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Random linear vector channels have been known to increase the transmission of information in several
communications systems. For Gaussian priors, the statistics of a key metric, namely, the mutual information,
which is related to the free energy of the system, have been analyzed in great detail for various types of
channel randomness. However, for the realistic case of non-Gaussian priors, only the average mutual information
has been obtained in the asymptotic limit of large channel matrices. In this paper, we employ methods from
statistical physics, namely, the replica approach, to calculate the finite-size correction and the variance of
the mutual information with non-Gaussian priors, both for the case of correlated Gaussian and uncorrelated
non-Gaussian channel matrices in the same asymptotic limit. Furthermore, using the same methodology, we
show that higher order cumulants of the mutual information should vanish in the large-system-size limit. In
addition, we obtain closed-form expressions for the minimum mean-square error finite-size corrections and
variance for both Gaussian and non-Gaussian channels. Finally, we provide numerical verification of the results
using numerical methods on finite-sized systems.
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I. INTRODUCTION

Random linear vector channels have long been seen as
a standard paradigm in analyzing inference. For example,
their study has revolutionized the wireless communications
industry in the last 30 years, initially with the introduc-
tion of CDMA (code-division multiple access), in which
symbols from different transmitters are spread in time (or
frequency) through pseudorandom code vectors, followed by
multi-antenna array processing using multiple input, multi-
ple output [1,2]. Other applications include random linear
regression and compressed sensing [3–6]. More recently, the
ideas stemming from random linear vector channels have been
generalized to machine learning and neural networks [7–10].

A random linear vector channel model can be compactly
defined in the following way:

ȳ = 1√
M

Hx + z̄. (1)

Given an M-dimensional input vector x, the above equa-
tion returns an N-dimensional output vector ȳ, linearly related
to x through the random matrix H in the presence of a (typ-
ically Gaussian) noise z̄. In (1), H can be seen either as a
channel matrix with x being the input signal vector in the
context of communications or, equivalently, as a matrix of
N covariate data vectors of size M multiplying the unknown
vector x to be estimated in the case of linear regression. For
concreteness, in the remainder of the paper, we will refer to H
as channel matrix.

The Bayesian inference problem then can be expressed
using the conditional probability

P(x|ȳ, H) = P(x)P(ȳ|x, H)

Z (ȳ|H)
, (2)

where P(x) is the distribution of priors and P(ȳ|x, H)
is the noise distribution. The normalization Z (ȳ|H) =
Ex[P(ȳ|x, H)] plays the role of the partition function of the
effective spins x, in the presence of quenched interactions and
external field given, respectively, by H and ȳ. The obvious
analogy to a spin glass has allowed for fruitful applications of
ideas from statistical physics.

A key metric is the mutual information, defined as

I (X, Ȳ |H) = −Eȳ[ln(Z (ȳ|H)] + Ex,ȳ[ln P(ȳ|x, H)], (3)

where the first term corresponds to h(Ȳ |H), the entropy of the
output ȳ and the second to (minus) the entropy of the noise,
h(Ȳ |X, H). The mutual information represents the maximum
information rate achievable for a given prior distribution P(x).
The so-called ergodic mutual information, i.e., the expectation
of the mutual information with respect to H, EH[I (X, Ȳ |H)]
corresponds to the average free energy of the system, up to the
second term above, which is a constant.

The case of the Gaussian distribution of priors has attracted
significant attention in the information theoretic community,
since, in addition to the fact that it maximizes the mutual infor-
mation, in this case I (X, Ȳ |H) takes a closed-form expression
[1,2,11]. This allowed the application of analytic approaches
based on random matrix theory (RMT) for the evaluation
of the ergodic mutual information in the large system limit,
where the size of the input and output vectors grow indefi-
nitely, but at a fixed ratio [11–13].

More realistically (and perhaps more interestingly), the
prior distribution of the elements of x is discrete, taken from a
constellation of points on the complex plane, the simplest one
being proportional to ±1. In this latter case, the model is very
similar to a spin-glass system, where RMT does not suffice to
tackle the problem. As a result, the analysis for such systems
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was based on the replica method [14], which has been applied
with great success to calculate the asymptotic ergodic mutual
information and other relevant quantities in communications
systems [15–19], compressed sensing [3–5], and, more re-
cently, in the context of machine learning [7–10], where the
channel matrix and output vector correspond to data and their
labels, respectively, and the signal corresponds to the weights
of a nonlinear neuron function. The results were based on
the assumption that the solution exhibits replica symmetry.
Nevertheless, more recently the above replica-symmetric ex-
pression for the average mutual information was rigorously
proven to be correct in a quite general setting [20–22], includ-
ing rotationally invariant random channel matrices [23,24].

It is important to point out that in the context of communi-
cations, the randomness in the external channel matrix H has a
different timescale of variation compared to z̄. Specifically, H
may be assumed to be constant over the period of a data packet
transmission (typically �100 msec), while z̄ (and therefore ȳ)
changes many times over that period and hence can be aver-
aged out. Therefore, the quantity of interest is I (X, Ȳ |H). In
contrast, the fluctuations of I (X, Ȳ |H) with respect to H sig-
nify its variation between different data packet transmissions
and hence are measurable and have a physical significance.
Similarly, in the case of linear regression, the added noise
is unknown and hence have to be averaged out first, for the
fixed covariates given. Thus, in this case higher moments of
the mutual information with respect to H are necessary to
characterize its fluctuations in a fading environment, where
the channel elements may vary due to multiple scattering. In
particular, the variance is especially important, since higher
order cumulants are known to vanish for Gaussian channels
and priors in the large system limit [25,26], thus making the
distribution of the mutual information asymptotically Gaus-
sian. The calculation of the second moment of the mutual
information for Gaussian inputs by Refs. [25–27] allowed for
the evaluation of the outage probability, an important metric
for fading channels, which corresponds to the probability that
a data-packet encoded with a given rate cannot be decoded at
the output due to channel variations.

In this paper, we apply the replica approach to obtain a
closed-form expression for the variance of the mutual infor-
mation for a subclass of correlated Gaussian vector channels
with arbitrary non-Gaussian priors. We also calculate the
variance and the O(1) correction to the mean of the mutual
information when the channel is non-Gaussian with uncor-
related entries. The analysis is valid in the large system-size
limit, for which we also argue that all higher moments vanish,
thus resulting to an asymptotically Gaussian distribution for
the mutual information.

The practical relevance of these results is evident given
that, as mentioned above, prior distributions are typically
non-Gaussian in actual communications systems, for which
it is important to evaluate the fluctuations of the mutual
information due to channel variations. In addition, the anal-
ysis of non-Gaussian vector channels is particularly relevant
for lattice-valued vector channels as in CDMA transmission,
as well as in the presence of erasures, in which a number
of channel coefficients becomes negligible due to obstacles
(shadowing). In the related setting of in high-dimensional
regression, the case of non-Gaussian, heavy-tailed vector

channels was recently analyzed in Ref. [28]. Furthermore,
explicit calculations of the variance of the free energy in
spin-glass-type problems in the replica-symmetric phase is
relatively scarce [29,30] and hence our methodology may pro-
vide additional intuition in this context. Finally, this approach
is also applicable to generalized linear vector channels, which
have been used in the context of machine learning and neural
networks [8–10].

Outline

In the next section, we define the system model and
summarize the analytical results in the paper. In Sec. III,
we provide the mathematical framework and describe the
main steps that lead us to the results for Gaussian-distributed
matrix elements, while Sec. IV generalizes the results for non-
Gaussian matrix elements. In Sec. V, we analyze the resulting
equations providing representative solutions as well as some
numerical validations for small matrix sizes, and in Sec. VI
we conclude.

