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Diffusion with a broad class of stochastic diffusion coefficients
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In many physical or biological systems, diffusion can be described by Brownian motions with stochastic
diffusion coefficients (DCs). In the present study, we investigate properties of the diffusion with a broad class
of stochastic DCs with an approach that is different from subordination. We show that for a finite time, the
propagator is non-Gaussian and heavy tailed. This means that when the mean square displacements are the
same, for a finite time, some of the diffusing particles with stochastic DCs diffuse farther than the particles
with deterministic DCs or exhibiting a fractional Brownian motion. We also show that when a stochastic DC is
ergodic, the propagator converges to a Gaussian distribution in the long time limit. The speed of convergence is
determined by the autocovariance function of the DC.
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I. INTRODUCTION

Diffusion in physical systems or in biological systems is
often described by Brownian motions with stochastic diffu-
sion coefficients (DCs). For example, ligands often fluctuate
between different conformational states. In the models of
ligand diffusion, different DCs are given for the different
states [1–3]. An experimental observation of subdiffusion of
a certain receptor on a cell membrane is also explained by a
model of a Brownian motion with a stochastic DC [4]. In this
model, the stochasticity of the DC comes from the dynamic
heterogeneity of the cell membrane [4].

It has been shown that for a specific class and specific mod-
els of Brownian motions with stochastic DCs, the propagators
are heavy tailed for short times [5–7]. When a DC is described
by the square of an Ornstein-Uhlenbeck process (minimal
diffusing-diffusivity model), the propagator is a Laplace-like
distribution with exponential tails for short times [5,6]. When
the DC fluctuates between two states and the distributions
of sojourn time in each state are given by power-law distri-
butions (two-state model with power-law distributions), the
propagator is heavy tailed for short times [7]. However, unlike
continuous time random walk (CTRW) where the exponential
decay is shown to be a common property of propagators [8],
it remains unknown whether a heavy-tailed propagator is a
common property of Brownian motions with stochastic DCs.

There is another open question about diffusion with
stochastic DCs. For specific models of stochastic DCs, the-
oretical studies have shown that at long times, heavy-tailed
propagators cross over to Gaussian propagators. When a DC
follows a certain random walk, the propagator is exponential
at short times and Gaussian at long times [9]. For the minimal
diffusing-diffusivity model, it has been shown that at times
longer than some correlation time of the DC, a crossover from
a heavy-tailed propagator to a Gaussian propagator occurs [5].
However, as with a property of propagators for short times, it
remains unknown for how broad a class of stochastic DCs the
crossover occurs.

In the present study, we investigate properties of the
diffusion with a broad class of stochastic DCs, with a par-
ticular focus on the propagator. In Sec. II, we describe an
overdamped Langevin equation with a stochastic DC. The
diffusion with a stochastic DC can be described by an over-
damped Langevin equation with a stochastic DC. In Sec. III,
we present an approach to find an expression for the propa-
gator. We derive the diffusion equation corresponding to the
overdamped Langevin equation with a stochastic DC and then
derive an expression for the propagator by solving the diffu-
sion equation. In Sec. IV, we reveal properties of the diffusion
through properties of the propagator. In Sec. V, we discuss the
relation of our approach to other approaches and compare our
results with those of other models.

II. MODEL

The overdamped Langevin equation with a stochastic DC
is given by

dx(t )

dt
=

√
2D(t )ξ(t ), (1)

where x(t ) is the n-dimensional position of the diffusing
particle and x(t ) = [x1(t ), x2(t ), . . . , xn(t )]T . In Eq. (1),
D(t ) is a stochastic process and represents a DC. In
Eq. (1), ξ(t ) is a vector of Gaussian white noises
and ξ(t ) = [ξ1(t ), ξ2(t ), . . . , ξn(t )]T : 〈ξ(t )〉 = 0 and
〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′) (i, j = 1, 2, . . . , n). We assume
that D(t ) and ξi(t ) are statistically independent.

