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In percolation of patchy disks on lattices, each site is occupied by a disk, and neighboring disks are regarded
as connected when their patches contact. Clusters of connected disks become larger as the patchy coverage of
each disk χ increases. At the percolation threshold χc, an incipient cluster begins to span the whole lattice. For
systems of disks with n symmetric patches on Archimedean lattices, a recent work [Wang et al., Phys. Rev. E 105,
034118 (2022)] found symmetric properties of χc(n), which are due to the coupling of the patches’ symmetry and
the lattice geometry. How does χc behave with increasing n if the patches are randomly distributed on the disks?
We consider two typical random distributions of the patches, i.e., the equilibrium distribution and a distribution
from random sequential adsorption. Combining Monte Carlo simulations and the critical polynomial method,
we numerically determine χc for 106 models of different n on the square, honeycomb, triangular, and kagome
lattices. The rules governing χc(n) are investigated in detail. They are quite different from those for disks with
symmetric patches and could be useful for understanding similar systems.
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I. INTRODUCTION

The idea of percolation was first applied to the study of
polymer gelation by Flory in the 1940’s [1]. In the 1950s,
Broadbent and Hammersley pioneered the use of percolation
as a statistical model [2], and since then percolation has been
extensively studied and widely applied [3,4]. Recently perco-
lation theory has been used to understand novel gels [5–7],
complex Earth systems [8], epidemiology [9], functional col-
loids [10], quantum computation [11], etc.

Percolation mainly focuses on the emergence of long-range
connectivity. Using site percolation on the square lattice as
an example: each lattice site is occupied independently with
probability p, and adjacent sites are considered to be con-
nected. When p increases, clusters of connected sites become
larger, then an incipient cluster spanning the whole lattice
begins to appear at the percolation threshold pc, i.e., perco-
lation occurs. In different percolation problems, parameters
controlling the formation of clusters can be different, but the
percolation threshold is always a crucial quantity. There exist
rich critical phenomena near the percolation threshold [3,4].

Recently, Wang et al. [12] investigated percolation thresh-
olds of disks with symmetrically distributed (SYM-type)
patches on two-dimensional (2D) Archimedean lattices. In
these models, there is a patchy disk on each lattice site, and
two adjacent disks are considered to be connected when their
patches cover the same edge. When the proportion of the
disk surface covered by patches (denoted as χ ) increases,
clusters of particles connected by patches become larger, and
the system percolates at a threshold χc. Reference [12] finds
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that coupling of the lattice geometry and the patchy symmetry
plays an important role in determining χc. As a result, when
the number of patches on a disk (denoted as n) increases, χc(n)
shows a periodic behavior in n. The period n0 is determined by
the lattice geometry, and when n = n0, percolation of patchy
disks is equivalent to site percolation on the same lattice. Due
to this periodicity, by simulating a finite number of systems,
the authors are able to give precise percolation thresholds
for systems of disks with an arbitrary number of SYM-type
patches on all 11 2D Archimedean lattices [12], which include
square, honeycomb, triangular, and kagome lattices.

Surface modification or compartmentalization methods
are usually used to design patches in experiments [13–15].
Realizing n � 2 SYM-type patches on disks needs careful
operations. If n � 2 patches are randomly distributed on each
disk, how does χc(n) change with n? Comparing with systems
of disks with SYM-type patches, since there is no explicit
coupling between the patchy symmetry and the lattice geom-
etry, the systems will lose the periodicity of χc(n) and the
equivalence with site percolation mentioned in the previous
paragraph. Would the lattice geometry still affect χc(n), and
could the randomness of patches bring new phenomena?

To address the above questions, this paper investigates
percolation of disks with random patches on four regular
2D lattices: square, honeycomb, triangular, and kagome. The
same as in Ref. [12], we consider that there is a disk at each
site of a lattice, and disks are connected when their patches
cover the same edge. The patches are randomly distributed on
disks instead of being of the SYM type. We assume that there
is no overlapping between patches and consider two types of
random patches. One is random patches of the equilibrium
distribution (EQ type), for which different patchy configu-
rations have the same probability of occurrence. The other
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FIG. 1. Illustration of three-patch disks. The gray regions on the
disks represent patches of the same size, characterized by the half-
patch angle θ . The patches are nonoverlapping, and their positions
are random. Adjacent particles are considered connected only when
their patches cover the same edge.

is of a nonequilibrium distribution generated by the random
sequential adsorption (RSA type) [16].

For systems of disks with the two types of random patches
on the four lattices, combining Monte Carlo (MC) simulations
and the critical polynomial method [12,17–26], we deter-
mine percolation thresholds χc(n) of 106 models in total. We
mainly find the following: (i) as n increases, χc(n) approaches
the bond percolation threshold pc on the modified lattice for
which a site is added in the middle of each edge of the orig-
inal lattice. For n � 10, χc deviates from pc within O(10−3).
(ii) For 2 < n � 10, χEQ

c is close to but different from χRSA
c ,

while they are the same for n � 2. (iii) χc(n) is a nonmono-
tonic function of n. These results are compared with previous
results of χSYM

c , and understood by observing the coverage of
lattice edges by patches on a single disk. The results can pro-
vide useful references for further studies on phase transitions
and critical phenomena in similar systems [10,12,27–32].

The remaining parts of this paper are arranged as follows.
Section II introduces the models and methods. Section III
presents our main results. A brief conclusion and discussion
is given in Sec. IV.

