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Studying the implications and characterizations of the excited-state quantum phase transitions (ESQPTs)
would enable us to understand various phenomena observed in quantum many-body systems. In this work, we
delve into the affects and characterizations of the ESQPTs in the anharmonic Lipkin-Meshkov-Glick (LMG)
model by means of the entropy of the quantum work distribution. The entropy of the work distribution measures
the complexity of the work distribution and behaves as a valuable tool for analyzing nonequilibrium work
statistics. We show that the entropy of the work distribution captures salient signatures of the underlying ESQPTs
in the model. In particular, a detailed analysis of the scaling behavior of the entropy verifies that it not only acts
as a witness of the ESQPTs but also reveals the difference between different types of ESQPTs. We further
demonstrate that the work distribution entropy also behaves as a powerful tool for understanding the features
and differences of ESQPTs in the energy space. Our results provide further evidence of the usefulness of the
entropy of the work distribution for investigating various phase transitions in quantum many-body systems and
open up a promising way for experimentally exploring the signatures of ESQPTs.
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I. INTRODUCTION

Excited-state quantum phase transitions (ESQPTs) [1–5]
are a generalization of the ground-state quantum phase transi-
tions (QPTs) [6,7] and have triggered numerous investigations
in understanding their effects and signatures in a wide variety
of quantum many-body systems, such as the Dicke model
[8–12], the Rabi model [13,14], the periodically driving sys-
tems [15,16], the spinor Bose-Einstein condensates [17–19],
the Lipkin-Meshkov-Glick (LMG) model [3,20–28], and the
Kerr nonlinear oscillator [29,30], to name a few. In par-
ticular, ESQPTs have been experimentally observed in the
superconducting microwave billiards [31] and the quantum
gas [32]. ESQPTs are usually characterized by the singu-
larities in the density of states [3–5] and play an important
role in a diverse range of situations, including decoherence
process [33,34], quantum quench dynamics [11,19,27–29,35–
38], quantum chaos [10,39,40], quantum metrology [41], and
dynamical tunnelling [42] as well as isomerization reactions
[43]. Moreover, the efforts to identify the order parameters
for ESQPTs [12,36] provide further understanding on their
properties. Different aspects of ESQPTs have been reviewed
in details in Ref. [5].

Recently, the anharmonicity-induced ESQPTs have at-
tracted a lot of attention [43–47]. In contrast to the usual
ESQPTs [3–5], which are associated with the ground-state
QPTs, the anharmonicity triggering ESQPTs are independent
of the ground-state QPTs and have different physical origin as
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compared to the usual ones. It has been demonstrated that the
onset of anharmonicity-induced ESQPTs is a consequence of
the changes of the boundary in the finite-dimensional Hilbert
space of the system [45,46]. It is worth mentioning that the
finiteness of the Hilbert space of the system also results in
another kind of ESQPTs, known as the static ESQPTs [9],
which have no impacts on the system dynamics. The differ-
ences between the static and anharmonicity-induced ESQPTs
have been pointed out in Ref. [46]. Both static and dynami-
cal aspects of the anharmonicity-induced ESQPTs have been
thoroughly investigated in several systems [45–47]. It was
found that the anharmonicity-induced ESQPTs exhibit similar
dynamical and static signatures as the usual ESQPTs. How-
ever, as two kinds of ESQPTs have different physical origins,
it is natural to ask how to reveal their difference.

In the present work, we address this question by perform-
ing a detailed investigation on the scaling properties of the
entropy of the quantum work distribution. As a measure of
the complexity of the quantum work distribution, the work
distribution entropy conveys a richness of information of the
statistics of nonequilibrium quantum work, and particularly it
can be used to diagnose the localization transition in Aubry-
André-Harper model [48]. Moreover, due to the definition of
the work distribution involves the spectrum of the system, one
can expect that its entropy has ability to detect the presence
of ESQPTs, as confirmed in Ref. [49]. Here, we further show
that the entropy of the work distribution also enables us to
distinguish different kinds of ESQPTs.