II. MODEL DEFINITION

We consider an M-transmitter (input) and N-receiver (out-
put) random linear vector channel system, for which the
channel equation is given by (1) with independent and iden-
tically distributed noise z̄, with elements having complex
unit variance. We assume that the channel matrix H can be
written as

H = C1/2G, (4)

where C is the correlation matrix at the output side, with the
normalization condition that trC = N , and where the matrix G
will occasionally be expressed in terms of its rows, i.e., G =
[g1, g2, . . . , gN ]T . C can be diagonalized through a unitary
matrix U, such that C = U†�U, where � is a diagonal matrix
with the eigenvalues of C, λi � 0, for i = 1, . . . , N , on the
diagonal. In this paper, we will treat two distinct cases of ran-
dom H. First, we will assume that H is complex Gaussian for
general C. Subsequently, we will treat the case of uncorrelated
entries of H and hence assume diagonal C, i.e., U = I, but for
general distributions of the entries of each row, characterized
only by their fourth cumulant κ4 j . We also assume that the
entries have a finite (4 + ε)-moment, so the necessary con-
vergence is guaranteed for the Edgeworth expansion, which
we employ. Note that this assumption is optimal in terms of
moment conditions but, in general, it may be further tightened.
For exposition purposes, we will discuss here the general case,
specializing in the two cases when necessary.

Assuming that the output side knows the channel matrix H,
it is equivalent to analyze the vector y = Uȳ, with elements
given by

y = 1√
M

�1/2UGx + z, (5)

where z = Uz̄. Furthermore, we assume that the elements
of x, namely, x j , for j = 1, . . . , M, follow the distribution
p j (x j ), with zero-mean, variance ρ j , zero covariance between
its real and imaginary parts, and finite higher moments. Here,
ρ j corresponds to the signal-to-noise (SNR) ratio of input j.
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The mutual information of the system I (X,Y |H) can then
be expressed as (3). Given independence, the input distribu-
tion can be written as a product, i.e., P(x) =∏ j p j (x j ), while
the Gaussian noise distribution is given by

P(y|x, H) = e−|y− 1√
M

�1/2UGx|2

πN
. (6)

It can be easily shown that h(Y |X, H) = N ln(πe), inde-
pendently of H. We will express the output entropy in the form

h(Y |H) = −
∫

dyZ (y|H) ln Z (y|H), (7)

where the output distribution is expressed as

Z (y|H) =
∑

x

P(x)P(y|x, H). (8)

A closely related metric to the mutual information [31] is
the minimum mean square error (MMSE), also known as the
Bayesian error

MMSE(H) = Ey[|x − x̂(y, H)|2], (9)

where x0 is the input signal, while x̂(y, H) is the posterior
mean estimator:

x̂(y, H) =
∑

x

xP(x|y, H). (10)

A. Summary of results

1. Definitions

As emphasized in Ref. [16], underlying much of the anal-
ysis here is the observation that in the large-system limit
the output corresponding to each input element can be de-
scribed through an auxiliary Gaussian effective noise channel
p(y|x; q̄) given by

p(y|x; q̄) = q̄

π
e−q̄|y−x|2 , (11)

with variance 1/q̄. Thus, the marginal distribution of y for
input j is then expressed as

p j (y; q̄) =
∑

x

p j (x)p(y|x; q̄). (12)

Averages over this distribution will appear as Ey, j[·]. Simi-
larly, the conditional probability for input j given y takes the
form

p j (x|y; q̄) = p j (x)e−q̄|y−x|2∑
x′ p j (x′)e−q̄|y−x′|2 , (13)

with an expectation over this distribution denoted as
E j[·|y; q̄]. As a result, the posterior mean or Bayesian esti-
mator x̂(y; q̄) can be expressed as

x̂ j (y; q̄) =
∑

x

xp j (x|y; q̄) = E j[x|y; q̄]. (14)

The mutual information of the channel takes the form

Iy,x j (q̄) = −E j[ln p j (y; q̄)|y; q̄] − ln

(
eπ

q̄

)
. (15)

The corresponding posterior variances and covariances of the
input can be expressed as

v1 j (y; q̄) = E j[Re(x − x̂ j (y; q̄))2|y; q̄], (16a)

v2 j (y; q̄) = E j[Im(x − x̂ j (y; q̄))2|y; q̄], (16b)

v3 j (y; q̄) = E j[(Re(x)Im(x) − Re(x̂ j (y; q̄))

× Im(x̂ j (y; q̄)))|y; q̄]. (16c)

Thus, the mean square error of the posterior mean estimator
of input j takes the form

ε j = Ey, j[E j[|x − x̂ j (y; q̄)|2|y; q̄]]

= Ey, j[v1 j (y; q̄) + v2 j (y; q̄)]. (17)

As described in Refs. [16,18], we are interested in this above
channels in the specific case where q̄ is related to the mean
square error averaged over inputs

ε = 1

M

M∑
j=1

ε j (18)

through

q̄ = 1

M

N∑
i=1

λi

1 + ελi
. (19)

In addition, under mild conditions, the expectation of the
normalized mutual information (or average free energy)
EH[I (X,Y |H)]/M has been proven rigorously to converge in
the large size limit as follows:

Theorem (asymptotic normalized mutual information
[20–22]). Consider the function �RS defined through

�RS (ε, q̄) =
⎛
⎝ 1

M

N∑
i=1

ln(1 + λiε) − εq̄ + 1

M

M∑
j=1

Iy,x j (q̄)

⎞
⎠.

(20)

As long as � has at most three stationary points, then in
the limit M → ∞, with fixed β = M

N , the expectation of the
mutual information takes the form

lim
M→∞

EH

[
I (X,Y |H)

M

]
= C, (21)

where C is given by

C = inf
ε�ρ

sup
q̄

�RS(ε, q̄). (22)

The above theorem provides strong evidence for the
validity of replica symmetry, and thus we expect our results to
be valid under the same conditions as (21). The expression for
C together with (18) and (19) was first obtained in Ref. [18],
which generalized results in Refs. [15,16] to correlated
channels. Given that the fixed point equations may (and
indeed sometimes do) have multiple solutions, the infε supq̄
condition in (22) guarantees that we keep the correct solution,
which corresponds to the one with the lowest value of �RS.
The existence of multiple solutions is tied to the existence
of metastable states, which leads to first-order transitions.
Nevertheless, for all relevant input distributions, from the
point of view of communications, the conditions of the above
theorem hold.
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We may also define the following related quantities:

m1 = 1

M

N∑
i=1

λ2
i

(1 + λiε)2
, (23)

m2 = 1

M

M∑
j=1

ε2
j , (24)

and


 j = 2Ey, j[v1 j (y; q̄)2 + v2 j (y; q̄)2 + 2v3 j (y; q̄)2]. (25)

Finally, letting

� j (y; q̄) = 2E j

⎡
⎢⎣ 3∑

m,n=0
m>n

|xm − xn|2(x0 − x2)∗(x1 − x3)Re(x∗
0x1)

∣∣∣∣∣∣∣y; q̄

⎤
⎥⎦,

where {x0, . . . , x3} are random variables drawn independently
from the distribution p j (x|y; q̄) in (13), and subsequently
defining

� j = Ey, j� j (y; q̄), (26)

we are ready to state our results.

2. Main results

Our results come in the form of results based on the replica
method. As discussed in the beginning of Sec. II, we will
present results for two cases, namely, when G is Gaussian
with a left-correlation matrix C and when G is independent
and identically distributed, but generally non-Gaussian en-
tries. In both cases, we assume that the first and third moments
of each entry vanish, that their second moment is unity, and
their fourth cumulant is given by κ4 j (which vanishes in the
Gaussian case).

Result 1 (bias of the mutual information). In the limit
M → ∞, with fixed β = M

N , the expectation of the mutual
information takes the form

lim
M→∞

[EH[I (X,Y |H)] − MC] = − lim
M→∞

m1

2M

M∑
j=1

κ4 j
 j,

(27)

where C is given by (22).
It can be seen that for Gaussian channel matrices, there is

no finite-size correction to the mutual information, a result
that has been known to hold for the case of Gaussian inputs
[25]. The next result relates to the variance of the mutual
information.

Result 2 (variance of mutual information). In the limit
M → ∞, with converging β = M

N , the variance of the mutual
information is given by

lim
M→∞

varH[I (X,Y |H)]

= lim
M→∞

⎡
⎣− ln(1 − m1m2) + m1

M

M∑
j=1

κ4 jε
2
j

⎤
⎦. (28)

Moving to higher cumulants, the following result estab-
lishes that all higher cumulants of the mutual information
vanish in the large-system-size limit, therefore making the dis-
tribution of the mutual information asymptotically Gaussian:

Result 3 (higher order cumulants of mutual information).
In the limit M → ∞, with converging β = M

N , all cumulants
of the mutual information beyond the variance vanish.

