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Chaotic route to classical thermalization: A real-space analysis
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Most of the previous studies on classical thermalization focus on the wave-vector space, encountering
limitations when extended beyond quasi-integrable regions. In this study, we propose a scheme to study the
thermalization of the classical Hamiltonian chain of interacting oscillators in real space by developing a
thermalization indicator proposed by Parisi [Europhys. Lett. 40, 357 (1997)], which approaches zero in the
thermal state. Upon reaching the steady state characterized by the generalized Gibbs ensemble for a harmonic
chain, a quench protocol is implemented to change the Hamiltonian to a nonintegrable form instantaneously,
thereby preparing nonequilibrium initial states. This approach enables investigations of thermalization in real
space, particularly valuable for exploring regions beyond quasi-integrability. For the FPUT-β lattice, we observe
that the thermalization time as a function of the nonintegrable strength follows a −2 scaling law in the
quasi-integrable region and −1/4 in the strongly integrable region. Moreover, numerical results reveal the
thermalization time is proportional to the Lyapunov time, which bridges microscopic chaotic dynamics and
the macroscopic thermalization process.
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I. INTRODUCTION

Whether and how a given nonequilibrium initial state
evolves to the desired thermal state of a Hamiltonian system
is the central question of nonequilibrium statistical physics,
receiving significant research interests in decades [1–7]. Ther-
malization requires the average of the observables for infinite
time to match with the average in phase space. The mode
energy in wave-vector space was chosen as the observable
to study ergodization by Fermi, Pasta, Ulam, and Tsingou
(FPUT) for the first computer experiment [8], of which the
main aim was to observe the thermalization in a nonlinear iso-
lated system. Surprisingly, they found that systems with small
nonlinearity seem incapable of relaxing to the equilibrium
state, but exhibit a complicated quasiperiodic behavior, which
keeps a memory of the initial conditions. The phenomenon
is called the FPUT paradox and suggests that the ergodicity
fails in the system. The pursuit of this unexpected result
triggered the observation of solitons [9] and the development
of Hamiltonian chaos [10]. From today’s point of view, the
quasiperiodic behavior corresponds to the metastable state
according to both analytical arguments [11] and numerical
simulations [12–14], which indicates that systems with small
nonlinearity can approach to equilibrium in longer timescales.
In terms of the wave-turbulence theory, it has been found that
the thermalization time as the function of the nonintegrable
strength exhibits scaling behaviors with exponent −2 in the
quasi-integrable region in the thermodynamic limit [7,15–18].

The Hamiltonian systems that can relax to a thermody-
namic equilibrium state from a nonequilibrium initial state
generally show chaotic features, which suggests macroscopic
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relaxation phenomena can be traced back to microscopic dy-
namics. In the quasi-integrable region, it has been shown
that the thermalization time is proportional to the Lyapunov
time (the inverse of the maximum Lyapunov exponent) [19].
However, beyond the quasi-integrable region, the relationship
between the two timescales is unclear. It lies in the problem
that the mode energy in the wave-vector space is ill-defined
beyond the quasi-integrable region. A natural alternative ap-
proach is to study thermalization in real space. Some methods
have been proposed to describe the behavior of thermalization
in real space. Parisi has employed the nearest correlation in
real space to investigate the relaxation time by its logarithmic
derivative of time [20]. By this method, one can observe
that the thermalization time shows the exponential stretching
behavior as a function of anharmonicity. Through studying
the fluctuation of observable, the ergodization time can be
defined, which shows qualitatively different behaviors to the
Lyapunov time [21,22]. Meanwhile, a study of thermalization
of the local observable [23] demonstrates that the scaling
behavior of the equilibration time depends on the initial con-
dition, showing the lack of universality. Despite significant
strides made in understanding the issue, how to appropriately
define the thermalization time in real space is still under
debate.

In this paper, we employ an observable �(t ) introduced
in Ref. [20] as a real-space indicator of thermalization. We
propose a scheme for determining the thermalization time
based on this indicator’s evolution. The values of � for the
integrable harmonic lattice should be determined by the gen-
eralized Gibbs ensemble (GGE), which is a nonzero value
generally. One can prepare nonequilibrium initial conditions
by quenching the harmonic system to a nonintegrable model
and obtain the thermalization time by investigating �(t ). We
apply the scheme to the FPUT-β lattice and find that the
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thermalization time displays a double scaling behavior with
respect to the nonintegrable strength. Specifically, the scal-
ing behavior in the quasi-integrable region agrees with the
wave-turbulence theory, while it transitions to another scaling
exponent in the strongly nonintegrable region. Moreover, our
numerical results show that the thermalization time is propor-
tional to the Lyapunov time in a wide range of nonintegrable
strength. Our results not only link the chaotic dynamics and
relaxation process but also provide a scheme to study classical
thermalization.