We carry out our study in the anharmonic LMG model
[46,47], which is obtained by including an anharmonic
term in the LMG model [46]. It was shown that in addi-
tion to the usual ESQPT observed in the LMG model, the

2470-0045/2024/109(6)/064110(10) 064110-1 ©2024 American Physical Society

https://orcid.org/0009-0001-7256-5567
https://orcid.org/0000-0002-3937-5657
https://ror.org/01vevwk45
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.064110&domain=pdf&date_stamp=2024-06-04
https://doi.org/10.1103/PhysRevE.109.064110


ZHANG, QIAN, NIU, AND WANG PHYSICAL REVIEW E 109, 064110 (2024)

inclusion of the anharmonic term triggers a new ESQPT
[46]. We demonstrate that both ESQPTs are characterized by
the logarithmic divergence of the density of states at differ-
ent critical energies. By analyzing the classical limit of the
model, we perform a detailed analysis of the two ESQPTs
and show how to understand them from the changes of the
available phase space volume. To take the system out of
the equilibrium state, we employ the sudden quench process.
We show that the underlying ESQPTs leave a strong imprint
in the nonequilibrium work statistics, resulting in a notable
change in the behavior of the work distribution entropy. In
particular, a detailed scaling analysis on the entropy demon-
strates that two kinds of ESQPTs are manifested by different
scaling exponents. Furthermore, for the sake of completeness,
we discuss the energy dependence of the work distribution
entropy and illustrate that it also behaves as a useful tool to
detect the differences between ESQPTs in the energy space.

The remainder of the article is structured as follows. In
Sec. II, we briefly review the definition and several features
of the entropy of the work distribution. In Sec. III, we de-
scribe the anharmonic LMG model, discuss the signatures of
ESQPTs in the model and study its classical counterpart. We
analyze the physical origins of ESQPTs and obtain explicit
expressions of their critical energies. In Sec. IV, we report
our main results and show how the scaling behavior of the
work distribution entropy distinguishes the different kinds of
ESQPTs. We finally summarize our findings and discuss their
potential extensions in Sec. V.

II. ENTROPY OF THE WORK DISTRIBUTION

Let us consider an isolated quantum system subjected to
an external time-dependent driving of the control parameter
in a time interval [0, τ ]. The system is initially prepared in a
generic state ρi with initial Hamiltonian Hi = ∑

n E i
n|ni〉〈ni|.

Here, |ni〉 is the nth eigenstate of Hi and Ei
n is its corresponded

eigenvalue. After the driving, the state of the system becomes
ρ f = UρiU †, where U represents the unitary evolution. The
driving process also changes system Hamiltonian from Hi to
the final one Hf = ∑

k E f
k |k f 〉〈k f |, where E f

k is the eigenvalue
of the kth eigenstate, |k f 〉, of Hf . The work done during
this process is a random variable and is given by the en-
ergy difference between the final and initial Hamiltonians.
Thus, to understand the nonequilibrium thermodynamics in
the isolated quantum system, one needs to consider the work
distribution rather than the work itself.

There are several different forms of the work distribution
[50–56], depending on which scheme that is employed to
evaluate the work during the process. Among them, we focus
on the work distribution defined through the two-point mea-
surement scheme [56–58], which is a most popular scheme
for studying the work statistics in driven isolated systems
[59–66]. The two-point measurement scheme consists of mea-
suring the energy of the system at the beginning and at the
end of the driving. Accordingly, the corresponding works,
W = E f

k − Ei
n, are distributed as

P(W ) =
∑
n,k

pk,nδ
[
W − (

E f
k − Ei

n

)]
, (1)

where pk,n denotes the joint probability of the two energy
measurements and is given by

pk,n = p0
n pτ

k|n, (2)

with p0
n = 〈ni|ρi|ni〉 is the initial occupation probability and

pτ
k|n = |〈k f |U |ni〉|2are the transition probability between |ni〉

and |k f 〉.
The work distribution for a quantum many-body system is

complex. Hence, one usually studies the moments or cumu-
lants of work, such as the mean and variance, in analyzing
the work statistics of quantum systems [49,60–62,66–69]. Al-
though the work moments or cumulants can capture several
features of nonequilibrium thermodynamics in a variety of
many-body systems, they cannot reveal the full information
included in the work distribution. Very recently, a quantity
that measures the complexity of P(W ) has been introduced,
that is, the entropy of P(W ) [48]:

SW = −
∑
W

P(W ) ln[P(W )]. (3)

It is easy to see that SW ∈ [0, lnD2] with D being the Hilbert
space dimension of the quantum system. If the work is de-
terministic, then SW = 0, while SW = lnD2 implies P(W ) is
uniform.

It has been demonstrated that the entropy SW unveils a
richness information of the work distribution and provides a
useful tool for understanding the nonequilibrium thermody-
namics in quantum systems [48]. Moreover, the entropy also
acts as a sensitive probe of the localization transition in the
Aubry-André-Harper model. In this work, we use the entropy
SW to explore the implications of the ESQPT on the work
distribution in the anharmonic LMG model. In particular, we
explore how to distinguish different types of ESQPTs via the
scaling properties of the work distribution entropy.

