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Triadic interaction in the background of a pairwise spin-glass
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Developing an equilibrium solution for a pairwise spin-glass with a quenched random infinite range shows
a continuous phase transition. Models with p-spin interactions have been studied and the exact solution was
provided that shows a continuous phase transition for p = 2 and a first-order one for p > 2. Although the p-spin
interactions were studied individually without considering lower-order interactions, is it always feasible to ignore
the lower ones? Here, we are interested in finding an analytical solution for considering a triadic interaction as
a perturbation in the background of a pairwise interaction in the Sherrington-Kirkpatrick spin-glass model. Our
results indicate a sudden phase transition as a consequence of considering triadic interactions that signal a switch
from a continuous to an explosive phase transition.
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I. INTRODUCTION

Over the years, great effort has gone into understanding
the behavior of systems of spins interacting via quenched
random couplings, so-called spin-glasses. In 1975 Sherring-
ton and Kirkpatrick (SK) proposed an idealized model of
a spin-glass [1,2] which is the infinite-range version of the
Edwards-Anderson model [3]. Methods for solving the SK
model include generalizations to models involving p-spin
interactions [4–7]. A solution for p-spin interactions was pro-
vided. It showed that in p = 2 a continuous phase transition
occurs, and for p > 2, there exists a first-order phase transition
[5,6]. Also, Derrida showed that under p → ∞ the SK model
is identical to a random energy model and is exactly solvable
[8,9]. Thouless et al. represented a solution to the SK model
via the mean-field equation, the so-called Thouless-Anderson-
Palmer (TAP) equation [10]. Ultimately, in 1979–1980 Parisi
proposed a solution with an interpretation of the structure of
valleys of free energy [11–13]. Despite years of effort and
focus on the spin-glass [14–20], there is still no analytical
solution to illustrate the consequences of considering higher-
order interactions in the background of a pairwise spin-glass.

The effects of higher-order interactions are summarized in
Refs. [21–25]. Studies show that going beyond the pairwise
interactions and considering higher-order ones can change
the transition from continuous to discontinuous [22,23]. Con-
sidering higher-order interactions and studying the collective
behavior of the system by representing an analytical solu-
tion, a discrete phase transition has been reported [21,26–
28]. Research on triadic interactions confirms the occurrence
of abrupt critical behavior in a system including three-
body interactions [29–33]. Approaching the higher-order
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interactions from a different perspective, Refs. [34–36]
address the topological aspects of higher-order connectivity
which introduces a class of nanonetwork evolution by the
self-assembly of simplexes with a focus on triangle-based
interactions. They indicated how considering higher-order
interactions could cause an abrupt transition. Although the
physics often relies on pairwise interactions and the higher-
order ones are weaker, they cannot be ignored. In addition,
in much research considering higher-order interactions, they
exist entirely independent of the lower-order ones, so here we
study the triadic interactions in the background of pairwise
ones for the quest of how the phase transition may change as
a consequence.

An order parameter is required to study the phases of a
complex system. In the normal ferromagnet Ising model, the
magnetization is the order parameter which is zero for high
temperatures and the system has only one equilibrium state,
whereas it has two equilibrium states in low temperatures. For
a spin-glass, the situation is quite different. There are many
equilibrium states [2] and the order parameter would be sensi-
tive to the existence of those which is a characteristic feature
of the glassy phase [11–13]. Following the Edwards-Anderson
order parameter [3], the correlation between two spins, called
an overlap, is defined as an order parameter for the spin-glass
[37]. This parameter indicates that a pairwise spin-glass ex-
periences a continuous phase transition. However, the phase
transition of triadic interactions in the background of the SK
spin-glass model cannot be easily recognized. By considering
weak triadic interactions in the background of the pairwise
SK spin-glass model, our results show that derivatives of the
order parameter (overlap) with respect to temperature have a
strange behavior around the critical point.

