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Irreversibility of stochastic state transitions in Langevin systems with odd elasticity
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Active microscopic objects, such as an enzyme molecule, are modeled by the Langevin system with the odd
elasticity, in which energy injection from the substrate to the enzyme is described by the antisymmetric part of the
elastic matrix. By applying the Onsager-Machlup integral and large deviation theory to the Langevin system with
odd elasticity, we can calculate the cumulant generating function of the irreversibility of the state transition. For
an N-component system, we obtain a formal expression of the cumulant generating function and demonstrate that
the oddness λ, which quantifies the antisymmetric part of the elastic matrix, leads to higher-order cumulants that
do not appear in a passive elastic system. To demonstrate the effect of the oddness under the concrete parameter,
we analyze the simplest two-component system and obtain the optimal transition path and cumulant generating
function. The cumulants obtained from expansion of the cumulant generating function increase monotonically
with the oddness. This implies that the oddness causes the uncertainty of stochastic state transitions.
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I. INTRODUCTION

In active matter, such as birds, bacteria convert chemical
energy into mechanical work. To describe this energy injec-
tion by the material constants, odd elasticity, an antisymmetric
part of an elastic tensor, is introduced [1,2]. The odd elasticity
breaks the Maxwell-Betti reciprocity, which holds on the elas-
tic body conserving the mechanical energy. In other words, the
odd elasticity quantifies the energy injection. Originally odd
elasticity was introduced for two-dimensional isotropic solids
[1] and was then extended to plates of moderate thickness [3],
a deformable membrane [4], and linkage systems with active
hinges [5,6]. Currently odd elasticity is applied to several
biological systems, such as starfish embryos [7], human sperm
[8], and muscles [9], to capture their activity. In addition,
odd elasticity is implemented programmatically in artificial
robots [6].

Odd elasticity has the potential to describe the structural
dynamics of active enzymes, which change their structure
during catalytic reactions from the substrate to products or
nonreactive binding with inhibiting molecules [10–17]. In the
case of catalytic reactions, energy is injected into the enzymes
from the substrate. We suggest that odd elasticity can model
this energy injection and propose a model given by a Langevin
system that includes odd elasticity [18–20].

Irreversibility is the ratio between the probability of a for-
ward path and a time-reversed path, and it has been quantified
in various nonequilibrium systems. In stochastic thermody-
namics, the irreversibility becomes thermodynamic entropy
production and characterizes time irreversibility of the whole
system [21,22]. Concrete calculations of the entropy pro-
duction for specific Langevin systems have been performed.
The steady-state entropy production of the charged Brownian
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particle in a magnetic field has been calculated in several
studies [23–26]. Weiss proposed a general theory of the linear
Langevin system and calculated the cumulants of irreversibil-
ity in the steady state [27].

Some active matter models are represented by only macro-
scopic variables, and the microscopic degrees of freedom are
coarse-grained. Hence, the entropy produced by the micro-
scopic degrees of freedom is lost, and the correspondence
between the irreversibility and the thermodynamic entropy
production is broken [28,29]. Even if the irreversibility does
not represent the thermodynamic entropy production, it is
still an important quantity to discuss the phenomenological
behaviors of active systems. A typical problem showing the
utility of the irreversibility is the locomotion of an active
element in overdamped systems. It is known that the Scallop
theorem states reciprocal (reversible) deformations cannot be
used for locomotion in the overdamped systems [30,31]. As
a consequence of the Scallop theorem, locomotion velocity
is proportional to the irreversibility of deformations [32]. A
theoretical framework based on the Scallop theorem is applied
to wide range of active systems such as active transport of
an enzyme molecule [15,33–35], cells swimming in viscous
fluids [36], cell crawling [37,38], and macroscopic robots
moving on sand [39].

Here we consider the stochastic state transition between
the initial and final states xi → xf with duration time tf . For
example, this transition models the conformation change of
an enzyme induced by combining the substrate molecule. To
extract the statistical properties of these state transitions, we
can use the path integral formalism of a stochastic system
called the Onsager-Machlup theory [40–49]. In this theory,
the probability of observing each trajectory is given with a
quantity referred to as the Onsager-Machlup integral and is
used to extract the most probable path [19,50–55]. Note that
the most probable path of the active particles has attracted sig-
nificant interest recently [56–60]. This optimization problem
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is also used to calculate the cumulant generating functions in
the framework of the large deviation theory [61–64].

In this paper we calculate the cumulant generating func-
tions of the irreversibility of the state transition xi → xf

in the Langevin system with the odd elasticity. To perform
this calculation, we apply the Onsager-Machlup theory to
the N-component Langevin system with the odd elastic-
ity. In addition, by solving the optimization program of the
Onsager-Machlup integral under the large deviation theory
and Varadhan’s theorem [61,65], regarded as the saddle point
approximation, we obtain a formal expression of the cumulant
generating functions of the irreversibility. As a result, we find
that the odd elasticity leads to the variance of the irreversibil-
ity, which disappears in the case of a purely passive system. In
addition, we perform a specific analysis on a two-component
system and demonstrate the concrete expression of the opti-
mal trajectories and cumulant generating functions.