II. MODELS AND METHODS

A. Models

We study percolation thresholds of model systems of disks
with randomly placed patches on four lattices: square, honey-
comb, triangular, and kagome. Periodic boundary conditions
are applied. The boundary shape of the square lattice is chosen
as square, and those of the other three lattices are chosen
as rhombus. Each lattice site is occupied by a disk-shaped
particle, with the center of the disk located at the site. The
diameters of all disks are the same and equal to the distance
between nearest-neighboring lattice sites. Every disk is ran-
domly decorated with n nonoverlapping patches of the same
size. The size of a patch is θ , defined as half of the angle
occupied by the patch. Adjacent disks are considered to be
connected only when their patches cover the same edge of
the lattice, i.e., the patches contact. For example, Fig. 1 illus-
trates two connected three-patch disks. When changing θ , all
patches’ positions are taken at random again. As θ increases,
clusters of disks connected by patches grow larger on the
lattice. At the percolation threshold θc, a cluster spanning the
whole lattice appears with a finite probability for the first time.
Figure 2 exemplifies the percolation of two-patch disks on the

FIG. 2. Snapshot for percolation of two-patch disks on the square
lattice. The spanning cluster is labeled by connected dashed lines.

square lattice. For the comparison of percolation thresholds
of systems with different n, we use the surface coverage χ to
represent the controlling parameter, which is given by

χ = 2nθ/2π = nθ/π. (1)

Using MC methods, we simulated models on the square
lattice with 2 � n � 14, the honeycomb lattice with 2 � n �
13, the triangular lattice with 2 � n � 18, and the kagome
lattice with 2 � n � 12. On the four lattices with linear size
L, the total number of disks are L2, L2/2, L2, and 3L2/4,
respectively [12]. We conducted simulations at different χ and
three sizes L = 16, 32, 64. For each pair of (χ, L), at least
106 independent configurations were generated. We combined
the simulation results with the critical polynomial method to
estimate χc [12,26]. The methods for determining χc and for
placing random nonoverlapping patches in MC simulations
are described in the next two subsections, respectively.

B. Critical polynomial method for determining
percolation thresholds

The critical polynomial method is an effective approach for
calculating 2D percolation thresholds. For a 2D lattice B with
periodic boundary conditions, the probabilistic geometric def-
inition of the critical polynomial is given by [21]

PB ≡ R2 − R0. (2)

Here R represents the wrapping probability [33,34]. When
mapping B onto the torus, for a configuration of the percola-
tion model, we say that it is wrapping if there exists a cluster
satisfying the following. Starting from a point on the cluster,
a walker can follow the cluster, cross the boundary, and return
to the starting point. R2 represents the probability of wrapping
in two directions, and R0 represents the probability of no
wrapping. In principle PB can be expressed as polynomials
of the occupation probability p or the surface coverage χ on
finite lattices.
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Due to the universality of critical behaviors [21], the so-
lution for PB = 0 provides an estimate of the percolation
threshold. For models with exact solutions of the percolation
threshold, the smallest B can provide the exact threshold
value. For models without available exact solutions, it has
been found that the root of PB = 0 converges to the threshold
very rapidly as the size of B increases [12,25,26]. For exam-
ple, for the bond percolation on a L × ∞ kagome lattice with
bond occupation probability p, the root p(L) of PB(p, L) = 0
for L � 16 was obtained to high precision in Ref. [25]. It was
found that pc(L) � pc + A1/L6, where A1 is a nonuniversal
amplitude. The precision of pc on the kagome lattice, as
provided in Ref. [25], reaches up to the 17th decimal place,
far exceeding results obtained through MC methods. On
2D Archimedean lattices, for disks with SYM-type patches,
Ref. [12] employed MC simulations to compute PB near χc,
and obtained precise estimations of χc by fitting the data to
the finite-size scaling formula [12,26]:

PB(χ, L) � a1(χ − χc)Lyt + b1Ly1 . (3)

Here yt = 1/ν = 3/4 represents the thermal renormaliza-
tion exponent, y1 < 0 is the leading irrelevant exponent,
and a1 and b1 are nonuniversal amplitudes. For systems
of patchy disks in Ref. [12], it is found that y1 � −3.
By setting PB(χ, L) = 0 from Eq. (3), we obtain χ (L) �
χc − (b1/a1)Ly1−yt , which implies that the root of PB = 0
approaches χc with a rate of L−3.75 or faster. Such small
finite-size corrections allow for obtaining estimates of χc

with high precision without simulating systems of large L.
Reference [12] has numerically estimated χc for 88 systems
of particles with SYM-type patches, with an accuracy to the
sixth decimal place or even higher. In this paper, for disks with
random patches, we also calculate PB by MC simulations and
estimate χc by fitting the data to Eq. (3).

C. Monte Carlo methods for randomly placing patches

For n = 1, the disks are randomly oriented, and there is
no difference between the SYM-type patches and random
patches. When n � 2, random nonoverlapping patches on the
particle surface can follow different distributions. We con-
sider two typical distributions: one is the EQ type, for which
patches on a particles are in equilibrium and different patchy
configurations occur with an equal probability; the other is
the RSA type, for which patches are placed by random se-
quential adsorption [16] and probabilities of different patchy
configurations can be different. Below we present details for
realizing these two types of random nonoverlapping patches
in MC simulations.

