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The detailed fluctuation theorem implies symmetry in the generating function of entropy production probabil-
ity. The integral fluctuation theorem directly follows from this symmetry and the normalization of the probability.

In this paper, we rewrite the generating function by integrating measurements and evolution into a constructed
mapping. This mapping is completely positive, and the original integral fluctuation theorem is determined
by the trace-preserving property of these constructed maps. We illustrate the convenience of this method by
discussing the eigenstate fluctuation theorem and heat exchange between two baths. This set of methods is also
applicable to the generating functions of quasiprobability, where we observe the Petz recovery map arising

naturally from this approach.

DOI: 10.1103/PhysRevE.109.064111

I. INTRODUCTION

As the generalized second law of thermodynamics from
a microscopic perspective, the fluctuation theorem (FT) is
of fundamental importance in nonequilibrium statistical me-
chanics. The FT focuses mainly on the irreversibility of
entropy production. While a general FT can be given under
unitary evolution [1], it is only useful when the entropy pro-
duction can be expressed in terms of physical and measurable
quantities, which usually requires the initial state of the bath
to be the canonical distribution. However, when this condition
is not met, the FT will deviate. By calculating the character-
istic (generating) function of entropy production, Refs. [2,3]
proved that the integral FT approximation holds in both the
long- and short-time regimes, even when the initial state of
the bath is a single energy eigenstate of many-body systems.
The proof of this result is complex and uses various forms
of the eigenstate thermalization hypothesis (ETH), which pre-
vents further development of the approaches used therein and
makes it difficult to tighten the errors. The difficulty in esti-
mating deviation stems from the lack of a unified framework
to study the impact of initial state deviation, as the generating
function also includes two-point measurements and evolution,
each of which can have additional effects based on the initial
state deviation. The forms of these operators are quite dif-
ferent in conventional quantum mechanics formalism, which
makes deviation estimation even more difficult.

The integral FT is directly related to the normalization of
the backward processes, which in turn depends on the trace
preservation (TP) property of the backward map. In this sense,
the generating function should be determined by the prop-
erties of some mapping. The modified propagator approach
is one such method [1]. It incorporates measurements and
Fourier transforms into the modified propagator. Here we
propose a different approach. We start with the general FT
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under unitary evolution and incorporate measurements and
Fourier transforms into quantum operations. These quantum
operations, along with the evolution, form a complete positive
(CP) map. If this constructed map is trace preserving when
A =i, then the generating function G(i) = 1 and the integral
FT holds. Since the generating function is just rewritten here,
it is equivalent to the original FT. However, by unifying the
measurements and evolution into the constructed mapping,
considering the impact of initial state deviation becomes sim-
pler and more unified. To illustrate this advantage, we first
consider the general quantum lattice model in Refs. [2,3].
Our aim is to provide a streamlined proof of the eigenstate
FT, relying on fewer assumptions (specifically, the weak ETH
assumption rather than several strong versions of ETH). After
that, we consider another important class of FT's concerning
the heat exchange between two baths [4]. We will investigate
whether two baths, whose initial states consist of single-
energy eigenstates, also exhibit FT.

The exploration of FTs through the construction of CP
mappings has long been proposed by Refs. [5,6]. These stud-
ies primarily delve into the properties of the evolution of
quantum open systems. Their approaches are closely con-
nected to the FTs for the quantum channel [7,8], which has
established another general framework of quantum FTs. Using
the Petz recovery map, it provides the detailed FT for two-
point measurement quasiprobabilities. Notably, the resulting
FT does not incorporate measurements of the environment.
This distinction highlights a fundamental difference from
the entropy production considered in the FT under unitary
evolution. However, since the quantum channel can emerge
naturally from the open system formalism, there likely exists a
relationship between the quantum channel FTs and the unitary
evolution FTs. If the global unitary operation U has a global
fixed point, Ref. [9] demonstrates that both methods can yield
the same entropy production. Correspondingly, by employing
the approach outlined in this paper, we demonstrate that the
Petz recovery map can be naturally derived by analyzing
the generating function of quasiprobabilities. This offers an
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alternative perspective on the relationship between the two
methods.

The paper is organized as follows: In Sec. II, we first briefly
introduce the operator-state formalism. Then, we rewrite the
generating function with complete positive mappings and
briefly discuss the properties of the constructed mappings.
We delve into the core component N (1) of the constructed
mapping in detail in Appendix B. In Secs. III and IV, we
utilize the constructed mapping to discuss the eigenstate FT.
The integral FT is shown to hold within a small margin of
error, and a detailed calculation of error estimation can be
found in Appendix C. In Sec. V, we discuss the integral FT
for the quantum channel and uncover the significance of the
corresponding constructed mapping. Section VI concludes.

II. THE INTEGRAL FLUCTUATION THEOREM AND
TRACE-PRESERVING MAP

A. Preliminaries

Since we are mainly concerned with CP mappings in this
paper, we use the superoperator form for simplicity. Fur-
thermore, the FT necessitates the consideration of inverse
mappings and measurements. These components have simpler
expressions within the operator-state formalism, which we
also employ. It’s noteworthy that these formalisms maintain
mathematical equivalence with the conventional framework of
quantum mechanics.

Let us first introduce the operator state |O) for an operator
O on the Hilbert space Hgs of quantum states of a system S,
which belongs to a new Hilbert space H with an inner product
defined by

(0110,) = Tr(0]0,). (1)

An orthonormal basis for H is |I1;;), where I1;; = |i) (j|, as
one can check that

(T |TT;;) = S ji. 2
The completeness of this basis {|I1;;)} is
= | 3)
ij
If only the diagonal elements are summed, the corresponding
superoperator is actually a dephasing map:

D i) (il p iy (il ) )

DIl p) =

The conjugate relation reads
(01102)" :=Tr(0]0,)" = Tr(0;0)
= (02101) = (0]|0)). 5)

The unitary superoperator acting on the operator state gives

U|0) = |UoU"). (6)
The conjugate relation shows that

(011U102)" = Te(0,UOSU") = (0]1U103)
=Te(O,UT0,U) = (02lU'|0)). (D)

The trace of an operator p can be given by (I|p). The su-
peroperator A is trace preserving if and only if it satisfies
IIN =]

Now we briefly introduce the FT. The FT can be framed in
a unifying language in terms of entropy production [9]. The
entropy production Ao is generally related to thermodynamic
quantities such as Gibbs-von Neumann entropy, work, heat,
and free energy. Its formulation depends on the underlying
physical system. In detailed FT (Crooks FT), the forward en-
tropy production is exponentially more likely than the reverse,

Pr(Ao) _ ®

Py(—Ac)
where Pr is the forward probability distribution of entropy
production and Py is the backward one. They are given by
the probability density function of the difference between two
measurements:

Pp(Ao) = Z 8(Ao — (01 — 00))Pr(0r,00).  (9)

01,00

Its generating function

oo
Gr(1) := f dAoe™ Pp(Ac) (10)
is often used. The parameter A is a complex number, and
people are generally concerned about the properties of the
generating function when A = i. The Crooks FT implies the
fundamental symmetry on the generating function:

Gr(X) = /oo dAc e T2 pp(—Ac) = Gg(i — ). (11)

An integral FT immediately follows from the normalization
of PBZ

(€77) = Gr(i) = Gp(0) = 1. (12)

Combining it with Jensen’s inequality (¢=X) > ¢~ we can
get a generalization of the second law of thermodynamics:

(Ao) > —In(e ) =0. (13)

B. Construct a completely positive map
from the generating function

In this section, we explore how to construct a CP map
from the generating function and connect the FT with the TP
property of this constructed CP map.

