.528(7) 0.5249 0.5928(14) 0.6102(1) 0.6076

where d f is the fractal dimension, γ is the exponent corre-
sponding to mean cluster size, and ν is the correlation length
exponent. The plots of Smax against system size L and S
against L for k1 = 3, k2 = 1 are shown in Figs. 8(a) and
8(b), respectively. The slopes of log-log plots give the fractal
dimension d f = 1.90 ± 0.04 and the ratio γ

ν
= 1.77 ± 0.06.

The percolation probability P(φ, L) is expected to scale with
the system size L as

P(φ) = f ((φ − φc)L
1
ν ), (14)

where f is the scaling function. This implies that the curves
of percolation probability for different L when plotted as a
function of (φ − φc)L

1
ν with the correct value for φc and ν will

collapse to a single curve. In Fig. 9(a), we verify that curves
for various system sizes fall on top of each other for 1

ν
= 0.75

and φc = 0.5615.

FIG. 6. Percolation threshold φc vs k1 for rectangles of width
k2 = 1, 2, and 3. Theoretical predictions for the thresholds based
on the discrete excluded volume theory are also shown. The two hor-
izontal lines (dotted for k2 = 1 and dash-dotted for k2 = 3) represent
the thresholds in the limit k1 → ∞ obtained from Eq. (5).

The other critical exponents are evaluated by making use
of the relations

d f = d − β

ν
, (15)

σ = 1

νd f
, (16)

τ = 1 + d

d f
. (17)

We obtain ν ≈ 1.33, β ≈ 0.133, σ ≈ 0.3948, γ ≈ 2.36,
and τ ≈ 2.05. Finally, if Pmax(φ) is the probability of a site
belonging to the largest cluster, it is expected to scale with the

FIG. 7. Percolation threshold versus stick length k1 for two dif-
ferent definitions of percolation. In one case, percolation is defined as
the emergence of a spanning cluster in the vertical direction (perpen-
dicular to the direction of alignment of sticks). In the other scenario,
it is defined as the emergence of a spanning cluster in the horizontal
direction (in the direction of alignment of sticks). Results from the
excluded volume theory and the limiting value of the threshold for
sticks of infinite length are also shown.
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FIG. 8. (a) Variation of the size of the largest cluster Smax with system size L along with the best straight line fit for k1 = 3, k2 = 1. The
slope of the log-log plot gives the fractal dimension df . (b) Variation of the size of the finite clusters S with system size L along with the best
straight line fit. The slope of the log-log plot gives the ratio of critical exponents γ

ν
.

system size L as

Pmax(φ) = L− β

ν F ((φ − φc)L
1
ν ), (18)

where F is the scaling function and β is the order parameter
exponent. When PmaxL

β

ν is plotted against φ for different L,
all curves will pass through a single point, which is at φ = φc

as verified in Fig. 9(b).
The obtained values of various critical exponents align

with that of the standard two-dimensional percolation prob-
lem which are β = 5/36, γ = 43/18, ν = 4/3, σ = 36/91,
τ = 187/91, and d f = 91/48 [9]. Similar values are obtained
for other values of k1 and k2 as well. Hence we can conclude
that the percolation problem of aligned overlapping rectangles
belongs to the standard percolation universality class. Note
that the above results were obtained only for a limited range
of k1 and k2 values. There remains the possibility that the value
of the critical exponents could be different for higher values
of k1 and k2, especially in the limiting cases of k1 → ∞ with
finite k2.