For EQ-type patches, when n is small, we simultaneously
generate n random numbers to give positions of all patches.
If there is overlapping of patches, we regenerate n random
numbers until nonoverlapping patches are obtained. When n
is large, since the efficiency of the above procedure is low, we
employ the following method of random rotations: placing n
patches symmetrically on the disk, then attempting random
rotations of the patches one by one (this sequential updating
is faster than randomly selecting a patch to rotate [35], and the
balance condition is satisfied for the convergence to equilib-
rium [36]). After a sufficient number of rotations, the patches

FIG. 3. Procedures for generating n = 3 random nonoverlapping
patches on a disk. (a) EQ-type patches can be realized by msn trial
random rotations, in which n rotations make a sweep and ms is the
number of sweeps. A double-arrow curve represents the rotation
range for the center of a patch. Sequential rotations of patches are
attempted. A rotation is rejected if it leads to overlapping of patches.
(b) For the RSA type, patches are sequentially placed in the available
space of a disk.

reach the equilibrium distribution with randomized positions.
Figure 3(a) illustrates the above rotation method of realizing
the EQ-type patches. The rotation amplitude is chosen as
(1 − χ )/n, i.e., each time a patch center is proposed to rotate
by a uniformly random angle in 2π [−(1 − χ )/n, (1 − χ )/n].
This choice is close to 2.5(1 − χ )/n used in Ref. [35]. Test
simulations are performed to identify the appropriate number
of rotations. In the tests we observe the coverage of neighbor-
ing edges by the patches of a disk. Defining one sweep as an
attempt to rotate each patch once, we set a small number of
sweeps ms and a larger number of sweeps m′

s. If occurrence
probabilities of coverage structures obtained from ms sweeps
and those from m′

s sweeps are consistent within O(10−4), we
use ms in formal simulations. For example, Table I provides
occurrence probabilities p(z) of local structures with z edges
being covered by patches of a disk, for the model of n = 7
on the square lattice at χ = 0.7084, with ms = 60 and m′

s =
300. Figure 4 shows that PB values obtained from these two
numbers of sweeps are consistent at L = 16, 32, and 64. This
confirms the reliability of the estimated χc from ms = 60. To
obtain EQ-type patches, we used the above method of random
rotations for n > 6, 5, 10, 5 on the square, honeycomb, trian-
gular, and kagome lattices, respectively.

For RSA-type patches, placing n patches is equivalent to
the RSA of n nonoverlapping line segments of length χ/n,
in one-dimensional (1D) continuous space of unit length,
with the periodic boundary condition [16]. We employ the
following MC method [37] to obtain the RSA-type patches:
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TABLE I. Simulation results for disks with n = 7 EQ-type
patches on the square lattice at χ = 0.7084. The quantity p(z) is
the occurrence probability of local structures with z edges being
covered by patches of a particle. The parameters ms and m′

s denote
the number of sweeps used for obtaining EQ-type patches through
random rotations.

ms = 60 m′
s = 300

p(0) 0.00710(4) 0.00711(4)
p(1) 0.0626(1) 0.0628(1)
p(2) 0.2366(2) 0.2367(2)
p(3) 0.4770(2) 0.4769(2)
p(4) 0.2166(2) 0.2164(2)

(i) Generate a uniformly distributed random number within
the range [0,1) to determine the position of the first patch.
Compute the length l of the available space where the next
patch can be placed. (ii) If the number of placed patches
is smaller than n and l = 0, clear the existing patches and
return to step (i). Otherwise, generate a uniformly random
number within the range [0, l ) to randomly place a patch in
the available space, which consists of one or more continuous
regions where a patch can still be placed. Placing the patch
separates a continuous region into two continuous regions.
For each of the two regions, check whether a patch can be
contained, and if it is possible, record the information of the
region and update the length l . (iii) Repeat step (ii) until n
patches are all placed. Figure 3(b) illustrates the RSA process.

III. RESULTS

In this section we present percolation thresholds χc for
disks with two types of random patches on four lattices. The
variations of χc with the number of patches n are investigated
in detail.

FIG. 4. The quantity PB vs χ for the system of disks with n = 7
EQ-type patches on the square lattice. Results obtained by using
ms = 60 and m′

s = 300 are consistent with each other. Fitting the data
to Eq. (3) yields χc(ms = 60) = 0.708 444(4) and χc(m′

s = 300) =
0.708 448(8). The light shaded region represents the combined es-
timate χc = 0.708 446(10) from the above two results. The lines
correspond to fits with Eq. (3).

FIG. 5. Percolation threshold χc vs the number of patches n on
the square lattice, for systems of disks with EQ-type and RSA-type
patches. The horizontal straight line represents the bond percolation
threshold pc = 1/

√
2 � 0.7071 for the modified square lattice, for

which a site is added at the middle of each edge of the original
square lattice. The inset shows �χ = χEQ

c − χRSA
c vs n. Error bars

are smaller than the data points.

A. Results on the square lattice

On the square lattice, it was found that, for disks with
SYM-type patches, thresholds χc(n) repeat in a period of 4
when increasing n [12]. When patches are randomly placed,
we numerically determined χc(n) for n � 14 as shown in
Table II and plotted in Fig. 5. Snapshots of random patchy
configurations near χc(n) are shown in Fig. 6. Observing these
values of χc(n), we find three rules: (i) As n increases, χc

approaches the bond percolation pc = 1/
√

2 � 0.7071 on a
modified square lattice (for which a site is added in the middle
of each edge of the original square lattice). (ii) For n > 2, χEQ

c
and χRSA

c are close but different. (iii) χc(n) is a nonmonotonic
function of n, having local minimum values at even n when n
is small. These three rules are explored as follows.