In Appendix B, we use the methodology applied by
Ref. [25] for the case of Gaussian inputs, to obtain a con-
trolled, asymptotic expansion of higher order terms around the
saddle-point solution, in particular, showing that the skewness
of the mutual information vanishes in the large-system limit.
This approach can be readily generalized for all higher cumu-
lants. As a result, the distribution of the mutual information
becomes asymptotically Gaussian in this limit. In addition, it
should be noted that the above methodology can be applied
to find the higher order corrections to the mutual information
and the variance, both of which also vanish in the same limit
(see Ref. [25]).

Regarding the minimum mean-square error, its asymptotic
variance can be obtained from the following:

Result 4 (variance of MMSE). In the limit M → ∞, with
converging β = M

N , the variance of the normalized Bayes op-
timum error is given by

lim
M→∞

[varH[MMSE(H)]] = lim
M→∞

⎡
⎣VG + m1

M

M∑
j=1

κ4 j

2
j

⎤
⎦,
(29)

where VG is the MMSE variance for Gaussian matrices, given
by

VG = m1

1 − m1m2

1

M

M∑
j=1


2
j +
⎛
⎝ m1

1 − m1m2

1

M

M∑
j=1


 jε j

⎞
⎠

2

.

It is worth pointing out that when all x j are identically
distributed, the expression for VG reduces to

VG = m1

(1 − m1m2)2

2. (30)

Finally, as in the case of the mutual information, the MMSE
has a nonvanishing finite-size correction in the case of non-
Gaussian channels, as seen by the following:

Result 5 (bias of the MMSE). In the limit M → ∞, with
fixed β = M

N , the expectation of the MMSE takes the form

lim
M→∞

[EH[MMSE(H)] − Mε] = − lim
M→∞

m1

2M

M∑
j=1

κ4 j� j .

(31)
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The derivation for all above results in the case of Gaussian
matrices (κ4 = 0) appears in Sec. III. The corrections due to
non-Gaussian channel matrices are analyzed in Sec. IV.

3. Relation to previous results

It is worth noting that the above expressions reduce to
known results for Gaussian input distribution, when the chan-
nel matrix is non-Gaussian with kurtosis κ4. In this case, the
average mean square error for input j in (17) takes the simple
form

ε jg = ρ j

1 + ρ j q̄
(32)

for j = 1, . . . , M, and with q̄ given by (19), with the subscript
g indicating the Gaussian prior case, while the corresponding
values of the parameters εg, m1g, m2g are obtained, applying
the above to (18) and (23). As a result, the correction to the
expectation of the mutual information takes exactly the same
form as before, namely,

lim
M→∞

[E[I (X,Y |H)] − MCg] = −κ4m1gm2g, (33)

where the expression for the average mutual information per
input element,

Cg = 1

M

N∑
i=1

ln(1 + λiε) + 1

M

M∑
j=1

ln(1 + ρ j q̄) − q̄εg, (34)

has been rederived in the past using various methods [25–27].
In addition, the variance of the mutual information becomes

var[I (X,Y |H)] = − ln(1 − m1gm2g) + κ4m1gm2g. (35)

The above expressions coincide with corresponding results in
Ref. [27] when the channel statistics are the same, namely,
E[HiaH∗

jb] = δi jδabλi.

III. THE REPLICA TRICK: GAUSSIAN CHANNELS

In this section, we will introduce the main mathematical
tools of the paper. We will initially assume that the channel
matrix G is Gaussian. In the next section, we will generalize
the analysis to non-Gaussian matrices and calculate the corre-
sponding corrections. Before we proceed, we present a bird’s
eye view of our main calculation.

The central role in what follows is played by a function
of two real variables F (μ1, μ2), which is constructed so
var[I] = −∂μ1∂μ2F (1, 1), as described in (39). Since F is
hard to calculate at arbitrary (μ1, μ2), we assume that it is
equal to the “obvious” analytical continuation of its restriction
on Z2, which we will calculate. This is the content of one of
the replica method assumptions, which will be detailed below.

To obtain an expression for F (μ1, μ2) with both argu-
ments being positive integers, in Sec. III A we take advantage
of the Gaussianity of the channel and the introduction of
delta functions to get an integral expression of the form of
(55), namely, e−F = ∫ DX e−M�(X ), where � is a function
of two matrices S, S̄, referred to jointly for compactness as
X , of dimension equal to μ1 + μ2. We evaluate this integral
asymptotically, using the saddle-point method for matrices
S and S̄. The validity of the replica symmetry, as proven in
Refs. [20–22], physically means that there is a single relevant

pure state governing the large-system behavior of the system.
As a result, this necessitates that saddle-point values S∗ and S̄∗
are replica-metric with respect to its indices. The identification
of the dominating saddle-point and matrices S∗ and S̄∗ is
performed in Sec. III B and corresponds to the application of
Varadhan’s lemma and Cramer’s theorem as in Refs. [15,16].
We shall then see that the derivative of F that interests us is of
subleading order in the exponential integral and so we need to
keep corrections to its asymptotic calculation. Obtaining these
corrections requires analyzing the fluctuations of � around
the replica symmetric saddle point, which is performed in
Sec. III C.

A. The generating function

To evaluate the moments of the mutual information (3), one
needs to perform the integrals over y and the average over H in
(7). This is generally difficult due to the existence of ln Z (y|H)
in the integrand. To tackle this problem, the replica trick is
devised, in which the log-normal generating function F (μ) is
introduced,

F (μ) = − ln

{∫
dyEH

[
Z (y|H)μ

(πe)N (1−μ)

]}
, (36)

where the denominator has been introduced to include the
noise entropy. The derivative of the above quantity with re-
spect to μ at μ = 1 is the quantity of interest, here the mutual
information:

∂F
∂μ

∣∣∣∣
μ=1

= EH[I (X,Y |H)]. (37)

The basic prescription of this approach is to evaluate F (μ) at
integer values of μ and then analytically continue the result
in the vicinity of μ = 1, so as to be able to take the deriva-
tive in (36). The proof that such an analytic continuation is
valid is usually not possible. However, in a number of similar
problems it has recently been shown that the results obtained
through the replica method are exact [32,33]. To obtain the
variance of the mutual information, we need to generalize the
above formula to

F (μ1, μ2)

= − ln

{∫∫
dy1dy2EH

[
Z (y1|H)μ1 Z (y2|H)μ2

(πe)N (2−μ1−μ2 )

]}
. (38)

Then

∂2F (μ1, μ2)

∂μ1∂μ2

∣∣∣∣
μ1=μ2=1

= −varH[I (X,Y |H)] (39)

and, of course,

∂F (μ1, 1)

∂μ1

∣∣∣∣
μ1=1

= EH[I (X,Y |H)]. (40)

As a result, in what follows we will make use of the
following ansatz:

Assumption 1 (replica assumption). F (μ1, μ2) evaluated
at positive integer values of μ1, μ2 can be analytically contin-
ued for positive real values, specifically in the neighborhood
of μ1 = μ2 = 1.
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In the above expressions, when μ1 is a positive integer,
the term Z (y1|H)μ1 can be expressed in an explicit way as
follows:

Z (y1|H)μ1 = 1

πNμ1

∑
X1

P(X1)e−∑μ1
α=1 |y1− �1/2√

M
Gxα

1 |2
, (41)

where we have introduced the matrix X1, with elements xα
1 j for

j = 1, . . . , M and α = 1, . . . , μ1, with columns denoted, re-
spectively, by xα

1 for α = 1, . . . , μ1 and x1 j for j = 1, . . . , M,
and we have overloaded the definition of P(·) to denote also
P(X1) =∏α

∏
j p j (xα

1 j ). At a later stage, we will generalize
the expression of F by using a slightly different distribution
of the xα

1 , namely,

P(X1) → Ph1 (X1) = P(X1)e− h1
2

∑
α �=β |xα

1 −xβ

1 |2 . (42)

P(X2) will similarly correspond to the distribution of the M ×
μ2 matrix X2. For compactness, sometimes we will use the
notation X = [X1, X2]. The resulting function will be denoted
as F (μ1, μ2; h1, h2) for concreteness. In this case, one can
also see that

∂

∂μ1

∂F (μ1, 1; h1, 0)

∂h1

∣∣∣∣
μ1=1;h1=0

= EH[MMSE(H)] (43)

while

∂2

∂μ1∂μ2

∂2F (μ1, μ2; h1, h2)

∂h1∂h2

∣∣∣∣μ1=μ2=1
h1=h2=0

= −varH[MMSE(H)].