3. Comparison with rectangles of mixed orientation

We consider the percolation of overlapping sticks having
both orientations (rectangles with k1 = 1 or k2 = 1 in our
notation) here. The problem has been considered earlier in
[30]. To study the percolation as we vary the relative fraction
of sticks having horizontal and vertical orientations, we can
define the parameter [19]

s = |(nv − nh)|
|(nv + nh)| , (19)

where nv and nh represent the fraction of sticks that are ver-
tically and horizontally oriented, respectively (see Fig. 10).
Thus s = 1 corresponds to the fully aligned case and s = 0
corresponds to the isotropic case where the average fraction
of sticks that are vertically and horizontally oriented is equal.
The s = 0 case has been considered earlier in [30]. The val-
ues of the percolation threshold obtained for a few different
values of the parameter s are given in Table IV along with
the earlier results for the s = 0 case. We can see that the per-
colation threshold increases with an increase in the degree of

FIG. 9. (a) Plots of percolation probability against (φ − φc )L
1
ν for k1 = 3, k2 = 1 with 1

ν
= 0.75 and φc = 0.5615. (b) Plot of PmaxLβ/ν vs

φ for k1 = 3 and k2 = 1 for β

ν
= 0.1, 1

ν
= 0.75.
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TABLE IV. Effect of alignment in dimer (k = 2 stick), trimer (k = 3 stick), and k = 4 stick percolation. The critical density of occupied
sites φc for different values of s is shown. The values of φc for the special case of s = 0 from [30] are also given. Note that, in [30], the
thresholds are given in terms of pc, which is the critical number of objects per site. φc is related to pc via the relation φc = 1 − (1 − pc )2k .
Theoretical values of φc calculated from the s-dependent excluded volume theory relation (see Appendix B) assuming Bc ≈ 4.3953711 is given
for comparison.

s Length of the sticks φc φc for s = 0 from [30] φc from theory (see Appendix B)

s = 0 2 0.5483(2) 0.54691 0.5503
s = 0.66 2 0.55885(14) 0.5651
s = 1 2 0.5715(18) 0.5848
s = 0 3 0.50004(64) 0.49898 0.5097
s = 0.33 3 0.5325(38) 0.5150
s = 1 3 0.5615(1) 0.5614
s = 0 4 0.4562(7) 0.45761 0.4785
s = 0.33 4 0.4665(2) 0.4855
s = 0.66 4 0.4944(17) 0.5081
s = 1 4 0.5523(9) 0.5503

alignment, which is also seen in earlier results for nonoverlap-
ping sticks [19].

We can derive an s-dependent expression for the excluded
area as well as φc for overlapping rectangles of mixed ori-
entations on a square lattice. Details of the derivation and
results are given in Appendix B. The results confirm that
the interesting behavior observed for the thresholds for fully
aligned rectangles is unique and we do not expect it for values
of s different from 1 (fully aligned case). For s < 1, for large
k1, the percolation threshold is found to be a monotonically
decreasing function of k1. Theoretical values obtained from
the s-dependent expression for φc in Appendix B are also
given in Table IV for comparison. Even with the low values
of length considered, the deviation from simulation results is
typically a few percent, with the best accuracy seen for the
fully aligned case (s = 1) where the deviation is typically less
than 1%.

4. Discrete to continuum transition

Models of extended shapes on lattices interpolate between
discrete and continuum percolation models. With symmetric
shapes like squares, letting the size of the squares go to
infinity—which is equivalent to letting the lattice spacing go

FIG. 10. (a) Horizontal and vertical dimers on a 50 × 50 square
lattice with the density of occupied sites 0.5. s ≈ 0. (b) Horizontal
and vertical dimers on a 50 × 50 square lattice with s ≈ 0.66. The
gray color corresponds to the dimers.

to zero, for an infinite lattice—yields the continuum limit [28].
The convergence of discrete hypercubes and hyperspheres
to corresponding continuum models and the universality of
the convergence rate is discussed in [28,29]. However, with
anisotropic shapes like rectangles considered here, letting the
length of one side of the shape go to infinity while keeping
the other side fixed—similar to letting the lattice spacing go
to zero only along one direction—does not seem to corre-
spond to any usual continuum percolation problem. Note that
the continuum percolation threshold for aligned rectangles
of all aspect ratios is the same as that of aligned squares
[51]. However, as we saw, no corresponding result exists
for lattices. Just to emphasize the difference in values, we
find the limiting value of a 2D stick percolation model to
be φ∞

c ≈ 0.519, whereas the continuum percolation threshold
for aligned rectangles is φc ≈ 0.667 [51]. Similarly, in three
dimensions, we find the limiting value of the 3D stick model to
be φc ≈ 0.229, whereas the continuum percolation threshold
value for overlapping cubes is φc ≈ 0.277 [13].