III. MODEL

As a generalization of the well-known LMG model
[70–72], which describes N spin-1/2 mutual interacting par-
ticles in an external field and was widely studied in various
areas [73–85], the anharmonic LMG model includes an an-
harmonic term and its Hamiltonian reads (h̄ = 1) [46,47]

H = 2γ

N

(
J2 − J2

x

) + (1 − γ )

(
Jz + N

2

)
− α

N

(
Jz + N

2

)(
Jz + N

2
+ 1

)
, (4)

where Jx,y,z = ∑N
i=1 σ

x,y,z
i are the collective spin operators

with σ
x,y,z
i denote the ith spin Pauli matrices, γ ∈ [0, 1] is the

control parameter, and α > 0 represents the strength of the an-
harmonic effect. The Hamiltonian (4) reduces to the original
LMG model when α = 0, while it includes the interactions
between spins along z direction for α �= 0 cases.

One can easily show that the total spin J2 = J2
x + J2

y + J2
z

commutes with the Hamiltonian (4). Hence, we focus on
the j = N/2 sector with the Hilbert space dimension DH =
N + 1. Moreover, the conservation of the parity � = eiπ ( j+Jz )

further allows us to split the Hilbert space into two subspaces,
one has even parity with dimension De

H = N/2 + 1 and the
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FIG. 1. (a) Rescaled even parity energy levels εn = (En − E0 )/N
of the anharmonic LMG model as a function of the control parameter
γ for a system with N = 2 j = 130. Inset: Semiclassical approxi-
mation of the density of states ρsc(ε) [cf. Eq. (8)] as a function of
εn and γ . Here, ρsc(ε) has been normalized by its maximal value.
The yellow dotted and dashed curves in main panel and inset in-
dicate the ESQPTs critical energy εc,1 and εc,2, respectively. The
horizontal red dot dashed line marks ε = 0.2, while the vertical red
solid line indicates γ = 0.7. (b) Rescaled quantum density of states
ρ̃(ε) = ρ(E )/N as a function of γ along ε = 0.2 for the system size
N = 2 j = 5000. The blue dot dashed curve denotes ρsc(ε), obtained
from Eq. (8). The vertical red and gray dotted lines are the critical
γ values of the ESQPTs provided by the equations εc,1 = εc,2 = 0.2.
(c) Dependence of ρ̃(ε) on ε along γ = 0.7 for the same system size
as in panel (b). The blue solid curve represents ρsc(ε) in Eq. (8),
while the vertical cyan and black dashed lines are respective marks
εc,1 and εc,2. In all panels, the anharmonicity parameter α = 0.5. All
quantities are unitless.

other is the odd parity subspace with dimension Do
H = N/2.

In this work, we restrict to the even parity subspace, which
includes the ground state of the model.

It is known that the anharmonic LMG model undergoes
a second-order ground-state QPT at γc = 1/3 and two ES-
QPTs, revealed by the clustering of the eigenlevels [46,47].
In Fig. 1(a), we plot how the rescaled excitation energies
εn = (En − E0)/N vary as a function of the control parameter
γ for a system with N = 130 and α = 0.5. Here, En is the
nth energy level with n = 0 being the ground state. Clearly,
the energy spectrum of anharmonic LMG is more complex
than the LMG model. One can see that the eigenlevels clus-
ter along two different lines, which indicate the existence of
two ESQPTs. The first ESQPT, marked by the yellow dotted
line in Fig. 1(a), is the same as the one in the LMG model
[23,27,35] and only appears for γ > γc = 1/3, while the sec-
ond one, triggered by the anharmonic term, can exist in the
entire range γ ∈ [0, 1], as marked by the yellow dashed line

in Fig. 1(a). The clustering of the eigenlevels implies that both
ESQPTs are characterized by a high density of states, ρ(E ) =∑

n δ(E − En). This is visible in Figs. 1(b) and 1(c), where
we plot the rescaled density of states, ρ̃(ε) = ρ(E )/N , as a
function of γ and ε, respectively, for a system size N = 5000
and α = 0.5. It is easy to see that near the critical points of
ESQPTs the density of states exhibits two remarkable peaks
which will translate into the logarithmic divergences in the
thermodynamic limit [27,46]. We would like to point out that
the second ESQPT has strong impacts on system dynamics
[47], in contrast to the static ESQPT introduced in Ref. [9].

