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The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of weakly interacting
solitons in the framework of Korteweg–de Vries (KdV) equation. In this theoretical construction of a diluted
(rarefied) soliton gas, solitons with random amplitude and phase parameters are almost nonoverlapping. More
recently, the concept has been extended to dense gases in which solitons strongly and continuously interact.
The notion of soliton gas is inherently associated with integrable wave systems described by nonlinear partial
differential equations like the KdV equation or the one-dimensional nonlinear Schrödinger equation that can be
solved using the inverse scattering transform. Over the last few years, the field of soliton gases has received
a rapidly growing interest from both the theoretical and experimental points of view. In particular, it has
been realized that the soliton gas dynamics underlies some fundamental nonlinear wave phenomena such as
spontaneous modulation instability and the formation of rogue waves. The recently discovered deep connections
of soliton gas theory with generalized hydrodynamics have broadened the field and opened new fundamental
questions related to the soliton gas statistics and thermodynamics. We review the main recent theoretical and
experimental results in the field of soliton gas. The key conceptual tools of the field, such as the inverse scattering
transform, the thermodynamic limit of finite-gap potentials, and generalized Gibbs ensembles are introduced and
various open questions and future challenges are discussed.
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I. INTRODUCTION

Random nonlinear waves in dispersive media have been
the subject of intense research in nonlinear physics for more
than half a century, most notably in the contexts of water
wave dynamics and nonlinear optics. A significant portion
of the work in this area has been centered around wave
turbulence—the theory of out-of-equilibrium random weakly
nonlinear dispersive waves in nonintegrable systems [1,2].
One of the most important results of the wave turbulence the-
ory is the analytical determination in Ref. [3] of the power-law
Fourier spectra analogous to the Kolmogorov spectra describ-
ing energy flux through scales in dissipative hydrodynamic
turbulence.

More recently, a new theme in turbulence theory has
emerged in connection with the dynamics of strongly non-
linear random waves described by integrable systems such
as the Korteweg–de Vries (KdV) and one-dimensional (1D)
nonlinear Schrödinger (NLS) equations. This kind of random
wave motion in nonlinear conservative systems, dubbed inte-
grable turbulence [4], has attracted significant attention from
both the fundamental and applied perspectives. The interest
in integrable turbulence is motivated by the inherent random-
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ness of many real-life systems (due to random initial and
boundary conditions or to complex interaction mechanisms)
even though the underlying physical models may be amenable
to the well-established mathematical techniques of integrable
systems theory such as the inverse scattering transform or
finite-gap theory [5,6].

The integrable turbulence framework is particularly per-
tinent to the description of modulationally unstable systems
which can exhibit highly complex nonlinear behaviors that
can be adequately described in terms of the turbulence theory
concepts such as probability distribution functions, ensemble
averages, Fourier spectra, etc. [7–12]. We stress that the term
“turbulence” in this context is understood as complex spa-
tiotemporal dynamics that require a probabilistic description
and are not related to the energy cascades through scales,
the prime feature of strong hydrodynamic and weak wave
turbulence.

The main tool for the analysis of integrable nonlinear
dispersive partial differential equations (PDEs) is the inverse
scattering transform (IST) [13] which is based on the reformu-
lation of a nonlinear PDE as a compatibility condition of two
linear problems (the so-called Lax pair): a stationary spectral
(scattering) problem and an evolution problem—for the same
auxiliary function. Within the classical IST setting formulated
for the wave fields decaying sufficiently rapidly as |x| → ∞,
the scattering spectrum consists of two components: discrete
and continuous, corresponding to two contrasting types of
the wave motion: solitary waves (solitons) and dispersive
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radiation, respectively. Importantly, integrable evolution pre-
serves the IST spectrum in time.