Consider an isolated, possible driven, quantum system
evolving according to the unitary evolution. The probability
density function of the difference between two measurements
can be expressed as

Pr(Ao) =) 8(Ac — (01 — 60)) (T, [U| T, ) (T, | 20),

(14)

where py is the initial density matrices for the forward process.
The observable &, is a Hermitian operator. The eigenvalues
(eigenbasis) of &; are denoted by o; (Ils, = |oy) (07]): 6: =
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2o, 01115, The generating function of probability (14) is

Gr(A) =Y (€™M, & Moy ) (Mo, [T, ) (T, | £0).-

00,01

15)

The factor e~¢ rescales the measurement results indeed. It
is related to the rescaling map J5(-) := 0%(-)0*", where O
is arbitrary operator and « is the power index. Here we only
consider the cases where the real part of A is zero, and then
we have

ir/2
‘7(‘*0

|e—i)»60/2 Haoe—i)ﬁg/Z)

M,,) =

_ eiix"°|l_lgo) _ (efiwo|ngo)|l'[go). (16)

Using it, we can rewrite some items in the generating function
as follows:

—ir6 ir/2
Z (e 0}H00)|H00)(H00| = \7(6/0 ©
a0
where M, = ZOO [ITg,)(Ils,| is a dephasing map. The
rescaling map is CP, but generally not TP. It is worth point-
ing out that the rescaling map here is very similar to the
re-weighting approach used in Ref. [10], where this approach
is used to prepare the thermal state. With Eq. (17), we can
rewrite Eq. (15) as
Gr(h) = (17,57 0 Ms, o U@ 0 T4 0 M,

%0

M, a7

) (8)

or its conjugated form

= (1|TY? 0 My 0 T2 ot (0)|e*)',  (19)

—é9

Gr(A)

where M, is omitted because it shares the same basis as ™.
Additionally, we omitted the ¥ on M and J,-s because they
are self-conjugate. If {I1,,} is the diagonal basis of py, then
Mg, can also be omitted. In eqs. 18 and 19, the generating
function is completely rewritten with the operator state and
completely positive maps. As will be shown later, the integral
FT will be determined by the TP property of these maps.
Take 6; = — In p;, then we have

e = (po)™. (20)
In such cases, the M, can be omitted:
TH o M T4 po)- @D
Combining eqs. 18 and 21, we get
Gr()) = (1|75 o U 0 T2 |po) = (pUMID = 1. (22)

Therefore, for a closed system, the entropy production
In(po/p;) satisfies integral FT. Since (—Inp,) = S(p,), the
average of this entropy production is the same as the change
of the Gibbs-von Neumann entropy of the system.

For all cases in this paper, we have Tre=% = 1, which can
also be achieved in other cases by adding a normalization
factor. Under this condition, according to Eq. (19), the integral
FT is satisfied if and only if the following constructed CP map
is also a TP map:

jplo/z o Mé’o o ‘7et;n/2 o Z/{T(t)' (23)

This map provides another perspective for considering the
integral FT. The mapping (23) is not necessarily a TP

60l00) =

mapping—it depends on the initial state py as well as the
initial measurements 6. If observables are taken as Eq. (20),
it is easy to prove that the constructed map (23) is TP,

UIT)* 0 Mgy 0 T2 ol (1) = ., (24)

which is consistent with the previous conclusion that the inte-
gral FT holds.

C. The constructed map for the open quantum system

Now consider an open quantum system S interacting with
an environment E; S and E form a closed system with unitary
evolution. If there is no correlation between the initial system
and the environment, we can set §; = — In pg(¢) — In pg, and
then we have

e—ik(}o _ Al)L(O) ® Al)\. (25)

Similar to the case of closed systems, it is easy to prove that
open systems also satisfy integral FT:

Gr(i) = INULOlps@) ® pp)' = 1. (26)

This integral FT is completely general, but only contains
quantities like entropy, which require knowledge of all infor-
mation about the state of the environment. In open quantum
systems, the environment is usually considered to be rela-
tively large and obtaining all information about it is difficult.
Therefore, it is necessary to introduce some thermodynamic
quantities such as work, free energy, and heat to simplify
the measurement. For example, it is usually assumed that
the initial state of the heat bath is the canonical ensemble
pe = e PHE /7 s0 we can set

& = B(Hg — Fg) — In ps(1). 27)
If we make no assumptions about the initial state of the envi-
ronment, but still set &, as Eq. (27), then we have

Gr(M) = (Ise| T, (yapum © Use (1)

°J, l;\(/oz>®p°‘" o M;, |,05(0) ® pe(0)). (28)

.

Since the environment pg(0) can deviate from the canonical
ensemble p7", the integral FT will have errors and G (i) can
deviate from 1.

The deviation of the environment state is not a sufficient
condition for the violation of the integral FT, which is also
related to the system-environment interaction. For nondriven
systems, the Hamiltonian of the whole system can generally
be written as H = Hs + Hg + H;. If there is no system-
environment interaction H; = 0, then the overall generating
function can be separated into a system part and an environ-
ment part: Gp (1) = G5(A)GE(L). Since the system state does
not deviate, we have Gi(i) = 1. And the environment part
gives

GE(L) =

). (29)

Since [Ug (1), ps™] = 0, there is always G&(i) = 1, no matter
whether pg(0) deviates from pg*" or not. This inspires us to
decompose the rescaling map in Eq. (28) as follows:

-1
Toswepgn = Jpgepgn © jpg‘" o Jpstt)- (30)

(Ie| T oo 0 U (1) 0 Tl o
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J pgaln o Jpery 15 a local superoperator of the system. Using
decomposition (30), we can rewrite the generating function

(28) as

Gr(M) = (Ise| T, 1) o Ty’ o Np(0)

0 Tpn’? 0 Tpviolps(0) ® pp(0), (1)
where
Nﬁ(t)( ) == j:;nk@ican ] Z/{SE(I) o «7 Cﬂn@pw"( )v (32)

and pg(0) = Mgo [o£(0)] is the environment density matrix
resulting from the decoherence of the environment due to the
measurement.

Similar to Eq. (23), the conjugated form of Eq. (31) gives.'

