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Full-record statistics of one-dimensional random walks
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We develop a comprehensive framework for analyzing full-record statistics, covering record counts
M(t1), M(t2), . . ., their corresponding attainment times TM(t1 ), TM(t2 ), . . ., and the intervals until the next record.
From this multiple-time distribution, we derive general expressions for various observables related to record
dynamics, including the conditional number of records given the number observed at a previous time and
the conditional time required to reach the current record given the occurrence time of the previous one. Our
formalism is exemplified by a variety of stochastic processes, including biased nearest-neighbor random walks,
asymmetric run-and-tumble dynamics, and random walks with stochastic resetting.
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I. INTRODUCTION

The statistics of records in the time series (Xt )t=0,1,... is a
longstanding topic in probability theory [1–4], finding appli-
cations in various fields such as hydrology [5], finance [6],
climatology [7], and sports [8]. In a time series (Xt )t�0, we
have a record at time t if Xt exceeds all preceding values Xt ′

with t ′ = 0, 1, . . . , t − 1. While the topic was first introduced
in the context of independent and identically distributed ran-
dom variables Xt [2], recent works have considered records
when (Xt )t�0 represents the successive positions of a random
walk (RW), i.e., Xt+1 − Xt = ηt , where the ηt denote the steps
of the RW. Records of RWs have been studied when the steps
ηt are independent [4,9–12] or correlated [13–15], including
cases with resetting of the position Xt [16–18]. The existing
results on record dynamics are however essentially restricted
to the single-time distribution of the number M(t ) of records
reached at time t as well as the joint distribution of both
the number of records and the time at which the current
running record was achieved. These results have been ob-
tained for Brownian motion with and without bias [1,4,19,20],
run-and-tumble particles [17,21,22], a random acceleration
process [13], fractional Brownian motion [23], resetting
Brownian motion [16,18,24], and resetting run-and-tumble
particles [25–28]. For most studies on records, the long-
time properties are described using the continuous-in-time
asymptotic limit process dXt/dt = ηt [13]. The continuum
counterpart of the number of records is then the maximum
of the walk, which coincides with the number of records
as well as with the value (or position) of the record in the
case of nearest-neighbor random walks (every time a new
record is reached, the maximum position is incremented by
one). Characterizing the record dynamics at long times is then
equivalent to characterizing the maximum dynamics.

Since record dynamics are non-Gaussian (see the single-
time distribution [29]) and non-Markovian [knowledge of
M(t ′) at time t ′ is insufficient to determine the properties of
M(t ) for time t > t ′ because the position of the random walk
at time t ′ is not known], determining multiple-time quantities
is essential to fully characterize the process. A first step in this

direction was taken in Refs. [12,30], where two-time distribu-
tions were determined. However, these works concerned only
two-time quantities and were limited to Brownian motion and
Brownian bridges.

The pathway to the generalization of these results lies
in the fact that the times when new maxima are achieved
form a Markov process [31]: Indeed, at the moment when
the maximum m is reached, the position of the RW is known
and given by m. Here we develop a general formalism based
on renewal theory [13,32,33], utilizing the record ages τk ,
defined as the time elapsed between the kth and (k + 1)th
records, as renewal times. Indeed, we rely on the simple but
important remark that the number of records can be seen as
the number of renewal events of length given by record ages.
Note that our approach connects the number of records of a
discrete RW and the maximum of its continuous counterpart.
In the continuous case, the number of records is not clearly
defined, as it tends to infinity at every timescale [31,34]. To
establish this connection, we employ a discretization step that
determines the additional length the RW must traverse to be
considered to have surpassed its previous record. By setting
this length scale to unity, the expressions derived for the
maximum and number of records align [13] in the asymptotic
limit.

The merits of our approach are the following. (i) It allows
us to (re)obtain very naturally the distributions of standard
observables such as the number of records at time t or the
time at which this record was reached, i.e., the time of
last record, but also that of the time of next record, which
has not been considered yet. (ii) It applies to both discrete
(records) and continuous (maxima) processes. (iii) Impor-
tantly, it gives access to all n time distributions, n arbitrarily
large, associated with these observables. (iv) It provides re-
sults not limited to Brownian motion but which hold for any
nearest-neighbor Markovian RW, i.e., explicit expressions for
representative examples such that the asymmetric Brownian
motion (ABM) and the asymmetric run-and-tumble particle
(ARTP) are obtained. (v) It can be extended to cover the case
of non-nearest-neighbor RWs, as illustrated by the example of
resetting RWs.
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In terms of limitations and potential future directions, it is
important to note that our study does not encompass processes
characterized by long jumps, such as Lévy flights [11,35],
as the number of records and the maximum position ex-
hibit fundamental differences. Similarly, our analysis does not
extend to processes with strong non-Markovian properties,
such as fractional Brownian motion [36] or self-repulsive
RWs [37–39], where each step is influenced by the entire past
history of the trajectory.

The article is structured as follows. We start by deriving
the single-time distribution of the number of records, the time
of occurrence of the last record, the backward record time,
and the forward record time as an illustration of the method.
Then we derive the multiple-time distributions of the same
observables and provide explicit expressions for the example
of the distribution of the times at which the last record events
occurred at two different times. Finally, we generalize our
approach to aging record times by considering the example
of resetting RWs.

II. SINGLE-TIME DISTRIBUTIONS

We consider a nearest-neighbor Markovian one-
dimensional (1D) lattice RW [40]. In this case, the running
maximum of the RW and the number of records coincide [41].
Successive positions are denoted by (Xt )t=0,1,.... To introduce
our formalism, we first show how to recover the classic
asymptotic distribution of the number of records at time t ,
M(t ). Our approach relies on the random variable τk , defined
as the time elapsed between the breaking of record k and
k + 1. Since the RW is Markovian and a nearest neighbor,
the τk are independent and identically distributed random
variables with probability distribution F (t ) = P (τk = t ),
corresponding to the renewal times [32,33], as they represent
the times between two record events. This simple remark
makes M(t ) a renewal process. In turn, as we show below,
it allows us to use the powerful methodology of renewal
processes to easily obtain the statistical properties of M(t )
(including n time quantities).

A. Number of records

We first relate the statistics of M(t ) to that of the times τk ,

P (M(t ) � m) = P (τ0 + · · · + τm−1 � t )

= E(H (t − τ0 − · · · − τm−1)), (1)

where H is the Heaviside function and E(· · · ) the average
operator. This equality states that at least m records have been
reached by time t if and only if there were m record events
before time t . To compute the distribution of M(t ), we use
the discrete Laplace transform of a probability distribution
function f (τ ) of the random variable τ (having realizations
t = 0, 1, 2, . . . ):

L{ f (t )} = f̂ (s) ≡
∞∑

t=0

f (t )e−st = E(e−sτ ). (2)

Starting from the distribution F (t ) of record ages τk , we
derive the Laplace transform expression for the distribution of
the number M(t ) of records at time t by Laplace transforming

Eq. (1),

L{P (M(t ) � m)}

= E

( ∞∑
t=0

e−st H (t − τ0 − · · · − τm−1)

)

= E

⎛
⎝ ∞∑

t=τ0+···+τm−1

e−st

⎞
⎠

= 1

1 − e−s
E(e−s(τ0+···+τm−1 ) )

= 1

1 − e−s
F̂ (s)m. (3)

In particular, Eq. (3) provides a simple expression for the
moments of the number of records, given by