Localized nonlinear solitary waves, termed solitons in the
context of integrable systems, are a ubiquitous and fundamen-
tal feature of nonlinear dispersive wave propagation. They
exhibit particle-like properties such as elastic, pairwise inter-
actions accompanied by certain phase (position) shifts [14]
and have been extensively studied both theoretically [5,15,16]
and experimentally [17]. The particle-like properties of soli-
tons suggest some natural questions pertaining to the realm of
statistical mechanics, e.g., one can consider a soliton gas as
an infinite ensemble of interacting solitons characterized by
random amplitude and position distributions. Then, given the
properties of the elementary, “microscopic,” soliton interac-
tions the next natural step is the determination of the emergent
hydrodynamic, or kinetic, properties of a soliton gas. This
consideration inspired the pioneering paper by V.E. Zakharov
in 1971 [18], where an approximate kinetic equation for KdV
solitons was introduced by evaluating the effective adjustment
to the soliton’s velocity in a rarefied gas due to the accu-
mulation of the phase shifts acquired in individual soliton
collisions. Despite potentially opening a new direction in the
nonlinear wave research, the original Zakharov kinetic equa-
tion did not happen to attract much attention for more than
three decades. The apparent reason is that, due to the inherent
low-density assumption the (small) adjustment of the average
tracer soliton velocity in the gas was the only tangible effect
predicted by the original kinetic theory. The renewed interest
in the theory of soliton gases came in the 2000s with the pa-
pers by El and Kamchatnov [19,20], where the generalization
of Zakharov’s kinetic equation to the case of dense soliton
gases (KdV and NLS) was derived suggesting some nontrivial
mathematical and physical implications [21–23] which only
very recently came to fruition [24–34].

Early attempts to generate and observe soliton gases have
been made in optical fiber experiments performed at the end
of the 1990s [35–37]. The soliton gas was generated by the
synchronous injection of laser pulses inside a passive ring
cavity. Due to complexity of the dynamics of the ring res-
onator the nonlinear wave field observed in this fiber system
included many “nonintegrable” features ranging from purely
temporal chaos to spatiotemporal chaos or turbulence. More
recently, analyzing ocean waves recordings, Costa et al. [38]
have reported the observation of random solitary waves on
shallow water that have been interpreted as a KdV soliton
gas. One year later, large disordered ensembles of colliding
KdV-like solitons have been observed on the surface of a
water cylinder deposited on a heated channel and levitating
on its own generated vapor film owing to the Leidenfrost
effect [39]. There have been many other publications report-
ing observations of “stochastic” soliton ensembles in various
physical systems including shallow-water waves [40,41], op-
tical fibers [42], photofractive crystals [43], and Bose-Einstein
condensates [44]. In this regard, what kind of insight into
physics and mathematics of nonlinear wave phenomena can
the “integrable” soliton gas theory provide? First of all, we
stress the conceptual, paradigmatic, differences between clas-
sical (nonintegrable) and soliton (integrable) gases. Due to
the presence of an infinite number of conserved quantities,
integrable systems do not reach the thermal equilibrium state

characterized by the so-called Rayleigh-Jeans distribution of
modes (equipartition of energy). As a result, the statistical
properties of soliton gases are drastically different compared
with the properties of classical gases whose particle inter-
actions are nonelastic. Specifically, instead of the relaxation
to the classical Gibbs ensembles, soliton gases exhibit local
nonthermal stationary states, the so-called generalized Gibbs
ensembles, which play a fundamental role in the hydrody-
namic theory of many-body quantum and classical integrable
systems, dubbed generalized hydrodynamics [45,46]. Addi-
tionally, the dual particle-wave nature of solitons implies that
the coarse-grained, hydrodynamic description of soliton gas
should be complemented by the characterization of the associ-
ated nonlinear turbulent wave field in terms of the probability
density function, power spectrum, autocorrelation, etc. It has
transpired recently that soliton gas dynamics are instrumen-
tal in the understanding of such important nonlinear wave
phenomena as spontaneous modulation instability and the
rogue wave formation in one-dimensional wave propagation
[34,47,48]. Moreover, it has been shown that such classi-
cal objects and phenomena of dispersive hydrodynamics as
Whitham modulation equations [49], rarefaction and disper-
sive shock waves [50] and soliton-mean-field interactions [51]
are naturally embedded in the soliton gas theory [30,52,53].
Soliton gases thus provide a conceptual bridge between the
major areas of dispersive and generalized hydrodynamics, en-
riching both disciplines with complementary theoretical and
experimental perspectives.