Some previous reports calculated the cumulant generating
functions without using the saddle point approximation in
a linear Langevin system with an antisymmetric drift force
[66–71], which is mathematically the same as the Langevin
system with the odd elasticity. Unlike these previous papers
that focused on steady-state or time series under an unfixed
initial or final state, this paper focuses on the state transi-
tion with fixed initial and final states. Calculations for the
state transition are more complicated than the steady state,
because the state transition is a two-time boundary problem
with conditions at two different time points. Hence, as an
initial attempt, we employ the saddle point approximation
to calculate the cumulant generating functions for the state
transition.

The remainder of this paper is organized as follows. In
Sec. II we present the formalism of the Langevin system
with the odd elasticity and the main formal results of the
cumulant generating function of the irreversibility. Section III
calculates the cumulant generating function in the simplest
two-component system to demonstrate the drastic influence
of oddness on the entropy change. In Sec. IV we show the
relation between an enzyme and our theory. Finally, Sec. V
provides a summary and relevant discussions.

II. LANGEVIN SYSTEM WITH ODD ELASTICITY

In our recent study, we introduced a linear Langevin system
with odd elasticity [18,19] to capture an aspect of a catalytic
enzyme, which is transferred with energy by chemical reac-
tions [Fig. 1(a)]. We showed that the odd elasticity partially
describes the nonreciprocal conformational dynamics of the
enzyme [20]. In the following, we describe the formalism of
the N-component Langevin system and calculate the cumulant
generating functions of the irreversibility.

A. N-component Langevin system with the odd elasticity

Here we consider the N-element vector x whose com-
ponents are xi (i = 1, 2, . . . , N ), which obey the following
Langevin system [18–20]:

ẋ = −�kLKx + Fy(t ), (1)

FIG. 1. (a) Sketch of an object described by the Langevin system
with the odd elasticity [Eq. (1)] [18,19]. The object consists of
domains (red circles) connected by springs embedded in the dissi-
pative environment, such as a viscous fluid, with temperature T . The
structure of the object is represented by the set of the spring lengths
x = (x1, x2, · · · , xN )T. The mobility of the domains is characterized
by the mobility matrix L, and the stiffness of springs is characterized
by the elastic matrix K. The object catalyzes a chemical reaction
from a substrate molecule (green square) to a product molecule
(orange pentagon). The energy the object receives from the substrate
molecule through the reaction is modeled by the odd elasticity λA.
The domains experience fluctuation caused by the thermal noise of
the dissipative environment. (b) Stochastic transitions from the initial
state xi (green circle) to final state xf (orange square) with duration
time tf in a two-dimensional state space. Each trial represented by
the trajectories connecting xi and xf is random and differs from the
other trials.

064116-2



IRREVERSIBILITY OF STOCHASTIC STATE … PHYSICAL REVIEW E 109, 064116 (2024)

where the dot represents the time derivative, ẋ = dx/dt . Here
� is a scalar with a mobility dimension, and L is an N × N
nondimensional mobility matrix. According to Onsager’s re-
ciprocal theorem and the second law of thermodynamics, L
is a symmetric-positive definite matrix [72,73]. In addition,
k is a scalar having the dimension of a spring constant,
K is an N × N nondimensional elastic matrix that can be
constructed by symmetric and antisymmetric parts [18–20],
K = S + λA, where ST = S, AT = −A, and the superscript
T represents transpose. The symmetric and antisymmetric
parts are regarded as conservative and nonconservative forces,
respectively. λ is a scalar representing the magnitude of the
antisymmetric part, which can be referred to as “oddness.”
For the stability of this system, S is assumed to be positive
definite. The second term on the right-hand side of Eq. (1) rep-
resents thermal fluctuations characterized by Gaussian white
noise y satisfying 〈y(t )〉 = 0 and 〈y(t )y(0)〉 = INδ(t ), where
〈·〉 indicates the statistical average, IN is an N × N identity
matrix, and δ(t ) is Dirac’s delta function. Note that the N × N
amplitude matrix F obeys the fluctuation-dissipation relation
[72,73] FTF = 2kBT �L, where kB is the Boltzmann constant,
T is the temperature of the thermal bath. The relaxation rate
of this system is given as γ = �k.

The path probability of the trajectory obeying Eq. (1), x(t ),
which begins at xi until t = tf , is given as follows [40,42]:

P[x(t )|xi] = N exp[−O/(2kBT )]. (2)

Here O is the Onsager-Machlup integral given by [19,41]

O = k

2

∫ tf

0
dtγ [vγ −1 + LKx]TL−1[vγ −1 + LKx], (3)

where v = ẋ, and N is a normalizing constant.

B. Irreversibility of state transitions and its cumulant
generating function

Here we consider the stochastic transitions from the initial
state xi to the final state xf with duration time tf . As shown in
Fig. 1(b), the trajectory connecting xi and xf is independent
in each trial because overall the system is stochastic. To char-
acterize the transition xi → xf , we consider the irreversibility.
Generally, the irreversibility depends on xi and xf , as well as
the trajectory x(t ) during the transition. We define the irre-
versibility as � := kB ln(P[x(t )|xi]/P[xrev(t )|xf ]) [22], where
we introduce the reversed trajectory xrev(t ) = x(tf − t ). Using
Eq. (3), the irreversibility � of our system is expressed as
follows:

T � = −�U − kλ

∫ tf

0
dtvTAx. (4)

Here �U is the difference in the elastic energy between the
initial and final states:

�U := k

2
[(xf )TSxf − (xi )TSxi], (5)

including only the symmetric part of the elastic matrix S.
In the passive system λ = 0, the irreversibility corresponds
to �U without an error. Hence, before performing a detailed
calculation, it is expected that the oddness λ causes fluctuation
in �, which is quantified by the second cumulant 〈�2〉c.