For understanding the first rule, we treat the circumference
of a disk as a 1D system with the periodic boundary condition.
In the 1D system, random patches on a disk are regarded
as particles with hardcore interactions, and the lattice edges
associated with the center of the disk are considered as equally
separated fixed positions. When fixing χ , as n → ∞, the size
of particles in the 1D system tends to zero, and the distance
between neighboring edges is much larger than the particle
size. Thus, the occupation of different edges by patches is
uncorrelated, regardless of whether the patches are of the EQ
type [38,39] or the RSA type [16]. Moreover, for any given
lattice edge, since the orientation of a disk is random, the
probability of the edge being covered by patches of the disk is
χ . These lead to that, in the limit n → ∞, percolation of disks
with random nonoverlapping patches on the square lattice
is equivalent to standard bond percolation on the modified
square lattice, for which a site is added at the middle of each
edge of the original square lattice. Since bond percolation
threshold on the square lattice is pc = 1/2, χc(n → ∞) sat-
isfies χ2

c = pc, i.e., χc(n → ∞) = 1/
√

2. From Table II, for
10 � n � 14, the relative error between χc(n) and χc(n →
∞) is of the order O(10−4).
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TABLE II. Percolation threshold χc for systems of n � 14 on the square lattice. A system consists of disks with n random patches of
the EQ type or RSA type. For comparison, we also include χSYM

c for systems of disks with n symmetrically placed patches, which are from
Ref. [12]. The latter exhibits a periodicity of 4, i.e., χSYM

c (n) = χSYM
c (mod(n, 4)).

n 1 2 3 4

χSYM
c 0.713 444 50(3) 0.676 345 5(3) 0.713 444 6(3) 0.592 746 5(4)

χEQ
c 0.696 989 (2) 0.711 370 (2) 0.702 079 (6)

χRSA
c 0.696 989 (4) 0.711 017 (4) 0.705 262 (8)

n 5 6 7 8

χEQ
c 0.713 897 (6) 0.706 01 (1) 0.708 444 (4) 0.707 15 (1)

χRSA
c 0.713 509 (6) 0.707 051 (6) 0.707 903 (3) 0.707 231 (4)

n 9 10 11 12

χEQ
c 0.709 230 (6) 0.707 437 (6) 0.707 63 (2) 0.707 759 (8)

χRSA
c 0.709 40 (2) 0.707 55 (2) 0.707 606 (3) 0.707 502 (2)

n 13 14
χEQ

c 0.707 99 (2) 0.707 532 (8)
χRSA

c 0.708 02 (1) 0.707 536 (3)

Considering the second rule, the difference between χEQ
c

and χRSA
c is due to that patches of EQ type and of RSA type

follow difference distributions when n > 2. Patches of the EQ
type follow an equilibrium distribution, for which different
patchy configurations of a disk appear with the same proba-
bility, while patches of the RSA type follow a nonequilibrium
distribution, for which probabilities of different patchy con-
figurations can be different [16]. In Appendix A we illustrate
the above difference by considering the occupation of three
edges by three patches of a disk. For n = 2, as explained in
Appendix B, the difference between the two types of random
patches disappears, thus χEQ

c (2) = χRSA
c (2).

Finally, for the third rule, we find that for both types of
random patches, χc(n) exhibits local minimum values at even
n for n < 12. The occurrence of local minima can be under-
stood by looking at the probability p(n, z) for a particle with
n patches covering z neighboring edges. In Fig. 12 in Ap-
pendix C, we plot p(n, z) at χc(n) for systems with 1 � n � 5

FIG. 6. Snapshots of random patchy configurations near χc(n) of
the square lattice models, with n = 1 to 14.

RSA-type patches. It can be observed that p(n, z = 4) has
local maxima at n = 2 and 4, accompanied by local minima
of p(n, z = 3) at same n values. The local minima of χc(n)
are correlated with the appearance of these local extrema of
p(n, z). Similar results are obtained for systems of disks with
EQ-type patches. The considerable large difference of |�χ | at
n = 4 in Fig. 5 is related to that on average EQ-type patches
appear more uniform than RSA-type patches, which leads to
larger p(4, 4).

B. Results on honeycomb, triangular, and kagome lattices

We also observe the variation of χc with n on the hon-
eycomb, triangular, and kagome lattices, The results are
described below.

On the honeycomb lattice, for disks with SYM-type
patches, it was found that χc(n) shows a period of 3 as n
increases [12]. When patches are of the EQ type or RSA
type, we numerically determined χc for systems with n � 13,
which are summarized in Table III and plotted in Fig. 7.
Observing these results, we find the following four rules.
(i) As n increases, χc(n) approaches the bond percolation
threshold of a modified honeycomb lattice (for which a site
is added in the middle of each edge of the honeycomb lat-
tice), i.e., χc(n → ∞) = √