L{E(Mk (t ))} =
∞∑

m=0

mkL{P (M(t ) = m)}. (4)

Then considering the long-time small-s limit for which F̂ (s)
approaches one [see Eq. (2) with s = 0], one can replace the
sum by an integral to obtain the following simple expression:

L{E(Mk (t ))} ∼
∫ ∞

0
dm mk (−∂m)L{P (M(t ) � m)}

∼ �(k + 1)

s[− ln F̂ (s)]k
. (5)

Finally, obtaining record statistics is reduced to the determi-
nation of the statistics of the τk or, in other words, to solving
a first-passage-time (FPT) problem from the origin to a point
at distance one. In Appendix A we recall for self-consistency
how to obtain these FPT distributions for various models, such
as the ABM and the ARTP in both discrete and continuous
time (see also [42]). It results in the expressions in the long-
time small-s limit [17,26,29,43,44]

− ln F̂ (s) ∼ w(s) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
s/D (BM)

− μ

2D +
√

μ2

4D2 + s
D (ABM)√

s2

v2 + s
v2T (RTP)

√
4sT v2(sT +1)+μ2−μ(2sT +1)

2T (v2−μ2 ) (ARTP),
(6)

where D is the diffusive constant, μ is the bias, T is the
tumbling rate, and v is the average absolute speed during a
run of the RTP (see Appendix A for precise definition of these
models and extension of the ARTP with a state-dependent
tumbling rate). As we proceed to show, numerous record-type
observables have generic and simple expressions as functions
of w(s).

B. Time of last record

Using renewal theory, one can easily obtain the joint dis-
tribution of the number m of records at time t and the time
Tm = τ0 + · · · + τm−1 at which this last record was reached,
as well as the backward (forward) record times Bt ≡ t − TM(t )
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FIG. 1. Representation of the record process. (a) Space and time
trajectory of a 1D symmetric nearest-neighbor random walk and
(b) the dynamics of its number of records, which coincides with
its maximum. We are interested in the joint statistics of the num-
ber of records at different times M(t1) and M(t2) as well as the
time of occurrence of the last (next) record event TM(t1 ) = t1 − Bt1

(TM(t1 )+1 = t1 + Et1 ).

(Et ≡ TM(t )+1 − t) corresponding to the duration of the cur-
rent record (time left until observation of a new record),
represented in Fig. 1. We note that, while the time at which
the last record is reached is a standard observable (see, for
instance, [4,21,24,45]), the forward record time has not been
studied in the context of records.

To obtain the joint distribution of (M(t ), TM(t )), we use
that having observed M(t ) = m records at time t with the last
record occurring at time TM(t ) = Tm = y is exactly the event of
observing m records at time y shorter than t and observing the
(m + 1)th record after t , i.e., Tm+1 > t . By taking the Laplace
transform with respect to both t and y of this event, we obtain
that

L{P (Tm = y, M(t ) = m)}

=
∞∑

t,y=0

e−uy−stE(H (Tm+1 − t )H (t − y)δ(y − Tm))

= 1

1 − e−s
E(e−(s+u)(τ0+···+τm−1 )(1 − e−sτm ))

= F̂ (s + u)m 1 − F̂ (s)

1 − e−s
(7)

∼ e−w(s+u)m w(s)

s
. (8)

While Eq. (7) corresponds to the exact expression of the
number of records at any time for the discrete process, Eq. (8)
corresponds to the long-time asymptotic limit which also
describes exactly the maximum of the continuous asymp-
totic process (see Appendix B for details). Equation (8)
provides the Laplace transform of the joint distribution of
the maximum and the time to reach the maximum, which
has been studied for a variety of continuous stochastic pro-
cesses [20,21,23,28,46].

C. Backward record time

Then we compute the joint distribution of the backward
record time and the number of records (Bt , M(t )). To do so,
we consider the event of having reached M(t ) = m records
with the time elapsed since the last record Bt = t − Tm = y.
This event corresponds to having reached m records at time
t − y and not having reached any new record in the time y left
(with y � t), that is,

L{P (Bt = y, M(t ) = m)}

=
∞∑

t,y=0

e−uy−stE(H (Tm+1 − t )H (t − y)δ(t − y − Tm))

= 1

1 − e−s−u
E(e−s(τ0+···+τm−1 )(1 − e−(s+u)τm )),

L{P (Bt = y, M(t ) = m)} = F̂ (s)m 1 − F̂ (s + u)

1 − e−s−u
(9)

∼ e−w(s)m w(s + u)

s + u
. (10)

Once again, Eq. (9) is the exact discrete expression and
Eq. (10) is the asymptotic continuum limit (see Appendix B
for details). It is noteworthy that the random variables TM(t )

and Bt essentially represent the same observables; however,
the former is commonly utilized in extreme value statis-
tics [4,24,45,47], while the latter is more prevalent in renewal
theory [33,48].

One can perform explicit inverse Laplace transforms of
Eqs. (8) and (10) (see Appendix A 3) to obtain the expressions
derived in [4,20,21,46,49] for the specific cases of ABM and
the RTP. We stress that these results were obtained by a dif-
ferent method, relying on path decomposition technique.

D. Forward record time

Finally, we compute the joint distribution of the forward
record time and current number of records (Et , M(t )). To do
so, we consider the event of reaching M(t ) = m records with
the time until the next one Et = Tm+1 − t = Tm + τm − t = y.
This event corresponds to achieving m records at a time less
than t and m + 1 records at exactly t + y. Thus,

L{P (Et = y, M(t ) = m)}

=
∞∑

t,y=0

e−uy−stE(δ(y + t − Tm − τm)H (t − Tm))

= E

(
e−s(τ0+···+τm−1 ) e−uτm − e−sτm

1 − e−s+u

)

= F̂ (s)m F̂ (u) − F̂ (s)

1 − e−s+u
(11)

∼ e−w(s)m w(s) − w(u)

s − u
, (12)

where Eq. (11) is the exact discrete expression and Eq. (12)
its asymptotic continuum limit. This general result can be
illustrated by the explicit examples of the ABM and the ARTP
(see Fig. 2). In the continuum setting, one can take the Laplace
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FIG. 2. Conditional forward record time. The distribution of Et

conditioned on the number of records M(t ) = 2 (blue circles) or 8
(orange squares) for the asymmetric walks at time t = 10 is shown
for (a) the discrete ABM (probability to go to the right, 3/4), (b) the
discrete ARTP (probability to go to the right coming from the right,
7/8, and to the left coming from the left, 3/8), (a′) ABM (diffusion
constant D = 1 and bias μ = 0.5), and (b′) ARTP (tumbling rate
T = 1/2, average absolute speed v = 1, and bias μ = 0.5). The
black dashed lines in (a) and (b) stand for the series expansion of
the discrete expression (11). The black dashed lines in (a′) and (b′)
stand for the expressions (13) and (14).

inverse of Eq. (12) and get, for the ABM the joint distribution,

P (M(t ) = m, Et = y)

=
∫ t

0
dt ′ m exp

(−μ2(y+t ′ )
4D − [m−μ(t−t ′ )]2

4D(t−t ′ )

)
4Dπ [(y + t ′)(t − t ′)]3/2

, (13)

and for the ARTP

P (M(t ) = m, Et = y)

=
∫ t

0

(2T )−1dt ′

t − t ′ + y

e−(t+y)/2T√
v2 − μ2

I1

(
(t − t ′ + y)

√
v2 − μ2

2vT

)

×
[
δ

(
t ′ − m

v + μ

)

+ m(2T )−1H[t ′ − m/(v + μ)]√
[t ′(v − μ) + m][t ′(v + μ) − m]

× I1{
√

[t ′(v − μ) + m][t ′(v + μ) − m]/2vT }
]
. (14)

Here D, T , μ, and v are as defined in Eq. (6).
We represent these two analytical expressions in Fig. 2 as

well as their discrete counterpart. We compare the distribu-
tions conditioned on the number M(t ) = m of records at time t
for different values of m. In particular, we observe that having
a high number of records increases the probability of observ-
ing the next record in a short amount of time. This highlights
the importance of correlations in record processes, as well
as the necessity of quantifying multiple-time distributions to
fully understand record dynamics. This is the object of the
next section.