The onset of ESQPT is closely connected to the changes of
the available phase space in the underlying classical systems
[3–5]. We therefore explore the classical limit of the anhar-
monic LMG model (4), to get a better understanding of the
signatures of both ESQPTs.

A. Classical limit of the model

The classical counterpart of the Hamiltonian (4) is obtained
from its expectation value with respect to the SU(2) spin
coherent state [86–89] and normalized by the system size
in the classical limit (N → ∞). The final expression of the
classical Hamiltonian is given by

Hc(p, q) = 1 − γ

4
(p2 + q2) − γ

8
q2(4 − p2 − q2)

− α

16
(p2 + q2)2 + γ

2
, (5)

where {(p, q)|p2 + q2 � 4} are the canonical variables.
The phase space structure of a classical model is de-

termined by its fixed points [4,5], which are given by
the solutions of equation ∇Hc|(p0,q0 ) = 0. It is known that
the classical system has a fixed point (p0, q0) = (0, 0)
with energy E0 = γ /2 for γ < γc = 1/3. However, as soon
as γ � 1/3, the fixed points are given by (p1, q1) =
(0,±√

2(3γ − 1)/(2γ − α)) with energy E1 = γ /2 − (3γ −
1)2/(8γ − 4α). The energy difference E1 − E0 defines the
ESQPT critical energy,

εc,1 = E0 − E1 = (3γ − 1)2

4(2γ − α)
, γ � γc, (6)

which is plotted as the yellow dotted line in Fig. 1(a).
Apart from above-mentioned fixed points, the an-

harmonicity gives rise to other fixed points (p2, q2) =
(±√

(2γ + 2 − 4α)/γ ,±√
(4α − 2 + 2γ )/γ ) with energy

E2 = 1 − γ /2 − α when γ � |1 − 2α|. This indicates the oc-
currence of a new ESQPT with the critical energy,

εc,2 =
{E2 − E0 = 1 − γ − α, γ < γc,

E2 − E1 = (1+γ−2α)2

4(2γ−α) , γ � γc,
(7)

which is marked with the yellow dashed line in Fig. 1(a). As
can be seen in Eq. (7), the critical energy εc,2 exists in the full
range of γ value, unlike εc,1, which can only be found in the
broken-symmetry phase γ ∈ (γc, 1].

The presence of ESQPTs implies abrupt change in the
behavior of the system available phase space volume. For the
anharmonic LMG model, the available phase space volume is
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given by [46]

ρsc(ε) = 1

4π

∫
d pdqδ[ε − Hc(p, q)], (8)

which can be considered as the semiclassical approximation
of the quantum density of states [90]. In the inset of Fig. 1(a),
we plot ρsc(ε) as a function of γ and ε for α = 0.5. One can
clearly appreciate how the underlying ESQPTs leads to the
singularities in the behavior of ρsc(ε). The implications of
ESQPTs are more visible in Figs. 1(b) and 1(c), where we
show the variation of ρsc with γ and ε along the lines ε = 0.2
and γ = 0.7, respectively. We clearly see that ρsc(ε) shows
a sharp peak at the critical energies of ESQPTs. In fact, for
the anharmonic LMG model with the classical counterpart
has one degree of freedom, it was demonstrated that around
the ESQPT critical energy ρsc(ε) bears the logarithmic diver-
gence, so that ρsc(ε) ∝ − ln |ε − εc| [4,5]. Moreover, we also
see an excellent agreement between the numerical results of
ρ̃(ε) and ρsc(ε). This confirms that both ESQPTs are signified
by the logarithmic divergences in the density of states as the
system size goes to infinite.

In the following section, we investigate the impacts of these
ESQPTs on the behavior of the entropy of the work distri-
bution and discuss how to distinguish them via the scaling
properties of the entropy.