Gr (i) = Use INer (@) ps())', (33)
and the integral FT holds if and only if the following con-
structed map is a TP map:

Ner(t) .= T2 \71/5

o Ni@y o Tul®. (34

The key parts of the formulas (34) are the mapping Npg(t)
related to the evolution and the mapping J (0) related to the
initial state and the initial measurement. If the initial state
of the environment 1s the canonical ensemble, then we have
Nrr(t) = L{ST () o .7 n 2 Ttacts on the operator state and gives

Ner(@®)|ps(t)) = E(t)l,og(t) ® pi"). Therefore, it is indeed
a TP map in this case. When the environment pg (0) deviates
from the canonical ensemble p§™, the constructed map Ner(r)
is generally not a TP map. The integral FT will have errors
and Gp(i) can deviate from 1. The inverse temperature in
Eq. (34) remains arbitrary, allowing for optimization of the
deviation estimate by selecting it based on the state of the
environment. For instance, when considering an environment
X initialized in a single-energy eigenstate |E)), the choice
of inverse temperature is typically determined by aligning the
total energy, often set as §, such that

E, = (e P74 |Hy). 35)

III. EIGENSTATE FLUCTUATION THEOREM

In this section, we will discuss the properties of Ner(¢)
and the FT when the initial state of the environment is the
energy eigenstate. Since pg(0) is the energy eigenstate of
Hpg, we have 0 (0) = pg(0). Our proof draws on the idea in
Ref. [3] about using the Lieb-Robinson bound for the short-
time regime and time averaging for the long-time regime.
But the approach is very different: we mainly consider the
deviation of the generating function through the properties of
the mapping Ner(¢). It is worth pointing out that if we replace
the Nﬁ (t) in Eq. (33) with Usg (¢), then we will get the §Gg (i)
in Ref. [3]. Therefore, Ng(r) — Usg (1) is directly related to the
interaction-induced error §G; in Ref. [3].

'In Eq. (33), we omit the I in the right parenthesis, which will
change the meaning of the first 7)/* in Nr: it becomes an as-
signment map ps — ps ® pg, which is linear and CPTP. Similar
approaches are also used in Sec. IV.

The underlying physical insight behind the proof is as
follows: The error of the integral FT is determined by the
interaction between the system and the environment. Accord-
ing to the Lieb-Robinson bound [11] or the operator growth
hypothesis [12], the influence range of the interaction is lim-
ited under the (imaginary) time evolution. In the short-time
regime, the expanded operator is still unable to distinguish
the pure state of the many-body systems from the canonical
ensemble, according to the ETH. In the long-time regime, the
expanded energy width is limited, and the expanded operator
is unable to distinguish these states according to the ETH.

A. Short-time regime

When the evolution time tends to zero, it is obvious
that Ner(t) = pl E/ (2 0)- It acts on the operator state and gives
Ner(®)]ps(t)) = |ps() @ pg(0)). Therefore, it is a TP map
and the FT holds. If the evolution time is short, it is foresee-
able that the error can be bounded, as we will discuss in detail
below.

When the evolution time is short, the two measurements
about the system can only be influenced by a small piece of
environment due to the limitation of information flow speed.
Considering the ETH, it is difficult to distinguish the overall
pure state of the environment from the canonical bath in this
small area. This makes the integral FT approximately valid.
From the perspective of constructed map Nr, we can rewrite
it as

Ner() = T)[6) 0 Tl o [N () = N T 0)] 0 Til?

P,
+ [T — Tpia] o Tyl o N () o jﬁz
(VG @6 = Nj(0)] o Tpea

+ Tyl 0 Tla o
+ Tyl o Tl o N (1) 0 T, (36)
where J\/ T'(t) is defined in Appendix B 2. It is a truncated
version of Nj3(t) based on the speed limit of information
flow. The last term of formula (36) is indeed a TP mapping.
Therefore, the deviation of the integral FT can be estimated
using the bounds of other terms. The terms in the first and
third lines of Eq. (36) represent the error due to truncation,
which can be bounded by the Lieb-Robinson bound. See
Appendix C 1 for specific calculations. The term in the second
line of Eq. (36) represents the error caused by the deviation
of the initial state. Since the mapping j 125N, TT(t) J _uln/ 2
acts on state |pg (7)) and gives a local operator thls part of the
error can be bounded by ETH. See Appendix C 2 for details.
Finally, in the large-environment limit, by combining the error

terms in Eq. (36), we obtain

18GF(i)| < |Gr(i) — GL()| + |GE() — G&™T (i)

+ |GcanT ) Gcan(l)| — 0(1) (37)

where the difference in the generating function corresponds
one-to-one with the error terms in Eq. (36). The super-
script “can” represents replacing the initial environment state
in Npr(f) with the canonical ensemble, while T represents
replacing N in Nir () with NJ'. We illustrate these replace-
ments in Fig. 1. From the figure, we can observe that when
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FIG. 1. A quantum circuit diagram for the generating function
Eq. (33). In this rewritten form, the terms related to the operator
expansion are grouped as N, g (t). According to the Lieb-Robinson
bound, only part of the environment effectively participates in the
expansion. Therefore, N, g (¢) can be replaced by N, ﬂT () with only a
small error. After the replacement, according to the ETH, the total
environment energy eigenstate is also indistinguishable from the
canonical ensemble, so pg(0) can be replaced by pg™. As shown in
Eq. (36), a TP mapping can be obtained after several replacements.
Deviations from the integral FT can be derived by considering the
errors caused by these replacements.

using the truncated mapping N, ﬂT (t), only a portion of the en-
vironment will participate, which is why ETH can be applied.

B. Long-time regime

When the evolution time is long, the system can gather
sufficient information about the environment, allowing it to
distinguish the pure state environment from the thermal state
environment. Consequently, under the long-term evolution,
the integral FT may exhibit significant deviations. However,
while large deviations are possible, they are typically tran-
sient. This transient nature stems from the system eventually
reaching equilibrium as the evolution time lengthens. For
most times, the total system tends to approach a fixed steady
state [13]. Considering the ETH, distinguishing between these
steady states with local observations becomes challenging. As
a result, the integral FT remains approximately valid in the
long-term average.

For any quantity O(t), its long-time average is defined as
follows:

T
o) := Tlingo%/o O(t)dt. (38)

In the generating function, not only does Ngr(¢) change with
time, but the final state of the system also evolves over time:

los(@)) = &1ps(0)) = UelUse ()] ps(0) ® pe(0)).  (39)
Combining it with egs. 33 and 36, we have

Net(DE = [Ner(t) = NE@®)] 0 &

N A PR
E

PE PE

Ny 1) o Tpl? 0 &
[V ') = Nj )] 0 Ty 0 &

+J% J%

+j% j%oNﬂnmﬁmoa, (40)

where N T'(t) is defined in Eq. (B22), representing another
truncated version of Ng(t) based on the limit imposed by

information flow speed under the imaginary time evolution.
By substituting Ny with NJ" in Ay, we obtain N T The last

term of Eq. (40) is equivalent to L{;E(t) o T2 o &, which
is also a TP mapping. The terms in the first and third lines
of Eq. (40) represent the error due to truncation, which can
be constrained by the Lieb-Robinson bound. Detailed cal-
culations are provided in Appendix C 1. Under long-time
averaging, a single unitary evolution yields the dephasing
map [14],

Up(t) = T )T, (41)

where I1, = |E,) (E,| is the energy eigenstate of the total
Hamiltonian H. A unitary evolution u;E(t) together with a
dynamical evolution & give the following map:

o& :U;E(t)o~-~og
+ M) (Map o ..
b
o (g Map)Maplpe(0)).  (42)

U;E(f) o---

where I1,, = |Ep) (E,|. Correspondingly, the error caused by
the second line in Eq. (40) can be divided into two parts. The
first part is