III. MULTIPLE-TIME POINT DISTRIBUTIONS

In this section we show that the methodology introduced
above allows us to derive straightforwardly multiple-time dis-
tributions. For simplicity, we focus on the long time and large
number of record asymptotics, even though our method gives
the exact results at all times for the description of the max-
imum of the continuous process, as shown in the preceding
section. In particular, we use continuous Laplace trans-
forms and the record ages of the corresponding continuous
processes.

A. Two-time distribution

We start with the two-time distribution of the number of
records, before generalizing it to an arbitrary number of time
points and considering other record-type observables.

As for the single-time case, we make use of the record ages
τk , as

P (M(t1) � m1, M(t2) � m2)

= P (τ0 + · · · + τm1−1 � t1, τ0 + · · · + τm2−1 � t2)

= E(H (t1 − τ0 − · · · − τm1−1)H (t2 − τ0 − · · · − τm2−1)).
(15)

By Laplace transforming with respect to both time variables
t1 and t2, we obtain (m1 � m2)

L{P (M(t1) � m1, M(t2) � m2)}

=
∫∫ ∞

0
dt1dt2e−s1t1−s2t2P (M(t1) � m1, M(t2) � m2)

= E(e−(s1+s2 )(τ0+···+τm1−1 )−s2(τm1 +···+τm2−1 ) )

s1s2

= e−w(s2+s1 )m1−w(s2 )(m2−m1 )

s1s2
. (16)

Thus, by deriving Eq. (16) for m1 < m2, we get the density

L{P (M(t1) = m1, M(t2) = m2)}

= e−w(s2+s1 )m1−w(s2 )(m2−m1 )

s1s2
w(s2)[w(s1 + s2) − w(s2)].

(17)

Additionally, one gets the Laplace transform of the probability
of having a maximum M(t1) of value m at time t1 and M(t2)
of the same value m at time t2,

L{P (M(t1) = M(t2) = m)}
= L{P (M(t1) = m)}

−
∫

m2>m
dm2L{P (M(t1) = m, M(t2) = m2)}

−
∫

m>m2

dm2L{P (M(t2) = m2, M(t1) = m)}

= e−w(s2+s1 )m

s1s2
[w(s1) + w(s2) − w(s1 + s2)]. (18)

Note that here the Laplace transform involves both t1 and t2
and thus the Laplace transform of P (M(t1) = m) includes an
additional prefactor of 1/s2 compared to Eq. (3), as it remains

064101-4



FULL-RECORD STATISTICS OF ONE-DIMENSIONAL … PHYSICAL REVIEW E 109, 064101 (2024)

independent of t2. This results in a compact formula for the
Laplace transform of the covariance of the number of records
at two distinct times,

L{Cov[M(t1), M(t2)]} = w(s1) + w(s2) − w(s1 + s2)

s1s2w(s1)w(s2)w(s1 + s2)
,

(19)

in the limit of long times and a large number of records.
Equation (16) extends the findings of [12] to arbitrary

Markovian processes with nearest-neighbor jumps. In particu-
lar, it allows the computation of various two-time functionals
for the process. An illustrative example is provided by the
conditional survival probability of a Rosenstock trapping
problem [50], where traps, present in concentration q, are
exclusively located on the positive axis [51]. The conditional
survival probability S(t2|t1), defined as the probability of sur-
vival up to time t2 given that the random walk survived up
to time t1, is given by the probability that there is no trap in
the newly visited domain of extension M(t2) − M(t1). This
implies that S(t2|t1) = E((1 − q)M(t2 )−M(t1 )). This quantity is
fully determined by the knowledge of the two-time distribu-
tion (16).

B. The n-time distributions

The previous calculations can be extended to determine n-
time distributions. For the sake of simplicity, we focus here
on the case 0 = m0 < m1 < · · · < mn, where at least one new
record occurs at each observation time.

First, for the joint distribution of having at least mk records
at times tk for k = 1 to n, we get, in the Laplace domain,

L{P (M(t1) � m1, . . . , M(tn) � mn)}

= E

(
n∏

k=1

∫ ∞

0
dtkH (tk − Tmk )e−sktk

)

= 1

s1 · · · sn
E

(
n∏

k=1

e−skTmk

)

= E(e−(s1+···+sn )Tm1 )

s1 · · · sn
E

(
n∏

k=2

e−sk (Tmk −Tm1 )

)

= 1

s1 · · · sn
e−w(s1+···+sn )m1E

(
n∏

k=2

e−sk Tmk−m1

)

= 1

s1 · · · sn

n∏
k=1

exp

⎡
⎣−w

⎛
⎝ n∑

j=k

s j

⎞
⎠(mk − mk−1)

⎤
⎦. (20)

We recall that the result is exact for the maximum, but asymp-
totic for describing the records, such that for every k, the
timescales sk approach zero (with their ratio remaining finite)
and the differences mk − mk−1 behave inversely proportional
to w(sk ).

Then, for the joint distribution of the successive times TM(tk )

at which the records were last reached and their associated
number of records

L{P (M(tk ) = mk, Tmk = yk; 1 � k � n)}

= E

(
n∏

k=1

∫∫ ∞

0
dtkdykH (tk − Tmk )H (Tmk+1 − tk )δ(yk − Tmk )e−ukyk−sktk

)

= E

(
n∏

k=1

e−(uk+sk )Tmk
1 − e−skτmk

sk

)

= E

⎡
⎣exp

⎛
⎝−Tm1

n∑
j=1

(u j + s j )

⎞
⎠ exp

⎛
⎝−τm1

n∑
j=2

(u j + s j )

⎞
⎠1 − e−s1τm1

s1

⎤
⎦E

(
n∏

k=2

e−(uk+sk )(Tmk −Tm1 −τm1 ) 1 − e−skτmk

sk

)

= 1

s1 . . . sn

n∏
k=1

⎧⎨
⎩exp

⎡
⎣−w

⎛
⎝ n∑

j=k

(u j + s j )

⎞
⎠(mk − mk−1)

⎤
⎦
⎡
⎣w

⎛
⎝sk +

n∑
j=k+1

(u j + s j )

⎞
⎠− w

⎛
⎝ n∑

j=k+1

(u j + s j )

⎞
⎠
⎤
⎦
⎫⎬
⎭. (21)

Similarly, for the n consecutive backward record times Btk and their associated number of records,

L{P (M(tk ) = mk, Btk = yk; 1 � k � n)} = E

(
n∏

k=1

∫∫ ∞

0
dtkdykH (tk − Tmk )H (Tmk+1 − tk )δ(tk − yk − Tmk )e−ukyk−sktk

)

= E

(
n∏

k=1

e−skTmk
1 − e−(sk+uk )τmk

sk + uk

)

=
n∏

k=1

⎧⎨
⎩exp

⎡
⎣−w

⎛
⎝ n∑

j=k

s j

⎞
⎠(mk − mk−1)

⎤
⎦w

(
uk +∑n

j=k s j
)− w

(∑n
j=k+1 s j

)
sk + uk

⎫⎬
⎭.