III. DIFFUSION EQUATION

A. Derivation

Here, we derive the diffusion equation corresponding to
Eq. (1). The stochastic integral equation corresponding to
Eq. (1) is given by

x(t ) = x0 +
∫ t

0

√
2D(t ′)dB(t ′), (2)
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where x0 = x(0), B(t ) is a vector of Wiener pro-
cesses, and B(t ) = [B1(t ), B2(t ), . . . , Bn(t )]T : 〈dB(t )〉 = 0
and 〈dBi(t )dBj (t )〉 = δi jdt .

Equation (1) is just a formal equation. If D(t ) is determin-
istic and

∫ t
0 D(t ′)dt ′ < ∞, the integral on the right-hand side

of Eq. (2) is the Wiener integral. If D(t ) is a stochastic process
defined on the measurable space on which B(t ) is defined, the
integral on the right-hand side of Eq. (2) can be the stochastic
integral. However, in this study, D(t ) is neither. Thus, for fur-
ther calculations, we need to give an interpretation of Eq. (1).

One natural interpretation of Eq. (1) is given by the equa-
tions

x(t ; ω) = x0 +
∫ t

0

√
2D(t ′, ω)dB(t ′) (ω ∈ �), (3)∫ t

0
D(t ′, ω)dt ′ < ∞, (4)

where � represents the sample space for D(t ), ω represents a
sample, D(t, ω) represents a sample path of D(t ), and x(t ; ω)
is the position of the diffusing particle for a given sample path
D(t, ω). Each sample path of D(t ) is deterministic. Thus, the
integral in the right-hand side of Eq. (3) is the Wiener integral.
The condition given by Eq. (4) is natural because 0 � D(t ) <

∞.
The diffusion equation corresponding to Eq. (3) is given by

[∂t − D(t ; ω)∇2]G(x, t, x0; ω) = δ(x − x0)δ(t ) (ω ∈ �),
(5)

where G(x, t, x0; ω) represents the propagator for a given
sample path D(t ; ω).

B. Propagator

Here, we solve Eq. (5) and derive the propagator. Under the
natural boundary condition, the solution of Eq. (5) is given by
[10]

G(x, t, x0; ω) = 1

[4πS(t ; ω)t]n/2 exp

[
−|x − x0|2

4S(t ; ω)t

]
, (6)

where S(t ; ω) represents the time average of D(t ; ω) and is
given by

S(t ; ω) = 1

t

∫ t

0
D(t ′; ω)dt ′. (7)

The propagator G(x, t, x0; ω) depends on ω only through
S(t ; ω). Thus, the propagator for the diffusion described by
Eq. (1) G(x, t, x0) is given by

G(x, t, x0) =
∫ ∞

0

p(S, t )

(4πSt )n/2 exp

(
−|x − x0|2

4St

)
dS, (8)

where p(S, t ) is the probability distribution of the time average
of the DC (TADC), S(t ).

From Eq. (8), we can see that the propagator is uni-
modal and the peak is at x = x0. In addition, when 0 < D(t ),
the propagator is differentiable at x = x0. When D(t ) can
take the value of zero, the propagator can be nondifferentiable
at x = x0 if t is smaller than the time that characterizes the
change of D(t ) (see Ref. [11] for an example). However, even

if D(t ) can take the value of zero, the propagator is differen-
tiable at x = x0 if t is larger than the time that characterizes
the change of D(t ). The differentiability at the peak means that
the peak is not sharp. The smoothness of the peak is important
in comparing with other diffusion models (see Sec. V).