;
Use [0 = T T o T o N0 0 T s @)
(43)
We discuss its bound in detail in Appendix C3. The second
part is

> (os"

a,b
a#b

® [p£(0) — o ||V (iB/2)| M)

x (M| N (=i/2) 0 Tl *| Tre Ty © 1)
x (Maplps(0) ® pr(0))'. (44)

We discuss its bound in detail in Appendix C 4. Finally, in the
large-environment limit, by combining Egs. (40), (C17), and
(C22), we have

18Gr ()] < |Gr(i) — GE ()| + |GF (i) — G&™ ' (i)

+ |G°Z’ln Gt @) — Gca“(z)| =o(1), (45)
where “can” represents replacing the initial environment state
in Ner(z) with the canonical ensemble and 7’ denotes the
substitution of N in Npr(t) with N, ﬂT ". In conclusion, the
first and third terms of Eq. (45) depend on the locality of
the imaginary time evolution component of the map Nj(z)
and can be constrained by the Lieb-Robinson bound. The
second term of Eq. (45) depends on the indistinguishability
of the states within a typical energy shell and can be restricted
by ETH.
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IV. EIGENSTATE FLUCTUATION THEOREM FOR DIRECT
HEAT EXCHANGE BETWEEN TWO BATHS

We now consider the interaction of two baths A and B. The
whole system evolves according to the unitary evolution with
the Hamiltonian H = H4 + Hp + H;. If the initial state of two
baths is the canonical ensemble with different temperatures
Py = e Pxtx /7y and X = A, B, then we should choose

6, = Ba(Ha — Fp) + Bs(Hp — Fp). (46)
If we do not make any assumptions about the initial environ-
ment state, but still set ; as Eq. (46), then we have

Gr(1) = (Ing| Tygmppan © Unp (1)

0 Tpehigpgn © Man|04(0) ® p5(0)).  (47)

Since the two baths can deviate from the canonical ensemble
o, the integral FT will exhibit deviations. By defining a map
like Vg but with different temperatures (see Appendix B 4),
we can rewrite the conjugated form of Eq. (47) as Gr(i) =
(Lug|Ner ()| DT, where
Ner(®) = T om0y © Ny O- (48)
When the baths px(0) deviate from the canonical ensemble
oS the constructed map Npr(2) is generally not a TP map.
Here we consider the situation where the initial states
of A and B are energy eigenstates. In this case, we have
px(0) = px(0). If the evolution time tends to zero, it is

. 1/2 .
obvious that Ngp(t) = Jp}{ O)@py () 1t acts on [1) and gives
|04 (0) ® p(0)). Therefore, it is also a TP assignment map.
For finite time evolution, similar to Eq. (36), we can rewrite

the constructed map as

+ T
T e © o [N, 5, (1) = N5, (0]
12 12 T+
+ [T, o) = Tmpsm ] 0 Ny g, ()

+ T g © [N T, () = Ny ()]

+ T g © N, 5, (1), (49)

Ner(t) =

where the truncated ./\/ T g, (1) 1s defined in Appendix B 4. It
is a truncated version of /\/'i 84,85 (1) based on the speed 11m1t of

information flow. The last term of Eq. (49) is equal tolUd E (t)o
J /)lf\{xf(g pin It acts on |1) and gives L{;E (O]p5™ @ pg™). So it

is a TP mapping. The terms in the first and thlrd lines of
Eq. (49) represent the error due to truncation, which can also
be bounded by the Lieb-Robinson bound. We discuss these
bounds in detail in Appendix C 1. The term in the second
line of Eq. (49) represents the error caused by the deviation
of the initial state. Since the mapping NﬂTA T.ﬂ,;(t) acting on
|1) also gives a local operator, this part of the error can be
bounded by ETH. See Appendix C2 for details. Finally, in
the large-environment limit, by combining the error terms in
Eq. (49), we can obtain a similar bound as Eq. (37). Therefore,
the error of FT should vanish in the thermodynamic limit.

If both heat baths have the same inverse temperature as
given by Eq. (35), we can still utilize the perturbation expan-
sion in Appendix B 3. Since the final state measurement here

is independent of time, we only need to consider

o [Mj@) — Ny T0)]

Ner(t) =

172
ij 0)®p5(0)

1/2 172 —T
+ [\-7 (0)®pp(0) - j Can®pcan] ON (l‘)

PA

+ Tl pen 0 [N 1) = Nj ()]
T gy o N0, (50)

where NﬁT '(t) is defined by Eq. (B22), except that SE is
replaced by AB and truncate both A and B. The last term of

Eq. (50) is equal to MZB(t) J. 1!,3@ pan> which is also a TP
mapping. The terms in the first and third lines of Eq. (50)
represent the error due to truncation, which can be bounded
by the Lieb-Robinson bound. The detailed calculation can be
found in Appendix C 1. The term in the second line of Eq. (50)
represents the error caused by the deviation of the initial
state. This part of the error can be bounded with ETH. See
Appendix C2 for details. Finally, in the large-environment
limit, by combining the error terms in Eq. (50), we can obtain
a similar bound as Eq. (45). Therefore, the error of FT in the
long-time average should vanish in the thermodynamic limit.

If the temperature of the two baths is different, the cor-
responding term o3 ® pp" differs significantly from the
imaginary time evolut10n Usg (it), rendering the perturbation
expansion in Appendix B 3 inapplicable in this scenario. Ad-
ditionally, considering the evolution perspective, since both A
and B are large baths, their equilibration time may be consid-
erably long, and they may not reach a steady state quickly.
Consequently, it is unlikely that the integral fluctuation theo-
rem holds for a long-time average in this case.

V. INTEGRAL FLUCTUATION THEOREM
FROM QUASI-MEASUREMENTS

From Eq. (27), we observe that, in general, the entropy
production in the FTs of open systems is closely linked to
the state of the environment. However, when the evolution
map possesses a global fixed point, the entropy flux can be
expressed solely in terms of system-related quantities [9].
Now, let us briefly consider these cases using the method
described herein.

For systems with global fixed point

Use(ps ® pE) = ps @ PE, (S
we have
T laps ©Use @) 0 Tl = Usi (1), (52)

Supposing there is no correlation between the initial system
and environment, if the environment is not measured, substi-
tuting Eq. (52) into Eq. (18), we can get

Gr(A) = (Is ® pg |j;j;/2 0 J,/? oU(t)
0 Ty T 0 Myslps@) @ 1g). (53)

However, it is not possible to choose a suitable &g(¢) such
that Gp(i) = 1. The two-point measurement of the local
system cannot satisfy the integral FT. Previous work [8] es-
tablished a general Crooks FT for open quantum processes,
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where only local measurements of the system are required,
but these measurements are no longer the conventional two-
point measurements. To obtain the so-called quasiprobability,
quasimeasurements need to be introduced [15]. This is a
measure of the density matrix and can be reconstructed
from positive-operator valued measurements. After incorpo-
rating quasimeasurements, the generating function can be
expressed as

Gr(h):i= Y (Mo,
00,07,ij,k'l'
® My, ® Iy ® My )OO IED1S), (54)
where {]i)} is the diagonal basis of T and {|k")} is the diagonal
basis of #'. The process state S is the Choi-state form of the
process tensors and O@-7k1) s the Choi state of the mea-
surement. For specific definitions, refer to Ref. [15]. Unlike
Eq. (17), according to the completeness relation, we have
D (eI My ) (M| = T2 (55)
ij
Similar to the procedure used in Eq. (18), we can rewrite the
generating function as

Gr() = (Is|T 5% 0 T2 o N (1)

ps(0)), (56)

ir/2 ir/2
0 I 0 T o My
e

where N(¢) = (IZ|U(t)|pg). We can set 6; = — In pg(¢) and
T = 7' = In p§, then the conjugated form of generating func-
tion gives

Gr(i— ) = (]S|j;§/2 o J Mo jp?z o NT(1)

ps®))". (57)

o jp:1/2 Ojii/,z ojif/?