To characterize the stochastic property of the irreversibil-
ity, we introduce the cumulant generating function �(ξ ) :=
ln〈eξ�/kB〉i→f [74], where 〈◦〉i→f indicates the statistical aver-
age under the condition of the initial and final state:

〈◦〉i→f :=
∫ xf

xi
Dx ◦ P[x(t )|xi, xf ]. (6)

Here P[x(t )|xi, xf ] is a path probability under the condition
that x(0) = xi and x(tf ) = xf , and can be given by Bayes’
theorem P[x(t )|xi, xf ]P (xf |xi ) = P[x(t )|xi], where P (xf |xi )
is a probability of xf at tf under the condition x(0) = xi. In

addition,
∫ xf

xi Dx indicates the path integral over all trajec-
tories x(t ) satisfying x(0) = xi and x(tf ) = xf . According to
Eq. (2), the cumulant generating function of the irreversibility
is rewritten as follows:

�(ξ ) = C + ln
∫ xf

xi
Dx exp[−Ô/(2kBT )], (7)

where C is a ξ -independent constant determined by a
normalization condition �(0) = 0, and Ô is the modified
Onsager-Machlup integral:

Ô := O − 2ξT �

= (1 + 2ξ )�U

+ k

2

∫ tf

0
dtγ

(
x

vγ −1

)T

(R0 + ξλR1)

(
x

vγ −1

)
. (8)

Here the following 2N × 2N matrices are introduced:

R0 :=
(
KTLK −λA

λA L−1

)
, R1 :=

(
ON −2A
2A ON

)
, (9)

where ON is an N × N zero matrix. Note that all cumulants
〈�n〉c are obtained from �(ξ ) as [74]

〈�n〉c = kn
B

dn

dξ n
�(ξ )

∣∣∣∣
ξ=0

. (10)

Under the large deviation theory and Varadhan’s theorem
[61,65], the cumulant generating function is approximated as

�(ξ ) − C ∼ − inf
x(t )|xi,xf

[Ô]/(2kBT ) (11)

under the condition that Ô/(kBT ) � 1. This means that we
can calculate the cumulant generating function by considering
the optimization problem of Ô with respect to the trajectory
x(t ) under the condition that x(0) = xi and x(tf ) = xf . That
indicates Eq. (11) can be regarded as a saddle point approxi-
mation of the path integral.

In this study we found that the cumulant generating func-
tion of irreversibility of state transition xi → xf with duration
time tf is given in the following form:

�(ξ ) = −ξ�U

kBT
− k

2kBT

∑
n=1

ξ nλn

2

(
xi

xf

)T

En(λ, tf )

(
xi

xf

)
,

(12)

where En are 2N × 2N matrices that characterize each cu-
mulants. Note that the formal expression of En is given in
Eq. (33). From this expression, we find that the oddness λ

contributes to the first cumulant and higher cumulants, which
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implies that the oddness leads to an uncertainty of the ir-
reversibility. In contrast, if the elastic matrix is symmetric
(λ = 0), we can obtain the cumulant generating function from
Eq. (12) as follows:

�(ξ ) = −ξ
�U

kBT
. (13)

Thus, the first cumulant and higher cumulants are given as

〈�〉c = −�U

T
, (14)

〈�2〉c = 〈�3〉c = · · · = 0. (15)

This means that the irreversibility corresponds to elastic en-
ergy change between the initial and final state without error.

C. Extremum equation and its solutions

In the following, we present the derivation of Eq. (12) and
a formal expression for the matrix En. Recalling Eq. (11),
we consider the variational problem of Ô, δÔ = 0 [19,50,61]
to obtain infx[Ô]. This requirement and Eq. (8) lead to the
following extremum equation:

v̇γ −2 + 2(1 + 2ξ )λLAvγ −1 − LKTLKx = 0. (16)

This equation can be rewritten as follows:(
ẋγ −1

v̇γ −2

)
= G

(
x

vγ −1

)
, (17)

where G is a 2N × 2N matrix given as

G :=
(

ON IN

LKTLK −2(1 + 2ξ )λLA

)
. (18)

To obtain the cumulants in order, we expand the variables as
x = ∑

n ξ nxn, v = ∑
n ξ nvn and obtain the equation for each

component from Eq. (17) as follows:(
ẋnγ

−1

v̇nγ
−2

)
= G0

(
xn

vnγ
−1

)
+ λG1

(
xn−1

vn−1γ
−1

)
, (19)

where we use the following 2N × 2N matrices:

G0 :=
(

ON IN

LKTLK −2λLA

)
, G1 :=

(
ON ON

ON −4LA

)
.