Two fundamental properties of the SK spin-glass are
thought to be disorder and frustration, and the most important
consequence of frustration is that it leads to a high degeneracy
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FIG. 1. (a) Spin frustration in a pairwise interacting spin-glass
system. The frustrated node (red node) cannot choose a state under
the effect of a relationship with the other nodes. (b) schematically
displays the frustrated state in a triadic interaction when two triadics
are placed together. Each triadic is not frustrated individually.

of the ground state of the system [38]. By considering triadic
interactions we need to define the frustration for three interact-
ing spins. We introduce the frustration of triadic interactions
when two triplets are placed together (see Fig. 1). Figure 1(a)
demonstrates the concept of a frustrated state in the pairwise
interactions. The frustrated node (red node) cannot choose a
state under the effect of a relationship with other nodes. In
Fig. 1(b), we schematically display triadic frustration where
the red node in Fig. 1(b) chooses to be upward in the left
triadic of the bottom line and downward in the right triadic of
the bottom line while the juxtaposition of two triadics results
in a frustrated state that the red node cannot determine its
direction.

II. MODEL

In this section, we look at the triadic interaction in the SK
spin-glass model’s background via the perturbative approach.
Considering the Hamiltonian for the SK spin-glass model with
pairwise interactions,

HJ = −
∑
i< j

Ji j Si S j − h
∑

i

Si, (1)

where the Ji j’s are independently random values taken from
Gaussian probability distribution P (μJ , σ

2
J ). The mean and

the variance of pairwise interactions are proportional to 1/N
because the energy needs to be extensive. To pursue our goal
of considering higher-order interactions, we introduce the tri-
adic interaction Hamiltonian as follows,

H� = −
∑

i< j<k

�i jk Si S j Sk, (2)

where the summation runs over all triadics of spins, and
the combination of

(N
3

)
, and each triadic is assigned by an

independent random value, �i jk , from Gaussian probability
distribution P (μ�, σ 2

�). The mean and the variance of this dis-
tribution should be proportional to 1/N2 to have Hamiltonian
Eq. (2) of order N .

The primary goal of this study is to address the triadic spin
interaction in the background of a pairwise one to investigate
how it modifies the apparent nature of the transition and
may affect the spin-glass behavior of the SK model. How-
ever, the general solution of p-spin interactions is obtained in
Refs. [5,6] but the additive effect of three interacting spins
besides the pairwise is not considered yet. Our approach to
exploring this effect is to take advantage of a perturbation trick
which provides us an opportunity to track the effectiveness of
three interacting spins. We aim to figure out what happens
when we add a triadic interaction as a perturbation term to the
SK spin-glass Hamiltonian. Our proposed perturbation trick
satisfies the following conditions,

μ� � μJ , σ 2
� � σ 2

J , (3)

which means the mean and the variance of the triadic’s ran-
dom values are smaller than the pairwise ones. To solve the
triadic interaction as a perturbation term in the background
of the SK spin-glass model, we write the total Hamiltonian
including the background and the perturbation term,

H = HJ + H�. (4)

Based on the proposed perturbation trick Eq. (3), the value of
H� is smaller than the value of HJ .

III. ANALYSIS

In the following, we represent the analytical solution
for this system and our findings confirm the statement of
Refs. [21–23,26] that considering higher-order interactions
leads to an explosive transition [39]. Now, the Hamiltonian
(4) can be used to calculate the average free energy of this
system,

[F ] = −T [log Z] = −T
∫ ∏

i< j

dJi jP(Ji j )
∏

i< j<k

d�i jkP(�i jk ) log Z.