IV. PROPERTIES OF THE DIFFUSION

A. General theory

Here, we reveal properties of the diffusion with a broad
class of stochastic DCs through properties of the propagator.
From Eq. (8), we can derive expressions for the moments of
all orders. From Eq. (8), we have∫

x
exp(λ|δx|2)G(x, t, x0)dx =

∫ ∞

0

p(S, t )

(1 − 4Stλ)n/2
dS, (9)

where δx represents the displacement and is given by δx =
x − x0, and

∫
x dx = ∫ ∞

−∞ · · · ∫ ∞
−∞ dx1 · · · dxn. For the left-

hand side of Eq. (9), substituting λ = 0 into the kth-order
derivative of λ leads to

dk

dλk

∫
x

exp(λ|δx|2)G(x, t, x0)dx

∣∣∣∣
λ=0

= 〈|δx(t )|2k〉, (10)

where k is a positive integer. In this study, the ensemble av-
erage 〈 〉 is taken over the ensemble that is appropriate for the
stochastic variable to be averaged. For example, in Eq. (10),
〈|δx(t )|2k〉 is given by

〈|δx(t )|2k〉 =
∫

x
|δx|2kG(x, t, x0)dx. (11)

For the right-hand side of Eq. (9), substituting λ = 0 into the
kth-order derivative of λ leads to

dk

dλk

∫ ∞

0

p(S, t )

(1 − 4Stλ)n/2
dS

∣∣∣∣
λ=0

= (2t )kn(n + 2) · · · (n + 2k − 2)〈Sk (t )〉. (12)

From Eqs. (9), (10), and (12), we obtain

〈|δx(t )|2k〉 = (2t )kn(n + 2) · · · (n + 2k − 2)〈Sk (t )〉. (13)

In addition, from Eq. (8), we have

〈|δx(t )|2k−1〉 = 0. (14)

From Eq. (13), we have

〈|δx(t )|2〉 = 2nt〈S(t )〉. (15)

This equation has already been derived for a broad class of
stochastic DCs using the Langevin formalism (Eq. (24) in
Ref. [7]).

From Eq. (15), we can see that the mean square displace-
ment (MSD) 〈|δx(t )|2〉 does not reflect fluctuations in DCs.
From Eq. (8), we can see that for a finite time, the propagator
is non-Gaussian if a DC is stochastic. This suggests that the
non-Gaussian parameter reflects fluctuations in a DC. The
non-Gaussian parameter [7,12,13] A(t ) is given by

A(t ) = 〈[δxT (t )	−1(t )δx(t )]2〉
n(n + 2)

− 1, (16)
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where 	(t ) represents the variance-covariance matrix. When
the propagator is Gaussian, A(t ) = 0. From Eq. (13), we have

	(t ) = 2t〈S(t )〉In, (17)

where In is the nth-order identity matrix. From Eqs. (15) and
(17), we obtain

	(t ) = 〈|δx(t )|2〉
n

In. (18)

Thus, we have

A(t ) = n〈|δx(t )|4〉
(n + 2)〈|δx(t )|2〉2

− 1. (19)

On the other hand, from Eq. (13), we can obtain the variance
of the TADC,

〈[S(t ) − 〈S(t )〉]2〉 = 〈S2(t )〉 − 〈S(t )〉2

= 〈|δx(t )|4〉
4t2n(n + 2)

− 〈S(t )〉2. (20)

From Eqs. (15) and (20), we have

〈[S(t ) − 〈S(t )〉]2〉
〈S(t )〉2 = 〈|δx(t )|4〉

4t2n(n + 2)〈S(t )〉2 − 1

= n〈|δx(t )|4〉
(n + 2)〈|δx(t )|2〉2

− 1. (21)

Thus, from Eqs. (19) and (21), we obtain

A(t ) = 〈[S(t ) − 〈S(t )〉]2〉
〈S(t )〉2 . (22)

From this equation, we can see that the non-Gaussian param-
eter is equal to the square of the coefficient of variation of the
TADC.