(44)

For simplicity, we start with the case h1 = h2 = 0. We may
now express F as

F = − ln

⎧⎨
⎩
∑
X1X2

P(X1)P(X2)

×EG

[∫
dy1

πN
e−∑μ1

α1=1 |y1− 1√
M

�1/2UGxα1
1 |2+N (μ1−1)

×
∫

dy2

πN
e−∑μ2

α2=1 |y2− 1√
M

�1/2UGxα2
2 |2+N (μ2−1)

]}
. (45)

Integrating over y1 and y2 and ignoring terms of order (μ1 −
1)2 or (μ2 − 1)2, we get

F = − ln

⎧⎨
⎩
∑
X1X2

P(X1)P(X2)EG[e−tr(�UV�V†U† )]

⎫⎬
⎭. (46)

In the above expression, � is a (μ1 + μ2)-dimensional, block-
diagonal matrix given by

� =
(

�1 0
0 �2

)
, (47)

where �1 = Iμ1 − u1u†
1 is a μ1 × μ1 projection matrix or-

thogonal to the unit vector u1 = [1, . . . , 1]T /
√

μ1 with unit
elements, and with �2 having a similar definition. In addition,
V = [V1, V2] is a N × (μ1 + μ2)-dimensional matrix given
by the concatenation of the matrices V1 and V2 along the
second index

V1 = 1√
M

GX1,

V2 = 1√
M

GX2.

(48)

The rows of the matrices are uncorrelated, i.e., E[v∗
1iαv1 jβ] =

E[v∗
2iαv2 jβ] = E[v∗

1iαv2 jβ] = 0 for i �= j.
For equal values of i, their covariance matrix for fixed X1,

X2 is given by

Q1 = E[V†
1V1] = 1

M
X†

1X1,

Q2 = E[V†
2V2] = 1

M
X†

2X2,

R = E[V†
1V2] = 1

M
X†

1X2.

(49)

We will now make the assumption that the matrix G is
Gaussian, deferring the general non-Gaussian case to the next
section. As a result, we will take the distribution of V to be
Gaussian, namely,

fG(V; S) = exp[−Tr[VS−1V†]]

(πμ1+μ2 det(S))N
, (50)

where

S =
(

Q1 R

R† Q2

)
. (51)

We note that Q1 and Q2 are μ1- and μ2-dimensional Her-
mitian matrices, hence Q1,αβ = Q∗

1,βα , etc. In addition, R is
a μ1 × μ2-dimensional matrix. As a result, after integrating
over y1, y2, and G we obtain

F = − ln

⎧⎨
⎩
∑
X1X2

P(X1)P(X2)
N∏

i=1

1

det (I + λi�S)

⎫⎬
⎭. (52)

We now introduce δ functions which allow us to sum X1, X2

independently over different shells of values of the elements
of the matrices Q1, Q2, R. We also need to introduce a
dual matrix S̄, defined in a similar way as S in (51) through
Q̄1, Q̄2, R̄ to express the expectations with respect to X1,
X2 of the δ functions below in terms of their corresponding
moments generating functions using Fourier expansions. Let
us clarify here that the delta function with complex input
can be defined by extending the definition for real input as
δ(z) = δ(Re(z))δ(Im(z)).

F = − ln

{∫
dS

N∏
i=1

1

det (I + λi�S)
·
∑
X1X2

P(X1)P(X2)
∏
α�β

δ(MSαβ − [X†X]αβ )

}

= − ln

{∫
dSdS̄

∑
X1X2

P(X1)P(X2)
N∏

i=1

1

det(I + λi�S)
· exp

[∑
α�β

S̄∗
αβ (MSαβ − [X†X]αβ )

]}
, (53)
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where in the integrations above the differential elements are

dS = M (μ1+μ2 )2
∏
α

dSαα

∏
β<α

dSαβrdSαβi,

dS̄ =
∏
α

1

2π i
dS̄αα

∏
α>β

dS̄αβr

π i

dS̄αβi

π i
. (54)

The subscripts r, i correspond to the real and imaginary parts
of the matrix elements and the lower triangular parts of S and

S̄ are defined by Hermitianity. The integrals of the unbarred
variables are over the real line, while the barred variables
are integrated over the imaginary line (and hence the i in the
denominator).

We can then express F as follows:

e−F =
∫

dSdS̄e−M�, (55)

with

� = 1

M

N∑
i=1

ln det(I + λi�S) + tr[Q̄1Q1] + tr[Q̄2Q2] + tr[R̄†R + R̄R†]

− 1

M

M∑
j=1

ln

⎛
⎝∑

x1 j ,x2 j

Pj (x1 j )Pj (x2 j ) exp[[x1 j ; x2 j]S̄[x†
1 j ; x†

2 j]
T ]

⎞
⎠. (56)

It should be emphasized that since the channel matrix H is
Gaussian, (55) together with (56), make for an exact repre-
sentation of F , which is well-defined for integer values of
μ1 and μ2. In the next section, we will use the framework of
the replica method to analyze this representation. Specifically,
we will need to devise natural generalizations to the common
replica method assumptions to make them applicable in our
program [7,14].

B. Saddle-point analysis

To move on, we will need to analyze the asymptotic be-
havior of the integral in (55) by taking the large M limit.
In principle, F (μ1, μ2) should first be analytically continued
at noninteger μ1, μ2, before the large system-size limit can
be taken. However, as we shall see, the integrals over Q1,
Q̄1, etc., cannot be evaluated for general M even for integer
μ1, μ2. Therefore, we will make the following assumptions.

Assumption 2 (interchanging limits). The limits M → ∞
and μ1, μ2 → 1+ in evaluating F (μ1, μ2) in (52) can be
interchanged by first taking the former and then the latter
without affecting the final answer.

Having this in mind, we exploit the fact that in the large
M limit, F is well approximated by the saddle-point solution
of the above functional. Specifically, from Varadhan’s lemma
[34], the integral over S is dominated by the infimum of the
integrand in (55) or, equivalently, the infimum of � in (56)
over Q1, Q2, and R. Furthermore, from Cramér’s theorem,
the supremum of � with respect to Q̄1, Q̄2, R̄ characterizes
the integral over S̄ for large M, thus resulting in a saddle point
of �. Once we have obtained the relevant saddle point, we
will also need to analyze the fluctuations around the solution,
so we may evaluate F to O(1) accuracy in M.

To narrow down the search of saddle points of �, we
exploit the fact that (56) is symmetric under the exchange
of replica indices. Hence, we seek a replica-symmetric
saddle point. Therefore, we make the following additional
assumption:

Assumption 3 (replica symmetry). At the relevant saddle-
point solution, the matrices Qk , Q̄k , for k = 1, 2 and R, R̄
are symmetric under interchange of any two matrix indices.

This is a key assumption to this calculation. Usually, the
validity of this assumption is tested by performing stability
analysis around the saddle point [14]. Fortunately, in our case,
it has been shown [15,35] that the replica symmetric saddle-
point is stable and, additionally, that the replica symmetric
solution is exact for a class of problems including the cur-
rent one [20–22]. The validity of replica symmetry in this
scenario is known to be tightly related with the Bayesian-
optimality setting of the problem, i.e., the perfect knowledge
of all underlying priors [8]. Specifically, it has been studied
in great detail how Bayesian optimality implies the Nishimori
condition [36], which in turn places the model firmly in the
replica-symmetric regime [37]. Therefore, we seek matrices
Q1, Q2, which have identical diagonal elements and identical
off-diagonal elements, while the matrix R, due to the same
symmetry, needs to have all elements equal. Similar require-
ments are imposed on the matrices Q̄1, Q̄2, and R̄. As a result,
a compact form of the desired saddle point solution is the
following:

Qk = (ρ − q)Iμk + μkquku†
k ,

Q̄k = (ρ̄ − q̄)Iμk + μkq̄uku†
k ,

R = p
√

μ1μ2u1u†
2,

R̄ = p̄
√

μ1μ2u1u†
2,

(57)

where k = 1, 2. The values of the above parameters are found
by demanding that � is a saddle point, i.e., by setting the
corresponding partial derivatives to zero.