(22)
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Finally, for the n consecutive forward record times Etk and their associated number of records,

L{P (M(tk ) = mk, Etk = yk; 1 � k � n)}

= E

(
n∏

k=1

∫∫ ∞

0
dtkdykH (tk − Tmk )δ(yk + tk − Tmk+1)e−ukyk−sktk

)

= E

(
n∏

k=1

e−skTmk
e−ukτmk − e−skτmk

sk − uk

)

= E

(
e−(s1+···+sn )Tm1 −(s2+...+sn )τm1

e−u1τm1 − e−s1τm1

s1 − u1

)
E

(
n∏

k=2

e−sk (Tmk −Tm1 −τm1 ) e−ukτmk − e−skτmk

sk − uk

)

=
n∏

k=1

⎧⎨
⎩exp

⎡
⎣−w

⎛
⎝ n∑

j=k

s j

⎞
⎠(mk − mk−1)

⎤
⎦w

(∑n
j=k s j

)− w
(
uk +∑n

j=k+1 s j
)

sk − uk

⎫⎬
⎭. (23)

Note that we do not derive the formula when two successive
mk are equal: As a matter of fact, one can derive these values
from the one with distinct successive mk as for Eq. (18). The
multitime joint distribution of M(t ), Et , and Bt can similarly
be obtained. It is explicitly given in Appendix C.

As an explicit example of a multitime distribution, one can
compute the joint distribution of the time at which the last
record event occurred at two different times t1 and t2. This can
be done using Eq. (21) where n = 2. We integrate over m1 and
m2 and consider the times y1 < t1 < y2 < t2 such that for the
BM (see Fig. 3)

P (TM(t2 ) = y2|TM(t1 ) = y1) =
√

y2 − t1
π (y2 − y1)

√
t2 − y2

. (24)

This provides a generalization of the celebrated arcsine
law [1] for the distribution of the time to reach the maximum
in a time interval. In particular, we observe that having a
time y1 of observation of the last record in the interval [0, t1]
close to t1 increases the probability of having a long time of
observation of the last record up to t2. Thus, there are high

FIG. 3. Conditional last record time. The distribution of TM(t2 )

conditioned on the time TM(t1 ) = 2 (blue circles) or 8 (orange squares)
is shown for the symmetric BM of the parameters D = 1, t1 = 10,
and t2 = 20. The black dashed line corresponds to Eq. (24).

correlations between successive last record times that cannot
be accounted for by single-time expressions.

As an other example of application, for any n, we can
compute the difference between the distribution of record
events and that of independent record occurrences, akin to
the methodology outlined in [51]. This investigation holds
particular relevance when evaluating the probability of a
maximum or record trajectory sampled at times t1, t2, . . . , tn
to discern properties of the RW, as explored in [30]. In
the scenario where the time intervals between samplings
are significantly large, t1 � t2 � · · · � tn, or equivalently
s1 � s2 � · · · � sn with mkw(sk ) held constant (considering
only typical events), we have

L{P (M(tk ) � mk; 1 � k � n)} − L
{

n∏
k=1

P (M(tk ) � mk )

}

∼ L
{

n∏
k=1

P (M(tk ) � mk )

}

×
(

−
n∑

k=1

w′(sk )sk+1mk + w(sk )mk−1

)
. (25)

Utilizing the asymptotics

w′(sk )sk+1mk ∝ sk+1

sk
, w(sk )mk−1 ∝ w(sk )

w(sk−1)
, (26)

we deduce that the process decorrelates when there are long-
time intervals between samplings for processes where w(s)
approaches 0 as s tends to 0.1 In such instances, the decor-
relation follows an algebraic pattern with an exponent of 1/2
for the symmetric case and 1 for the biased case. The rate of
convergence is determined by the largest of the ratios sk/sk−1,
or equivalently tk−1/tk . In essence, employing the distribu-
tion of maxima at n discrete times under the assumption
of independence among maxima incurs an error that scales
proportionally with the smallest ratio of sampling times, with

1Note that this condition is not always met for ABM and the ARTP,
so correlations are not decaying in time.
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the exponent contingent upon the symmetry properties of the
walk.

We stress that, by determining these multiple-time distri-
butions, we have provided a complete characterization of the
record process.

IV. GENERALIZATION TO NONIDENTICAL
RENEWAL TIMES

One can easily generalize the preceding results to the case
of non-identically-distributed but still independent renewal
times. An important explicit example involving aging renewal
times is provided by the resetting RW [18,24,25,52,53] (see
Appendix D 2 for the other important example of a RW with
a reflecting boundary condition at the initial position).

In the resetting RW, at every time step, the RW returns
to its initial position with probability 1 − λ = 1 − e−r (r is

the resetting rate). These types of processes have attracted
a great deal of attention in the past few years and are well
documented. In particular, the record age distribution with
resetting (where we reset both the position and velocity to the
initial values), knowing that m records have been achieved,
F̂ r

m(s), is given by (see Appendix D 1 for details)

1 − F̂ r
m−1(s) = s

1 − F̂ (s + r)

s + rF̂ (s + r)m

= s
w(s + r)

s + re−w(s+r)m
≡ g(s, m), (27)

where F̂ and w stand for the corresponding quantities without
resetting.

Following the methodology developed in the previous
sections, in particular following the steps described in
Eqs. (20)–(23), we get, for the n records distributions,

L{P (M(t1) � m1, . . . , M(tn) � mn)} = 1

s1 · · · sn
E(e−(s1+···+sn )Tm1 )E

(
n∏

k=2

e−sk (Tmk −Tm1 )

)

= 1

s1 · · · sn
exp

(
−
∫ m1

0
g(s1 + · · · + sn, m)dm

)
E(e−s2(Tm2 −Tm1 ) · · · e−sn (Tmn −Tm1 ) )

=
n∏

k=1

(
exp

[− ∫ mk

mk−1
g
(∑n

j=k s j, m
)
dm
]

sk

)
. (28)

Then, for the successive times at which the records were last reached and their current number,

L{P (M(tk ) = mk, Tmk = yk; 1 � k � n)} =
n∏

k=1

⎧⎨
⎩exp

⎡
⎣−

∫ mk

mk−1

dm g

⎛
⎝ n∑

j=k

(u j + s j ), m

⎞
⎠
⎤
⎦

× g
(
sk +∑n

j=k+1(u j + s j ), mk
) − g

(∑n
j=k+1(u j + s j ), mk

)

sk

⎫⎬
⎭. (29)

Similarly, for the n consecutive backward record times and their associated number of records,

L{P (M(tk ) = mk, Btk = yk; 1 � k � n)} =
n∏

k=1

⎧⎨
⎩exp

⎡
⎣−

∫ mk

mk−1

dm g

⎛
⎝ n∑

j=k

s j, m

⎞
⎠
⎤
⎦g
(
uk +∑n

j=k s j, mk
)− g

(∑n
j=k+1 s j, mk

)
sk + uk

⎫⎬
⎭.