(20)

For n = 0, we obtain the following formal solution to
Eq. (19) with a matrix exponential:(

x0

v0γ
−1

)
= eG0τ

(
c0

d0

)
, (21)

where τ = tγ is a dimensionless time, and c0 and d0 are con-
stants determined with the boundary conditions, x0(0) = xi

and x0(tf ) = xf . These boundary conditions can be rewritten
in the following form:⎛

⎜⎜⎝
xi

0
xf

0

⎞
⎟⎟⎠ = B

⎛
⎜⎜⎝

c0

d0

viγ −1

vfγ −1

⎞
⎟⎟⎠, (22)

where vi = v0(0) and vf = v0(tf ) are also constants deter-
mined by the above boundary conditions, and B is a 4N × 4N

matrix given as follows:

B :=
(
I2N J

eG0τf J ′

)
, J :=

(
ON ON

−IN ON

)
,

J ′ :=
(
ON ON

ON −IN

)
. (23)

By solving Eq. (22) for c0, d0, vi, and vf , we obtain the
following:⎛

⎜⎜⎝
c0

d0

viγ −1

vfγ −1

⎞
⎟⎟⎠ = B−1

⎛
⎜⎜⎝

xi

0
xf

0

⎞
⎟⎟⎠,

(
c0

d0

)
= B̂−1

(
xi

xf

)
. (24)

Here B̂−1 is a 2N × 2N matrix comprising 2N × N matrices
Cn, which are the block matrices of B−1:

B−1 =
(
C1 C2 C3 C4

C5 C6 C7 C8

)
. (25)

Using Cn, we have B̂−1 := (C1 C3), and we use B̃−1 :=
(C3 C4) later. Notably, B is a invertible except in the
case where τf = 0 because det B = det[(eG0τf )12] 	= 0, where
(eG0τf )12 is a upper-right submatrix of eG0τf .

For arbitrary n, we have the following formal solution to
Eq. (19):(

xn

vnγ
−1

)
=

n∑
m=0

[
λmeG0τMm(τ )

(
cn−m

dn−m

)]
, (26)

where cn and dn are constants determined with the boundary
conditions, xn(0) = xn(tf ) = 0. We also used the following
functions:

Mm(τ ) :=
∫ τ

0
dτ1H(τ1) · · ·

∫ τm−1

0
dτmH(τm), (27)

H(τ ) := e−G0τG1eG0τ . (28)

Using the boundary conditions, we obtain the following
relation (see also Appendix A):(

cn

dn

)
= λnNn

(
c0

d0

)
, (29)

where Nn is a matrix determined by the following recurrence
relation:

Nn =
n∑

m=1

−B̃−1eG0τfMm(τf )Nn−m (30)

with N0 = I2N . From Eqs. (26) and (29), the solution satisfy-
ing the boundary conditions is given as follows:(

xn

vnγ
−1

)
= λneG0τTn(τ )B̂−1

(
xi

xf

)
, (31)

Tn(τ ) :=
n∑

m=0

[Mm(τ )Nn−m]. (32)

By substituting the above solutions into the modi-
fied Onsager-Machlup integral (8) and by comparing with
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Eq. (12), we obtain the following formal expression of En:

En = B̂−1,T
n∑

m=0

[∫ τf

0
dτ TT

m (τ )eG
T
0 τR0eG0τTn−m(τ )

]
B̂−1

+ B̂−1,T
n−1∑
m=0

[ ∫ τf

0
dτ TT

m (τ )eG
T
0 τR1eG0τ

× Tn−m−1(τ )

]
B̂−1. (33)

This expression can be used to calculate the cumulant gen-
erating function for a specific parameter set of L and K.
Although the simplest two-component system is discussed in
Sec. III, concrete calculations for other systems are left for
future work.

III. TWO-COMPONENT SYSTEM

To demonstrate the influence of odd elasticity on the irre-
versibility, we consider a two-component system, N = 2, and
we calculate the cumulant generating function analytically.
We also assume the simplest case, L = I2,S = I2, and

A =
(

0 1
−1 0

)
, (34)

which corresponds mathematically to the charged Brownian
particle in the magnetic field [23–26].

Then the extremum equation Eq. (16) is reduced to

ẍγ −2 + 2(1 + 2ξ )λAẋγ −1 − (1 + λ2)x = 0, (35)

which we obtain by modulating an existing equation [19] with
ξ . A solution to this linear equation is given as follows:

x(τ ) =
4∑
n

cnunegnτ , (36)

where un and gn are the corresponding eigenvector and eigen-
value, respectively:

u1 = (1, i)T, g1 =
√

1 − 4λ2ξ (1 + ξ ) − iλ(1 + 2ξ ), (37)

u2 = u1, g2 = −g∗
1, (38)

u3 = u∗
1, g3 = g∗

1, (39)

u4 = u∗
1, g4 = −g1, (40)

where the star indicates a complex conjugate. Here we impose
the initial and final conditions for trajectory x(τ ) as xi and xf .
Then the solution satisfying these conditions is obtained as
follows:

x(τ ) = − sinh(b(τ − τf ))

sinh(bτf )
DT(τ )xi + sinh(bτ )

sinh(bτf )
DT(τ − τf )xf ,

(41)

where we use the following:

D(τ ) :=
(

cosh(aτ ) −i sinh(aτ )
i sinh(aτ ) cosh(aτ )

)
, (42)

and a := iλ(1 + 2ξ ), b :=
√

1 − 4λ2ξ (1 + ξ ).