The appropriate “continuum” analog of the case where we
let the length of the rectangles on the lattice go to infinity
while keeping its width finite can be seen as a semicontinuum
system in which rectangles are dropped into parallel lanes.
The rectangles can be placed anywhere in each lane (hori-
zontal direction), but they cannot straddle between the lanes.
A schematic representation of the system for two different
widths of the rectangles is shown in Fig. 11.

IV. CONCLUSIONS

Percolation of overlapping and extended shapes on lattices
that interpolate between discrete and continuum models is
a topic of recent interest. This work investigates the per-
colation of aligned, overlapping, and anisotropic shapes on
lattices. First, we use a lattice version of excluded volume
theory to show that shape anisotropy leads to some intrigu-
ing consequences regarding the percolation behavior. As a
quintessential example of an anisotropic object, we inves-
tigate the case of aligned and overlapping rectangles on a
square lattice in detail and show that, for rectangles of width
unity (sticks), the percolation threshold is a monotonically
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FIG. 11. Schematic representation of a percolation model of
aligned, overlapping rectangles on a 2D semicontinuum geometry.
The darker color corresponds to the rectangles. Rectangles whose
widths are restricted to integer multiples of lane width are dropped
into lanes with a specific number density. Two rectangles are consid-
ered connected if they overlap or share an edge. (a) Rectangles with
width k2 = 1. (b) Rectangles with width k2 = 2.

decreasing function of the stick length. In contrast, for rect-
angles of width greater than two, the percolation threshold is
a monotonically increasing function of the length. The per-
colation threshold is independent of its length for rectangles
of width two. This independence of threshold on the length
of a side holds for d-dimensional hypercubiods as well for
specific integer values for the lengths of the remaining sides.
The limiting case of the length of the rectangles going to
infinity shows some remarkable behavior. It is found that
the limiting value depends upon the rectangle’s width. This
is in stark contrast to the continuum percolation of aligned
overlapping rectangles for which the percolation threshold is
independent of the aspect ratio. The general notion that con-
tinuum percolation of aligned objects can be considered the
limiting case of a corresponding discrete model [28] is only
valid for symmetric shapes. Our research extends beyond rect-
angles, demonstrating that similar results hold for anisotropic
objects on various lattices and dimensions and giving trends
and numerical estimates of percolation thresholds for several
such shapes and lattices.

We present simulation results for the percolation thresh-
olds, which verify the predictions of the excluded volume
theory. The percolation thresholds from simulations show that
the lattice-excluded volume theory gives very good numeri-
cal estimates and its accuracy increases with the size of the
extended shapes. We also determine the critical exponents for
the model using simulations, which confirm that the model
with finite rectangles belongs to the same universality class as
the usual lattice percolation.

In addition, we verify the isotropy of the percolation
threshold by obtaining the thresholds for percolation transi-
tion with the spanning cluster considered in the direction of
alignment and the orthogonal direction. We also compare our
results with models where rectangles of mixed orientation are
allowed and models where nonoverlapping sticks with varying
degrees of anisotropy are considered. Our simulation results
show that alignment increases the percolation threshold even
for overlapping shapes.

The findings of this study contribute to a deeper un-
derstanding of percolation behavior in lattice systems with

overlapping shapes and shed light on the intricate interplay
between discrete and continuum models. Our results show
that the lattice version of the excluded volume theory is re-
markably accurate in describing the behavior of percolation
of aligned and overlapping shapes on lattices qualitatively and
quantitatively.