The paper is organized as follows. In Sec. II, we introduce
the model and methods used in this study, in particular the
indicator �, GGE and the quench protocol. In Sec. III, we
apply the quench protocol to the FPUT-β system to study
the thermalization time in a wide range of nonintegrable
strengths. Finally, we summarize our main results and give
a discussion in Sec. IV.

II. MODEL AND METHODS

For isolated one-dimensional lattices described by Hamil-
tonian

H =
∑

n

p2
n

2m
+ V (δqn) + U (qn), (1)

Parisi proposed an indicator for thermalization [20]

� =
〈 ∑

n pn pn+1
〉

〈∑
n p2

n

〉 . (2)

Here, pn and qn denote the instantaneous momentum and the
displacement from the equilibrium position of nth oscillator,
and δqn = qn − qn−1. The nearest-neighbor interaction and
onsite potential are represented by V (δq) and U (q), respec-
tively. The average 〈· · · 〉 represents the time average. In the
following discussions, we set the mass m and the Boltzmann’s
constant kB = 1 as the unit, i.e., m = 1 and kB = 1 for brevity.
The indicator � goes to zero in the thermal state for bounded
potential, demonstrating that it is appropriate as an indicator
of thermalization [24].

A. Generalized Gibbs ensemble (GGE)

For the integrable harmonic lattice with V (x) = x2/2 and
U (x) = 0, the indicator � is not expected to relax to 0. In-
stead, the expectation value of the observable for integrable
systems is predicted by GGE [25–27], of which the probabil-
ity density function is given by

ρGGE = 1

ZGGE
exp

(
−

∑
k

χkIk

)
. (3)

Here {Ik} is a set of N nontrivial conserved quantities. The
validity of GGE has been demonstrated in a variety of one-
dimensional models, such as the transverse field Ising model
[28,29], hard-core anyons [30], quantum field theories [31],
and spin-1/2 XXZ chains [32]. The corresponding partition
function of GGE reads

ZGGE =
∫

exp

(
−

∑
k

χkIk

)
d�, (4)

where �≡(q, p) = (q1, q2, · · ·, qN , p1, p2, · · · , pN ) denotes a
point in phase space. The expectation value of the observable
A is given by 〈A〉GGE = ∫

AρGGEd�. The set of Lagrange
multipliers {χk} are determined by each conserved quantity
in the initial state

〈Ik〉 = Ik (t = 0) =
∫

Ikρ
GGEd�. (5)

In contrast to the Gibbs ensemble, the expectation values
of observables depend on the initial state. For the harmonic
lattice, the conserved quantities Ik for GGE is the mode en-
ergy Ek because of the absence of phonon-phonon interaction,
namely,

Ik = Ek = 1
2 P2

k + 1
2ω2

k Qk, (6)

where ωk , Qk , and Pk are the frequency, canonical coordinate,
and canonical momentum of the kth mode, respectively. The
canonical coordinate and the canonical momentum can be
evaluated by the canonical transformation Qk = ∑N

n=1 qnen
k

and Pk = ∑N
n=1 pnen

k , where en
k represents the nth component

of eigenvector of the kth mode. The partition function of GGE
for harmonic systems can be given by

ZGGE =
∏

k

2π

χkωk
. (7)

Thus, one can obtain the Lagrange multipliers

χk = 1

Ek
, (8)

which suggests that the expectation values of the observable
rely on the mode energy, such as 〈P2

k 〉 = Ek . Interestingly,
based on GGE, the temperature defined by T = ∑

n〈p2
n〉/N

in harmonic systems is equal to the energy density, namely,
T = ε′, which is independent of the initial state and consistent
with the prediction of the Gibbs state. Here, we use the Par-
seval’s theorem

∑
n〈p2

n〉 = ∑
k〈P2

k 〉. This result suggests that
the relaxation behaviors of temperature can not distinguish in-
tegrable and nonintegrable systems. Moreover, the numerator
of Eq. (2) can be written as∑

n

〈pn pn+1〉 =
∑

k

〈
P2

k

〉
cos

(
πk

N + 1

)
. (9)

Then, the indicator � for the harmonic system can be obtained

� =
∑

k Ek cos
(

πk
N+1

)
Nε′ , (10)

which depends on the initial condition. For the Gibbs state,
〈P2

k 〉 = kBT leads the numerator of Eq. (2) is equal to zero in
the thermodynamical limit.