1 − 2 sin(π/18) � 0.8079, where
1 − 2 sin(π/18) [40] is the bond percolation threshold of the
original honeycomb lattice. (ii) When n > 2, it is found that
χEQ

c and χRSA
c are close but different. The above rules (i) and

(ii) are similar to those on the square lattice, and they can be
understood in the same ways as in Sec. III A. (iii) χc(n) is a
nonmonotonic function of n and exhibits local minima when
mod(n, 3) = 0 for n � 13. Similar to that on the square lattice,
this observation can be explained by calculating the probabil-
ity p(n, z) of a disk with n patches covering z neighboring
edges at χc(n). Figure 13 in Appendix C shows p(n, z) for
systems of disks with RSA-type patches on the honeycomb
lattice. It can be seen that p(n, 3) has local maxima at n = 3
and 6, which is correlated with the appearance of local minima
of χc(n) at n = 3 and 6, respectively. Similar results of p(n, z)
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TABLE III. Percolation threshold χc for systems of n � 13 on the honeycomb lattice. A system consists of disks with n random patches
of the EQ type or RSA type. For comparison, we also include χSYM

c for systems of disks with n symmetrically placed patches, which are from
Ref. [12]. The latter exhibits a periodicity of 3, i.e., χSYM

c (n) = χSYM
c (mod(n, 3)).

n 1 2 3 4 5

χSYM
c 0.815 301 86(3) 0.815 301 6(3) 0.697 040 4(9)

χEQ
c 0.815 301 (4) 0.789 621 (2) 0.813 03 (1) 0.814 889(8)

χRSA
c 0.815 301 (4) 0.794 664 (4) 0.812 089(2) 0.814 719 (2)

n 6 7 8 9 10

χEQ
c 0.799 15 (2) 0.811 56 (1) 0.811 960 (4) 0.802 940 (4) 0.811 129 (4)

χRSA
c 0.803 878 (8) 0.811 118(3) 0.810 78 (1) 0.805 575 (4) 0.810 784(4)

n 11 12 13

χEQ
c 0.810 162 (4) 0.804 976 (5) 0.810 483(8)

χRSA
c 0.809 463 (6) 0.806 929 (9) 0.809 782(4)

are obtained for systems of disks with EQ-type patches. The
considerable large difference of |�χ | at mod (n, 3) = 0 in
Fig. 7 is related to that on average EQ-type patches appear
more uniform than RSA-type patches, which leads to larger
p(n, 3). (iv) When n = 2, it is found that χEQ

c = χRSA
c =

χSYM
c . This is different from results on the square lattice,

where χSYM
c is different from χEQ

c = χRSA
c . In Ref. [12], it is

shown that for disks with SYM-type patches χc(1) = χc(2).
Considering the above and that χc(1) is independent of the
types of patches, we conclude that on the honeycomb lattice
χc(1) = χc(2), for all three types of patches. In Appendix D
we provide a detailed explanation of rule (iv) by calculating
probabilities of a disk with its patches covering different num-
bers of edges.

On the triangular lattice, for disks with SYM-type patches,
it was found that χc(n) shows a period of 6 as n increases [12].
When patches are of the EQ type or RSA type, we numerically

FIG. 7. Percolation threshold χc vs the number of patches n
on the honeycomb lattice, for systems of disks with EQ-type
and RSA-type patches. The horizontal straight line represents the
bond percolation threshold pc = √

1 − 2 sin(π/18) � 0.8079 for the
modified honeycomb lattice, for which a site is added at the middle
of each edge of the original honeycomb lattice. The inset shows
�χ = χEQ

c − χRSA
c vs n. Error bars are smaller than the data points.

determined χc for systems with n � 18, which are summa-
rized in Table IV and plotted in Fig. 8. Observing these
results, we find the following three rules. (i) As n increases,
χc(n) approaches the bond percolation threshold of a modified
triangular lattice (for which a site is added in the middle
of each edge of the triangular lattice), i.e., χc(n → ∞) =√

2 sin(π/18) � 0.5893, where 2 sin(π/18) [40] is the bond
percolation threshold of the triangular lattice. (ii) When n > 2,
it is found that χEQ

c and χRSA
c are close but different. Rules (i)

and (ii) are similar to those on the square lattice, and they
can be understood in same ways as in Sec. III A. (iii) χc(n)
is a nonmonotonic function of n, and exhibits a minimum at
n = 3. This can be explained by calculating the probability
p(n, z) of a particle with n patches covering z neighboring
edges at χc(n). Figure 14 in Appendix C shows p(n, z) for
systems of disks with RSA-type patches on the triangular
lattice. It can be seen that both p(n, 5) and p(n, 3) have a
maximum at n = 3, which is correlated with the appearance
of the minimum of χc(n) at n = 3. Comparing with the square
and honeycomb lattices, here the positions of minima (given
by specific values of n) do not appear periodically for small n
values, which should be due to that a site is connected to more
edges on the triangular lattice. Similar results are obtained for
systems of disks with EQ-type patches.

On the kagome lattice, for disks with SYM-type patches, it
was found that χc(n) shows a period of 6 as n increases [12].
When patches are of the EQ-type or RSA-type, we numer-
ically determined χc for systems with n � 12, which are
summarized in Table V and plotted in Fig. 9. Observing these
results, we find the following three rules. (i) As n increases,
χc(n) approaches the bond percolation threshold of a modified
kagome lattice (for which a site is added in the middle of
each edge of the kagome lattice), i.e., χc(n → ∞) = √

pc �
0.7242, where pc = 0.524 404 999 167 448 20(1) [25] is the
bond percolation threshold of the kagome lattice. (ii) When
n > 2, it is found that χEQ

c and χRSA
c are close but different.