(30)

Finally, for the n consecutive forward record times and their associated number of records,

L{P (M(tk ) = mk, Etk = yk; 1 � k � n) =
n∏

k=1

⎧⎨
⎩exp

⎡
⎣−

∫ mk

mk−1

g

⎛
⎝ n∑

j=k

s j, m

⎞
⎠dm

⎤
⎦

× g
(
sk +∑n

j=k+1 s j, mk
)− g

(
uk +∑n

j=k+1 s j, mk
)

sk − uk

⎫⎬
⎭. (31)

As an example, we provide in Fig. 4 the conditional dis-
tribution of the number of records M(t2) at time t2 knowing
the number of records M(t1) at time t1 for different values of
M(t1), for the resetting BM. Numerically Laplace inverting
Eq. (28) for the resetting BM, we observe that having a large
number of records at early time decreases the probability
of observing new records at later times. Indeed, if the RW
reaches a large number of records (and thus a position far

from its origin) before resetting, it will become harder for
later trajectories after reset to overcome a similar number of
records.

Additionally, from Eqs. (30) and (31) one can derive the
asymptotic distributions of Bt and Et . We note that Eq. (29)
gives the same formula as obtained in [24] for the single-
time distribution and thus Bt is asymptotically uniformly
distributed in the interval [0, t] at long times t , independently
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FIG. 4. Conditional tail distribution of M(t2) knowing that
M(t1) = 1 (blue circles) and M(t1) = 3 (orange squares) at times
t1 = 10 and t2 = 20 for the resetting BM of the parameters r = 1 and
D = 1. Black dashed lines represent the result of numerical Laplace
inversion of Eq. (28) for n = 2.

of the process. In fact, one can find a similar result for the
forward record time Et . In the limit t, y � 1/r corresponding
to s, u � r, we have a universal form for the distribution of
Et ,

L{P (Et = y)} ∼
∫ ∞

0
dm

r

r + se−w(r)m

w(r)

s − u

×
(

s

s + rew(r)m
− u

u + rew(r)m

)

=
∫ 1

0
dM

r

(r + sM )2

1

uM + r
, (32)

and by Laplace inversion,

P (Et � y) =
∫ 1

0
dM rte−Mrt e−Mry ∼ t

t + y
. (33)

This is exactly the result one expects for the time to break
the next record from a series of independent and identically
distributed random variables at discrete times (Xt ′ )t ′�0 of cu-
mulative F (x) = P (X � x):

P (Et � y)

=
∫ ∞

0
dmP (Xt+k � m; 1 � k � y)P

(
max
t ′�t

(Xt ′ ) = m
)

=
∫ ∞

0
dm tF (m)t+y−1 d

dm
F (m) = t

t + y
. (34)

Similarly to what was shown in [24] in the case of the back-
ward time, this universal result holds for the general stochastic
process [arbitrary w(s)] as it stems from the independence
between reset trajectories, as it is shown in Fig. 5.

V. SUMMARY

We have developed a general approach based on renewal
theory to derive multiple-time statistics for the number of
records in one dimension for nearest-neighbor Markovian ran-
dom walks, along with various observables associated with
the record process. The formulas obtained are compact in the

FIG. 5. Time Et until the next record-breaking event from time
t = 100 for BM (blue stars), ABM (orange circles), RTP (green
squares), and ARTP (red triangles) of resetting rate r = 1, diffusion
coefficient D = 1, T = 1, v = 1, and μ = 0.5. The asymptotic ex-
pression of Eq. (33) is shown by the black dashed line.

Laplace domain and can be easily used to gain insights into the
statistics of records. These multitime distributions provide a
complete characterization of the statistics of records. We have
demonstrated that this method can be generalized to resetting
random walks, thereby determining the complete statistics of
record observables.

APPENDIX A: FIRST-PASSAGE-TIME DISTRIBUTIONS
OF ABM AND ARTP

The FPT distribution is the key ingredient for that of the
number of records [see Eq. (3)]. For self-consistency, we pro-
vide in this Appendix the standard computations [29,42,43]
of the FPT distributions of both the ABM and the ARTP, in
discrete and continuous time.

1. Asymmetric Brownian motion

a. Discrete time

In the discrete asymmetric nearest-neighbor RW model (or
discrete ABM) on the 1D lattice, the random walker hops
to the site on its right with probability p and the one on its
left with probability 1 − p. To obtain the FPT of the random
walker to position m, we consider the backward master equa-
tion in discrete time, denoting by P(x, t ) the probability to
reach position m for the first time starting at position x < m,

P(x, t + 1) = pP(x + 1, t ) + (1 − p)P(x − 1, t ), (A1)

with boundary conditions P(m, t ) = δ(t ) and P(−∞, t ) = 0.
The record age distribution is given by P(0, t ) for m = 1. By
the discrete Laplace transform of Eq. (A1),

L{ f (t )} = f̂ (s) =
∞∑

t=0

e−st f (t ), (A2)

we obtain

esP̂(x, s) = pP̂(x + 1, s) + (1 − p)P̂(x − 1, s). (A3)
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From the boundary conditions, we deduce that

P̂(x, s) =
(

es

2(1 − p)
(1 −

√
1 − 4p(1 − p)e−2s)

)m−x

. (A4)

For m = 1 and x = 0, we deduce the record age distribution
for the discrete ABM,

F̂ (s) = es

2(1 − p)
[1 −

√
1 − 4p(1 − p)e−2s]. (A5)

b. Continuous time

In the ABM model on the 1D line, the time evolution of
the position Xt of the random walker is given by the Langevin
equation with constant external force μ (the bias),

dXt

dt
= μ + ηt , (A6)

where the stochastic process (ηt )t�0 is a Gaussian white noise,

〈ηt 〉 = 0, 〈ηtηt ′ 〉 = 2Dδ(t − t ′). (A7)

To obtain the FPT to position m of the random walker, we
consider the backward master equation in continuous time,

∂t p(x, t ) = (
D∂2

x,x + μ∂x
)
p(x, t ), (A8)

with boundary conditions p(m, t ) = δ(t ) and p(−∞, t ) = 0
such that p(x, t ) stands for the probability that the random
walker initially at position x arrived at position m > 0 for the
first time at time t . The record age distribution is given by
p(0, t ) for m = 1.

To solve Eq. (A8), we make a Laplace transformation.
The Laplace transform of a function f (t ) is defined in the
continuum setting as

L{ f (t )} = f̂ (s) ≡
∫ ∞

0
dt e−st f (t ). (A9)

Using that p(x < m, t = 0) = 0, Eq. (A8) becomes, once
Laplace transformed (in time),(

D∂2
x,x + μ∂x − s

)
p̂(x, s) = 0 (A10)

and the initial condition p̂(x = m, s) = 1. We search an expo-
nential solution of the form p̂(x, s) = e−w(s)(m−x), where w(s)
is positive [p̂(−∞, s) = 0]. This results in the equation for
w(s),

Dw(s)2 + μw(s) − s = 0, (A11)

whose positive solution is

w(s) = − μ

2D
+
√

μ2 + 4Ds

2D
. (A12)

Finally, we have the Laplace transform of the first passage
time at m starting at position x,

F̂ (s, x) ≡ p̂(x, s) = e−w(s)(m−x), (A13)

which provides the record age distribution for m = 1 (we set
a scale needed to traverse in order to make a new record at 1;
see Appendix B for details) and x = 0,

F̂ (s) = e−w(s). (A14)

Note that the discrete model gives asymptotically the contin-
uous model for p = 1+μ

2 .