We here choose three typical initial conditions to verify the
above results:

(1) Initial condition 1: The initial energy is concentrated
on the kinetic energy of the 2 particles in the middle of the
chain, i.e., qn = 0 and pn = 0 except p N

2
= p N

2 +1 = √
Nε′.

(2) Initial condition 2: The initial energy is concentrated
on the kinetic energy of the 4 particles in the middle of the
chain, i.e., qn = 0 and pn = 0 except p N

2 −1 = p N
2

= p N
2 +1 =

p N
2 +2 = √

Nε′/2.
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FIG. 1. (a) The temperature T and (b) the indicator � as a
function of time in semilog scale. The black (lower), red (middle)
and blue (upper) solid lines represent initial conditions 1, 2, and 3,
respectively. The values predicted by GGE are depicted by dashed
black lines. Here, ε′ = 1.

(3) Initial condition 3: The initial energy is concentrated
on the kinetic energy of the N/8 particles in the middle of
the chain, i.e., qn = 0 and pn = 0 except p N

2 − N
16

= p N
2 − N

16 +1 =
· · · = p N

2 + N
16 −1 = √

8ε′.
Figure 1(a) depicts the relaxation of the temperature to-

wards a steady-state value ε′ for different initial conditions,
as predicted by GGE. However, as shown in Fig. 1(b), the
indicator � exhibits a dependence on initial conditions, which
are in good agreement with Eq. (10).

B. Quench protocol

In previous studies of thermalization, the initial nonequi-
librium state is prepared in the wave-vector space (see, e.g.,
Ref. [12]). While the indicator � is defined by the momentum
of the real space, one should prepare the nonequilibrium initial
condition for real-space thermalization. To ensure that the
initial nonequilibrium state is equidistant from the thermal
state, the initial value of indicator � should be the same
for different nonintegrable strengths. This motivates us to
introduce the quench protocol [33]: An initial (integrable)
Hamiltonian H (t = 0−) is suddenly changed to the new (non-
integrable) Hamiltonian H (t = 0+) by an external operation.
This method provides a convenient way to initialize non-
integrable systems with a nonequilibrium state originating
from an integrable system. While the state of the system �

remains unchanged at t = 0+, the energy should be given by
the new Hamiltonian H (t = 0+). The schematic diagram of
the quench protocol is shown in Fig. 2(a).

FIG. 2. (a) The schematic diagram of the quench. The state � re-
mains unchanged at t = 0+. However, the energy density is given by
the changed Hamiltonian H (t = 0+). (b) The indicator � as the func-
tion of time for the initial condition 1. The quench occurs randomly
in time after the system relaxes to the GGE state. The observable is
averaged different initial states of quench (�1, �2, �3, . . .).

To realize the quench protocol, we select the harmonic lat-
tice as the initial integrable system. To reduce the fluctuations
of observables, an ensemble average is employed by randomly
sampling the quench time, as can be seen in Fig. 2(b). The
specific steps of the quench protocol are outlined below:

(1) Initialization: The harmonic system is initialized for
different initial conditions with energy density ε′. Such as ini-
tial conditions 1, 2, and 3. Then, the harmonic lattice evolves
long enough to reach the GGE state.

(2) Quench: After the harmonic system relaxes to the
GGE state, the nonintegrable terms are added to the Hamil-
tonian at a random time tr (see Fig. 2). The energy density is
changed to ε by the new Hamiltonian.

(3) Thermalization: The indicator � as a function of time
can be obtained for the relaxation process.

(4) Average: Average the energy density ε and the indica-
tor �(t ) over the random quench time tr .