Rules (i) and (ii) are also similar to those on the square
lattice, and they can also be understood in the same ways
as in Sec. III A. (iii) χc(n) is a nonmonotonic function of n,
and exhibits local minima at even n when n < 6. This can
also be explained by calculating the probability p(n, z) of a
particle with n patches covering z neighboring edges at χc(n).
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TABLE IV. Percolation threshold χc for systems of n � 18 on the triangular lattice. A system consists of disks with n random patches of
the EQ type or RSA type. For comparison, we also include χSYM

c for systems of disks with n symmetrically placed patches, which are from
Ref. [12]. The latter exhibits a periodicity of 6, i.e., χSYM

c (n) = χSYM
c (mod(n, 6)).

n 1 2 3 4 5 6

χSYM
c 0.627 765 41(3) 0.554 469 9(4) 0.558 806 6(7) 0.554 469 2(4) 0.627 765 6(4) 0.500 000 1(5)

χEQ
c 0.587 793 (6) 0.575 869 (4) 0.582 391(10) 0.592 885 (6) 0.595 297 (8)

χRSA
c 0.587 793 (2) 0.575 214 (2) 0.580 971(2) 0.593 240 (6) 0.596 424 (8)

n 7 8 9 10 11 12

χEQ
c 0.590 80 (2) 0.587 039 (6) 0.588 44 (1) 0.590 24 (2) 0.590 42 (2) 0.589 485 (6)

χRSA
c 0.593 81 (1) 0.588 096 (10) 0.587 65 (2) 0.588 922 (5) 0.589 931 (6) 0.589 00 (1)

n 13 14 15 16 17 18

χEQ
c 0.589 081 (8) 0.589 32 (2) 0.589 60 (2) 0.589 62 (1) 0.589 44 (2) 0.589 40 (2)

χRSA
c 0.589 698 (6) 0.589 399 (6) 0.589 35 (2) 0.589 421 (8) 0.589 494 (8) 0.589 50 (1)

Figure 15 in Appendix C shows p(n, z) for systems of disks
with RSA-type patches on the kagome lattice. It can be seen
that p(n, 2) and p(n, 4) have local maxima at n = 2 and 4.
These maxima are correlated with the appearance of local
minima of χc(n) at n = 2 and 4. Similar results are obtained
for systems of disks with EQ-type patches.

IV. CONCLUSION AND DISCUSSION

We have studied percolation thresholds χc(n) for disks with
n random nonoverlapping patches on lattices. We consider two
types of random patches, EQ type and RSA type, and four
regular lattices, square, honeycomb, triangular, and kagome
lattices. By combining MC simulations and the critical poly-
nomial method, we accurately estimate χc of 106 models, then
observe the change of χc(n). We mainly find the following
rules. (i) As n increases, χc(n) approaches the bond perco-

FIG. 8. Percolation threshold χc vs the number of patches
n on the triangular lattice, for systems of disks with EQ-type
and RSA-type patches. The horizontal straight line represents
the bond percolation threshold pc = √

2 sin(π/18) � 0.5893 for the
modified triangular lattice, for which a site is added at the middle of
each edge of the original triangular lattice. The inset shows �χ =
χEQ

c − χRSA
c vs n. Error bars are smaller than the data points.

lation threshold of the modified lattice, for which a site is
added in the middle of each edge of the original lattice. This
originates from that, when n → ∞, the patches near different
edges are uncorrelated, and that an edge is covered by patches
with probability χ . For the largest n values simulated (12 to
18), χc(n) values deviate from the bond percolation threshold
by around 10−4 to 10−3. It is found in Ref. [12] that, for
disks with SYM-type patches, when the symmetry of patches
matches that of the lattice, the percolation of patchy disks is
equivalent to site percolation. The relation to bond percolation
found in this work strengthens the connection between per-
colation of patchy particles and standard percolation models.
(ii) When n = 2, χEQ

c = χRSA
c ; however, when n > 2, χEQ

c
and χRSA

c are close but different. The latter difference is due
to that patches of EQ type and RSA type have different dis-
tribution when n > 2. (iii) χc(n) is a nonmonotonic function
of n, especially when n is small. For example, on the square
lattice χc(n) has local minima at even n when n < 12, and
on the honeycomb lattice χc shows local minima when n
is a multiple of 3 for n < 13. In Ref. [12] the authors find
that χc(1) is mainly affected by the lattice geometry, but that
for systems of particles with n � 2 SYM-type patches, the
coupling of patchy symmetry and lattice geometry leads to
nonmonotonic changes in χc(n). For systems of n � 2 random
nonoverlapping patches, our results show that distributions
of patches still couple with the lattice geometry to yield the
nonmonotonic behavior of χc(n). We expect that the above
results can be generalized to other 2D lattices.