S e e %

From this formula, we can naturally obtain a backward pro-
cess map

R() = T, o N (1) 0 Ty (58)

(05)°

which is just the Petz recovery map used in Refs. [5,7,8]. From
Eq. (57), we know that the integral FT is guaranteed by the TP
property of the Petz recovery map:

Gr(i) = UIRM)ps)" = 1. (59)

Different from Eq. (25), the entropy production here depends
only on the local state of the system and does not need to know
the state of the environment.

VI. CONCLUSION AND DISCUSSION

In this paper, we have redefined the generating function of
the general FT under unitary evolution and obtained a con-
structed map. The initial state, measurements, their Fourier
transform, and evolution are all encompassed in this map.
The constructed map is CP, and its TP property determines
the integral FT. This unified form can help simplify the im-
pact of the initial state deviation on the FT. In particular, for
the measurement of energy H, the corresponding rescaling
map is imaginary time evolution. The commutativity between

imaginary time evolution and real-time evolution can effec-
tively simplify calculations. With the help of this formalism,
we have proved the eigenstate FT in a simpler manner that
requires fewer and weaker assumptions. The rationale behind
these proofs is roughly as follows: The error of the FT can be
divided into two components. One arises from the nonlocality
of the map Ng(#) and can be bounded by the Lieb-Robinson
bound. The other originates from the distinguishability of
environment states and can be restricted by ETH. Both errors
vanish in the thermodynamic limit, ensuring the FT’s validity
even when the initial state of the bath is a single energy
eigenstate of a many-body systems.

We also explored the heat exchange between two baths.
The initial state of both baths is a pure state. We observed that
the integral FT remains approximately valid in the short-time
regime. In the long-time regime, when the temperatures of the
two baths are equal, the long-time average of the integral FT
holds approximately. However, when the temperatures differ,
the long-time average of the integral FT may not hold.

Referring to the FTs for the quantum channel, we have
examined the generating function of the quasiprobability. The
Petz recovery map can be naturally derived from this generat-
ing function. The integral FT is ensured by the TP property of
the Petz recovery map.

An additional advantage of our method is its ease of gen-
eralization to multipoint measurements. The operator-state
formalism employed here seamlessly integrates with pro-
cess tensors [15]. Process tensors offer the convenience of
studying multitime processes and multipoint measurements
[16,17]. FTs beyond two-point measurements have garnered
extensive attention [18-23]. The integral FT under multi-
time processes can aid in exploring the generalization of
the fluctuation-dissipation theorem for n-point systems [24].
Since the memory effect can result in a negative entropy
production rate [15], research in this area also contributes
to a deeper understanding of the second law of thermo-
dynamics: The second law implies complete irreversibility,
while the Poincaré recurrence theorem corresponds to com-
plete reversibility. FTs enable us to derive irreversibility from
reversible evolution, while the memory effect can weaken
irreversibility and yield negative entropy production rates.
Investigating the influence of the ETH on FT's under multitime
evolution allows us to further comprehend the impact and
limitations of the memory effect. This, in turn, aids in under-
standing the role of the thermodynamic limit in the second law
of thermodynamics and the Poincaré recurrence theorem.
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APPENDIX A: THE CRUCIAL LEMMAS AND
HYPOTHESIS USED FROM THE LITERATURE

Lemma 3.1 in Ref. [25] tells us that when 0 < s < -

g , We
have

e Ae™ || < Al x (1 — gks)~R/e, (A1)
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where H is a local Hamiltonian, and A is an arbitrary local
operator. The parameters g, k, and R are related to the lattice
structure and interaction between particles, and are indepen-
dent of the system size. According to this lemma, as long as
the system’s Hamiltonian meets the corresponding require-
ments, when 7 is sufficiently small, the term in Eq. (B6) can
be bounded as

1H;(i)|| = ©(1) x ||H]|. (A2)

Lemma 5 in Ref. [11] gives the following Lieb-Robinson
bound:

Q&ole D"
£!

where H is a local Hamiltonian, H7 is the truncated Hamilto-
nian, and Oy is any local operator. The parameter £ represents
the distance between Oy and the truncation boundary, and |X |
denotes the number of sites in the support X. The constant
Zo = O(1) depends on the lattice structure and interactions
among lattice sites. According to this lemma, the error in-
duced by truncation will be exponentially small,

ISH (DIl = |H;| x [IH;l| x O(e™),

. . T itHT
1 Oxe ! — " Oge ™" | < X0y |

. (A3)

(A4)

as long as the evolution time |t| < £/v g, Where v g is so-
called Lieb-Robinson velocity.

According to the canonical typicality [26], weak ETH
[2,27], or subsystem ETH [28], we know that it is difficult
for local operators to distinguish the global energy eigenstates
from the canonical ensembles:

I(Ta]0) = (p*"|O) < Ol x N™%, (A5)

|(Map|O) < MOl x N™ (a # D).

The parameter 0 < o. N denotes the size (the number of
sites) of the entire system. The size of the local operator O
should be much smaller than N. It is worth noting that in
Eq. (A5), the errors decay algebraically, which is weaker than
the exponential decay usually expected in ETH. Therefore, it
can be anticipated that this hypothesis can be satisfied in a
broader range of systems.

(A6)

APPENDIX B: THE PROPERTIES OF A/}

1. Imaginary time evolution
and strict energy conservation condition

The superoperator N3 of Eq. (32) can also be written as

Ni(t)() = USp (—BA/2) 0 Usp () o U (BA/2)(-)

= Mu()(OM] @), (B1)
where
M (1) = Uge (= B/ ) Usg (OIUgg(BA/2)  (B2)
and
U (t) = exp(—i(Hs + Hg)7). (B3)
When A is a pure imaginary number, the mapping

U (—BA/2) is just the imaginary time evolution [29]. Unlike
the real time evolution, imaginary time evolution is CP but not

TP. From eqs. 6 and 7, we have
Ugy (1) = Ugp (=77 (B4)

Therefore, the imaginary time evolution is self-conjugate.
Since Usg (t) = e "HotH! and [U, Hy] = 0, we can rewrite
Eq. (B2) as

M, (1) = e—i[Ho+H1(/3?»/2)]t’ (B5)
where
H(t) := Uge (—0)H U (7). (B6)
Notice that it is different from the Hermitian operator:
Uy (—0)H; = Uy (—0)H Ugp (—1). (B7)

H;(BX1/2) is a pseudo-Hermitian operator [30]. It is easy to
verify that with p = ¢2#™(®_we have pH;(t)p~" = H, (t).
According to Eq. (B5), if there is a strict energy conserva-
tion condition [Hy, H;] = 0 [31], or the temperature tends to
infinity, there will be M, (¢) = Usg(t). And then we have
Np(t) = Us ().