FIG. 2. Optimal trajectories [Eq. (41)] for λ = 1 and (a) τf = 1,
(b) τf = 5. The initial and final states are x̄i = √

k/kBT xi = (1, 0)T

(green circles) and x̄f = (−1, 0)T (orange square), respectively. The
different colors and styles indicate various ξ values. The variations
between the black (ξ = 0) and other lines imply cumulants.

In Fig. 2 we plot the sample trajectories under the condi-
tions x̄i = (1, 0)T (green circles) and x̄f = (−1, 0)T (orange
square), where we introduce the dimensionless state variables
x̄ = √

k/kBT x. Here we use specific values λ = 1 and (a) τf =
1 and (b) τf = 5. We vary ξ , which are shown using different
line colors and styles. Eventually, the variations between the
black and other lines lead to cumulants.

By substituting the solution given by Eq. (41) into Eq. (8),
we calculate the cumulant generating function �(ξ ) as
follows:

�(ξ ) = C − (1 + 2ξ )

2kBT
�U − k

4kBT

(
xi

xf

)T

E

(
xi

xf

)
, (43)
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FIG. 3. Cumulant generating function [Eq. (43)] for λ = 1. The
initial and final states are x̄i = (1, 0)T and x̄f = (−1, 0)T. We vary
the duration time as τf = 1, 5 and τf → ∞, which are shown us-
ing solid black, solid red, and dashed blue lines, respectively. Note
that the solid red and dashed blue lines nearly coincide. All lines
hold the normalization condition �(0) = 0. The derivatives at ξ = 0
are the corresponding cumulants. �(−1) = 0 is shown in all cases
and indicates that this transition does not change the system entropy
ssys, as discussed in Sec. V.

where

E = b

sinh(bτf )

(
cosh(bτf )I2 −D(τf )

−DT(τf ) cosh(bτf )I2

)
, (44)

and C is a ξ -independent constant determined by an normal-
ization condition �(0) = 0. Unlike the formal result given
by Eq. (12) in Sec. II, which involves expansion around
ξ = 0, the result given by Eq. (43) is the full expression for
the entire ξ . Notice E = ∑

n=1 ξ nλnEn for consistency be-
tween Eqs. (12) and (43). In Eq. (43), �(ξ ; xi, xf ) = �(−1 −
ξ ; xf , xi ), which is known as the Gallavotti-Cohen symme-
try [22] equivalent to the fluctuation theorem. We obtain
each cumulants by expanding Eq. (43) as Eq. (10). Concrete
expressions of the first and second cumulants are given in
Appendix B.

In Fig. 3 we plot the cumulant generating function �(ξ ),
Eq. (43), under the conditions x̄i = (1, 0)T and x̄f = (−1, 0)T

with λ = 1. Here the duration time is varied as τf = 1, 5 and
τf → ∞, and we show them as a solid black line, solid red
line, and blue dashed line, respectively. The red solid and blue
dashed lines show nearly the same value for the entire ξ . The
normalization condition is represented as �(0) = 0, which
holds in all cases. The slope and curvature at ξ = 0 represent
the first and second cumulants, respectively.

Considering zero odd elasticity λ = 0, we can confirm
that Eq. (43) reduces to Eq. (13), and we can obtain
〈�1〉c = −�U/T and 〈�2〉c = 〈�3〉c = · · · = 0, as discussed
in Sec. II for arbitrary N .

By taking a long-time limit tf → ∞, we obtain the
following:

E =
√

1 − 4λ2ξ (1 + ξ )I4 (45)

as a limit of Eq. (44), and the cumulant generating function
becomes similar to that for the entropy production of the
steady-state transverse diffusion system [66], which is math-
ematically the same as the two-component Langevin system
discussed in this paper. Expanding the long-time cumulant
generating function [refer to Eqs. (10) and (45)], we obtain
the following cumulants up to the fourth order:

〈�1〉c = −�U

T
+ k

2T
λ2[(xi )2 + (xf )2], (46)

〈�2〉c = kBk

T
λ2(1 + λ2)[(xi )2 + (xf )2], (47)

〈�3〉c = 6k2
Bk

T
λ4(1 + λ2)[(xi )2 + (xf )2], (48)

〈�4〉c = 12k3
Bk

T
λ4(1 + 6λ2 + 5λ4)[(xi )2 + (xf )2]. (49)

Note that higher cumulants also can be obtained systemati-
cally. All cumulants increase monotonically with the oddness
λ, which implies that the uncertainty of the state transition is
strengthened by the oddness.

IV. APPLICATIONS TO AN ENZYME

An important application of this research is the confor-
mation change of an enzyme from the open state to closed
state binding substrate, which can be considered as the state
transition xi → xf . To highlight the connection between our
results and the enzyme, we introduce the mechano-chemical
coupling enzyme model [15,75], which is one of the sim-
plest models describing a structure change of the enzyme
molecule (details of this model are provided in Appendix C
and Ref. [15]). In this model we introduce an extent of
chemical reactions of substrates θ (t ), which experiences a
tilted periodic potential describing both an energy barrier
and a chemical potential difference between a substrate and
a product. In addition, the enzyme structure is represented
by two variables s1(t ), s2(t ) and coupled with θ through the
mechano-chemical coupling energy given in Eq. (C1). Note
that the mechano-chemical coupling includes a phase differ-
ence φ between s1 and s2. Then we employ the Onsager’s
phenomenological equations with thermal fluctuations [see
Eqs. (C2)–(C4)] to describe dynamics of θ (t ), s1(t ), and s2(t ).
This model has two stable fixed points si and sf , representing
open and closed states, in s1 − s2 space.