Returning to the question of the practical (numerical or
experimental) realization of soliton gases, one can distinguish
two basic mechanisms of the “spontaneous,” uncontrollable
generation of a soliton gas. One mechanism involves the
process of soliton fission, where statistical soliton ensembles
emerge as the asymptotic outcome of long-time evolution
of the so-called “partially coherent waves,” which can be
viewed as collections of randomly distributed broad pulses,
see Fig. 1 and Refs. [12,54,55]. Alternatively, soliton en-
sembles can be initially generated from a nonrandom (e.g.,
periodic) signal and then undergo effective randomization
due to elastic reflections from the boundaries and subse-
quent multiple collisions, see Ref. [56] for the example of
the soliton gas generation in a shallow-water wave tank.
The second mechanism of the soliton gas generation is re-
lated to the already-mentioned phenomenon of modulation
instability, where the basic coherent nonlinear mode of an
unstable system– the plane wave—is subjected to a ran-
dom perturbation (a noise), resulting in the development of
large-amplitude small-scale fluctuations of the wave field and
the establishment at t → ∞ of a stationary integrable tur-
bulence [7]. It was shown in Ref. [47] that for the wave
systems described by the focusing nonlinear Schrödinger
(fNLS) equation such integrable turbulence exhibits the
properties of a dense bound-state (nonpropagating) soliton
gas.

Soliton gas can also be synthesized in a controllable man-
ner directly, e.g., by programming a water tank wavemaker
according to the IST-prescribed random multisoliton solution
of the relevant integrable equation, see Ref. [57].

The central object in the soliton gas theory is the density
of states (DOS)—the function describing the distribution of
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FIG. 1. Emergence of soliton gas in the long-time evolution of a
partially coherent wave ψ (x, t ) in the focusing NLS equation [Eq. (6)
with σ = 1]. (a) Intensity |ψ (x, t = 50)|2. (b) Spatiotemporal
dynamics|ψ (x, t )|2. (c) Intensity |ψ (x, t = 0)|2 (initial condition).

solitons with respect to the spectral parameter and the posi-
tions of the solitons’ centers. When soliton gas is uniform (i.e.,
in a macroscopically equilibrium state) the DOS is stationary
and space-independent. In a nonuniform (nonequilibrium) gas
the spatiotemporal evolution of the DOS on a large (Eulerian)
scale is described by the continuity equation that follows from
the isospectrality of integrable dynamics.

Generally, DOS represents the fundamental object in the
spectral theory of random linear operators, see, e.g., the clas-
sical monographs [58,59]. In the context of one-dimensional
integrable wave equations associated with linear spectral
problems within the IST framework there has been a large
body of work on the analysis of the IST spectra of random
KdV and NLS solutions, see, e.g., Refs. [60–62] and ref-
erences therein. From an applied viewpoint such solutions
correspond to the propagation of stochastic signals through
a nonlinear dispersive medium, e.g., in fiber optics, see
Refs. [63,64]. In the development of soliton gas theory one
adopts the opposite, inverse problem, perspective by first in-
troducing a solitonic spectral DOS and then performing the
characterization of the associated nonlinear turbulent wave
field.