Based on the above, we find that at the saddle point, �1,
�2 are orthogonal to R, in the sense that �1R and R�2 have
zero elements. As a result, the first term in (55) does not have
any p dependence resulting in vanishing saddle-point values
of both p and p̄, i.e., p = p̄ = 0.

064114-7



THEODOROS G. TSIRONIS AND ARIS L. MOUSTAKAS PHYSICAL REVIEW E 109, 064114 (2024)

As a result, the saddle-point equations for ρ, q and ρ̄, q̄ are
given below, to leading order in μk − 1,

q̄ = 1

M

N∑
i=1

λi

1 + (ρ − q)λi
, (58)

r̄ = −(μk − 1)q̄, (59)

ρ = 1

M

M∑
j=1

∑
x

p j (x)|x|2 = 1

M

M∑
j=1

ρ j, (60)

q j = Ey, j

⎡
⎣
∣∣∣∣∣
∑

x xp j (x)e−q̄|y−x|2∑
x p j (x)e−q̄|y−x|2

∣∣∣∣∣
2
⎤
⎦, (61)

q = 1

M

M∑
j=1

q j, (62)

for k = 1, 2. It is worth pointing out that the quantity ρ j − q j

is the minimum mean square error for the signal of the jth
input element. Indeed, taking the difference ρ j − q j , we see
that

ε j = ρ j − q j = Ey, j[|x0 j − x̂ j (y; q̄)|2], (63)

where x0 j is the symbol from the jth input element and,
correspondingly, ρ − q is the average minimum mean square
error over all inputs,

ε = ρ − q = 1

M

M∑
j=1

Ey, j[|x0 j − x̂ j (y; q̄)|2], (64)

and this leads to (17) and (18).
Inserting the replica symmetric values of the matrices Qk ,

Q̄k , R, and R̄ into (56) we see that, to leading order in M,
F (μ1, μ2) ≈ −M�∗, where �∗ is evaluated at the saddle

point,

�∗ =(μ1 − 1)C + (μ2 − 1)C, (65)

where C is given in (22), which specifies that it is an infimum
with respect to ε and hence the elements of Q1 and a supre-
mum with respect to q̄, i.e., the elements of Q̄1.

Remark. The fact that this is the only possible solution
for the saddle-point values of the matrices R∗ and R̄∗ can
be seen in another way. If, for some reason, this wasn’t the
case, then we would have had a finite saddle-point correction
to �∗, which would be proportional to (μ1 − 1)(μ2 − 1). This
would then correspond to an O(M ) correction to the variance
(or the mean) of the mutual information, which would have
been clearly visible in the numerics of Sec. V B.

As a result, the ergodic mutual information per input di-
mension is given by [18]

1

M
EH[I (X,Y |H)] = ∂�

∂μ1

∣∣∣∣
μ1=μ2=1

= C. (66)

In addition, if we include the h1 dependence in (42), it is
easy to see using (43) that the minimum mean square error is
given by

EH[MMSE(H)] = Mε. (67)

C. Second-order analysis

In anticipation that the variance and the finite-size correc-
tion to the mutual information are going to be of order unity
in M, we will need to evaluate the second-order statistics of
the functional �. To do this, we expand � to second order
around the saddle point to calculate the fluctuations around it,
obtaining the following expression:

δ2� =
2∑

k=1

⎧⎨
⎩trδQ̄†

kδQk − 1

2M

N∑
i=1

(
λi

1 + λiε

)2

tr[δQk�1δQk�1]

− 1

2M

M∑
j=1

⎡
⎢⎣∑

xk

P j (xk )(x†
kδQ̄kxk )2 −

⎛
⎝∑

xk

P j (xk )x†
kδQ̄kxk

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭+ trδR̄†δR + trδR̄δR†

− 1

M

N∑
i=1

(
λi

1 + λiε

)2

tr[δR†�1δR�2] − 1

M

M∑
j=1

∑
x1,x2

P j (x1)P j (x2)x†
1δR̄x2x†

2δR̄†x1. (68)

In the above, δQ̄k , δQk , δR̄, δR are variations of the corre-
sponding matrices about their values on the saddle point and
P j (xk ) are the saddle-point probabilities of the corresponding
signal vectors xk = [x1, x2, . . . , xμk ] for the input j, which is
given by

P j (xk ) = P(xk )e
∑μk

α,β=1 x∗
αQ̄αβxβ∑

xk
P(xk )e

∑μk
α,β=1 x∗

αQ̄αβ xβ

(69)

for k = 1, 2. Now, we note that the variations are only coupled
in pairs, i.e., δQk with δQ̄k , and δR with δR̄, etc. Simple
number counting of the degrees of freedom in each sector

shows that integration over δQk , δQ̄k will provide corrections
proportional to (μ1 − 1)2 + (μ2 − 1)2, and they provide the
variance EH,y[ln Z (y|H)2] − EH,y[ln Z (y|H)]2 and hence do
not contribute to the variance of the mutual information. (Nev-
ertheless, they contribute to higher order O(M−1) corrections
of the variance.) Therefore, we will not further analyze these
terms and focus only on the terms including δR and δR̄. We
first observe that the quadratic term in δR does not involve
fluctuations proportional to u1u†

2, due to the projection oper-
ators �1, �2 appearing in the corresponding term in (68).
Thus, it is convenient to express the fluctuations of R, R̄
in a basis where u1 and u2 are denoted as the left-side and
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right-side basis vectors with index 0. Thus, δR00 = u†
1δRu2,

δR0,α = u†
1δR(I − u2u†

2)α , etc. Furthermore, we express the
fluctuations in terms of their real and imaginary parts as fol-
lows:

δRαβ = δRαβ1 + iδRαβ2. (70)

We may now express the relevant part of δ2� as

δ2� =
∑

α1,α2,�

[
δRα1α2�

δR̄α1α2�

]T

V1

[
δRα1α2�

δR̄α1α2�

]

+
∑
α1,�

[
δRα10�

δR̄α10�

]T

V2

[
δRα10�

δR̄α10�

]

+
∑
α2,�

[
δR0α2�

δR̄0α2�

]T

V2

[
δR0α2�

δR̄0α2�

]

+
∑

�

[
δR00�

δR̄00�

]T

V3

[
δR00�

δR̄00�

]
, (71)

where the value ranges of the indices are α1 = 1, . . . , μ1 − 1,
α2 = 1, . . . , μ2 − 1 and � = 1, 2, and the block-Hessian ma-
trices Vi for i = 1, 2, 3 can be expressed as

V1 =
[
−m1 1

1 −m2

]
, (72)

V2 =
[

0 1

1 −m3

]
, (73)

V3 =
[

0 1

1 −m4

]
, (74)

where the quantities mi for i = 1, ..., 4 are

m1 = 1

M

N∑
i=1

λ2
i

(1 + λiε)2
, (75)

m2 = 1

M

M∑
j=1

ε2
j , (76)

m3 = 1

M

M∑
j=1

ρ jε j, (77)

m4 = 1

M

M∑
j=1

ρ2
j . (78)

Since the upper left element of V2 and V3 is zero, their
determinant is equal to −1. We may now integrate over the
fluctuations δR, δR̄ using the volume element appearing in
(55). In Appendix A, we prove the following result:

det(V1) = (m1m2 − 1) < 0. (79)

As a result, the two eigenvalues of V1 have opposite signs.
This behavior is typical for a saddle-point calculation. To
perform the integration, one needs to deform the contour of
the eigenamplitude of the negative eigenvalue to move along
the imaginary axis. The same should happen for the cases
of V2 and V3. The integration of half the variables over the

imaginary axis also takes care of the imaginary numbers ap-
pearing in (54).

In summary, to leading order in μ1 − 1, μ2 − 1, F can be
expressed as

F = (μ1 − 1)MC + (μ2 − 1)MC

+ (μ1 − 1)(μ2 − 1) ln(1 − m1m2)

+ O((μ1 − 1)2, (μ2 − 1)2) (80)

from which taking the derivative over μ1 and μ2 at μ1 = μ2 =
1 gives us

varH[I (X,Y |H)] = − ln(1 − m1m2). (81)

This is the final expression of Result 2 for Gaussian chan-
nel matrices (κ4 = 0). In Appendix B, we will sketch how
higher order cumulants vanish in the large-N limit, resulting to
the mutual information being asymptotically Gaussian, with
mean MC and variance − ln(1 − m1m2), as above. Neverthe-
less, that methodology can also be used to obtain higher order
corrections to the mean and variance as well.