The dependence of log Z on the interaction coefficients, J’s, and triadic’s random values, �’s, is very complicated and it is
difficult to average on it. Therefore, we apply the well-known replica method to calculate the configurational average of log Z
[40–42],

[log Z] = lim
n→0

[Zn] − 1

nN
.
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According to the replica method, we first replicate the system n times, calculate the configurational average of the nth power
of the partition function, and then take the limit of n → 0. From the partition function, we manage to derive statistical quantities
to describe the statistical properties of the system. The total partition function is

[Zn] =
∫∫ (∏

i< j

dJi jP(Ji j )

)( ∏
i< j<k

d�i jkP(�i jk )

)

×Tr

⎡
⎣exp

⎧⎨
⎩β

∑
i< j

Ji j

n∑
α=1

Sα
i Sα

j + βh
N∑

i=1

n∑
α=1

Sα
i

⎫⎬
⎭ exp

⎧⎨
⎩β

∑
i< j<k

�i jk

n∑
α=1

Sα
i Sα

j Sα
k

⎫⎬
⎭

⎤
⎦, (5)

where α is the index variable for the replica. The configurational integral can be calculated for each Ji j and �i jk separately. Since
for each Ji j and �i jk the quadratic and cubic polynomials appear in the exponential, by using the Gaussian integral the solution
for each pairwise interaction coefficient and triadic’s random value can be calculated and finally the average of the partition
function of replicas for large N is obtained as follows,

[Zn] = exp

{
Nβ2σ 2

J n

4

}
exp

{
Nβ2σ 2

�n

12
− β2σ 2

�n

4
− β2σ 2

�n

12N

}

×Tr

⎡
⎣exp

⎧⎨
⎩β2σ 2

J

2N

∑
α<β

(∑
i

Sα
i Sβ

i

)2

+ βμJ

2N

∑
α

(∑
i

Sα
i

)2

+ βh
∑

i

∑
α

Sα
i

⎫⎬
⎭

× exp

⎧⎨
⎩β2σ 2

�

6N2

∑
α<β

(∑
i

Sα
i Sβ

i

)3

+ βμ�

6N2

∑
α

(∑
i

Sα
i

)3

−
(

β2σ 2
�

2N
+ β2σ 2

�

6N2

)

×
∑
α<β

∑
i

Sα
i Siβ −

(
βμ�

2N
+ βμ�

6N2

)∑
α

∑
i

Sα
i

⎫⎬
⎭

⎤
⎦, (6)

where we use a generalized version of the Hubbard-Stratonovich transformation (see Appendix) and linearize the terms of the
sum of squared and cubic powers on the spins in one replica by introducing the quantities qαβ for the term (

∑
i Sα

i Sβ
i )2 and mα

for (
∑

i Sα
i )2. Then the average of the partition function can be written as

[Zn] = exp

{
Nnβ2σ 2

J

4
+ Nnβ2σ 2

�

12

} ∫ ∏
α<β

dqαβ

∫ ∏
α

dmα

×Tr

⎡
⎣exp

⎧⎨
⎩−

(
Nβ2σ 2

J

2
− γ

∑
i

Sα
i Sβ

i

) ∑
α<β

q2
αβ −

(
NβμJ

2
− γ ′ ∑

i

Sα
i

)∑
α

m2
α

⎫⎬
⎭

× exp

⎧⎨
⎩β2σ 2

J

∑
α<β

qαβ

∑
i

Sα
i Sβ

i + β
∑

α

(μJmα + h)
∑

i

Sα
i

⎫⎬
⎭

× exp

⎧⎨
⎩−

(
β2σ 2

�

2N
+ β2σ 2

�

6N2

) ∑
α<β

∑
i

Sα
i Sβ

i −
(

βμ�

2N
+ βμ�

6N2

) ∑
α

∑
i

Sα
i

⎫⎬
⎭

⎤
⎦. (7)

After calculating integrals for qαβ and mα individually, by considering γ and γ ′ as small parameters, we are allowed to
expand the expressions in the exponents. In this expansion, the zeroth orders of γ and γ ′ are pairwise and the first orders
are related to triadic interactions (see Appendix). Notice that due to our perturbative approach, the mean value of the random
pairwise interactions is supposed to be nonzero. This is a necessary constraint for proceeding with the perturbative technique
[see Eq. (A2) in the Appendix]. Also, according to Eq. (3), we must select the mean and the variance of random couplings and
triadic interactions in a way that satisfies those criteria. In Fig. 3, we discuss the effect of the mean and the variance on critical
temperature in more detail.