The SABA2C symplectic algorithm [34] is employed to in-
tegrate the equations of motion derived from the Hamiltonian
Eq. (1), with the fixed boundary condition, i.e., q0 = 0 and
qN+1 = 0, and the system size N = 1024. In our simulations,
the integration time step is �t = 0.01 and the energy drift
is kept less than 10−6. The quench occurs at tr = R × 103,
where R is a random variable with the uniform distribution
R ∈ U (1, 10). This quench time selection is motivated by the
observation that the harmonic system reaches the steady state
described by the GGE for t > 103 [see Fig. 1(b)]. Here, the
energy density ε and observables are averaged over 100 real-
izations for different quench time tr to reduce the fluctuations
due to the finite-size effect.
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FIG. 3. The indicator � as a function of time in the semilog scale
for (a) the quasi-integrable cases and (c) the strongly nonintegrable
cases by different values of η. The horizontal black dashed lines at
� = 0.2 are plotted as a threshold for calculating the thermalization
time. The indicator � as the function of rescaling time in semilog
scale for (b) the quasi-integrable cases (t ′ = η2t) and (d) the strongly
nonintegrable cases (t ′ = η1/4t) by different values of η. The curves
collapse to a single one.

III. RESULTS

We demonstrate the above quench protocol for the FPUT-β
lattice, which has no onsite potential U (x) = 0 and interaction
potential

V (x) = 1

2
x2 + β

4
x4. (11)

We rescale the corresponding Hamiltonian (1) H ′ = εH by
q′

i = qiε, hence the nonlinear parameter β and the energy den-
sity have an exact scaling β ′ = βε. Therefore, it is equivalent
to study the effects of β by fixing ε or those of ε by fixing
β. For convenience, the nonintegrable strength of the FPUT-β
lattices can be defined as

η = βε. (12)

In Figs. 3(a) and 3(c), we show the evolution of the indi-
cator �(t ) of initial condition 1 for different values of small
and large η, respectively. It is observed that the indicator
tends to zero on a sufficiently long timescale, indicating the
eventual achievement of thermalization. The thermalization
timescale decreases as η increases. In Figs. 3(b) and 3(d), we
present the evolution of the indicator � as the function of the
rescaling times t ′ = η2t (for the quasi-integrable case) and
t ′ = η1/4t (for the strongly nonintegrable case) for different

FIG. 4. The thermalization time for different initial conditions.
The solid color lines denote αtL for different values of proportional
coefficients α to fit the thermalization time for the three different
initial conditions. Here, α1 = 13 (lower cyan line), α2 = 70 (middle
olive line), and α3 = 500 (upper magenta line). The two dashed lines
are drawn for teq ∼ η−2 and teq ∼ η−1/4 as references.

values of η. The curves seem to overlap with each other and
collapse to a single one, which implies that the thermaliza-
tion time shows scaling behaviors teq ∼ η−2 and teq ∼ η−1/4

in the quasi-integrable region and the strongly nonintegrable
region, respectively. Note that the Lyapunov time also exhibits
the asymptotic behaviors tL ∼ η−1/4 as η → ∞ in FPUT-β
lattices [35], which suggests a proportionality between the
thermalization time and the Lyapunov time in the strongly
nonintegrable regime.

The thermalization time can be defined as the time at
which the indicator reaches a specific threshold �(teq) = C.
While the choice of the threshold C can change the value
of the thermalization time, it does not affect the underlying
scaling behavior observed in Fig. 3. For initial conditions
1, 2, and 3, we choose C = 0.2, 0.3, and 0.5 to determine
the thermalization time, respectively. The numerical results
of the thermalization time of the three initial conditions are
presented in Fig. 4. For all three initial conditions, the ther-
malization time exhibits the same scaling behaviors with
power-law exponents of −2 in the quasi-integrable region and
−1/4 in the strongly nonintegrable region, which is consistent
with the discussion of Fig. 3. Furthermore, in Fig. 4, we also
depict the αtL as the function of the nonintegrable strength
for different α. The maximum Lyapunov exponent (the in-
verse of the Lyapunov time) is numerically calculated by the
standard method [36]. Figure 5 presents the time evolution of
the finite-time Lyapunov exponent estimator λ. This visual-
ization demonstrates that the maximum Lyapunov exponent
of the FPUT lattice is independent of the initial conditions.
As shown, the finite-time Lyapunov exponents for different
initial conditions all reach a constant value after a certain
time (t > 107). Consequently, we adopt the values beyond this
saturation point as the system’s maximum Lyapunov expo-
nent. As one can see, the thermalization time is approximately
proportional to the Lyapunov time

teq ≈ αtL, (13)
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FIG. 5. The finite-time Lyapunov exponent estimator λ as a func-
tion of time for three different initial conditions in the log-log scale.
Here, η = 1.

where the proportional coefficients α are different for
three initial conditions but independent of the noninte-
grable strength. This suggests that the proportional re-
lation holds not only in the quasi-integrable region and
the strongly nonintegrable region but over a wide range
of the nonintegrable strength, including the intermediate
region.