When t is sufficiently smaller than the time that char-
acterizes the change in D(t ), from Eq. (7), we have an
approximation,

S(ω) ≈ D(0; ω). (23)

Thus, for sufficiently small t , we have

A(t ) ≈ 〈[D(0) − 〈D(0)〉]2〉
〈D(0)〉2 . (24)

Here, using Eq. (22), we show that for a finite time, the
propagator is heavy tailed relative to a Gaussian distribution
when a DC is stochastic. From Eq. (22), we can see that for
a finite time, the non-Gaussian parameter is positive when a
DC is stochastic. The non-Gaussian parameter is essentially
equivalent to the kurtosis of the propagator. The kurtosis is a
measure of whether a distribution is heavy tailed or light tailed
relative to a Gaussian distribution. The kurtosis β(t ) and the
non-Gaussian parameter have the relation (for the kurtosis, see
[14])

β(t ) = n(n + 2)[A(t ) + 1]. (25)

From this equation, for a finite time, we have

β(t ) > n(n + 2), (26)

because A(t ) > 0 for a finite time. The kurtosis is equal to
n(n + 2) for a Gaussian distribution. Thus, from Eq. (26),

we can see that for a finite time, the propagator is heavy
tailed relative to a Gaussian distribution. This means that
when the MSDs are the same, some of the diffusing particles
with stochastic DCs diffuse farther than the particles with
deterministic DCs for a finite time. Note that from Eq. (8),
the propagators are Gaussian for deterministic DCs.

From Eq. (6), we have

〈|δx(t ; ω)|2〉 = 2ntS(t ; ω). (27)

From this equation, we can see that the MSD is a stochastic
variable. From Eqs. (22) and (25), we can also see that even if
the values of 〈S(t )〉 are equal, the stochastic process D(t ) with
the larger variance of the TADC gives the larger value of the
kurtosis. This is natural because a large variance in a TADC
leads to a large variance in an MSD and thus some particles
diffuse farther.

Variation in a TADC comes from fluctuations in a DC.
What properties of a DC lead to larger TADC variance? From
Eq. (7), we have

〈[S(t ) − 〈S(t )〉]2〉 = 1

t2

∫ t

0

∫ t

0
C(t ′, t ′′)dt ′dt ′′, (28)

where C(t ′, t ′′) represents the autocovariance function of D(t )
and is given by

C(t ′, t ′′) = 〈δD(t ′)δD(t ′′)〉. (29)

In this equation, δD(t ) is given by δD(t ) = D(t ) − 〈D(t )〉.
From Eq. (28), we can see that the larger the variance of D(t )
and the longer the correlation lasts, the larger the variance of
a TADC.

B. Normal diffusion

When 〈D(t )〉 is a constant, from Eq. (15), we have

〈|δx(t )|2〉 = 2nμt, (30)

where μ = 〈D(t )〉. The diffusion is normal.
When D(t ) is a stationary process, 〈D(t )〉 is a constant.

Thus, when D(t ) is a stationary process, the diffusion is nor-
mal. When D(t ) is a stationary process, it can be seen more
clearly that the variance of the DC plays an important role in
determining the magnitude of the fluctuation of TADC and, in
turn, the value of A(t ). When D(t ) is a stationary process, we
can find the upper limit of A(t ). From Eq. (22), when D(t ) is
a stationary process, we have

A(t ) = 〈[S(t ) − μ]2〉
μ2

. (31)

In addition, we have∫ t

0

∫ t

0
C(t ′, t ′′)dt ′dt ′′ �

∫ t

0

∫ t

0
σ 2dt ′dt ′′ = σ 2t2, (32)

where σ represents the standard deviation of D(t ) and is given
by σ =

√
〈[D(t ) − μ]2〉. Thus, from Eqs. (28) and (31), we

have

A(t ) �
(

σ

μ

)2

. (33)
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From this equation, we can see that when D(t ) is a stationary
process, A(t ) is less than or equal to the square of the coeffi-
cient of variation of D(t ). In addition, for a sufficiently small
t , we have

A(t ) ≈
(

σ

μ

)2

. (34)

When D(t ) is ergodic, limt→∞ S(t ) = μ. Thus, from
Eq. (8), when t → ∞, we have

G(x, t, x0) ∼ 1

(4πμt )n/2 exp

(
−|x − x0|2

4μt

)
. (35)

In addition, from Eq. (31), the non-Gaussian parameter A(t )
converges to zero.