If the patchy disks are put in continuous space instead of
lattices, how does χc change with n? For saturated random
sequential adsorbed nonoverlapping disks in 2D continuous
space, our preliminary results [41] show that χc still shows a
nonmonotonic variation with n, regardless of whether patches
on the disk are distributed symmetrically or randomly. It is
also found that, as n → ∞, percolation of disks with random
patches is equivalent to a bond percolation model [41]. The
latter can be explained in the same way as on the lattices. The
nonmonotonic behavior of χc may due to that, in the contin-
uous space, the distribution of neighbors of a disk has certain
structural features, which lead to smaller χc values when n
matches them. We leave a detailed study in the continuous
space for future work.
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TABLE V. Percolation threshold χc for systems of n � 12 on the kagome lattice. A system consists of disks with n random patches of
the EQ type or RSA type. For comparison, we also include χSYM

c for systems of disks with n symmetrically placed patches, which are from
Ref. [12]. The latter exhibits a periodicity of 6, i.e., χSYM

c (n) = χSYM
c (mod(n, 6)).

n 1 2 3 4 5 6

χSYM
c 0.745 229 66(5) 0.687 495 0(2) 0.725 743 3(6) 0.687 494 9(4) 0.745 229 4(8) 0.652 701 (2)

χEQ
c 0.718 116 (2) 0.720 482 (6) 0.709 937 (6) 0.731 606 (8) 0.729 44 (1)

χRSA
c 0.718 116 (4) 0.722 158 (10) 0.711 080 (8) 0.729 077 (8) 0.731 672 (10)

n 7 8 9 10 11 12

χEQ
c 0.735 00 (2) 0.722 09 (2) 0.718 74 (2) 0.722 209 (5) 0.726 966 (8) 0.727 61 (2)

χRSA
c 0.736 08 (2) 0.725 13 (1) 0.719 895 (6) 0.720 92 (2) 0.724 59 (2) 0.726 03 (2)

Finally, it is noted that, both in this work and in
Ref. [12], the phenomena are understood by observing the
probability p(n, z) of a disk with n patches covering z
neighboring edges. Similar observations have been made
in Ref. [42] in understanding the relationship between the
susceptible-infected-recovered model and standard percola-
tion. In Ref. [12] it is already found that, for fixed n and z,
p(n, z) can still be decomposed into probabilities of different
local structures whose variations may affect χc. It is worth
exploring further to find useful formula for predicting χc

values for systems of patchy particles. It is also noted that
there are studies on percolation models of restricted valencies
on lattices, such as Ref. [43]. Controlling the numbers, sizes,
and positions of patches on particles is a natural way to tune
the valencies.
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APPENDIX A: OCCUPATION OF THREE EDGES
BY THREE RANDOM NONOVERLAPPING PATCHES

We take the occupation of three edges by three patches
as an example to illustrate that EQ-type and RSA-type ran-
dom patches lead to different occupation probabilities. As in
Fig. 10(a), three edges divide a disk area into three equal
regions. For convenience of the analysis below, we assume
that the size of a patch satisfies α = 2θ < 2π/3 and 4α =
8θ > 2π . The first inequality says that a patch can occupy at
most one edge. The second inequality ensures that at most one
patch can be placed within one region, and that in realizing the
RSA-type patches the available space always consists of one
continuous region.

For patches of the EQ-type, three random numbers in
[0, 2π ) are used to give positions to the three patches. The
probability that the three patches do not overlap is

Z (n = 3)

Z
= 2π

2π

(∫ 2π−3α

0

dϕ

2π

2π − 3α − ϕ

2π

+
∫ 2π−2α

α

dϕ

2π

ϕ − α

2π

)
= (2π − 3α)2

4π2
, (A1)

where definitions of parameters α, ϕ, and ω are given in
Fig. 10(b). The probability that the three patches do not over-

FIG. 10. (a) Three lattice edges divide a disk into three regions of
equal area. (b) A configuration in which three patches are randomly
placed on a disk and they occupy no edge.
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lap and do not occupy any edge is

Z (n = 3, z = 0)

Z
= 3

∫ 2π
3 −α

0

dω

2π

( ∫ 2·(2π )
3 −ω−2α

2π
3 −ω−α

dϕ

2π

2π
3 − α

2π

+
∫ 3·(2π )

3 −ω−2α

2·(2π )
3 −ω−α

dϕ

2π

2π
3 − α

2π

)

= (2π − 3α)3

36π3
. (A2)

Thus, the probability for a disk with n = 3 EQ-type patches
covering no edge (z = 0) is

p(n = 3, z = 0) = Z (n = 3, z = 0)

Z (n = 3)
= 2π − 3α

9π
. (A3)

For RSA-type patches, n patches are sequentially placed
on a disk. The patches placed later will be affected by those
placed earlier. For the first patch, a random number in [0, 2π )
is used, and for later patches, the ranges of random numbers
are gradually reduced. The probability of successfully placing
three nonoverlapping patches on a disk is

Z (n = 3)

Z
= 2π

2π

( ∫ 2π−3α

0

dϕ

2π − 2α

2π − 3α − ϕ

2π − 3α − ϕ

+
∫ 2π−2α

α

dϕ

2π − 2α

ϕ − α

ϕ − α

)
= 2π − 3α

π − α
.

(A4)

The probability that there are three patches occupying no edge
is

Z (n = 3, z = 0)

Z

= 3
∫ 2π

3 −α

0

dω

2π

(∫ 2·(2π )
3 −ω−2α

2π
3 −ω−α

dϕ

2π − 2α

2π
3 − α

2π − 3α − ϕ

+
∫ 3·(2π )

3 −ω−2α

2·(2π )
3 −ω−α

dϕ

2π − 2α

2π
3 − α

ϕ − α

)

= (2π − 3α)2
(

ln 3 − 4
3 ln 2

)
2π (π − α)

. (A5)

Therefore, the probability for a disk with n = 3 RSA-type
patches covering no edge (z = 0) is

p(n = 3, z = 0) = Z (n = 3, z = 0)

Z (n = 3)

= (2π − 3α)
(

ln 3 − 4
3 ln 2

)
2π

. (A6)

Comparing the above Eq. (A3) and Eq. (A6), one sees that
patches of the EQ type and RSA type lead to different proba-
bilities, p(n = 3, z = 0). Generally, for n � 3 and z � 0, in
similar ways one can verify that the two types of random
patches lead to different occupation probabilities p(n, z).