2. Asymmetric run-and-tumble particle

a. Discrete time

In the discrete ARTP model on the 1D lattice, the random
walker has two states, the positive state in which it moves to
the neighboring site on its right and a negative state in which it
moves to the neighboring site on its left. At each time step, the
random walker can change its state: It goes from the positive
to the negative state with probability p+ and from the negative
to the positive state with probability p−.

To obtain the FPT of the random walker to position m, we
start from the backward master equation in discrete time,

P+(x, t + 1) = p+P+(x + 1, t ) + (1 − p+)P−(x − 1, t ),

P−(x, t + 1) = p−P−(x − 1, t ) + (1 − p−)P+(x + 1, t ),
(A15)

with boundary conditions P+(m, t ) = δ(t ) and
P+(−∞, t ) = P−(−∞, t ) = 0 such that P+(x, t ) [P−(x, t )]
stands for the probability that the random walker initially
at position x going to the right (going to the left) arrived at
position m > 0 for the first time at time t (one can only arrive
at position m > x by doing a last step to the right). The record
age distribution is given by P+(0, t ) for m = 1. We take the
discrete Laplace transform of both equations to obtain

esP̂+(x, s) = p+P̂+(x + 1, s) + (1 − p+)P̂−(x − 1, s),

esP̂−(x, s) = p−P̂−(x − 1, s) + (1 − p−)P̂+(x + 1, s).
(A16)

Then, by expressing P̂− as a function of P̂+ using the first
of Eqs. (A16) and replacing it in the second, we have an
equation solely for P̂+,

P̂−(x, s) = esP̂+(x + 1, s) − p+P̂+(x + 2, s)

1 − p+
,

p+esP̂+(x + 2, s) − [e2s − 1 + (p+ + p−)]P̂+(x + 1, s)

+ p−esP̂+(x, s) = 0. (A17)

This results in the expression for P̂+(x, s),

P̂+(x, s) =
(

1 + (−1 + p+ + p−)e−2s −
√

−4p− p+e−2s + [1 + (−1 + p− + p+)e−2s]2

2p−e−s

)m−x

, (A18)

and for x = m − 1 we deduce the record age distribution for the discrete ARTP,

F̂ (s) = 1 + (−1 + p+ + p−)e−2s −
√

−4p− p+e−2s + [1 + (−1 + p− + p+)e−2s]2

2p−e−s
. (A19)
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b. Continuous time

In the ARTP model, the random walker has two states, the
positive state in which it moves at speed v+ towards the right
side of the interval and a negative state in which it moves at
speed v− towards the left side of the interval. The random
walker goes from the positive state to the negative state at
time rate 1/2T+ and from the negative to the positive state
at rate 1/2T−. These tumbling events occur independently.
More specifically, the time evolution of the position Xt of the
random walker is given by (we denote by μ the bias and by v

the average absolute speed)

dXt

dt
= v+ − v− + σ (t )(v+ + v−)

2
= μ + σ (t )v, (A20)

where (σ (t ))t�0 is a Poisson process which switches between
values −1 and 1 with rates 1/2T+ (for +1 to −1) and 1/2T−
(for −1 to +1) such that at any time t and for infinitesimal
time step dt ,

σ (t + dt ) =
{

σ (t ) with probability 1 − dt
2Tσ (t )

−σ (t ) with probability dt
2Tσ (t )

.
(A21)

To obtain the FPT of this model to position m, we consider the
two coupled backward master equations

∂t p+(x, t ) = v+∂x p+(x, t ) + 1

2T+
[p−(x, t ) − p+(x, t )],

∂t p−(x, t ) = −v−∂x p−(x, t ) + 1

2T−
[p+(x, t ) − p−(x, t )],

(A22)

with boundary condition p+(m, t ) = δ(t ) such that p+(x, t )
[p−(x, t )] stands for the probability that the random walker
initially at position x with speed v+ (−v−) arrived at position
m > 0 for the first time at time t (one can only arrive at
position m with positive speed). The record age distribution
is given by p+(0, t ) for m = 1. We Laplace transform both
equations to obtain

sp̂+(x, s) = v+∂x p̂+(x, s) + 1

2T+
[ p̂−(x, s) − p̂+(x, s)],

sp̂−(x, s) = −v−∂x p̂−(x, s) + 1

2T−
[ p̂+(x, s) − p̂−(x, s)].

(A23)

Then, by expressing p̂−(x, s) as a function of p̂+(x, s) and its
derivatives using the first of Eqs. (A23) and replacing it in the
second, we have an equation solely for p̂+(x, s),

p̂−(x, s) = (1 + 2sT+) p̂+(x, s) − 2v+T+∂x p̂+(x, s),{
s(T− + T+ + 2sT−T+) + [T−(1 + 2sT+)v− − (1 + 2sT−)T+v+]∂x − 2T−T+v−v+∂2

x,x

}
p̂+(x, s) = 0. (A24)

We have the boundary conditions p̂+(m, s) = 1 and p̂±(−∞, s) = 0. This results in the following formula for w(s):

w(s) = 2sT+T−(v− − v+) + T−v− − T+v+ +
√

[T+v+ − T−v− − 2sT+T−(v− − v+)]2 + 8sT−T+v−v+(2sT−T+ + T− + T+)

4T−T+v−v+
.

(A25)

Because we are interested only in the case where the parti-
cle starts with positive velocity, we have the first passage at
position m starting at position x with positive speed,

F̂ (x, s) = p̂+(x, s) = e−w(s)(m−x), (A26)

and the record age distribution in the Laplace domain is ob-
tained by taking m = 1 [similarly to the ABM; see Eq. (A13)]
and x = 0,

F̂ (s) = e−w(s). (A27)

Note that the discrete model gives asymptotically the con-
tinuous model for v+ = v− = 1, p+ = 1 − 1/2T+, and p− =
1 − 1/2T−. In the main text we presented the model with
tumbling rate T = T+ = T− and with external constant force
f = μ such that the speed in each direction is v+ = v + μ

and v− = v − μ, as it is not described by the discrete ARTP
model and has attracted more attention from the physics com-
munity [17,22,54].

3. Real-time expressions

We first recall the real-time expressions of the time to
reach level m for the first time starting at position x = 0

[see (A13) and (A26)] in the case of the ABM and ARTP.
For the ABM [29],

F (m, t ) = L−1{e−w(s)m}s→t (A28)

= 1

2π i

∫ i∞

−i∞
ds est e−w(s)m (A29)

= m√
4πDt3

exp

(
− (m − μt )2

4Dt

)
(A30)

for the ARTP [17,44],

F (m, t ) = e−t/2T+δ

(
t − m

v+

)
+ mH

(
t − m

v+

)

×
exp

(− (T+v++T−v− )t+(T−−T+ )m
(v++v− )2T+T−

)
√

4T+T−(v+t − m)(v−t + m)

× I1

(√
(v+t − m)(v−t + m)

(v+ + v−)
√

T+T−

)
. (A31)
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From this we can obtain the inverse Laplace transform of
w(s)/s as

g(t ) = L−1{w(s)/s}s→t

= L−1
{

lim
m→0

(1 − e−w(s)m)/sm
}

s→t

= lim
m→0

1 − ∫ t
0 F (t ′, m)dt ′

m
= lim

m→0

∫∞
t F (t ′, m)dt ′

m
.