Conversely, if we have Eq. (35) in the long time limit,
D(t ) is ergodic. When Eq. (35) holds, from Eq. (8) we have
limt→∞ p(S, t ) = δ(S − μ). Thus, we have limt→∞ S(t ) = μ.

In general, even if limt→∞ A(t ) = 0, it does not neces-
sarily mean that the propagator converges to a Gaussian
distribution. However, for stationary stochastic DCs, the con-
vergence of the non-Gaussian parameter to zero means that
the propagator converges to a Gaussian distribution. From
Eq. (31), when limt→∞ A(t ) = 0, we have limt→∞ S(t ) = μ.
When limt→∞ S(t ) = μ, limt→∞ p(S, t ) = δ(S − μ). Thus,
from Eq. (8), we have Eq. (35).

C. Anomalous diffusion

As shown in the previous section (Sec. IV B), when D(t ) is
a stationary process, the diffusion is normal. Thus, anomalous
diffusion can occur only when D(t ) is a nonstationary process.
In particular, it is necessary that the process is a nonstationary
process in which the ensemble average of the DC is time
dependent.

Here, we assume that the ensemble average of the DC is
given by

〈D(t )〉 = αDct
α−1 (0 < α < 1, 1 < α), (36)

where Dc is a positive constant. From Eq. (36), we have

〈S(t )〉 = Dct
α−1. (37)

Substituting this equation into Eq. (15) leads to

〈|δx(t )|2〉 = 2nDct
α. (38)

Thus, the diffusion is anomalous.
Substituting Eq. (37) into Eq. (22) leads to

A(t ) = 〈[S(t ) − Dctα−1]2〉
D2

ct2(α−1)
(39)

= 〈[Ss(t ) − tα−1]2〉
t2(α−1)

, (40)

where Ss(t ) = 1
t

∫ t
0 D(t ′)/Dcdt ′.

D. Case study

In this section, we investigate properties of the propagators
for two specific models of D(t ). One is a simple model for
which we can find an analytical expression for A(t ), and the
other is a realistic model. In the simple model, we assume

FIG. 1. Time dependence of the MSD. The solid line shows
the time dependence estimated from Eq. (45), and the open circles
show the time dependence estimated from simulations. λ+ = 0.5,
λ− = 0.5, D+ = 1, D− = 0.2. Time is normalized by t0 and the DC
is normalized by D+.

that D(t ) is described by a two-state Markov process. The
realistic model is a model of diffusion of a molecule in cell
membranes. The simple model shows normal diffusion, while
the realistic model shows anomalous diffusion. For simplicity,
the dimension is assumed to be one.

1. Two-state Markov model for D(t )

Here, we assume that D(t ) is described by a two-state
Markov process. We also assume that the process is stationary.
We label one state + and the other state −. The DC is equal
to D+ at the + state and is equal to D− at the − state. The
distribution of sojourn time in each state is given by

ψ+(τ ) = λ−eλ−τ , (41)

ψ−(τ ) = λ+eλ+τ , (42)

where ψ+(τ ) and ψ−(τ ) are the distributions of sojourn time
in the + state and the − state, respectively. In Eqs. (41) and
(42), λ− represents the transition probability from the + state
to the − state and λ+ represents the transition probability from
the − state to the + state. The initial distribution of the DC is
the equilibrium distribution.