1. Statistics of MMSE

To get the variance of the mean-square error, we proceed
in the same way after including the h dependence in (42) and
using the corresponding expression of F (μ1, μ2; h1, h2). In
this case, δ2� in (68) is changed only in the fact that P j (x

j
k )

in (69) is generalized to

P j
(
x j

k

)
e− hk

2

∑
α �=β |xkα−xkβ |2 ≈ P j (xk )

⎛
⎝1− hk

2

∑
α �=β

|xkα − xkβ |2
⎞
⎠

(82)

for k = 1, 2. After going through the same steps as before, we
see that only m2 and m3 are changed to

m2h = 1

M

M∑
j=1

(ρ j − q j − h1
 j )(ρ j − q j − h2
 j ), (83)

m3h = 1

M

M∑
j=1

ρ j (ρ j − q j − h1
 j ), (84)

where


 j = −Ey, j[E j[|x0 − x1|2(x0 − x2)∗(x1 − x3)|y; q̄]]. (85)

After some algebra, the above result can be expressed as


 j = 2Ey, j[v1(y; q̄)2 + v2(y; q̄)2 + 2v3(y; q̄)2], (86)

where the v1(y; q̄), v2(y; q̄) and v3(y; q̄) have been defined in
(16a), (16b), and (16c), respectively. As a result, the variance
of the normalized mean square error can be obtained from (44)
as follows:

var[MMSE(H)] = m1

1 − m1m2

1

M

M∑
j=1


2
j

+
⎛
⎝ m1

1 − m1m2

1

M

M∑
j=1


 jε j

⎞
⎠

2

. (87)
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IV. BEYOND GAUSSIAN MATRIX ELEMENTS

We will now discuss the case when the elements of the
channel matrix have non-Gaussian statistics. As mentioned
in Sec. II, we will only treat the case where matrix H has
independently distributed elements, hence matrix C in (4) is
diagonal and U = I. It is important to point out that the rows
of G, namely, the vectors gi, for i = . . . , N , enter the calcula-
tion independently, and only through the finite-sized μ1 + μ2

dimensional rows vi of the matrix V, defined in (48). These
rows are now independent given X and, in the large M limit,
their elements become jointly Gaussian, with density given
by the marginals of fG(V, S) defined in (50). In this section,
we will study the deviations from normality in a perturbative
fashion. In particular, as first suggested in Ref. [15], we will
make use of an Edgeworth expansion about the Gaussian
density, which is essentially an asymptotic expansion of the
distribution of vi = 1√

M
giX.

Starting from (46) and setting U = I, the expectation can
be decomposed into a product of N expectations over vi in the
form

N∏
i=1

Evi [e
−λiv

†
i �vi ]. (88)

The following proposition describes how we might evaluate
these expectations up to an o(1/M ) error.

Proposition (Edgeworthexpansion forcomplexvariables).
Let {g j} be a sequence of independent proper random
variables in C of zero mean, unit variance, vanishing third
moments, and with E|g j |4+ε bounded independently of j for
some ε > 0. Denote κ4 j = E|g j |4 − 2 the fourth cumulants
of {g j}M

j=1. Then we have

∣∣∣∣
(
Evi −
∫

dviψ (vi )

)
e−λiv

†
i �vi

∣∣∣∣ = o

(
1

M

)√
λi‖S‖1/2,

(89)

with

ψ (v) =
⎛
⎝1 + 1

4M

μ1+μ2∑
αβγ δ=1

καβγ δ∂
∗
α∂β∂∗

γ ∂δ

⎞
⎠ fG(v; S), (90)

in which ∂α and ∂∗
α denote Wirtinger derivatives with respect

to vα and v∗
α , respectively, and fG is as defined in (50).

In addition,

καβγ δ = 1

M

M∑
j=1

κ4 jx
∗
jαx jβx∗

jγ x jδ. (91)

Proof. If we treat the complex random variables gjx j as
real vectors in R2(μ1+μ2 ), then the above proposition is a
straightforward application of Theorem 3.6 in Ref. [38]. The
compact expression of (90), with partial derivatives with re-
spect to vα and v∗

α , can be translated directly to corresponding
derivatives over the real and imaginary parts of v, after noting
that the ∂∗

α∂β∂γ ∂δ and ∂α∂β∂γ ∂δ terms vanish in the integration
of e−v†�v. �

Remark. Note that from Theorem 3.10 of Ref. [39], a
uniform bound of the 2 + ε moments of the entries of H is
sufficient for the universality of the Marchenko-Pastur Law
of the matrix 1

M H†H. Note also that the eigenvalue statistics
are determined from the mutual information of the Gaussian
input channel, since in that case the MMSE is the Stieljes
transform. Here we see that a uniform bound of the 4 + ε

moments of the entries of H is sufficient for the universality
of the first-order corrections of the mutual information of the
system. Additionally, from Theorem 3.6 of Ref. [38] we can
see that a uniform bound of the 5 + ε moments of the entries
of H is sufficient to capture in the above result. Specifically,
under that condition we can replace o(1/M ) with O(1/M3/2).
However, since typically the odd-order cumulants of gj vanish
due to symmetry, the next-leading term is of order O(M−2),
which would result in a correction of O(M−1) to the mean
and variance of the mutual information, provided that the
sixth-order cumulant κ6 j < ∞.

As a result of the above proposition, we obtain

F = − ln

⎧⎨
⎩
∑
X1X2

P(X1)P(X2)
N∏

i=1

1

det (I + λi�S)

⎡
⎣1 + λ2

i

2M2

M∑
j=1

κ4 j (x
†
j�(I + λiS�)−1x j )

2 + o

(
1

M

)√
λ‖S‖
⎤
⎦
⎫⎬
⎭. (92)

Here, we need to express the correction in the second line as a product over the inputs j (for j = 1, · · · , M) of correction terms
that have the form of averages over the output i (for i = 1 . . . , N). To achieve this exchange in the above expression, we can
exponentiate the terms in the second line, and then make use of the following inequalities for the logarithm:

1

M

M∑
j=1

ln

(
1 + λ2

i

2M
κ4 j (x

†
j�(I + λiS�)−1x j )

2 + o

(
1

M

))

� ln

⎛
⎝1 + λ2

i

2M2

M∑
j=1

κ4 j (x
†
j�(I + λiS�)−1x j )

2 + o

(
1

M

)⎞⎠

� λ2
i

2M2

M∑
j=1

κ4 j (x
†
j�(I + λiS�)−1x j )

2 + o

(
1

M

)
, (93)

where we hid the dependence of the correction on x and λ for compactness.

064114-10



FINITE-SIZE CORRECTION AND VARIANCE OF THE … PHYSICAL REVIEW E 109, 064114 (2024)

After such a manipulation, going over the same steps as in (52) changes the functional � to

� = 1

M

N∑
i=1

ln det(I + λi�S) + tr[Q̄1Q1] + tr[Q̄2Q2] + tr[R̄†R + R̄R†]

− 1

M

M∑
j=1

ln

[∑
x

p j (x)ex†S̄x ·
(

1 + κ4 j

2M2

N∑
i=1

λ2
i (x†�(I + λiS�)−1x)2 + o(1)

)]
. (94)

As a result, evaluated at the replica-symmetric saddle point, the correction to F due to the non-Gaussianity of the channel takes
the form

δF = − 1

2M2

N∑
i=1

(
λi

1 + λiε

)2

·
M∑

j=1

κ4 j

∑
x1x2

P j (x1)P j (x2)(x†
1�1x1 + x†

2�2x2)2 + o(1). (95)

In the above expression, the term proportional to
x†

1�1x1x†
2�2x2 contributes to the variance of the mutual

information. Indeed, the analysis is similar to the derivation
of the saddle-point equation (18):∑

x1

P j (x1)x†
1�1x1

=
∑

x1

P j (x1)
∑
α,β

(
|x1α|2δαβ − 1

μ1
x∗

1αx1β

)

= (μ1 − 1)(ρ j − q j ) = (μ1 − 1)ε j + O((μ1 − 1)2).
(96)

An identical expression is obtained for the term proportional
to x†

2�2x2, which is proportional to (μ2 − 1). Putting these
together, we get

δvar[I (X,Y |H)] = m1

M

M∑
j=1

κ4 jε
2
j . (97)