To find the coefficients γ and γ ′, we compare the partition
function derived by Eq. (7) up to the first order of expansion
in terms of γ and γ ′ at the exponents with ones directly
calculated from integration over the Gaussian distributions in

Eq. (5). Then we can find that

γ = β2σ 2
�

6
, γ ′ = βμ�

6
, (8)
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FIG. 2. The dashed blue line is for the SK spin-glass model with a pairwise interaction and the red solid line is by considering a
triadic interaction with constrainrs μJ = 1, μ� = 0.5, σ 2

J = 0.5, and σ 2
� = 0.25. (a) Magnetization as a function of temperature displays

that considering a triadic interaction causes the M changes to be sharper. (b) Overlap vs temperature is indicated. The critical temperature
is altered under considering triadic interactions and this is the result of nonzero mean values of pairwise and triadic interactions. Also, an
explosive transition is seen by adding triadic interactions. (c) Derivative of the overlap with respect to temperature. In critical temperature, it
has a limited value for the SK spin-glass while considering triadic interactions sharpens the temperature derivation of the order parameter.

FIG. 3. (a) shows how increasing the ratio of mean values causes the change of the phase transition. A larger ratio of mean values makes
a bigger shift in critical temperature. (b) It indicates the effect of variance on the depth of the line around the critical temperature. As we can
see, the critical temperature is the same for all cases.

064105-4



TRIADIC INTERACTION IN THE BACKGROUND OF A … PHYSICAL REVIEW E 109, 064105 (2024)

which perfectly agrees with our assumption that γ , γ ′ are
small values due to their dependence on μ�, σ 2

�. This is under
our the perturbation assumption Eq. (3) that the mean value
and the variance of the triadic interactions are smaller than
those of pairwise interactions. Therefore, our perturbation
trick enables us to study the perturbation effect of triadic
interactions in the background of the SK spin-glass model.
In Eq. (7) the terms proportional to n and inverse of N

are ignorable by tending n to zero and considering N to be
large. So, the coefficients of the terms (

∑
α<β

∑
i Sα

i Sβ
i ) and

(
∑

α

∑
i Sα

i ) can be ignored in the thermodynamic limit. In
Eq. (7) the exponent of the integrand is proportional to N ,
so in the thermodynamic limit that N → ∞ the integral can
be evaluated by the steepest descent method. Also, we have
represented the sum

∑
i over a single site and considered the

statement to the power of N ,

[Zn] � exp

⎧⎨
⎩−Nβ2σ 2

J

2

∑
α<β

q2
αβ − NβμJ

2

∑
α

m2
α + N log Tr eL′ + Nnβ2σ 2

J

4
+ Nnβ2σ 2

�

12

⎫⎬
⎭

� 1 + Nn

⎧⎨
⎩−β2σ 2

J

2n

∑
α<β

q2
αβ − βμJ

2n

∑
α

m2
α + 1

n
log Tr eL′ + β2σ 2

J

4
+ β2σ 2

�

12

⎫⎬
⎭. (9)

In the last expression, the limit n → 0 has been taken with N kept very large but finite. Now, based on the replica method the
free energy would be derived,

−β[ f ] = lim
n→0

[Zn] − 1

nN
= lim

n→0

⎧⎨
⎩−β2σ 2

J

4n

∑
α �=β

q2
αβ − βμJ

2n

∑
α

m2
α + 1

n
log Tr eL′ + β2σ 2

J

4
+ β2σ 2

�

12

⎫⎬
⎭, (10)

where

L′ = β2σ 2
J

∑
α<β

qαβSαSβ + β
∑

α

(μJmα + h)Sα

+ γ
∑
α<β

q2
αβSαSβ + γ ′ ∑

α

m2
αSα. (11)