In Fig. 6(a), we present the indicator � as a function of
time for different values of η with the initial condition 3. By
rescaling the time as the Lyapunov time t ′ = t/tL, the rescaled
curves seem to overlap with each other [Fig. 6(b)], which
further confirms that the thermalization time is proportional to
the Lyapunov time. In other words, while choosing different
thresholds C changes the value of the thermalization time,
it does not affect the underlying scaling behavior nor the
proportional relationship with the Lyapunov time. Further-
more, we depict the thermalization time as the function of the
nonintegrable strength η for different values of C in Fig. 6(c).
Here, we chose C = 0.1 and C = 0.2 for the initial condition
1 as an example. As one can see, for different values of C,
the thermalization time exhibits the same scaling behavior and
the proportional relationship still holds, which agrees with the
discussion above.

IV. SUMMARY

In summary, we present a scheme to study the ther-
malization in real space. By investigating the value of �

in the harmonic system, we propose a quench protocol to
prepare nonequilibrium initial states suitable for thermal-
ization studies. We then apply this method to the FPUT-β
lattice. Our results demonstrate that the thermalization time
not only exhibits the different scaling behaviors in the
quasi-integrable region and the strongly nonintegrable region,
respectively, but also has a proportional relation to the Lya-
punov time. The consistency of these results across three
different initial conditions suggests their general validity for
the FPUT-β lattice. The calculation of the thermalization time
is independent of the wave-vector space, which avoids the
risk that the mode energy is ill-defined beyond the quasi-
integrable region. Hence, the method can be extended to other
models.

Equation (13) paves the way for understanding the re-
laxation processes and builds a bridge between dynamics

FIG. 6. (a) The indicator � as the function of time in semilog
scale for different values of η. (b) The indicator � as the function
of the rescaling time (t ′ = t/tL), where the curves overlap with each
other. (c) The thermalization time teq for C = 0.1 and C = 0.2, and
αtL as a function of the nonintegrable strength η in the log-log
scale. The thermalization time exhibits the same scaling behavior
for different C. Moreover, the thermalization time is shown to be
proportional to the Lyapunov time within the range of η, and the
coefficient of proportionality is α1 = 30 for C = 0.1 (upper cyan
line) and α2 = 13 for C = 0.2 (lower magenta line).

and statistical mechanics. Instead of an absolute time, the
thermalization time is a characteristic time, which captures
the average rate of thermalization. While alternative ob-
servables could potentially serve as indicators for defining
characteristic thermalization times, these timescales should
exhibit qualitatively similar behaviors, including the observed
scaling laws and, potentially, the proportionality to the Lya-
punov time, a quantity that intrinsically characterizes chaotic
systems. The applicability of our proposed scheme extends
beyond the FPUT-β lattice. Further investigation is war-
ranted to verify the validity of Eq. (13) in a broad range
of Hamiltonian systems. The observed proportionality rela-
tionship in the FPUT-β lattice could be an approximation
of a more rigorous formula, which merits dedicated research
efforts.

The Toda lattice, a well-known nonlinear integrable model
[37,38], can also be described by GGE, whose indicator
� approach to nonzero values depends on initial condi-
tions. The equilibration process observed in the Toda lattice
[23] might correspond to the system relaxing towards the
GGE steady state. The Toda lattice has been extensively
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studied for comparison to the short-time dynamics of the
FPUT lattice [12,13]. By comparing the values of � in
Toda lattices with the values in the metastable state of
FPUT lattice for small η to gain further insights into how
the Toda lattice serves as the integrable limit of the FPUT
model. Instead of the harmonic lattice, the Toda lattice,
even the monatomic gas model, which can provide a good
enough nonequilibrium initial state after quenching for dif-
ferent system parameters, can also be used as the quenched
model.
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