Solving the model equations numerically with specific pa-
rameters written in Appendix C, we observe state transition
between two stable fixed points si → sf with θ increasing by
π . One of the transition trajectories is shown in Fig. 4(a).
Then we collect 10000 transition trajectories regardless of
the duration time tf and build an ensemble of the transition
trajectories. In order to connect the ensemble and our results
on �, we introduce a scaled irreversibility,

σ =
∫ τ

0
dt (ṡ1s2 − ṡ2s1), (50)
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FIG. 4. (a) Transition trajectory from si (green circle) to sf (orange square) in a state space spanned by s1 and s2. (b) Histogram of the
scaled irreversibility σ generated by 10 000 transition trajectories linking si and sf . (c) Average and variance of σ as functions of sin φ. Here
sin φ is proportional to the effective odd elasticity in the enzyme model, λ ∼ sin φ [18,20]. From this plot, we notice power-law behaviors of
the average and the variance as 〈σ 〉 ∼ λ1 and 〈σ 2〉 ∼ λ0. For the scaling relation between � and σ , this results lead to 〈�〉 ∼ λ2 and 〈�2〉 ∼ λ2,
corresponding to our expectation in Eqs. (46) and (47).

which can be directly calculated from the numerical trajecto-
ries and has a scaling relation σ ∼ �/(kλ). Then we generate
a histogram of the scaled irreversibility σ using the obtained
ensemble in Fig. 4(b). From this histogram, we calculate av-
erage and variance of the scaled irreversibility and plot them
as functions of sin φ in Fig. 4(c). It is reported in Refs. [18,20]
that estimated oddness λ in this enzyme model is proportional
to the sine of the phase difference, λ ∼ sin φ. Based on this
scaling, we can show 〈σ 〉 ∼ λ1 and 〈σ 2〉 ∼ λ0 from Fig. 4(c).
Finally, recalling the scaling relation σ ∼ �/(kλ), we get
〈�〉 ∼ λ2 and 〈�2〉 ∼ λ2, which qualitatively correspond to
the small λ limit of our expectation in Eqs. (46) and (47).

This discussion shows that the linear Langevin equation (1)
can be applied to enzymes for the qualitative scaling relations.
Nevertheless, nonlinearity is also needed to reproduce the
complexity of the enzyme dynamics. Attempts to introduce
nonlinearity to a system with odd elasticity have been reported
in microswimmers [5,8,76]. Based on these studies, the role
of nonlinearity in an enzyme system can be investigated more
extensively.

In addition to the above qualitative discussion, we provide
a rough estimate of parameters. The energy injected into the
enzyme is part of the chemical potential difference between
the substrate and the products, such as the chemical potential
difference between the ATP and ADP molecule, is roughly
20kBT [17]. Here we assume that the enzyme receives 10% of
the chemical potential difference, 2kBT , during the reaction.
In the Langevin system with the odd elasticity, the injected
energy is represented by kλa2, where a is the size of the object,
such as 10 nm for enzyme molecule. Thus, the odd elas-
ticity can be estimated roughly as kλ ∼ 2kBT/(10 nm)2 ∼
10−4 J/m2. The duration time for protein folding is roughly
estimated as tf ∼ 1 µs [77].

V. SUMMARY AND DISCUSSION

In this paper we have calculated the cumulant generating
function of the irreversibility of the state transition xi → xf

in the Langevin system with odd elasticity using the path
probability determined by the Onsager-Machlup integral and
the framework of the large deviation theory. As a result,
for the N-component system, we have provided a formal
expression of the cumulant generating function in Eq. (12),
which indicates that the oddness leads to a higher-order
cumulant unlike a passive elastic system, where the irre-
versibility is determined by the energy change of the system
without error.

To demonstrate the effect of oddness using the concrete pa-
rameter setup, we further calculated the cumulant generating
function of a simple two-component system. Here we found
that the cumulants increases monotonically with oddness λ,
which implies that the oddness amplifies the uncertainty of the
system. The oddness may help us understand the uncertainty
of various biological systems, such as random responses to
stimulations.

In this study we have used the approximation expressed
in Eq. (11) with the assumption that Ô � kBT [61]. Because
it can be supposed that Ô increases with the system size N
and duration time tf , either N or tf is implicitly assumed to
be large. These assumptions are valid in macroscopic systems
with many degrees of freedom but unclear for relatively small
systems. Hence, we should be careful on the assumption that
Ô � kBT for small systems.