Our study opens up many avenues for further research. In
this work, for obtaining the numerical results for the thresh-
olds using the discrete excluded volume theory, we used the
value of Bc—the average number of connections an object
has at the critical point—from continuum percolation. This
essentially assumes that the connectivity properties of the
lattice system of overlapping shapes are the same as that of
the corresponding continuum system at the critical point. In
other words, we are assuming that the connectivity network
formed at critical points by discrete systems like the one we
considered here is similar to the continuum critical network of
similar shapes. It is desirable to obtain the value of Bc based
on considerations of the lattice system itself. Methods like the
ones discussed in [50,60–63] may provide alternate ways of
looking into this problem.

Other factors like polydispersity of anisotropic shapes
will affect the critical behavior of the percolation problem
discussed [18]. Especially the effect of unbounded size dis-
tributions on the critical behavior is a problem of interest
[64,65]. Another potential area for further investigation is the
relation to extended neighborhood percolation models [31].
The “continuum” limiting case of the lattice percolation mod-
els considered here can be seen as percolation models on
semicontinuum geometries (Fig. 11) where basic percolating
units can occupy only positions in lanes, which is another
interesting problem worth investigating. This semicontinuum
model of percolation may have relevance in describing ran-
dom geometry of materials with a layered structure, such as
layered rocks [66,67]. A detailed description and analysis of
the model will be attempted in future work.
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APPENDIX A: INDEPENDENCE OF PERCOLATION
THRESHOLD φc ON SIDELENGTH k1 FOR A PARTICULAR

SET OF INTEGER VALUES OF SIDELENGTHS
k2, k3, k4, . . . , kd FOR ALIGNED HYPERCUBOIDS ON A

d-DIMENSIONAL HYPERCUBIC LATTICE

Consider hypercuboids with sidelengths k1, k2, k3, . . . , kd

on a d-dimensional hypercubic lattice. Hypercuboids are ran-
domly distributed and aligned along the direction of k1. In
Sec. III A, we showed that, in three dimensions, there is a
unique set of integer values of k2 and k3, which will make the
percolation threshold independent of k1. Here, we generalize
this result to d dimensions. We show that there is always a set
of integer values of k2, k3, . . . , kd such that the threshold is
independent of k1.
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TABLE V. Integer solutions ai and corresponding ki values obtained for various dimensions d using Eq. (A6).

Dimension d Values of a2, a3, . . . , ad Set of integer solutions k2, k3, . . . , kd

2 3 2
3 3, 7 2, 4
4 3, 7, 43 2, 4, 22
5 3, 7, 43, 1807 2, 4, 22, 904
6 3, 7, 43, 1807, 3263443 2, 4, 22, 904, 1631722

Considering (d − 1) dimensions, assume that we have a set
of integers k2, k3, . . . , kd−1 which makes φc independent of k1.
Let ai = (2ki − 1) for i = 1, 2, . . . , (d − 1). Then generaliz-
ing Eq. (7), the expression for the excluded volume of aligned
hypercuboids in (d − 1) dimensions can be written as

Vex = a1A1 + 2[a1Ad−1 + a1Ad−2 + a1Ad−3 + · · ·
+ · · · a1A4 + a1A3 + a1A2 + A1] − 1, (A1)

where

A1 =
(d−1)∏
i=2

ai

and

Aj =
(d−1)∏

i=2,i �= j

ai.

For φc to be independent of k1, the ratio V
Vex

should not
contain any k1 in it, which means that Vex has to be a multiple
of k1. For this to happen, for a particular choice of integers
k2, k3, . . . , kd−1, we will have an expression of the form Vex =
B1a1 + B2, where B1 and B2 are constants for a particular
choice of a2, a3, . . . , ad−1. Now Vex will be a multiple of k1

if and only if B1 = B2. Identifying B1 and B2 from Eq. (A1)
leads to the condition

2[Ad−1 + Ad−2 + Ad−3 + · · · + A4 + A3 + A2] = A1 − 1.