The values of qαβ and mα should be chosen to extremize the
quantity within the braces {} of Eq. (10). Hence, regarding the
saddle-point condition, maximizing free energy Eq. (10) with
respect to mα, qαβ results in the self-consistent equations,

mα =
Tr

(
Sα + 2γ ′

βμJ
mαSα

)
eL′

Tr eL′ ,

qαβ =
Tr

(
SαSβ + 2γ

β2σ 2
J

qαβSαSβ
)

eL′

Tr eL′ . (12)

The variables qαβ and mα that have been introduced as inte-
gration variables are the order parameters of the SK spin-glass
model. The definition of order parameters for our suggested
system are related to the variables qαβ and mα and in the
normalized versions they are

Mα ≡ Tr SαeL′

Tr eL′ = mα

1 + 2γ ′
βμJ

mα

,

Qαβ ≡ Tr SαSβeL′

Tr eL′ = qαβ

1 + 2γ

β2σ 2
J

qαβ

,

(13)

where these order parameters are explicitly dependent on
replica indices. To derive the replica symmetric solution it
has been assumed that qαβ = q, mα = m to discover that the
replica indices should not affect the physics of the system. The

symmetric solution for the free energy, Eq. (10), is

−β[ f ] = −β2σ 2
J

4n
{n(n − 1)q2} − βμJ

2n
nm2 + 1

n
log Tr eL′

+ 1

4
β2σ 2

J + 1

12
β2σ 2

�, (14)

so the third term including L′, on the right-hand side
of Eq. (14), can be calculated by using its definition
from Eq. (11) and a Gaussian integral. Inserting its result
into Eq. (14) and replacing the value of γ , γ ′ from Eq. (8),
then taking the limit n → 0, we have the free energy as

−β[ f ] = β2σ 2
J

4
(1 − q)2 + β2σ 2

�

12
(1 − q2) − βμJ

2
m2

+
∫

Dz log{2 cosh[βH̃ (z)]}, (15)

where Dz = dz exp( −z2

2 ) 1√
2π

and βH̃ (z) =
√

β2σ 2
J q+γ q2z+

(βμJm + βh + γ ′m2).
Extremizing the free energy concerning m, q results in

m =
(

1 + 2γ ′m
βμJ

) ∫
Dz tanh[βH̃ (z)],

q = 1(
1 − σ 2

�

3σ 2
J

){
1 − β2σ 2

J + 2γ q

β2σ 2
J

∫
Dz

1

cosh2[βH̃ (z)]

}
.

(16)

These self-consistent equations need to be renormalized based
on the definition of the order parameters M, Q [Eq. (13)].
They satisfy our expectation that at the low temperature, the
system goes to a ferromagnetic state where the magnetization
and overlap equal one. In addition, in the limit of μ� → 0,
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σ� → 0, equations for M, Q tend to their correspondences
m, q in the SK spin-glass model.

IV. RESULTS AND DISCUSSION

In this section, we draw the normalized order parameters
M, Q, and dQ/dT (derivative of overlap versus temperature)
to illustrate how the system’s behavior changes by consid-
ering triadic interactions. Figure 2 shows the temperature
dependence of the order parameters M, Q, and dQ/dT for
pairwise interactions alone as well as in the presence of triadic
interactions. While considering triadic interactions, we adjust
the mean and variance of the Gaussian probabilities to follow
our perturbation assumptions Eq. (3). They are chosen to
be μJ = 1, μ� = 0.5, σ 2

J = 0.5, and σ 2
� = 0.25. Figure 2(a)

shows the temperature dependence of M and its behavior
in the presence of triadics. Continuous changes in the value
of M at each temperature occur with a steeper slope under
consideration of triadic interactions. In Fig. 2(b), we show the
temperature dependence of the overlap, Q. The figure demon-
strates a forward shift in the critical temperature and a sharp
transition by triadic interactions. Notice that the higher critical
temperature of the glass by considering triadic interaction
with respect to the SK model is due to the nonzero mean value
of both pairwise and triadic interaction. Figure 3 highlights
how the ratio of means and variances might affect the critical
temperature. In Fig. 2(c), we show the overlap derivative
with respect to temperature. While Fig. 2(b) emphasizes the
explosive transition brought about by the inclusion of triadics,
Fig. 2(c) highlights this transition. Whereas the derivative
of dQ/dT is limited for the SK spin-glass, taking into ac-
count the triadic interactions sharpens the derivation of the
overlap.