(A32)

For the ABM, it results in

g(t ) =
∫ ∞

t

dt ′
√

4πDt ′3 e−μ2t ′/4D, (A33)

and for the ARTP,

g(t ) =
∫ ∞

t
dt ′ exp

(− (T+v++T−v− )t ′
(v++v− )2T+T−

)
t ′√4T+T−v+v−

I1

(
t ′√v+v−

(v+ + v−)
√

T+T−

)
.

(A34)

From this we derive the inverse Laplace transform of w(s),
first for the ABM,

f (t ) = L−1{w(s)}s→t = ∂t g(t ) (A35)

= − 1√
4πDt3

exp

(
−μ2t

4D

)
, (A36)

and for the ARTP,

f (t ) = −
exp

(− (T+v++T−v− )t
(v++v− )2T+T−

)
t
√

4T+T−v+v−
I1

(
t
√

v+v−
(v+ + v−)

√
T+T−

)
.

(A37)

Finally, using the standard properties of double inverse
Laplace transforms, we have that [for y, t > 0, see Eq. (10)]

P (M(t ) = m, Bt = y) = L−1

{
e−w(s)m w(s + u)

s + u

}
s→t,u→y

(A38)

=
∫ t

0

∫ y

0
dt ′dy′L−1{e−w(s)m}s→t−t ′,u→y−y′L−1

{
w(s + u)

s + u

}
s→t ′,u→y′

(A39)

=
∫ t

0

∫ y

0
dt ′dy′F (m, t − t ′)δ(y − y′)g(t ′)δ(t ′ − y′) (A40)

= F (m, t − y)g(y) (A41)

and for the forward record time [see Eq. (12)]

P (M(t ) = m, Et = y) = L−1

{
e−w(s)m w(s) − w(u)

s − u

}
s→t,u→y

(A42)

=
∫ t

0

∫ y

0
dt ′dy′L−1{e−w(s)m}s→t−t ′,u→y−y′L−1

{
w(s) − w(u)

s − u

}
s→t ′,u→y′

, (A43)

which leads to

P (M(t ) = m, Et = y) = −
∫ t

0

∫ y

0
dt ′dy′F (m, t − t ′)δ(y − y′) f (t ′ + y′) = −

∫ t

0
F (m, t ′) f (t ′ + y)dt ′, (A44)

corresponding to Eqs. (13) and (14).

APPENDIX B: CORRESPONDENCE BETWEEN DISCRETE
AND CONTINUOUS SETTINGS

In this Appendix we provide details on the passage from
the discrete to the continuum descriptions. To this end, we
start by discretizing the 1D line with spacings 
m and we
consider directly (Xt )t�0 the continuous process, e.g., the
ABM or the ARTP. The idea is that we now define a new
record as occurring only when the continuous random walker
exceeds its previous position by 
m. Consequently, if k
records have occurred for the random walker, it precisely
indicates that it has reached position k
m but has not yet
reached (k + 1)
m. It is immediately evident that by setting

m = 1, as done in Appendix A, the number of records and

the maximum position coincide (more precisely, the integer
part of the maximum, which can be disregarded when the
maximum is large). Then the τk correspond to the times for
the continuous process having reached k
m = m to exceed
the value (k + 1)
m = m + 
m of density exactly given by
F (
m, t ) [see Eqs. (A30) and (A31) above]. This implies that
the (discretized) maximum distribution is indeed given by a
renewal formalism but with continuous record ages directly,

P (M(t ) � m) = P

⎛
⎝m/
m−1∑

k=0

τk � t

⎞
⎠, (B1)

064101-11



RÉGNIER, DOLGUSHEV, AND BÉNICHOU PHYSICAL REVIEW E 109, 064101 (2024)

from which, using the Laplace transform, we get

L{P (M(t ) � m)} = 1

s

m/
m−1∏
k=0

F̂ (
m, s) (B2)

= 1

s
exp

⎛
⎝−

m/
m−1∑
k=0

w(s)
m

⎞
⎠ (B3)

= 1

s
exp[−w(s)m]. (B4)

Note that the sum of the τk ,
∑m/
m

k=0 τk = Tm, is exactly the
time to reach position m for the continuous process (no
dependence on 
m as long as m lies on the lattice of step size

m). For the backward record time, the probability that the
maximum value M(t ) between m and m + 
m (discretization
step) occurred at time t − y = t − Bt is given exactly by the
probability that m was reached at time Tm = t − y and the
position m + 
m was not reached in the time y left (with
y � t). This implies that

L{P (Bt = y, M(t ) ∈ [m, m + 
m])}

×
∫∫

dt dy e−uy−stE(H (Tm+
m − t )H (t − y)

× δ(t − y − Tm))

= 1

s + u
E(e−s(τ0+···+τm/
m−1 )(1 − e−(s+u)τm/
m ))

= F̂ (
m, s)m/
m 1 − F̂ (
m, s + u)

s + u

∼ e−w(s)m w(s + u)

s + u

m. (B5)

Similarly for the forward record time,

L{P (Et = y, M(t ) ∈ [m, m + 
m])}

=
∫∫

dt dy e−uy−stE(δ(y + t − Tm − τm/
m)H (t − Tm))

= E

(
e−sTm

e−uτm/
m − e−sτm/
m

s − u

)

= F̂ (
m, s)m/
m F̂ (
m, u) − F̂ (
m, s)

s − u

∼ e−w(s)m w(s) − w(u)

s − u

m. (B6)

This emphasizes that all formulas given in the main text are
exact for the continuous processes by taking the discretization
(taken to 
m = 1 in the main text) to be infinitesimal.

APPENDIX C: NUMBER OF RECORDS AND FORWARD
AND BACKWARD RECORD TIMES

1. Single-time distribution

For the sake of completeness, we provide here the full
derivation of joint statistics of the number of records at
time t as well as the backward and forward record time,
(M(t ), Bt , Et ). To compute the distribution, we note that
the event {M(t ) = m, Bt = y, Et = z} is exactly the event of

reaching the mth record at time t − y and the (m + 1)th record
at time t + z. It results in the following identity:

P (M(t ) = m, Bt = y, Et = z)

= E(δ(Tm − (t − y))δ(Tm+1 − (t + z))H (t − y)). (C1)

Once we Laplace transform this equality, we get

L{P (M(t ) = m, Bt = y, Et = z)}

= E

⎛
⎝ ∞∑

t,y,z=0

e−st−uy−vzδ(Tm − (t − y))

× δ(Tm+1 − (t + z))H (t − y)

⎞
⎠

= E

(
e−sTm−vτm − e−sTm−(s+u)τm

1 − e−s−u+v

)

= F̂ (s)m F̂ (v) − F̂ (u + s)

1 − e−s−u+v

∼ e−w(s)m w(s + u) − w(v)

s + u − v
. (C2)

2. The n-time distribution

We also provide the multiple-time distribution of the num-
ber of records and backward and forward record times for
m0 = 0 < m1 < · · · < mn:

L{P (M(tk ) = mk, Btk = yk, Etk = zk; 1 � k � n)}

= E

(
n∏

k=1

∫∫∫ ∞

0
dtkdykdzke−vk zk−ukyk−sktk

× δ(tk − yk − Tmk )δ(tk + zk − Tmk+1)

)

= E

(
n∏

k=1

e−sk Tmk
e−vkτmk − e−(sk+uk )τmk

sk + uk − vk

)

=
n∏

k=1

⎧⎨
⎩exp

⎡
⎣−w

⎛
⎝ n∑

j=k

s j

⎞
⎠(mk − mk−1)

⎤
⎦

× w
(
uk +∑n

j=k s j
)− w

(
vk +∑n

j=k+1 s j
)

sk + uk − vk

⎫⎬
⎭.