2. Short-time evolution and truncated superoperator

The evolution map can be written in the integral form

Use(t) = Use(t) o Ugi (0)

t
a
zu.gE(t)+/ dTB—USE(T)OUgE(t—I)
0 T

t
=Z/{§E(t)+/ dtlsp(t) o Ly oUgE(t—t), (B8)
0

where £;(-) := —i[H], -]. Here we only take the first-order
perturbation approximation:

uSE(t):ugE(z)[I+/ drugE(r—t)oL,ougE(r—r)].
0

(B9)

The error caused by taking the first-order approximation is

SUsk (1) =/ dt[Use(t) — Ugg (1)) 0 L1 o Ugy (t — T).
0
(B10)

Using integral form Eq. (B8), the error can be rewritten as

t T
/ d‘L’] / d‘L’zZ/[SE(‘L'z) o [:1 o I/{gE(TI — ‘L’z) o E]
0 0

Uyt — T1). (B11)

After it acts on arbitrary operator O, the bound of error can be
calculated with

t T]
l6UsE(@)O|| §/ dTl/ do |lUse (1) o Ugy (—T2)
0 0

o Li(—=12) 0 Li(—11) o U (1)O|

2
< @A)

< o], B12
510l (B12)
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where £;(t)0 = —i[H;(t)0 — OHI"'(r)]. The error is small when the evolution time is short enough: t << 1/(2||H;||). Using
the approximation Eq. (B9), it is easy to show that

NJO)(Os @ Ip) = Tthypon 0 Usp (1) 0 Tl 0 (O5 @ I)

~ Ugp (t)(Os ® I) + / ATUSL (1 = T) 0 Tyt yon © L] 0 Trittorn 0 Uk (v = D(USE )05 © i)
=US ()05 ® Ir) + / dTUgy(t — T) o USE(—BA/2) 0 L] o Ugi(BA/2) o Ugp(t — (U (1)0s ® 1)
0
1
=US ()05 ® Ig) + / dtLj(t —t — Br/2)(US (1)0s ® I, (B13)
0

where C;(T)O = i[H;(t)0 — OH;(‘L')]. The first term on the right side of Eq. (B13) only contains the local evolution of the
system, and its contribution to Gg(X) is

Tel 01 0 T o ULw) 0 T o T (ps(0) @ pp(00)] = Tel T, > o US(t) T (ps(0))] = 1. (B14)

Now, let us analyze the contribution of the second term. We divide the environment into two parts: By, which is the portion
close to the system, and By, which comprises the remaining parts. When the temperature is high and the evolution time is short,
the scale of By can be larger than the propagation range of the Lieb-Robinson velocity vig(|t + BA/2]), but much smaller than
the overall environment scale Lg. The Hamiltonian of the environment can also be divided as Hg = Hp, + Hg, + Hp 5, We

define the truncated Hamiltonian, HJ := Hs + Hp,, the corresponding time evolution operator, U], = e="HorHH1)X ' the trun-
cated canonical ensemble, pp" = e ﬂH"o /Zp,, and the corresponding superoperator: N T(t):= Tf%im oUL (1) o T, “\/g piin-
Following a similar procedure to that in Egs. (B8) and (B13), we have
t
NG 0)(0s ® Ip) ~ U (1)(0s ® 1) + /0 drLi'(t — v — Br/2)(Uy" (1)0s ® Ik), (B15)

where £!7()0 = i[H] (t)0 — OH(1)]. H (v) := €™ "H;e= 7 is also a pseudo-Hermitian operator.

3. Long-time evolution and truncated superoperator

When the evolution time is short, employing perturbation theory for the time evolution Usg(¢) is suitable. However, this
method may not be appropriate for long evolution times. An alternative approach, as demonstrated in Ref. [3], involves
utilizing perturbation theory for the eigenstates of H. Here, we explore a different strategy. Notably, when the Hamiltonian
remains constant, the imaginary-time evolution and the real-time evolution commute. Therefore, the superoperator N (t) can be
expressed as

Np(t) = Ni(=B2/2) o Use (1) 0 N} (B1/2), (B16)
where Nj(—BA/2) := UEE(— BA/2) o Use(BA/2). The imaginary time evolution can also be written in the integral form

ro9
uSE(it)zugE(O)ouSE(it)=ugE(it)+/ dra—ugE(iz—ir)ouSE(ir)zugE(iz)[I+f dtUd (— n)oz:;*ouSE(ir)],
0 T

(B17)
where £¢(~) := {Hj, -}. Similar to Eq. (B11), the error caused by taking the first-order approximation is
SUsE (it) = /O t dr /0 i Aol (it —ity) o L3 o U (iT) — iTy) 0 L1 o Use (iT). (B18)
After it acts an arbitrary operator O, the bound of error can be calculated with
|45 (—it) o 8Use (i)O|| < /Ol dr /O do|| L1 iT) 0 L) (i12) 0 USp (—it2) 0 Usp (i72)O |
< CHHGrma) e o) (B19)

= 2
where EA(zt)O H,(n’)O—i—OH (it). The tTmax € [0, B/2] makes |H;(iTmax)|| maximize and 7, € [0, 8/2] makes

NG (—i it, )0l maximize. According to Eq. (A2), the error is small when the temperature is high enough: f << —(a(l)lu AR
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Applying the first-order perturbation approximation to the imaginary time evolution, we obtain
t
Ni(—it) ~ I+/ dTL)iT). (B20)
0

Similar to the procedure in Appendix B 2, we can define the truncated superoperator Z/{gg and NV (—BA/2). Employing a similar
approximation as in (B20), we have

t
N (=it) := U (—it) o Usp(it) = T + / dt L) (). (B21)
0
Accordingly, we can define a truncated map:
NG (@) := N (=Br/2) o Use (1) o N (BA/2). (B22)

4. N with different temperature

In Eq. (B1), we assume that both parts have the same temperature. However, when the temperatures of the two parts differ,
the expression for Jeng sen in terms of Uy is no longer applicable. Instead, we can use the following mapping:

N D) i= Tl an 0 Unp(1) © Ty pon (-) = Usp(Bas B, —1/2) 0 Un(t) 0 Usy(Ba, B, 1/2), (B23)

where U XB(,BA, B, T) = exp(—i(HsBat + HgBp7)). Since the temperature of the two systems is different, the duration of
imaginary time evolution time is also different. We can define

Hy(ta, 1) := U (=10 Up () HU; (24U (). (B24)
Similar to Eq. (B13), it is easy to prove

N =T+ f dTLi(t — T — ak/2.t — T — Bg)/2), (B25)
0

where E}L(rA, t3)0 = i[H; (T4, T8)0 — OH,T(IA, 75)]. We can partition X (A and B) into two parts: Xy, the part close to the sites
of Hy, and X, the part far away from H;. When the temperature is high and the evolution time is short, the scale of X, can
exceed the propagation range of the Lieb-Robinson velocity vy g(|t + BxX/2|), but remains much smaller than the overall scale
Ly . The Hamiltonian of the environment can also be divided as Hy = Hx, + Hy, + Hx,x,. We define the truncated Hamiltonian