Figure 3 indicates how the variance and mean value of
the coupling interactions, Ji j , and the random value of tri-
adic interactions, �i jk , might affect the critical temperature.
When we set a nonzero mean value for the triadic interac-
tions it can be interpreted as a random triadic interaction
with a zero mean value plus a deterministic term added to
the Hamiltonian. The additive deterministic term may in-
duce a shift in critical temperature. As seen in Fig. 3(a),
raising the ratio of mean values clearly indicates a shift
in critical temperature when the variance ratio is constant,
σ 2

�/σ 2
J = 0.5.

In Ref. [43] a random field type of disorder was con-
sidered in addition to the random pairwise coupling in a
class of materials called ferroelectric glasses. They studied
the effect of a linear random field beside a random cou-
pling term which modeled a relaxor ferroelectric, and their
results show the ratio of the variance of the random field
to the variance of random coupling can reveal the changes
in the transition. However, we use the term random triadic
interaction which is nonlinear and we investigate its effect
on the background of a pairwise spin-glass, perturbatively.
Figure 3(b) displays that as we fix the ratio of mean values
μ�/μJ = 0.5, increasing the ratio of variances causes no shift
in critical transition. This indicates that by fixing the ratio of
mean values and changing the variance ratio, only the depth
of the line around the critical temperature is being affected
and there is no shift in Tc. In all figures the dashed blue line is

for the SK spin-glass model with pairwise interactions and
the solid red line is for the condition of μ�/μJ = 0.5 and
σ 2

�/σ 2
J = 0.5.

V. CONCLUSION

It has been found that frustration and disorder are the two
most crucial characteristics of having a spin-glass system and
a better understanding of a heterogeneous system has roots in
the statistical physics of disordered systems [44]. The Ising
spin-glass with only a nearest-neighbor interaction was in-
troduced by Edwards and Anderson. Then the infinite-range
interacting pairs of spins which is an exactly solvable model of
a spin-glass was introduced by Sherrington and Kirkpatrick.
Later, Parisi discovered the model’s equilibrium solution by
using the replica approach in 1979. An exact solution for
p-spin interactions were done and the exact solution has ob-
tained in the cases of p = 2 and p → ∞. The limited cases,
p > 2, show a discontinuous phase transition in contrast to
p = 2. Although the problem is solved in the general case of
p which takes an arbitrary value according to the problem,
considering higher-order interactions in the presence of lower-
order ones has yet to be studied. This question motivates us
to address triadic interacting spins in the background of the
SK spin-glass model to study how it affects the behavior of
the system. Our results shed light on the following issues:
(I) Generalizing the frustration concept in the case of triadic
interactions, where two triangles are placed together. (II) How
the presence of random valued triadic interactions can make
changes in the SK spin-glass model; for this purpose we em-
ployed a perturbation trick which abled us to control the effect
of triadic interactions. (III) The temperature dependence of or-
der parameters M, Q indicates a forward shifting in the critical
temperature which is due to nonzero mean values of pairwise
and triadic interactions. (IV) The three-spin interactions play
an important role in the system’s dynamics. In comparison to
the SK spin-glass model, the slope of the overlap is sharper
due to triadic interactions. This means the type of transition
is projected to change from second order to an explosive
transition when the triadic interactions are applied.
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APPENDIX: GENERALIZATION OF
HUBBARD-STRATONOVICH TRANSFORMATION

The Hubbard-Stratonovich transformation is a mathe-
matical technique used to transform quadratic terms in
exponentials into Gaussian integrals by an auxiliary variable
or field. The main idea can be understood from the following
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identity,

eax2/2 =
√

1

2πa

∫ ∞

−∞
dqe−q2/2a+xq, (A1)

where a is a real and positive constant. In this sense, x was
linearized with the help of variable q. In this sense, x is
linearized at the cost of adding a continuous variable q to the
problem.