Kwon et al. provide the method to calculate the cumu-
lant generating function without the above assumption for an
unfixed initial and a fixed final condition [69]. They calcu-
late the path integral by performing the Gaussian integrals
for each discretized time step in a recurrent manner and
obtain a time evolution equation of a kernel Eff (t ), which
contributes the cumulant generating function with a form of
xfEff (tf )xf . We can consider applying this method to the
state transitions between a fixed initial and final state and
improve the precision of the current work. In the case of the
state transition, a calculation of the kernel Eif (t ), which links
the initial and final stats and contributes the cumulant gener-
ating function with the form of xiEif (tf )xf [see Eq. (43)], is a
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central problem. However, obtaining Eif is expected to be
more difficult than Eff because the state transition is a
two-time boundary problem. Moreover, their recurrent calcu-
lations will be more complicated because Eif involves knowl-
edge of all time steps, including the initial state, unlike Eff .
Hence, calculations extended beyond the saddle point approx-
imation are not straightforward but should be performed in
the future.

In the following, we discuss the connection between our
results and stochastic thermodynamics. The correspondence
between the irreversibility � and the thermodynamic en-
tropy of a thermal bath (or heat from a system to a bath
Q) [21] is not clarified in active systems with odd elasticity
because there are two choices of reversed trajectories in which
oddness is flipped or not [28,29]. This issue is similar to
the time-reversal symmetry of a system in a magnetic field.
However, unlike the magnetic field, the microscopic origin
of the odd elasticity is not identified, which complicates the
problem. In addition, the approximation Ô � kBT used in
this paper also obscures the connection to thermodynamics.
In addition to the irreversibility �, we consider the system
entropy ssys(x) = −kB lnP (x), where P (x) is a steady-state
distribution. In the Langevin system given by Eq. (1), P (x)
is the Gaussian distribution P (x) ∼ exp[−xTC−1x/2], where
C is a covariance matrix obtained by solving the Lyapunov
equation kLKC + kCKTL = 2kBTL [18]. Note that the cu-
mulant generating function �(ξ ) and system entropy ssys are
connected as �(−1) = ln〈e−�/kB〉i→f = �ssys/kB under the
assumption of � = Q/T , which is an alternative form of
the Jarzynski equality [22] (the derivation of this equality is
given in Appendix D). Thus, the cumulant generating function
has information on both the irreversibility and the system
entropy. In Fig. 3 we observe �(−1) = 0, indicating that
the system entropy does not change, �ssys = 0, during the
(1, 0) → (−1, 0) transition, which is symmetric between the
initial and final states. Notably, �ssys 	= 0 for other transitions
in general.

In Sec. IV we have discussed enzymes as a physical
system, as represented by the Langevin system with odd
elasticity. In addition to this example, this model can be
used to describe other nonequilibrium physical systems, such
as charged Brownian particles in a magnetic field [23–26],
polymer molecules in an external shear flow [68], and the
transverse diffusion system [66,70,71]. A previous study [66]
reported the cumulant generating function and rate func-
tion of the steady-state entropy production of the transverse
diffusion system, which is mathematically the same as two-
component Langevin system with odd elasticity (Sec. III).
The obtained cumulant generating function is �(ξ ) = 1 −√

1 − 4ξ (1 + ξ )λ2 [66]. Although this is similar to our re-
sults for the long-time limit given by Eq. (45), differing
from our results, their results for the steady-state do not
include the initial and final states. Note that we consider
transitions rather than the steady state considered in the
literature [66].

In this study, we calculated the cumulant generating func-
tion of irreversibility using the Onsager-Machlup integral.
The method of the Onsager-Machlup integral and that of the
large deviation theory have diverse applications. One such
application is the calculation of the conditioned distribution

P (x, t |xi ) through the optimal problem of the Onsager-
Machlup integral [58]. Another application is the estimation
of the mean passage time, which is an average value of the
duration time 〈tf〉 [57]. These quantities will be calculated in
the Langevin system with odd elasticity.
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APPENDIX A: DERIVATION OF RECURRENCE
RELATION (30)

Here we present the derivation of the recurrence relation
given in Eq. (30). Using Eq. (26), the boundary conditions
xn(0) = xn(tf ) = 0 can be rewritten as follows:

⎛
⎜⎜⎝

0
0

−∑n
m=1

[
λmeG0τfMm(τf )

(
cn−m

dn−m

)]
⎞
⎟⎟⎠ = B

⎛
⎜⎜⎜⎝

cn

dn

viγ −1

vfγ −1

⎞
⎟⎟⎟⎠.

(A1)

By solving this equation, we obtain

(
cn

dn

)
= −B̃−1

n∑
m=1

[
λmeG0τfMm(τf )

(
cn−m

dn−m

)]
. (A2)

By substituting Eq. (29) into the above equation, we obtain
the recurrence relation (30).

APPENDIX B: FIRST AND SECOND CUMULANTS
FOR TWO-COMPONENT SYSTEM

In the following we present the explicit form of the first
and second cumulants for the two-component system. Recall-
ing Eq. (10), the first and second cumulants can be obtained
via expansion of the cumulant generating function given in
Eq. (43).