H{ := Hy, + Hg,, the corresponding time evolution operator U = ¢~ """ ‘and the corresponding superoperator N'j (t) :=
J _Lf%zpmn oUl(t)o T ’A/i@ i Similar to Eq. (B15), we have
t
./V'ﬁTATﬂB(t) ~T7T+ / dtﬁ,ﬁ(z‘ — T — Bar/2,t — T — Bpr/2). (B26)
0

APPENDIX C: ERROR ESTIMATION

1. The error induced by truncation

According to Egs. (33) and (B15), the difference between G (i) and the truncated one is

8Grr(i) = Gr (i) — GR(i) = (Ise| T/, © Tl o [N3(0) = N T ()] 0 T, | os))
/ dr(Ise| /%) 0 Tla o (L]t =T = iB/2) = £]7( — 7 = iB/2)) o U (1) 0 T o | ps(1))'

Z/ dr(Isg|T,)/G, o US(t — T —iB/2) o [L](t — T —iB/2) — L]t — T — iB/2)]
0

U —1+iB/2) o UV ()] ps (1)) . (C1)

Using this expression, we can constrain the difference,
t

18GLr(D] = |i | drTr{pp(0)e ™ =FDsH (1 — 7 — if/2)e™ 7D (2)ps(1)]} + Hec.
0

t t
2 / dr||e™ ™D sy (1 — v — iB/2)e™ T | U (T)ps (1) ® pE(0)] <2 / dt||8H,(t — T —if/2)ll,
0 0
(C2)

064111-10



INTEGRAL FLUCTUATION THEOREMS AND ... PHYSICAL REVIEW E 109, 064111 (2024)

where §H/(t) = " Hye=He™ — s e~ M0 Tn the second line, we have utilized the Cauchy-Schwartz inequality. Accord-
ing to Eq. (A4), we have |§G g (i)| = o(1)if |t +iB/2| < €/vrg. It is important to note that we employ the first-order perturbation
approximation in this calculation and throughout the remainder of this section.

According to Egs. (33) and (B21), the difference 8G} 4(i) := Gr (i) — GT/(i) is equal to

117,/ © T o [N1(iB/2) o Uy (1) o N (=i /2) — N (iB/2) o Uy (1) o N T (— lﬂ/z)]ojt.,/z}ps(t))T

-B/2 ¥
:/ dt; (1 2 ,os(t))
0

B/2 -B/2
+ fo dv, (1 Tl o Tk o[ /O drlﬁf‘r(irl)] o U (1) o[£} (i) — L} (i12)] 0 Tl

PE
Using this expression, we can constrain the difference:

—B/2 B/2
/ dtlTr{ " ® pE(O)aH,(m)[ () o (1 + / dqﬁ;“(irz)> o jp_wln/zps(t)i“ +H.c.
0 0 s

B/2 -B/2
/ dtzTr{ |:L{SE(I) o (1 +f drlﬁf’r(irl)> ' ® PE(O)i|5H1(”2)[~7 can Ps(f)]} + H.c.
0 0

B/2
TV 0 T2 o [EMim) — £ (1] 0 Uy (1) o [1 - dnﬁ?*(im} 0T
0

+
ps(t )) - (C3)

18G) ()] ~

+

B/2 B/2
<2 f dr | 5" @ pe(0)| x II8H, (iT)|| % [2||1|| +2 / dr'(|1Hi (i) + UH,T(MH)] | Tl s @] (C4)
0 0

The term ||J _ﬂ}/ ps ()|l is related to the final state of the system. It can be greater than 1 but will not increase with the size of the

environment. Accordmg to Egs. (A2) and (A4), we have [§G ()| = o(1)if |iB/2] < £/vrg. Since [8G; ,(0)] < [8G] ()] = o(1),
the error is very small under long-time average.
According to Egs. (48) and (B26), the error induced by truncation in Eq. (49) can be estimated as

8GLr(D) = (Ias| T, A(0>®p3<0> o [N, 4, @) — Ngjﬂg(””lf

/ A (Ias| T, Gy puio © L1 = T = Bak/2.t — T — Bgh/2) — L] (t =T — Pah/2.t — T — ,3Bx/2)]|1)T. (C5)
Using this expression, we can constrain the difference as

[6GLr(D)| = |i [ dtTr{pa(0) ® pp(0)éH,(t — T — Bar/2,t — T — BpA/2)} + H.c.
0

2/0 dr||8H(t — T — /2.1 — T — BpAr/2)|| X [|p4(0) ® pp(0)]. (C6)

In the second line, we have used the Cauchy-Schwartz inequality. According to Eq. (A4), we have |§G g(i)| = o(1) if |t +
iBx/2| < £x/vrg holds for both A and B.
According to Eq. (B21), the error induced by truncation in Eq. (50) can be calculated as

(I1TY2 o) © [NHGB/2) 0 Ulp(®) 0 N (—iB/2) = NT (iB/2) o Uip (1) o N (—iB/2)] 1)

—B/2
~ / drt (I
0
B/2
+ / d‘[z <I
0

Using this expression, we can constrain the difference:

. B/2 . T
T o © [LMGT) — LT ()] o U (1) 0 [1 + f dn, L) (ir2)1| ’ 1)
0

-B/2 . .
jplA/(z())®pB(0) o |:I —I—/ dT1£?~T(i‘E1)j| o XB(Z) o [[ﬁ}%'(i‘cz) - D[“,TT(i‘Cz)]
0

1) § (C7)

—B/2 B/2
/ dnTr{pA (0) ® pp(0)8H; (iTy )[ujgm o (1 + f drzﬁj“(im)IAB} , +He.
0 0

8GR ()] ~

X

B/2 —B/2
/ deTr: [uAg(t) ol + / dn £ (i11))pa(0) ® p3(0>}6H1<irz)IAB} +He.
0 0

B/2 B/2
< 2/ dtpa(0) ® pp(O)| x I6H; (iT)]| % |:2||1|| +2/ dt'(I1H; it + ||H1T(if')||)}- (C8)
0 0
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According to Egs. (A2) and (A4), we have |§G)(i)| = o(1) if |iB/2| < £x/vrr holds for both A and B. Since |8G TR <
|8G (D] = o(1), the error is very small under long-time average.