For this model, we have

μ = D+λ+ + D−λ−
λ+ + λ−

, (43)

σ 2 = λ+λ−

(
D+ − D−
λ+ + λ−

)2

. (44)

Thus, from Eq. (30), we have

〈|δx(t )|2〉 = 2
D+λ+ + D−λ−

λ+ + λ−
t . (45)

Figure 1 demonstrates an excellent agreement between this
result and the result estimated from simulations (see the Ap-
pendix for the details of the simulations).
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FIG. 2. Time dependence of the non-Gaussian parameter. The
solid line shows the time dependence estimated from Eq. (48), the
open circles show the time dependence estimated from simulations,
and the dashed line shows the upper limit estimated from Eq. (33).

For the model, we can derive an analytical expression for
A(t ). For the model, we have the autocovariance function
C(�t ),

C(�t ) = σ 2e− �t
t0 , (46)

where �t is the time difference, and t0 is the time constant
and is given by t0 = 1/(λ+ + λ−). Substituting Eq. (46) into
Eq. (28) leads to

〈[S(t ) − μ]2〉 = 2σ 2t2
0

(
t
t0

− e− t
t0 − 1

)
t2

. (47)

By substituting this equation and Eq. (43) into Eq. (31), we
have

A(ts) = 2C2
v (ts + e−ts − 1)

t2
s

, (48)

where ts = t/t0, and Cv represents the coefficient of varia-
tion and is given by Cv = σ/μ. Figure 2 shows the time
dependence of A(t ). From this figure, we can see that the
time dependence of the non-Gaussian parameter estimated
from Eq. (48) is in good agreement with that estimated from
simulations. We can also see that for short times, the value
of the non-Gaussian parameter is nearly equal to C2

v , which
is predicted from Eq. (34), but rapidly decreases to around
zero on the timescale of one. This result indicates that on
the timescale of one, a heavy-tailed propagator crosses over
a distribution that is very close to a Gaussian distribution.
Figure 3 shows that this is true. The timescale at which the
crossover occurs is equal to the timescale of the correlation
time of the DC.

2. Subdiffusion in cell membranes

Here, we examine the propagator of the model that de-
scribes subdiffusion of a molecule on living-cell membranes.
The molecule is dendritic cell-specific intercellular adhesion
molecule 3-grabbing nonintegrin (DC-SIGN), which is a re-
ceptor with unique pathogen-recognition capabilities. The

FIG. 3. Propagators at different times. The solid lines show the
propagators estimated from Eq. (8), the open circles show the prop-
agators estimated from simulations, and the dashed lines show the
Gaussian distribution with the variance of one. The propagators are
normalized so that their variances equal one. (a) t = 0.1, (b) t = 1,
(c) t = 10, (d) t = 100.

model explains the experimental data well [4]. The fluctuation
of the DC comes from the dynamic heterogeneity of the cell
membrane.

In the model, the distribution of the DC is given by a �

distribution,

PD(D) = Dζ−1e−D/b

bζ�(ζ )
, (49)

where PD(D) represents the distribution of the DC, �(y) is the
Gamma function, ζ is the shape parameter, and b is the scale
parameter. In addition, the conditional distribution of transit
times τ (the time when a molecule moves with a given D) is

FIG. 4. Time dependence of the ensemble average of the DC.
ζ = 1.16, γ = 1.38, b = 0.12 µm2/s, l = 0.10 µm2γ sγ+1.
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FIG. 5. Time dependence of the MSD. The solid line shows the
time dependence estimated from Eq. (15), the open circles show the
time dependence estimated from simulations, and the dashed line
shows the line with the slope of one.

given by an exponential distribution,

Pτ (τ |D) = Dγ

l
e−τDγ /l , (50)

where γ and l are constants. The initial distribution of the DC
is PD(D). In this model, the DC is a nonstationary process
in which the ensemble average of the DC is time dependent.
Figure 4 shows the time dependence of 〈D(t )〉. From this
figure, we can see that the time dependence of 〈D(t )〉 is
given by Eq. (36) with 0 < α < 1, although the value of α

changes around t = 1 s. This result indicates that diffusion is
anomalous. Figure 5 shows the time dependence of 〈|δx(t )|2〉.
We can see that the time dependence of 〈|δx(t )|2〉 is given
by Eq. (38) with 0 < α < 1, although the value of α changes

FIG. 6. Time dependence of the non-Gaussian parameter. The
solid line shows the time dependence estimated from Eq. (22), the
open circles show the time dependence estimated from simulations,
and the dashed line shows the value for short times estimated from
Eq. (24).