Here the first cumulant is given as follows:

〈�1〉c = −�U

T
− kλ

4T

(
xi

xf

)T
(

Ed
1 Eod

1(
Eod

1

)T
Ed

1

)(
xi

xf

)
, (B1)

where we use the following matrices:

Ed
1 = 2

sinh2(τf )
λ(τf − cosh(τf ) sinh(τf ))I2, (B2)

Eod
1 = 2

sinh2(τf )
[−λ(τf cosh(τf ) − sinh(τf ))D0

+ τf sinh(τf )D̂0]. (B3)
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In the same manner, we obtain the second cumulant as
follows:

〈�2〉c = −2kBkλ2

4T

(
xi

xf

)T
(

Ed
2 Eod

2(
Eod

2

)T
Ed

2

)(
xi

xf

)
, (B4)

where

Ed
2 = 2I2

sinh2(τf )

[
τf (1 − λ2) + cosh(τf ) sinh(τf )

× (
2λ2τ 2

f / sinh2(τf ) − 1 − λ2)], (B5)

Eod
2 = 2

sinh3(τf )
[−[−(1 + λ2) sinh2(τf )

+ (1 − λ2)τf cosh(τf ) sinh(τf )

+ λ2τ 2
f (cosh2(τf ) + 1) − τ 2

f sinh2(τf )]D0

+ 2λτf [τf cosh(τf ) − sinh(τf )]D̂0]. (B6)

In addition, we use the following:

D0 :=
(

cos(λτf ) sin(λτf )

− sin(λτf ) cos(λτf )

)
, (B7)

D̂0 :=
(

sin(λτf ) − cos(λτf )

cos(λτf ) sin(λτf )

)
. (B8)

Note that we can also obtain higher cumulants systematically.

APPENDIX C: MECHANO-CHEMICAL COUPLING
ENZYME MODEL

In this Appendix we show details of the enzyme model
that was proposed considering mechano-chemical coupling in
Refs. [15,75].

In this model we consider the extent of the catalytic re-
action θ (t ) and the structure of an enzyme denoted by s1(t )
and s2(t ). We introduce the free energy describing a chemical
reaction gr (θ ) = −h cos(2θ ) − νθ , where h is the energy bar-
rier and ν is the chemical potential difference. We also use the
mechano-chemical coupling energy:

gc(θ, {si}) = c

2
{[s1 − sin(θ + (p − φ)/2)]2

+ [s2 − sin(θ + (p + φ)/2)]2}. (C1)

Here c is the coupling strength, d is the amplitude of the struc-
ture change, p is the phase difference relative to the reaction
phase, and φ is the phase difference between s1 and s2. In
this paper we use the fixed phase difference, p = cos−1(ν/h).
Then the total free energy is gt (θ, {si}) = gr (θ ) + gc(θ, {si}).
We employ Onsager’s phenomenological equations for dy-
namics of θ (t ), s1(t ), and s2(t ):

θ̇ = −μθ∂θgt +
√

2μθξ, (C2)

ṡ1 = −μs∂s1 gt +
√

2μsξ1, (C3)

ṡ2 = −μs∂s2 gt +
√

2μsξ2. (C4)

Here ξ , ξ1, and ξ2 represent thermal fluctuations that sat-
isfy the fluctuation dissipation theorem [72,73], 〈ξ (t )ξ (0)〉 =
2kBT μθδ(t ) and 〈ξ1(t )ξ1(0)〉 = 〈ξ2(t )ξ2(0)〉 = 2kBT μsδ(t ).
A more detailed explanation of the enzyme model is provided
in Ref. [15].

Stable fixed points si and sf of this model are given
by si = (sin(θ i + (p − φ)/2), sin(θ i + (p + φ)/2)) and sf =
−si where θ i = sin−1(ν/h). Note that the transition between
the fixed points occurs under activations of the thermal noise.

In numerical calculations shown in Fig. 4, we used the
following parameter values: ν/(kBT ) = 8, h/(kBT ) = 10,
c/(kBT ) = 10, μs/μθ = 1, and φ = π/2.

APPENDIX D: JARZYNSKI EQUALITY

Here we review the Jarzynski equality discussed in Sec. V.
We consider the first law of thermodynamics and assume the
correspondence between the irreversibility and the heat, W =
�U + Q = �U + T �, where W is work done by the system,
and Q is heat from the system to the bath. By introducing
the free energy �F = �U − T �ssys, the Jarzynski equality
can be formed as 〈e−W/(kBT )〉i→f = e−�F/(kBT ). This can be
written as 〈e−�/kB〉i→f = e−�ssys/kB , which leads to the second
law �ssys + 〈�〉i→f � 0 through Jensen’s inequality.

In the following, we show proof of the Jarzynski equality.
According to the definition of the path averaging, we obtain

〈e−�/kB〉i→f =
∫ xf

xi
Dx e−�/kB P[x(t )|xi, xf ]. (D1)

Using Bayes’ theorem, we obtain the following:

〈e−�/kB〉i→f = P (xf |xi )−1
∫ xf

xi
Dx e−�/kB P[x(t )|xi]. (D2)

Then we use the definition of �,

〈e−�/kB〉i→f = P (xf |xi )−1
∫ xf

xi
Dx P[xrev(t )|xf ]. (D3)

Here the path integral on the right-hand side becomes a con-
ditioned probability as follows:

〈e−�/kB〉i→f = P (xf |xi )−1P (xi|xf ). (D4)

Finally, we utilize the property of conditioned probabilities to
obtain the following:

〈e−�/kB〉i→f = P (xf )−1P (xi ) = e�ssys/kB , (D5)

which indicates the direct connection between the cumulant
generating function of � and the system entropy change
�ssys.
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