FIG. 11. (a) Two edges divide a disk into two regions of equal
area. (b) A configuration in which two patches are randomly placed
on a disk and they occupy no edge.

APPENDIX B: OCCUPATION OF TWO EDGES BY TWO
NONOVERLAPPING RANDOM PATCHES

Below we show that, for n = 2, the two types of random
patches lead to the same p(n = 2, z = 0). In Fig. 11(a) two
edges divide a disk into two regions of equal area. Assuming
that the size of a patch satisfies α = 2θ < π and 2α = 4θ >

π , a patch can occupy at most one edge, and a region can
contain at most one patch since patches cannot overlap, as in
Fig. 11(b).

For patches of the EQ type, two random numbers in [0, 2π )
are used to give positions the two patches. The probability that
the two patches do not overlap is

Z (n = 2)

Z
= 2π − 2α

2π
= π − α

π
, (B1)

and the probability that two patches do not overlap and do not
occupy any edge is

Z (n = 2, z = 0)

Z
= 2(π − α)

2π
· π − α

2π
= (π − α)2

2π2
. (B2)

Thus the probability for a disk with n = 2 EQ-type patches
covering no edge (z = 0) is

p(n = 2, z = 0) = Z (n = 2, z = 0)

Z (n = 2)
= π − α

2π
. (B3)

FIG. 12. Probability p(n, z) for a particle with n RSA-type
patches covering z neighboring edges on the square lattice at χc(n).
At fixed n, one has

∑4
z=0 p(n, z) = 1. Error bars are smaller than the

data points.
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FIG. 13. Probability p(n, z) for a particle with n RSA-type
patches covering z neighboring edges on the honeycomb lattice at
χc(n). At fixed n, one has

∑3
z=0 p(n, z) = 1. Error bars are smaller

than the data points.

For patches of the RSA type, two patches can always be
successfully placed on a disk, i.e.,

Z (n = 2)

Z
= 1, (B4)

and the probability that the two patches do not occupy any
edge is

Z (n = 2, z = 0)

Z
= 2(π − α)

2π

π − α

2π − 2α
= π − α

2π
. (B5)

Therefore, the probability for a disk with n = 2 RSA-type
patches covering no edge (z = 0) is

p(n = 2, z = 0) = Z (n = 2, z = 0)

Z (n = 2)
= π − α

2π
. (B6)

Comparing Eqs. (B3) and (B6), one sees that patches of
the EQ type and RSA type lead to the same probability p(n =
2, z = 0). At other z values, similarly one can also prove
that the two types of random patches lead to same values of
p(n = 2, z).

FIG. 14. Probability p(n, z) for a particle with n RSA-type
patches covering z neighboring edges on the triangular lattice at
χc(n). At fixed n, one has

∑6
z=0 p(n, z) = 1. Error bars are smaller

than the data points.

FIG. 15. Probability p(n, z) of a particle with n RSA-type
patches covering z neighboring edges on the kagome lattice at χc(n).
At fixed n, one has

∑4
z=0 p(n, z) = 1. Error bars are smaller than the

data points.

APPENDIX C: PLOT OF p(n, z) ON FOUR LATTICES

The plots of p(n, z) are shown in Figs. 12, 13, 14, and 15,
for the square, honeycomb, triangular, and kagome lattices,
respectively. These plots help understand the non-monotonic
change of χc(n), as explained in the main text.

APPENDIX D: SAME χc VALUE FOR n � 2
ON THE HONEYCOMB LATTICE

For n = 1, since there is no distinction between three types
(SYM type, EQ type, and RSA type) of patches, there is only
a single value of χc(1) on a given lattice. For n = 2, one has
χEQ

c (2) = χRSA
c (2) since the EQ-type and RSA-type patches

share the same p(n = 2, z), as shown in Appendix B. On
the honeycomb lattice, considering the above and χSYM

c (2) =
χc(1) from Ref. [12], if χEQ

c (2) = χc(1), one could conclude
that the three types of patches lead to the same χc value for
n � 2. We demonstrate below that χEQ

c (2) = χc(1) indeed
holds.

On the honeycomb lattice, for n = 1, in Ref. [12] near
χc, it is found that p(z = 2) = 3(1 − χ ), p(z = 3) = 3χ − 2,
and p(z = 2) + p(z = 3) = 1. Figure 16 is a snapshot for a
particle with n = 2 EQ-type patches on the honeycomb lattice.
It can be derived that near χc = 0.812 301(4) (from Table IV)
one has p(z = 3) = 6

∫ χ/2−1/3
0 dσ = 3χ − 2 and p(z = 2) =

3(1 − χ ). These values are the same as those for n = 1, which
leads to χEQ

c (2) = χc(1).

FIG. 16. Snapshot of a particle with two random patches on the
honeycomb lattice. The patches occupy three edges when the patch
at the left top is rotated counterclockwise by a small angle, and they
cover two edges when the patch is rotated clockwise by a small angle.
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