FIG. 7. Propagators at different times. The solid lines show the
propagators estimated from Eq. (8), the open circles show the prop-
agators estimated from simulations, and the dashed lines show the
Gaussian distribution with the variance of one. The propagators are
normalized so that their variances equal one. (a) t = 0.1 s, (b) t = 1 s,
(c) t = 10 s, (d) t = 100 s.

around t = 1 s. Thus, the diffusion is anomalous. From Fig. 5,
we can also see that the time dependence of 〈|δx(t )|2〉 esti-
mated from Eq. (15) is in good agreement with that estimated
from the simulations. Figure 6 shows the time dependence of
A(t ). From this figure, we can see that the time dependence
of the non-Gaussian parameter estimated from Eq. (22) is
in good agreement with that estimated from the simulations.
In addition, for short times, the value of the non-Gaussian
parameter is nearly equal to 1/ζ , which is predicted from
Eq. (24). From Fig. 6, we can also see that as in the two-
state Markov model, the value of the non-Gaussian parameter
rapidly decreases on the timescale of one. However, unlike the
two-state Markov model, the non-Gaussian parameter contin-
ues to decrease slowly after reaching a certain positive value.
This result indicates that the tails of the propagator become
lighter on the timescale of one, but the tails still remain heavy.
Figure 7 shows that this is true.

V. DISCUSSION

In the present study, we investigated properties of the dif-
fusion with a broad class of stochastic DCs, focusing on the
propagator. We showed that the propagator for the diffusing
particle is unimodal and the peak is not sharp. We also showed
that for a finite time, the propagator is non-Gaussian and
the non-Gaussian parameter of the propagator is positive: the
propagator is heavy tailed relative to a Gaussian distribution.
In addition, we showed that when a stochastic DC is ergodic,
the propagator converges to a Gaussian distribution in the long
time limit.

An equation equivalent to Eq. (8) can be derived using
subordination [5]. However, subordination has a different
view than our approach. The essence of subordination is time
change: subordination is the change of the time variable from
real time to some kind of stochastic process. In the subordina-
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tion approach, the superensemble consists of ensembles with
the same DC, but different time flows. On the other hand, in
our approach, the superensemble consists of ensembles with
the same time flow, but different time evolutions of TADC,
which can be regarded as an effective DC.

In a short time limit, Eq. (8) has a relation with the
propagator obtained by the superstatistical approach. In the
superstatistical approach, the propagator Gs(x, t, x0) is given
by

Gs(x, t, x0) =
∫ ∞

0

r(D)

(4πDt )n/2 exp

(
−|x − x0|2

4Dt

)
dD, (51)

where r(D) is the probability distribution of D [15–17]. When
t is sufficiently smaller than the time that characterizes the
change in D(t ), from Eq. (7), we have an approximation,

S(ω) ≈ D(0; ω). (52)

Thus, we have

G(x, t, x0) ≈
∫ ∞

0

p(D, 0)

(4πDt )n/2 exp

(
−|x − x0|2

4Dt

)
dD. (53)

This is an approximation of the propagator by the supersta-
tistical formula. For the minimal diffusing-diffusivity model,
it has already been shown that when the time is sufficiently
smaller than the correlation time of D(t ), the propagator
obtained from the subordination formula is equal to the prop-
agator obtained by the superstatistical approach [5].

Our approach is a natural extension of the superstatistical
approach. This is because our approach includes the super-
statistical approach as a special case. In Eq. (1), if the DC
is described by a special stochastic process in which each
sample path of the DC is time independent, we can easily
obtain Eq. (51) by our approach.