IV. RESULTS

To analyze how two ESQPTs in the anharmonic LMG
model affect the behavior of the entropy of the work dis-
tribution and to reveal their differences through the scaling
properties of the entropy, we keep the value of α fixed and
consider a sudden quench protocol. The initial state of the
system is prepared in an eigenstate |ψ i

n〉 of Hi = H (γi ) with
energy Ei

n. At t = 0, a sudden quench takes place which
changes γ from γi to γ f = γi + δγ . The final Hamiltonian of
the system is Hf = H (γ f ) = ∑

k E f
k |ψ f

k 〉〈ψ f
k |, where |ψ f

k 〉 is
the kth eigenstate of Hf with eigenvalue E f

k . As ρi = |ψ i
n〉〈ψ i

n|
is the nth eigenstate of Hi and the unitary operator U = 1 for
the sudden quench process, the work distribution in Eq. (1)
reduces to

P(W ) =
∑

k

pk,nδ
[
W − (

E f
k − Ei

n

)]
, (9)

where the joint probability in Eq. (2) simplifies to pk,n =
|〈ψ f

k |ψ i
n〉|2, namely, the transition probabilities between the

initial and final states. Then, the entropy defined in Eq. (3) is
given by

SW = −
∑
W

P(W ) ln[P(W )] = −
∑

k

pk,n ln pk,n. (10)

Obviously, the entropy SW now varies in the interval SW ∈
[0, lnD] with SW = 0 corresponding to the deterministic work
and SW = lnD implying P(W ) is uniform. Here, D is the
Hilbert space dimension of the system.

Since we aim to reveal the effects and differences of two
ESQPTs, it is necessary to take the system passes through
the critical energies of ESQPTs. This is achieved by tuning
the quenching strength δγ , owing to the dependence of the
energy in the post-quenched system on δγ value. The critical

quenching is defined as the one that takes the post-quenched
system to the ESQPT critical energy and denoted by δγc.

The critical quenching of an ESQPT can be obtained by
using the mean field (semiclassical) approach. For the first
ESQPT with the initial state is given by the ground state |ψ i

0〉
of Hi, the critical quenching, δγc,1, can be written as

δγc,1 = − (3γi − 1)(2γi − α)

2(3γi − 3α + 1)
, (11)

with 1/3 � γi � 1. However, it was demonstrated that it is
impossible to approach the second ESQPT when the system
is initially in the ground state of Hi [47]. Alternatively, to
reach the critical energy of the second ESQPT, the initial state
should be set as the highest excited eigenstate, denoted by
|ψ i

n∗ 〉, of Hi [47]. Then, one can find that the critical quench-
ing, δγc,2, of the second ESQPT is given by

δγc,2 = 4α(1 − γi − α) − (1 − γi )2

2(2α + γi − 1)
, (12)

where, again, 1/3 � γi � 1. We emphasize that the conclu-
sions in the present work are independent of the value of γi as
long as γi ∈ [1/3, 1].

In Fig. 2, we plot P(W ) for different rescaled quench-
ing strengths, δ̃γ a = δγ /δγc,a with a = 1, 2 for the first
[Figs. 2(a)–2(c)] and second [Figs. 2(d)–2(f)] ESQPTs, with
γi = 0.7, α = 0.5, and N = 2 j = 800. Overall, the behavior
of P(W ) clearly unveils the two ESQPTs at δγc,1 and δγc,2.
For both ESQPTs, when δ̃γ a < 1 the work distribution P(W )
has small support and shows significant population around
the work value given by the energy difference between the
ground states of Hf and Hi, as illustrated in Figs. 2(a) and
2(d). Conversely, as evidenced in Figs. 2(c) and 2(f), the sup-
port of P(W ) undergoes a remarkable increase for quenches
that above the critical ones, i.e., δ̃γ a > 1. The particular dip
observed in P(W ) for the critical quenches δ̃γ a = 1 [see
Figs. 2(b) and 2(e)] not only marks the presence of ESQPTs,
but also reflects the complexity of P(W ) at the ESQPTs criti-
cal points. However, we see that the work distribution is very
regular when the quenching strength is far away from the
critical value for both ESQPTs.

The above-observed features of P(W ) imply that the en-
tropy of P(W ) should exhibit a drastic change as the system
passes through the critical points of two ESQPTs. To see this,
we plot SW as a function of quenching strength and γi for
two ESQPTs in Figs. 3(a) and 3(b). For both ESQPTs, one
can clearly see that SW exhibits quite different behaviors in
different phases of an ESQPT. In particular, the entropy SW is
maximum around the critical point in both transitions. These
properties of SW are more visible in Figs. 3(c) and 3(d), where
we show the dependence of SW on the quenching strength with
fixed γi for two ESQPTs.