(A2)

Now assume that Eq. (A2) is satisfied in (d − 1) dimen-
sions for a particular set of integer values a1, a2, . . . , ad−1.
Using these values in the d-dimensional problem, we can
write the expression for Vex in d dimensions as

Vex = a1A1ad + 2[a1A1 + a1Ad−1ad + a1Ad−2ad + · · ·
+ a1A4ad + a1A3ad + a1A2ad + A1ad ] − 1, (A3)

where ad is still to be determined.
For φc to be independent of k1, we now have the condition

2[A1 + Ad−1ad + Ad−2ad + · · · + A4ad + A3ad + A2ad ]

= A1ad − 1. (A4)

From this, we get

ad = −(1 + 2A1)

[2(Ad−1 + Ad−2 + Ad−3 + · · · + A3 + A2) − A1]
.

(A5)

Now using Eq. (A2) in this, we get

ad = 1 + 2A1. (A6)

Since A1 is a product of integers, ad is always an odd pos-
itive integer. Since Eq. (A2) is satisfied in three dimensions,
we can conclude that there is always a set of integer values
for k2, k3, . . . , kd , which will make the percolation threshold
of hypercuboids on a d-dimensional cubic lattice independent
of k1. Solutions obtained for a few dimensions are listed in
Table V.

APPENDIX B: EXCLUDED VOLUME RESULTS FOR
MULTIORIENTED RECTANGLES ON A SQUARE LATTICE

Consider a square lattice of size L × L. N units of perco-
lating objects are placed randomly. Each unit of percolating
objects is a rectangle with sidelengths k1 and k2. Assume that
k1 > k2. Assume that out of total N , nv rectangles are placed
vertically (i.e., side with size k1 in the Y direction) and nH are
placed horizontally (i.e, side with size k1 in the X direction).
As in Sec. III B 3, we define a parameter s = |nv−nh|

nv+nh
. Alterna-

tively, if we define ph as the probability of a rectangle being
placed horizontally and pv as the probability of a rectangle
being placed vertically,

ph = nh/N, (B1)

pv = nv/N = 1 − ph. (B2)

Then, parameter s can be written as

s = |pv − ph|. (B3)

We can write the average excluded volume [68] of our
system of multioriented rectangles as

Vex = pv pvV
vv

ex + ph phV
hh

ex + pv phV vh
ex + ph pvV

hv
ex , (B4)

where V vv
ex is the excluded volume of a vertical rectangle to

another vertical rectangle (see Sec. III A for the definition of
connectedness between shapes), V hh

ex is the excluded volume
of a horizontal rectangle to another horizontal rectangle, and
V hv

ex = V vh
ex is the excluded volume of a vertical rectangle to a

horizontal one.
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For multioriented rectangles of length k1 and width k2, we
have

V vv
ex = (2k1 + 1)(2k2 + 1) − 5,

V hh
ex = (2k1 + 1)(2k2 + 1) − 5,

V vh
ex = (k1 + k2 + 1)2 − 4,

V hv
ex = (k1 + k2 + 1)2 − 4.

Using these in (B4), we get

Vex =
(

1 + s

2

)2

[(2k1 + 1)(2k2 + 1) − 5]

+
(

1 − s

2

)2

[(2k1 + 1)(2k2 + 1) − 5]

+ 1 − s2

4
[(k1 + k2 + 1)2 − 4]

+ 1 − s2

4
[(k1 + k2 + 1)2 − 4], (B5)

which can be used in the expression for φc,

φc = 1 − exp

(
−Bc

V

Vex(s)

)
. (B6)

For s = 1, we recover the results described in Sec. III A. For
all values of s < 1, from the above expression, we can easily
verify that φc decreases monotonically for large k1. The ratio
V

Vex
will depend inversely on k1 for large k1 and k1 � k2. Thus

the peculiar behavior observed for the s = 1 (fully aligned)
case is unique.
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