To investigate the variance of the MMSE, a similar analysis
culminates in the following evaluation:

1

2

∑
x

P j (x)|x1 − x2|2x†�1x = (μ − 1)
 j + O((μ − 1)2),

(98)

and the conclusion is

δvar[MMSE(H)] = m1

M

M∑
j=1

κ4 j

2
j . (99)

In a similar manner, the term proportional to (x†
1�1x1)2

contributes to the correction of the mean mutual information.
In this case, up to O((μ1 − 1)2) terms, we have∑

x

P j (x)(x†�1x)2

=
∑

x

P j (x)
∑

α,β,γ ,δ

x∗
α

(
δαβ − 1

μ1

)
xβx∗

γ

(
δγ δ − 1

μ1

)
xδ

= (μ1 − 1)
∑

x

P j (x)x∗
1 (x1 − x2)

∑
α,β

x∗
α

(
δαβ − 1

μ1

)
xβ,

(100)

from which we get∑
x

P j (x)(x†�1x)2

= (μ1 − 1)
∑

x

P j (x)x∗
1x2(x∗

1 (x2 − x4)

+ (x2 − x3)∗x1 − x∗
2x4 − x∗

3x2 + 2x∗
3x4),

which finally becomes equal to 
 j .
In conclusion, the correction to the mean mutual informa-

tion is

δE[I (X,Y |H)] = − m1

2M

M∑
j=1

κ4 j
 j . (101)

Along this approach, one can also discuss the bias of the
MMSE, which results in the calculation

lim
μ→1

1

2

∑
x

P j (x)|x1 − x2|2(x†�1x)2

= (μ − 1)� j + O((μ − 1)2). (102)

The resulting bias is

δE[MMSE(H)] = − m1

2M

M∑
j=1

κ4 j� j . (103)

V. ANALYSIS OF RESULTS

We will now illustrate the above asymptotic results with
specific examples. We will evaluate the binary mutual in-
formation, normalizing all analytic results of the means and
standard deviations in the plots by ln(2). For simplicity, we
will only discuss the case of equal variance input elements and
treat a specific class of discrete prior distributions common in
communications theory. Specifically, we will mainly use the
binary distribution with equiprobable values x = ±√

ρ and,
in addition, the complex quaternary and hexadecimal distri-
butions, which have equiprobable points on a square lattice of
4 and 16 values on the complex plane, respectively, such that
the mean of the distribution is zero and its variance equal to ρ.

Finally, to assess the effect of channel non-Gaussianity,
we will use one specific case of i.i.d. sparse channel matrix
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FIG. 1. Analytic expression of the mean mutual information as
a function of SNR for various values of β = M/N = 1/2, 1, 2 and
two different prior distributions, namely, quaternary and hexadecimal
(the prior lattices are depicted next to their name). The discontinuities
of the curves of hexadecimal lattice prior distribution for β = 1, 2
and quaternary lattice priors for β = 2 are due to the thermodynamic
transition between the two branches of the solution, as discussed in
Sec. V.

elements with κ4 = 1, with distribution f (G) = pδ2(G) +
(1 − p) fg(G/σ ), where p = 1/3 is the probability of G = 0
and fg(G/σ ) the circular complex Gaussian density with vari-
ance chosen equal to σ 2 = 1/(1 − p), so that E[|G|2] = 1.

A. Asymptotic results

Unlike the logarithmic increase with SNR for Gaussian
prior distributions [1,2], the average mutual information per
input dimension for finite priors peaks at the maximum en-
tropy of the prior distribution, irrespective of β. This can be
seen directly in Fig. 1, where the quaternary lattice curves
converge to 2 bits/input, while the hexadecimal lattices curves
have limiting values at 4 bits/input. It is worth pointing out
the discontinuities at high SNR. These are due to a first-order
transition between a physical and a metastable nonphysical
solution discussed in detail in the past [15] and correspond to
the point where the two solutions cross. It should be empha-
sized here that, due to the stability of the replica-symmetry
solution in these systems [15,16], the mutual information of
the lower branch of the solution will be always the true mutual
information in the thermodynamic limit, which, as discussed
before, corresponds to the inf sup over q̄ and ε, respectively,
appearing in (22), as was shown rigorously in Refs. [23,24,8].

Figure 2 depicts the dependence of the standard deviation
of the mutual information for various values of β, channel
statistics, and prior distributions. The general trend of the de-
pendence is not surprising. Initially, the standard deviation in-
creases with SNR, until eventually it starts decreasing to zero.
This decrease is tied to the fact that for increasing SNR the
mutual information becomes asymptotically close to its maxi-
mum value and therefore its value becomes increasingly inde-
pendent of the channel realization. Furthermore, it can be seen
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FIG. 2. Standard deviation of the mutual information as a func-
tion of SNR for the quaternary prior distribution and β = 0.5, 1, 2.
Two cases of channel statistics have been employed, namely, the case
of complex independent Gaussian elements with vanishing curtosis
κ4 = 0 and the case of independent non-Gaussian elements with κ4 =
1. The discontinuities are, as in Fig. 1, due to the thermodynamic
transition between the two branches of the solution.

that for κ4 = 1 the standard deviation is larger compared to the
Gaussian channel case with κ4 = 0. This behavior is directly
related with the form of the non-Gaussian corrections to the
variance, as seen in (28). Finally, the discontinuities appearing
in the average mutual information plots in Fig. 1 are present
in the standard deviation as well, and for the same reasons.
When the system undergoes a first-order transition, switching
from one branch of the coexistence to another, its variance
will also transition in a discontinuous way. Of course, this
behavior can only be expected in the thermodynamic limit.
In addition, Fig. 3 depicts the dependence of the finite order
correction to the mutual information due to the non-Gaussian
character of the channel. As seen in (27), it depends only on
and is proportional to the curtosis of the channel coefficients.

B. Numerical results

We will now provide some comparisons between the an-
alytic results provided in this paper, valid in the asymptotic
limit, and numerically generated values of the statistics of the
mutual information for finite sized systems. We will solely
treat the case of binary input priors, since they are the least
computationally demanding. For every fixed value of the
channel matrix G, we generate N = 105 instantiations of the
output vector y =

√
ρ√
M

Gx0 + z, drawing random samples of

the vectors z ∈ CN (0, IN ) and x0 ∈ (−1, 1)M . We then evalu-
ate the empirical value of the mutual information

Î (G) = − 1

N

N∑
i=1

ln2

(∑
x

1

2M

P(yi|G, x)

P(yi|G, x0,i )

)
, (104)

where the sum inside the log is over all 2M possible input
vectors x. The statistics over the channel variations are then

064114-12



FINITE-SIZE CORRECTION AND VARIANCE OF THE … PHYSICAL REVIEW E 109, 064114 (2024)

-10 -5 0 5 10 15

SNR (dB)

-0.25

-0.2

-0.15

-0.1

-0.05

0

FIG. 3. Finite-size correction to the mutual information for qua-
ternary prior distributions and β = 0.5, 1, 2, due to the non-Gaussian
character of the channel elements. The correction is proportional to
κ4 and here it is depicted for κ4 = 1.

obtained by generating 103 instances of the channel matrix
with the desired distribution.