The peak displayed in the behavior of SW implies that it
succinctly reveals the ESQPTs in the anharmonic LMG model
and acts as a finite size precursor of an ESQPT. Hence, one can
expect that in both transitions the location of the maximal en-
tropy tends to the critical point and the entropy diverges in the
thermodynamic limit N → ∞. This is confirmed by Fig. 4,
where we demonstrate how the position of the maximal SW

with respect to the critical value as well as the maximum value
of SW evolve with the system size N for different α and γi
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FIG. 2. Work distributions of the anharmonic LMG model (4). (a)–(c) P(W ) for the first ESQPT with different values of the rescaled
quenching strength δ̃γ 1 = δγ /δγc,1 and initial state is given by the ground state of Hi. Here, δγc,1 is obtained from Eq. (11). (d)–(f) P(W ) for
the second ESQPT with several values of δ̃γ 2 = δγ /δγc,2 and the initial state is the highest excited eigenstate of Hi. Here, δγc,1 is given by
Eq. (12). In all panels, γi = 0.7, the anharmornicity parameter α = 0.5, and the system size N = 2 j = 800. All quantities are unitless.

cases in both transitions. Moreover, we find that the decrease
of the distance between the location of the maximal SW and
the critical point with the increase of N follows power law

|1 − δ̃γ a,m| ∝ N−μ, (13)

where a = 1, 2 and δ̃γ a,m = δγa,m/δγc,a with δγa,m denoting
the position of the maximal SW for the first (a = 1) and/or

FIG. 3. (a), (b) Rescaled entropy of P(W ) as a function of δ̃γ a =
δγ /δγc,a(a = 1, 2) and γi for (a) the first ESQPT and (b) the second
ESQPT with N = 2 j = 800. Here, δγc,a are obtained from Eqs. (11)
and (12). (c), (d) Rescaled entropy of P(W ) as a function of δ̃γ a

for several system sizes, for (c) the first ESQPT and (d) the second
ESQPT with γi = 0.7. The vertical green dashed line in each panel
marks the critical quenching strengths δγc,a. In all panels, the anhar-
mornicity parameter α = 0.5. All quantities are unitless.

second (a = 2) ESQPT. Additionally, the fitting of the data
shows that for both ESQPTs the divergence of the maximum
value of SW , denoted by SW,m, is well captured by

SW,m ∝ ν ln N. (14)

The values of the scaling exponents μ and ν for the two
ESQPTs are shown in Table I. We see that for both transitions

FIG. 4. (a) Distances of the rescaled quenching strength δ̃γ 1,m

where the maximal SW occurs to its critical value 1 versus system
size N with several α and γi for the first ESQPT. (b) Maximum
values of SW , SW,m, as a function of N for different values of α and γi

of the first ESQPT. (c) Distances between δ̃γ 2,m, where SW reaches
its maximal value, and 1 as a function of N for several α and γi of
the second ESQPT. (d) Maximal values of SW , SW,m, versus N for
different α and γi of the second ESQPT. The dashed lines in panels
(a) and (c) correspond to the power-law scaling N−μ, while the dotted
lines in panels (b) and (d) represent ν ln N . The explicit values of μ

and ν are given in Table I. All quantities are unitless.
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TABLE I. Scaling exponents μ and ν for the cases plotted in Fig. 4.

1st ESQPT 2nd ESQPT

α = 0.4, γi = 0.6 α = 0.4, γi = 0.7 α = 0.5, γi = 0.7 α = 0.4, γi = 0.6 α = 0.4, γi = 0.7 α = 0.5, γi = 0.7

μ = 0.9496 μ = 0.9280 μ = 0.9432 μ = 0.9043 μ = 0.9262 μ = 0.9251
ν = 0.5732 ν = 0.5719 ν = 0.5670 ν = 0.5688 ν = 0.5651 ν = 0.5679

the exponent ν is almost independent of the values of α and
γi and approximately given by ν ≈ 0.57, while the value of μ

is different for two ESQPTs and varies with α and γi as well.
This means that even though SW exhibits a similar properties
for both ESQPTs, its scaling behavior depends on the type of
ESQPT. Hence, we can conclude that the scaling analysis of
SW would help us to distinguish different types of ESQPTs.

So far, we have focused on to investigate the impacts
and differences of ESQPTs by means of the entropy of the
quantum work distribution in the anharmonic LMG param-
eter space. However, the prominent signature of ESQPTs
is the singularity in the density of states at the critical
energy. Therefore, it is also necessary to explore whether
the scaling of the work distribution entropy is also able to
detect the differences between two ESQPTs in the energy
space.

To this end, we still consider the sudden quench pro-
cess. However, as we are currently interested in the energy
dependence of the entropy of the work distribution, we
fixed δγ = 0.001 and study the properties of the work
distribution and its entropy for different eigenstates with
fixed γi.