(C3)

APPENDIX D: RECORDS WITH AGING

1. Resetting RW

a. Discrete setting

We define the survival probabilities from the first-passage-
time distribution at m starting at position x with (denoted
by an r index) and without resetting (see Appendixes A 1 a
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and A 2 a),

Sr (x, t ) =
∞∑

t ′=t

Pr (x, t ′), (D1)

S(x, t ) =
∞∑

t ′=t

P(x, t ′), (D2)

where Sr (x, t ) is the probability that the random walker which
resets to 0 with probability 1 − λ = 1 − e−r at every step and
starting at position x (with positive speed in the case of the
RTP) has not reached position m by time t and S(x, t ) is
the probability that the random walker without resetting and
starting at position x (with positive speed for the RTP) has
not reached position m by time t . In terms of discrete Laplace
transform, Eqs. (D1) and (D2) become

Ŝr (x, s) = 1 − P̂r (x, s)

1 − e−s
, (D3)

Ŝ(x, s) = 1 − P̂(x, s)

1 − e−s
. (D4)

Then we use the following renewal equation, which states that
the random walker under resetting starting at x has not reached
position m either without having reset or with having reset at
a given time t ′ and restarted at position 0 (with positive speed
in the case of the RTP):

Sr (x, t ) = λt S(x, t ) +
t−1∑
t ′=0

(1 − λ)λt ′
S(x, t ′)Sr (0, t − t ′ − 1).

(D5)

Once Laplace transformed, the renewal equation becomes

Ŝr (x, s) = Ŝ(x, s + r) + (1 − λ)e−sŜ(x, s + r)Ŝr (0, s).
(D6)

This results in the two equations (taking x = 0 and
x = m − 1)

Ŝr (0, s) = Ŝ(0, s + r)

1 − (1 − λ)e−sŜ(0, s + r)
, (D7)

Ŝr (m − 1, s) = Ŝ(m − 1, s + r)

×
(

1+ (1 − λ)e−s Ŝ(0, s+ r)

1− (1− λ)e−sŜ(0, s+ r)

)
.

(D8)

From Eqs. (D3) and (D4) we get the discrete Laplace trans-
form of the mth record age distribution F̂ r

m(s),

1 − F̂ r
m−1(s) = 1 − P̂r (m − 1, s)

= (1 − e−s)
1 − P̂(m − 1, s + r)

1 − e−s + e−s(1 − λ)P̂(0, s + r)
.

(D9)

Finally, using Eqs. (A4) and (A19), we deduce the Laplace
transform of the record age of a discrete resetting ARTP and
ABM,

1 − F̂ r
m−1(s) = (1 − e−s)

1 − F̂ (s + r)

1 − e−s + e−s(1 − λ)F̂ (s + r)m
.

(D10)

b. Continuous setting

Here we reproduce the steps described in [18,25]. We
define the survival probabilities from the first-passage-time
distribution at m starting at position x with (denoted by the
index r) and without resetting (see Appendixes A 1 b and
A 2 b),

Sr (x, t ) =
∫ ∞

t
F r (x, t ′)dt ′, (D11)

S(x, t ) =
∫ ∞

t
F (x, t ′)dt ′, (D12)

where Sr (x, t ) is the probability that the random walker under
resetting at 0 (with positive speed in the case of the RTP) at
rate r and starting at position x (with positive speed in the case
of the RTP) has not reached position m by time t and S(x, x) is
the probability that the random walker without resetting and
starting at position x (with positive speed for the RTP) has not
reached position m by time t . In terms of Laplace transform,
Eqs. (D11) and (D12) become

Ŝr (x, s) = 1 − F̂ r (x, s)

s
, (D13)

Ŝ(x, s) = 1 − F̂ (x, s)

s
. (D14)

Then we use the following renewal equation, which states that
the random walker under resetting starting at x has not reached
position m because either it has not reset or it has reset at a
given time t ′ and restarted at position 0 (with positive speed
in the case of the ARTP):

Sr (x, t ) = e−rt S(x, t ) +
∫ t

0
r dt ′e−rt ′

S(x, t ′)Sr (0, t − t ′).

(D15)

Once Laplace transformed, the renewal equation becomes

Ŝr (x, s) = Ŝ(x, r + s) + rŜ(x, r + s)Ŝr (0, s). (D16)

This results in the two equations (taking x = 0 and
x = m − 1)

Ŝr (0, s) = Ŝ(0, s + r)

1 − rŜ(0, s + r)
, (D17)

Ŝr (m − 1, s) = Ŝ(m − 1, s + r)

(
1 + r

Ŝ(0, s + r)

1 − rŜ(0, s + r)

)
.

(D18)

From Eqs. (D13) and (D14) we get

1 − F̂ r
m−1(s) = 1 − F̂ r (m − 1, s) = s

1 − F̂ (m − 1, s + r)

s + rF̂ (0, s + r)
.

(D19)

Finally, using the expressions (A13) and (A26), we obtain
Eq. (27),

1 − F̂ r
m−1(s) = s

1 − e−w(s+r)

s + re−w(s+r)m

∼ s
w(s + r)

s + re−w(s+r)m
≡ g(s, m). (D20)
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2. Reflecting boundary condition

We consider random walkers with a reflecting boundary condition at the initial position. In this case, the record age τm depends
on m as the reflecting boundary gets further and further away from the record position. For the simpler symmetric case where
μ = 0, one can obtain the mth record age by solving Eqs. (A8) and (A22) on the domain [−m, m] (using mirror symmetry at
x = 0), starting at position m − 1 and absorbing boundary conditions at both ends of the interval. This results in the expressions

p̂(x, s) = sinh[
√

s/D(2m − x)] + sinh(
√

s/Dx)

sinh(
√

s/D2m)
(BM), (D21)

p̂+(x, s) =
sT sinh

(
x
√

s(s+ 1
T )

v

)
+ √

sT (sT + 1) cosh
(

x
√

s(s+ 1
T )

v

)
sT sinh

(
m
√

s(s+ 1
T )

v

)
+ √

sT (sT + 1) cosh
(

m
√

s(s+ 1
T )

v

) (RTP), (D22)

which provide the expressions of F̂m−1(s) = p̂(s, m − 1) and g(s, m),

g(s, m) =
√

s/D tanh

(√
s

D
m

)
(BM), (D23)

g(s, m) =

√
s
(
s + 1

T

)[√
sT (sT + 1) sinh

(
m
√

s(s+ 1
T )

v

)
+ sT cosh

(
m
√

s(s+ 1
T )

v

)]
v
[
sT sinh

(
m
√

s(s+ 1
T )

v

)
+ √

sT (sT + 1) cosh
(

m
√

s(s+ 1
T )

v

)] (RTP). (D24)
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