Starting with the average mutual information, in Fig. 4
we plot the asymptotic average mutual information per in-
put dimension as a function of SNR, together with the
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FIG. 4. Plot of the expectation of the mutual information as a
function of SNR for independent complex Gaussian channels and
binary priors. The analytic curve is compared to two sizes of input
and output vectors, namely, M = 5, N = 10 and M = 10, N = 20,
indicating convergence for increasing system sizes. In the inset,
the finite-size correction of the mutual information for independent
complex non-Gaussian channel elements. The analytic curve results
from (27) for κ4 = 1, while the numerical curves are obtained from
the difference between the numerically obtained means of the mutual
information with Gaussian channel elements and non-Gaussian ele-
ments generated from the distribution discussed in the beginning of
Sec. V.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
SNR

0

0.05

0.1

0.15

0.2

0.25

M
I S

T
D

20x10

10x5

Analytic
Gaussian

FIG. 5. Standard deviation of the mutual information with binary
prior and β = 1/2 as a function of SNR. The thick solid curves cor-
respond to the asymptotic values using Gaussian channel elements
in (28), which are compared to numerically generated curves for two
system sizes as in Fig. 4. The inset depicts the standard deviation,
both analytical and numerical for the same system sizes as above,
for non-Gaussian matrix elements generated from the distribution
discussed in the beginning of Sec. V.

corresponding numerically evaluated expectation of the mu-
tual information for Gaussian uncorrelated channels, for two
matrix size values M, N with fixed ratio β. We see that
the larger matrix size curve is closer to the theoretical one,
indicating convergence. In the inset, we plot the finite size
correction to the average mutual information due to the non-
Gaussian character of the channel (for κ4 = 1) and compare
the theoretical curve with numerically generated ones. Again,
we see that as the system size increases, with fixed β-value,
the curve approaches the theoretical one. In Fig. 5, we plot
the standard deviation of the mutual information for Gaussian
uncorrelated channels, while in the inset we plot the stan-
dard deviation of the mutual information for non-Gaussian
channels with κ4 = 1. Once again, the convergence to the
analytic result for larger system sizes is evident, although for
non-Gaussian channels the deviation is larger, which is to be
expected due to the additional finite-size corrections appear-
ing due to the non-Gaussian character of the channel as seen in
Sec. IV. As can be seen, in Figs. 4 and 5, to meaningfully con-
verge to the asymptotic analytic result, especially in the large
SNR regime, we need to increase the system size by a factor
of 2, e.g., to N = 20, M = 40, which, however, is beyond our
numerical capabilities due to the necessity of summing over
all instantiations of the input inside the logarithm in (104),
which increases exponentially with size. Other approaches,
which are numerically more efficient, such as the AMP al-
gorithm [6], are not of any use here because, while they
have been proved to converge to the correct asymptotic limit
of the MMSE (and the mutual information per dimension),
their finite-size corrections and variance are, in fact, different
from the ones discussed here. It should also be mentioned
that the difference in the speed of convergence of small and
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larger SNR is not surprising and is well-known in the case
of Gaussian inputs, where the mutual information statistics
have been studied in more detail. For example, in that case, it
has been shown that the large-N and large-SNR limits do not
commute, giving different expressions of the variance for the
mutual information [40].

VI. CONCLUSION

In conclusion, we have obtained closed-form expressions
for the variance and finite-size corrections of the mutual in-
formation with non-Gaussian input signals for the case of
Gaussian correlated vector channels, as well as the case of
uncorrelated non-Gaussian channels. Also, we have shown
how in the large M-limit all higher order cumulants of the
mutual information vanish, thus making its distribution con-
verge to a Gaussian. Our approach is asymptotic in nature,
does not take into account any finite size corrections to the
mean and the variance, and hence does not give any infor-
mation about the speed of convergence. While the approach
discussed in Appendix B and in Ref. [25] can be generalized
to obtain finite-size corrections to the mean and variance of
the mutual information, and thus provide information about
the convergence speed, this analysis is beyond the scope of the
current paper. Furthermore, we have calculated the variance
of the minimum mean-squared error for the case of Gaus-
sian channels, which can be straightforwardly generalized to
non-Gaussian channels. These quantities are important when
considering the nonasymptotic regime with finite-sized sys-
tems and one is interested in the error probability of vector
communications channels. Our analysis is formally valid in
the asymptotic regime and we have relied on the replica
approach. Specifically, we took advantage of the fact that
the replica-symmetric solution for the mutual information per
input dimension has been proven to be exact in the ther-
modynamic limit. The methodology we introduce here can
be readily applied for the case of generalized linear models
used in machine learning [22], where the replica-symmetric
solution has been shown to be exact.
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APPENDIX A: PROOF OF EQ. (79)

To prove the above equation, we start from (75):

m1 = 1

M

N∑
i=1

λ2
i

(1 + λiε)2

= 1

Mε

N∑
i=1

λ2
i ε

(1 + λiε)2

� 1

Mε

N∑
i=1

λi

1 + λiε
= q̄

ε
. (A1)

Furthermore, from (63) we see that ε j is the minimum
mean square error. Hence

ε j = Ey, j[|x0 − x̂ j (y, q̄)|2] � Ey, j[|x0 − y|2] = 1

q̄
, (A2)

since x̂ j (y, q̄), as a function of y minimizes the error. Hence,

m2 = 1

M

M∑
j=1

ε2
j �

1

q̄M

M∑
i=1

ε j = ε

q̄
, (A3)

which, combined with (A1), proves (79).

APPENDIX B: HIGHER ORDER CUMULANTS

In this Appendix, we will sketch how to prove that higher
order moments vanish in the large M limit. Starting with the
skewness of MI, we need to analyze the quantity

F (μ1, μ2, μ3) = − ln

{∫∫ ∫
dy1dy2dy3EH

[
Z (y1|H)μ1 Z (y2|H)μ2 Z (y3|H)μ3

(πe)N (3−μ1−μ2−μ3 )

]}
, (B1)

and then evaluate the derivative ∂3
μ1,μ2,μ3

F at μ1 = μ2 =
μ3 = 1. The analysis in this case follows through in a
similar way as in the previous sections. For higher order
cumulants, we can generalize to similarly defined quantities
F (μ1, . . . , μk ) for k > 3, which can then be differentiated
with respect to μ1, . . . , μk . The evaluation of (B1) for inte-
ger values of μ1, μ2, μ3 follows along the same lines as in
Sec. III. In this context, the matrix S in (51) takes the form

S =
⎛
⎝Q1 R12 R13

R21 Q2 R23

R31 R32 Q3

⎞
⎠, (B2)

with Rk� = 1
M X†

kX� = R†
�k , for k, � = 1, 2, 3, the μk × μ� co-

variance matrices defined as in (49). Similarly, one can define

the matrix S̄. The fixed point values of the matrices Rk�,
R̄k� at the replica symmetric point can be shown to vanish.
Expanding the corresponding functional � around the saddle
point, we have

e−F ≈ e−M�∗
∫

dSdS̄e−M(δ2�+δ3�+...), (B3)

where δ2� are the corresponding second-order fluctuations
as in (68) and (71), while δ3� are higher order terms in the
expansion over δRk�, δQk , etc. As in (68), the quadratic terms
in δRk�, δR̄k� are decoupled from the corresponding quadratic
terms in δQk , δQ̄k and, hence, the latter will be disregarded,
as they will play a role in this context as well, at least in
leading order. After integrating the quadratic terms, the cubic
and higher order-terms around the saddle point can be treated
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in a perturbative fashion, resulting in

e−F ≈ e−M�∗−F2

〈〈
1 − Mδ3� +

(
Mδ3�

)2
2

. . .

〉〉
, (B4)

where F2 is the result over the Gaussian integration of the
fluctuating fields Rk� etc. and the brackets 〈〈·〉〉 corresponds
to the expectation with respect to the Gaussian fluctuations,
which have the following correlations:

〈〈
δRakb�

k�
δR∗ak′ b�′

k′�′
〉〉 = − m1

M det V1
δk,k′δ�,�′δak ,ak′ δb�,b�′ ,〈〈

δR̄akb�

k�
δR̄∗ak′ b�′

k′�′
〉〉 = − m2

M det V1
δk,k′δ�,�′δak ,ak′ δb�,b�′ ,

〈〈
δR̄akb�

k�
δR∗ak′ b�′

k′�′
〉〉 = − 1

M det V1
δk,k′δ�,�′δak ,ak′ δb�,b�′ , (B5)

etc., for a�, b� = 1, . . . , (μ� − 1). (In the case where either
a�, b� are zero, then the matrix V1 is exchanged with V2 or
V3, as seen in (71). The leading relevant terms of δ3� that are
related to Rk�, R̄k� can be expressed as

Mδ3� =
N∑

i=1

(
λi

1 + ελi

)3

× [Tr{δR12�2δR23�3δR†
13�1 + H.c.}]

−
M∑

j=1

∑
x1,x2,x3

P j (x1)P j (x2)P j (x3)

× x†
1δR̄12x2x†

2δR̄23x3x†
3δR̄†

13x1. (B6)

Since clearly 〈〈δ3�〉〉 = 0, the first nonvanishing contribu-
tion to the skewness of the mutual information results from
〈〈(δ3�)2〉〉, which is O(M−1) and hence vanishes in the large-
system size limit. A similar analysis to higher cumulants
shows that they vanish in the same limit.
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