In Fig. 5, we report the work distribution of nth eigenstate,
denoted by Pn(W ), for several excitation eigenlevels with γi =
0.7, α = 0.5, and the system size N = 2 j = 800, for the two

ESQPTs. Due to the very small value of δγ , the amount of
work that is injected or extracted during the quench process
is also very small. Nevertheless, for both transitions, obvious
differences in the behavior of Pn(W ) between two phases of
an ESQPT can be observed. At the critical energies of two
ESQPTs, the highest density of states means that the critical
eigenstates are very sensitive to the small perturbations. As
a consequence, the work distribution Pn(W ) becomes more
dense than the cases that far away from the critical energy, as
seen in Figs. 5(b) and 5(e).

The behaviors of Pn(W ) demonstrated in Fig. 5 indicate
that the entropy of Pn(W ), denoted by S(n)

W , would be max-
imized at the ESQPT critical energy. We plot in Fig. 6(a)
how the entropy S(n)

W evolves with γi and excitation energies
εn. We note that the overall behavior of S(n)

W is very similar
to ρsc(ε), as seen by comparing Fig. 6(a) with Fig. 1(a).
Importantly, one can clearly observe that the entropy S(n)

W has
a peak along the critical energies of two ESQPTs. This is
confirmed by the inset of Fig. 6(a), where we show how the
positions of peaks in S(n)

W evolve as a function of εn and γi.
An excellent agreement between the numerical and analytical
results implies that S(n)

W behaves as a witness of two ESQPTs
in the anharmonic LMG model. Further verifications of this
statement are demonstrated in Figs. 6(b) and 6(c), where we
illustrate the dependence of S(n)

W on γi with fixed εn and on

FIG. 5. Work distribution Pn(W ) of the nth eigenstate |ψn〉 for (a) n = 79, εn ≈ 0.094, (b) n = 129, εn ≈ εc,2 = 0.1361, (c) n = 179, εn ≈
0.179, (d) n = 279, ε ≈ 0.2818, (e) n = 344, εn ≈ εc,1 = 0.3361, and (f) n = 371, εn ≈ 0.3544. Here, εn = (En − E0 )/N with E0 is the
ground-state energy, εc,1 and εc,2 are, respectively, given by Eqs. (6) and (7). Other parameters: γi = 0.7, α = 0.5, and N = 2 j = 800. All
quantities are unitless.
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FIG. 6. (a) Normalized work distribution entropy, S̃(n)
W =

S(n)
W /Smax, as a function of γi and εn = (En − E0)/N . Here, Smax

denotes the maximal values of S(n)
W and E0 is the ground-state energy.

The horizontal and vertical dashed lines denote εn = 0.2 and γi =
0.7. Inset: Positions of the peaks in S(n)

W as a function of εn and γi. The
red dotted and dashed curves in the inset mark the critical energies
εc,1 and εc,2, given by Eqs. (6) and (7), respectively. (b) S(n)

W / ln N
as a function of γi along εn = 0.2. The vertical red and green dotted
lines mark the critical values of γi obtained from εc,1 = εc,2 = 0.2.
(c) S(n)

W / ln N versus εn with γi = 0.7. The vertical gray and orange
dashed lines correspond to εc,1 and εc,2. Other parameters: α = 0.5,
δγ = 0.001, and N = 2 j = 800. All quantities are unitless.

εn with fixed γi, respectively. The above-observed features of
S(n)

W lead us to believe that the presence of ESQPTs in the
anharmonic LMG model can be reliably probed by the entropy
of the quantum work distribution. However, both ESQPTs are
signified by similar features of S(n)

W , indicating that further
scaling analysis of S(n)

W is required to distinguish two ESQPTs.
By taking the position of the peak in S(n)

W , denoted by
εc(N ), as an estimation of the critical energy of an ESQPT,
we examine how it approaches the exact critical energy as the
system size N is increased. In Figs. 7(a) and 7(b), we plot how
the distance between εc(N ) and εc,a varies as a function of N
along with the numerical fitting of data for two ESQPTs. For
both ESQPTs, we see that the convergence of εc(N ) to εc,a

with increasing N is well captured by the power law

|εc(N ) − εc,a| ∼ N−μE (γi ). (15)

Here, the scaling exponent μE (γi) depends on the type of
ESQPT and the value of γi. In addition, we also show the
finite-size scaling analysis of the peak value of the entropy,
denoted by S(n)