2. The error induced by deviation of the environment state in short-time regime

The error induced by deviation of the environment state in Eq. (36) equals
(Ise| [T,y = Tpia] 0 Ty o N T (1) 0 Ju‘n/2|ps(t)) (08, ® L] pE(0) — p§) = (Og, | Trg[p£(0) — pE]),  (CY)

where (Op,| = (ps(t) ® pgp," U, E(t) J _m/ 2|IS) is a By local operator. For A = i, using a similar approximation to Eq. (B9) for

Z/lSE(t), we have

108, =~

Is)

According to Eq. (A2), we proceed to bound the above expression, yielding ||Op,|| = ®(1). It is worth mentioning that
we employ the first-order perturbation approximation here, and higher-order terms can be bounded similarly. Furthermore,
irrespective of the scenario, the operator O s norm should not escalate with the size of the entire environment. Consequently, in
line with Eq. (A5), we have

Ig, + / dr(psO|Us (v) 0 Tl © L10 T gl

< g, |l +2/0 de||H;GB/2)| < llps(O)Il- (C10)

(05, |Trg{ pE(0) — pg"]) = ON™®). (C11)
The error induced by deviation of the environment state in Eq. (49) is
(IAB|[ pA(0)®PR(0) jplzér%®p£‘un] NT—‘/;B(I)“) (OAOB()iTrAOBO [,OA(O) ® /OB(O) - Can ® Ean]), (C12)

where (O, = (05" ® pf,f)“lU}B(t) oJ p_caln%pum is an ApBy local operator. Following similar arguments as in Eq. (C11), in
Ag PPBy
accordance with Eq. (A5), we should have

(OB, | Trzog; [ P4 (0) ® pp(0) — 5" ® p5"]) = O(NL*) + O(N;®). (C13)
where Ny is the size of the bath X.

3. The error induced by deviation of the environment state in long-time regime

According to Egs. (41) and (B22), the term in Eq. (43) can be rewritten as
(Ise [T/ = jplz{‘z] ‘71;{’3 o Ny NjTwe T Plos®)'
Z 5 ® [p£(0) — "IN (iB/2)| )" x (TN (=iB/2) 0 T |05 (D))" (C14)

The energy widths of p§*" ® pg(0) and pg*" ® pg™" are both narrower than @(N; fB) [32]. According to Theorem 2.1 in Ref. [25],
the superoperator N/ (—iB/2) at most increases the energy width by ®(Ng, ). According to Theorems 2.2 and 2.3 in Ref. [25], the
difference between the eigenstates of Hy and H causes the energy width to increase by ®(|H;|) at most. For the above reasons,
a, b in Eqgs. (44) and (C14) can be limited to the energy shell [E. — AE /2, E. + AE/2], where AE = ©(Ng,) + O(Ng/3) +
O(H;|) and E. = (ps*" ® pr(0)|Hp). The weights of eigenstates with energies above this range are suppressed exponentially.

The energy width AE is much smaller than the average energy ®(Nsp). Their inverse temperature range given by Eq. (35)
should be narrow and negligible in the thermodynamic limit. This means that it is difficult to distinguish these states from the
same canonical ensemble pgy' through local operator J\/’ITT(—i,B /2)o J p_c;.ln/ ZIW ® Ig). Therefore, we can do the following
approximate replacement: ’

D )Mol ~ > 1T (05| = se) (o557 - (C15)

The error induced by replacement Eq. (C15) can be bounded as

> (05 @ [0£(0) — o) INT (iB/2)| M) x (e — o AT (=i /2) 0 Tl * (@)
< (105" ® pe @ B/ +] (55 ® o INT B /2)I1) ] % |(TMoes — 05N (—i8/2) 0 T [5D)
(C16)

where Enx € [E. — AE/2, E. + AE /2] makes |(ITjax — pgaE“IJ\/TI(—zﬁ/Z) Jcm |p5(t))+| maximize. In Eq. (C16), we use
the properties that the terms like (0" ® pg |./\/,T(i,3 /2)|11,) are positive. Accordmg to the previous analysis of the energy shell
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and Eq. (AS), Eq. (C16) can be bounded with O(N~%) and is small at the thermodynamic limit. The operator state (ISIJ 2
NI (iB/2)|Isk) also gives a By local operator. After applying replacement (C15) to Eq. (C14) and combining Eq. (A5), we have

(Is ® [(0) — p§]| 7,42 o NT iB/2)|Ise) " x (05 [N (=i /2) 0 Tl 0s@) " = 0. (C17)
According to Egs. (41) and (B22), the error induced by the term in the second line of Eq. (50) can be calculated with

(18l [ T, r0m0) = Tifronge ] o NG O[1)" = 3 (p4(0) ® pp(0) = p5™ ® P [ AT (iB/2)| ML) ¢ (TLa| N (=iB/2)|1an)

’ (C18)

Following similar arguments in the preceding paragraph, a in Eq. (C18) can be limited to the energy shell [E, — AE /2, E. +
AE/2], where AE = ©(Ng, + Na,) + O(Ny/2) + O(|H;|) and E. = (04(0) ® pp(0)|Hp). The weights of eigenstates with
energies above this range are suppressed exponentially. Moreover, since ./\/,TT(—i B/2)a) =: |Oppp, @ Im) gives an AyBy local
operator and the energy width to be considered here is also much smaller than the average energy ®(N4p), the ETH (AS5) allows
us to replace (IT,| with (p33'| and introduce only a small error. Now the approximate replacement becomes ), [T1,)(IT,| ~
> (eS| = |Lag) (055 |- The error induced by this replacement can be bounded in similar ways as Eq. (C16). It is also small
at the thermodynamic limit. The operator state (p4(0)|N/ (i8/2)|145) gives a By local operator and (o™ N/ (iB/2)|1ap) gives
an Ay local operator. So, according to Eq. (A5), we have

(04(0) ® p(0) — 5 @ P |NT (1B /D) Ias)" x (o5 |NT (=B /2)|1as)" = O(N;®) + O(N;®). (C19)

4. The error caused by time-dependent final state measurements

Now let us estimate the bound of Eq. (44). The energy width of p5(0) ® pg(0) depends on the initial state, but it can be safely
assumed to be narrower than ®(Ny). After considering the difference between the eigenstates of Hy and H, a, b in Eq. (44)
should also be in the energy shell [E. — AE’/2, E/ + AE’/2], where AE' = O(Ns) + ©(|H;|) and E. = (Hp|ps(0) ® pg(0)).
a, b should be in the intersection of [E. — AE /2, E. + AE /2] and [E' — AE'/2, E' + AE’/2]. The weights of eigenstates with
energies above this range are suppressed exponentially. Since the operator state ./\/'ITT(—i B/2) o Jpgﬂ/ 2|TrE I, ® Ig) gives an
SBy local operator, the off-diagonal ETH (A6) tells

|(Ma|Oss, ® Ig;)| = ON™®). (C20)

The remaining part of Eq. (44) can be evaluated as follows:

Z | (5™ @ 8 | N} (iB/2)| Tap) (T |35 (0) ® pi(0)) |

a;éh

Z (5™ ® 808 [N (iB/2)|Tp) v/ (Tl 5 (0) @ pi(0)y/(TT,] p5(0) @ pi(0))]

B/2
< IV GB/2) (05 k) |[VP|, x NPl < |||V (@B/2)(05™ @ 8£) || <2<1+2/0 dr|l|H;(i0)]) = (1),
(C21)

where the vector vP = {/IIalpse(0))}), Il - |2 is a vector two-norm and | - | replaces the matrix elements with their absolute
values. In the second line, we have inserted the nonnegative part of a = b and used |pu|*> < papp. In the third line, we have
used the Cauchy-Schwartz inequality. Here we assume that the norm || - || is consistent with a vector two-norm. Additionally, we
employ the approximation (B21) and Eq. (A2) in the third inequality sign on the third line. Combining it with Eq. (C20), we can
constrain Eq. (44) to the following range:

(1) x O(N™). (C22)
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