One can modify this transformation to linearize x of higher
order in a perturbative approach. Here, γ is the perturbation
parameter. For the first order, we have

eax2/2+bx3 =
√

1

2πa

∫ ∞

−∞
dqe−( 1

2a −γ x)q2+xq−aγ x

=
√

1

2πa

√
π(

1
2a − γ x

) exp

{
x2

4
(

1
2a − aγ x

)
}

= (1 − 2aγ x)−1/2 exp

{
ax2

2(1 − 2aγ x)
− aγ x

}

= eaγ xe
ax2

2 (1+2aγ x)e−aγ x. (A2)

In this expression, γ xq2 is added to create x in the third
order on the left-hand side of the identity, and −aγ x is added
to remove the extra term after integration over q. In the
end, we can set γ = b/a2. In other words, the generalized
Hubbard-Stratonovich transformation gives us a triadic inter-
action when the state-dependent parts of Gaussian weight (γ
and γ ′) are small.

Notice that corresponding to Eq. (6), a = 1
Nβ2σ 2

J
is propor-

tional to N−1; so in the case of ferromagnet state although
x = ∑

α<β

∑
i Sα

i Sβ
i (the summation of states of spins) is pro-

portional to
√

N , the second term of the coefficient of q2, γ x,
is smaller that the first term 1

2a so the expansion is allowed. In
addition, the last term in the exponential, aγ x, can be ignored
in our following calculation. It is proportional to

√
N due to

our preceding explanation. We apply this transformation to
solve the integrals in Eq. (6).

Taking the advantage of Eq. (A2), the integral dq can
be solved with the corresponding placement of a = 1

Nβ2σ 2
J

,

x = ∑
α<β

∑
i Sα

i Sβ
i , and q = qαβ ,

∫ ∏
αβ

dqαβ exp

⎧⎨
⎩−

(
Nβ2σ 2

J

2
− γ

∑
i

Sα
i Sβ

i

) ∑
α<β

q2
αβ

+ β2σ 2
J

∑
α<β

qαβ

∑
i

Sα
i Sβ

i

−
(

β2σ 2
�

2N
+ β2σ 2

�

6N2

) ∑
α<β

∑
i

Sα
i Sβ

i

⎫⎬
⎭

= exp

⎧⎪⎨
⎪⎩

(
β2σ 2

J

∑
i Sα

i Sβ
i

)2

4
(

Nβ2σ 2
J

2 − γ
∑

i Sα
i Sβ

i

)

−
(

β2σ 2
�

2N
+ β2σ 2

�

6N2

) ∑
α<β

∑
i

Sα
i Sβ

i

⎫⎬
⎭, (A3)

and with the expansion of the denominator under the assump-
tion of a small value for γ , our calculation results in

exp

⎧⎨
⎩β2σ 2

J

2N

(∑
i

Sα
i Sβ

i

)2

+ γ

N2

(∑
i

Sα
i Sβ

i

)3

−
(

β2σ 2
�

2N
+ β2σ 2

�

6N2

) ∑
α<β

∑
i

Sα
i Sβ

i

⎫⎬
⎭. (A4)

The same can be done for calculating the integral dm under
the corresponding placement of a = 1

NβμJ
, x = ∑

α

∑
i Sα

i ,
and m = mα . The result will be

exp

⎧⎨
⎩βμJ

2N

(∑
i

Sα
i

)2

+ γ ′

N2

(∑
i

Sα
i

)3

−
(

βμ�

2N
+ βμ�

6N2

)∑
α

∑
i

Sα
i + βh

∑
α

∑
i

Sα
i

⎫⎬
⎭. (A5)
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