W,m, for both ESQPTs in Figs. 7(c) and 7(d). One

can see that S(n)
W,m is diverged as N → ∞. Moreover, the fitting

of the data demonstrates that the scaling behavior of S(n)
W,m with

N is give by

S(n)
W,m ∼ NνE (γi ). (16)

FIG. 7. (a), (b) Distances between the estimated critical energies
εc(N ) and εc,a as a function of the system size N for (a) the first
ESQPT (a = 1) and (b) the second ESQPT (a = 2) with several γi.
(c), (d) Maximal entropy, S(n)

W,m, versus N for (c) the first ESQPT and
(d) the second ESQPT with different γi. The dashed lines in panels
(a) and (b) denote the power-law decay |εc(N ) − εc,a| ∝ N−μE (γi ),
while the dotted lines in panels (c) and (d) represent S(n)

W,m ∝ NνE (γi ).
Explicit dependence of μE (γi ) and νE (γi ) on γi are plotted in Fig. 8.
Here, εc,1 and εc,2 are, respectively, given by Eqs. (6) and (7) with
α = 0.5. All quantities are unitless.

The scaling exponent νE (γi ) is determined by the value of
γi and the type of ESQPT. It is worth pointing out that the
scaling behavior of SW,m in Eq. (14) is quite distinct from the
one in Eq. (16).

Above results imply that the difference between the usual
and anharmonic-induced ESQPTs are manifested in the dif-
ferent scaling exponents. The explicit dependence of μE (γi )
and νE (γi) on the control parameter γi for two ESQPTs are
displayed in Figs. 8(a) and 8(b), respectively. It is obvious
that two ESQPTs can be clearly distinguished by the values

FIG. 8. (a) μE (γi ) and (b) νE (γi ) as a function of γi for the two
ESQPTs. Other parameter: α = 0.5. All quantities are unitless.
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of the scaling exponents. Hence, the usefulness of the entropy
of the quantum work distribution is twofold. On the one hand,
it acts as a diagnostic tool to detect the presence of ESQPTs in
various quantum systems. On the other hand, and importantly,
its scaling analysis can help us to identify differences between
different types of ESQPTs.

V. CONCLUSION

In conclusion, using the entropy of the quantum work
distribution, we have discussed how to distinguish the usual
and anharmonic-induced ESQPTs in the anharmonic LMG
model. As a generalization of the well-known LMG model,
the anharmonic LMG model includes an anharmonic term in
the LMG Hamiltonian. As a consequence, in addition to the
usual ESQPT, which is associated with the ground-state QPT
and has been observed in the LMG model, a new ESQPT
induced by the anharmonic term is present in the anharmonic
LMG model.

To understand the new ESQPT, we have studied the clas-
sical limit of the model. We have shown that although the
physical origins of two ESQPTs are different, both of them
are signified by the logarithmic divergence of the density of
states at their critical energies. We have performed the stability
analysis of the classical Hamiltonian and derived the explicit
form of the critical energies of two ESQPTs.

The entropy of the quantum work distribution measures
the complexity of the work distribution. By focusing on the
sudden quench process, we have demonstrated that the en-
tropy is acutely sensitive to two ESQPTs, resulting in the
presence of sharp peaks in the behavior of the entropy when
we straddled the critical points of two ESQPTs. More impor-
tantly, we have shown that the difference between two types
of ESQPTs can be identified by analyzing the scaling prop-
erties of the entropy. Furthermore, we have also confirmed

the ability of the entropy to detect and distinguish two ES-
QPTs in the energy space.

Our study extends our understanding on the properties of
two ESQPTs in the anharmonic LMG model. In particular,
the main results suggest that the scaling analysis of the quan-
tum work distribution entropy is essential for detecting the
differences between ESQPTs. Moreover, our findings also
provide further evidence of the usefulness of the entropy
in studying and diagnosing of different phase transitions in
quantum many-body systems. We would like to point out that
our main conclusions, despite of building on the anharmonic
LMG model, are general for the ESQPTs that are character-
ized by the logarithmic divergence of the density of states.
Whether the results in this work are still hold for other kinds
of ESQPTs, such as the one defined as the nonanalytical in
the first derivative of the density of states, remains an open
question and deserves further exploration. Another possible
extension of the present work would be to elucidate whether
the finite size scaling analysis of the entropy can help us to
classify various ESQPTs.

Finally, the quantum work distribution based on the two-
point measurement scheme has been experimentally measured
in several platforms [91–94]. We therefore hope that our
findings could open up a promising way for the use of the
quantum work distribution entropy in the experimental studies
of ESQPTs.
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