In the present study, we showed that for a finite time, the
propagator is heavy tailed for stochastic DCs. The propaga-
tors of the anomalous diffusion described by CTRWs have
a similar property: the propagators show exponential decay
[8]. It has also been reported that anomalous diffusion de-
scribed by CTRWs and anomalous diffusion with stochastic
DCs have similar properties other than propagators [7,18].
Thus, it is difficult to distinguish between anomalous diffusion
described by CTRWs and anomalous diffusion with stochastic
DCs. However, there is a case where there is a difference
between the propagators of the diffusion with stochastic DCs
and CTRWs. For one-dimensional subdiffusion, the propaga-
tors of CTRWs often have a cusp at the origin and are not
differentiable at the origin [19,20]. On the other hand, when
x0 = 0 and t is larger than the time that characterizes the
change of D(t ), as we showed in Sec. III B, the propagator
in the Brownian motion with a stochastic DC has a smoother
shape at the origin and is differentiable at the origin. In this
sense, subdiffusion with stochastic DCs is different from that
described by CTRWs.

Convergence of the propagators to Gaussian distributions
in the long time limit has been shown for specific stochastic
models of DCs. For example, convergence of a heavy-tailed
propagator to a Gaussian propagator has been shown for
the minimal diffusing-diffusivity model with the equilib-
rium distribution of the DC as the initial condition [5,21].

Convergence to a Gaussian distribution has also been demon-
strated for the two-state model with power-law distributions
with the equilibrium distribution of the DC as the initial con-
dition [7]. Our results suggest that the convergence in these
models comes from the ergodicity of the models rather than
characteristics unique to each model.

In the present study, we showed that when DCs are ergodic,
the propagators converge to Gaussian distributions in the long
time limit. However, this does not necessarily mean that it
takes an infinitely long time for the propagators to approach
Gaussian distributions. From Eqs. (28) and (31), we can see
that it actually depends on how fast the autocovariance func-
tions of the DCs decay. In fact, when autocovariance functions
decay exponentially, as in the simple model we used, A(t )
approaches zero on the same timescale as the correlation time
of the DC. On the other hand, if autocovariance functions de-
crease with power laws (�t )−κ (0 < κ < 1), A(t ) approaches
zero at a rate of t−κ .

In the present study, we showed that in a realistic model,
the propagator does not converge to a Gaussian distribution
even after 10 000 s. However, it is unknown whether this has
any physical meaning. This is because the consistency of the
model with experimental data has been shown only up to a few
seconds [4], and it is unclear whether the model accurately
describes diffusion of a molecule over longer times.

In the present study, we showed that heavy-tailed propaga-
tors can be commonly observed in diffusion with stochastic
DCs. This result may be important for triggered reactions in
physics, chemistry, and biology. The result means that when a
DC is described by a stationary process, some particles diffuse
farther than in diffusion due to a Brownian motion with the
constant DC that is equal to the mean of the fluctuating DC.
In addition, if the MSDs are the same, some particles diffuse
farther in anomalous diffusion with stochastic DCs than in
anomalous diffusion due to a fractional Brownian motion,
whose propagator is Gaussian [22]. The property that some
particles are transported farther in the same time is obviously
important in diffusion-limited reactions triggered by single
molecules.
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APPENDIX: SIMULATIONS

We used the Euler method for numerical integration of the
Langevin equation [23],

x(t + h) = x(t ) +
√

2D(t )hξ (t ), (A1)

where h represents the time step in simulations. For the simple
model, the time step in simulations is 0.001 up to time 1, and
0.1 after that. The number of trajectories that we simulated is
40 000. For the realistic model, the time step in simulations
is 0.001 s up to 1 s, and 0.1 s after that. The number of
trajectories that we simulated is 40 000 for Figs. 5 and 7 and
80 000 for Fig. 6.
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