In the original, rarefied soliton gas, construction by
Zakharov [18] solitons are treated as isolated point-like
quasiparticles which are subject to infrequent, short-range
interactions accompanied by well-defined phase-shifts. In
contrast, in a dense soliton gas the solitons exhibit significant
overlap and, as a result, are continuously involved in a strong
nonlinear interaction with each other. It is clear that, in a dense
gas the particle interpretation of individual solitons becomes
less transparent and the wave aspect of the collective soliton
dynamics comes to the fore. Indeed, a consistent generaliza-
tion of Zakharov’s kinetic equation for KdV solitons to the

case of a dense soliton gas has been achieved in Ref. [19] in
the framework of the nonlinear wave modulation (Whitham)
theory [49]. It was proposed in Ref. [19] that the KdV soliton
gas can be modeled by the thermodynamic type solitonic limit
of the multiphase, finite-gap KdV solutions and their modula-
tions [65] (these solutions represent nontrivial generalization
of solitons in problems with periodic boundary conditions).
The resulting spectral kinetic equation has the form of a
nonlinear integro-differential equation consisting of the conti-
nuity equation for the DOS [Eq. (15)] and the linear integral
equation of state (16) relating the effective, average velocity
of the “tracer” soliton in the gas with its DOS. The structure
of the kinetic equation derived in Ref. [19] has motivated a
fundamental conjecture that generally, in a dense gas, the net
effect of soliton interactions can be formally evaluated using
the same phase-shift argument that was used in the original
rarefied gas theory [18]. This conjecture, termed the collision
rate ansatz, has enabled an effective phenomenological the-
ory of a dense soliton gas for the fNLS equation [20] and
more recently, for the defocusing NLS and integrable shallow
water waves equations supporting bidirectional soliton propa-
gation [26]. The phenomenological soliton gas theory for the
fNLS equation proposed in Ref. [20] has been analytically
confirmed and substantially extended in Ref. [24] within the
framework of the thermodynamic limit of spectral finite-gap
solutions of the fNLS equation and their modulations. This
latter work has revealed a number of new soliton gas phenom-
ena due to a very different structure of the spectral phase space
of the fNLS equation compared with the KdV equation. In
particular, the generalization of soliton gas, termed a breather
gas, was introduced by considering a special family of fNLS
solitonic solutions on a nonzero unstable background [24,66].
Another peculiar type of soliton gas, termed in Ref. [24]
a soliton condensate, can be viewed as the critically dense
ensemble of solitons constrained by a given spectral domain.
Properties of soliton condensates for the KdV equation and
their relation to the fundamental coherent structures in disper-
sive hydrodynamics such as rarefaction and dispersive shock
waves were investigated in Ref. [30].

Apart from the above line of research on soliton gases
inspired by the Zakharov’s 1971 work and summarized
in the recent review [25] there have been many other
developments—theoretical, numerical and experimental—
exploring various aspects of soliton gas and soliton turbulence
dynamics in both integrable and nonintegrable classical wave
systems (see, e.g., Refs. [35,40,42,43,67–70]). In particular,
recent numerical results [48,71] suggest that the soliton gas
theory could be instrumental for the development of the statis-
tical description of the of rogue wave formation. Additionally,
soliton gases have been recently attracting a growing interest
from the mathematical physics community. Various nontrivial
algebraic and geometric properties of the kinetic equation for
soliton gas were studied in Refs. [21,28,29,31,72,73]. Beyond
the hydrodynamic, Euler scale, description, recent rigorous
studies [52,74] were devoted to the construction of asymp-
totic solutions of the KdV and modified KdV equations,
respectively, describing a special class of “regular” or “de-
terministic” soliton gases within the framework of primitive
potentials [75], via the consideration of N-soliton solutions in
the limit N → ∞. These special soliton gases correspond to
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soliton condensates in the finite-gap approach to the soliton
gas description [30].

Finally we note the recent major developments in the
already mentioned closely related area of generalized hy-
drodynamics (GHD) (see Refs. [45,46,76,77] and references
therein), where the equations analogous to those arising in the
spectral kinetic theory of soliton gas became pivotal for the
understanding of large-scale, emergent hydrodynamic proper-
ties of integrable quantum and classical many-body systems.
The relation between spectral theory of KdV soliton gas and
the GHD of KdV solitons has been recently established in
Ref. [78] which enabled the formulation of the thermody-
namics (free energy, entropy, temperature) of the KdV soliton
gas. More generally, GHD provides an appropriate theoretical
framework for the formulation of statistical mechanics of soli-
ton gases via the fundamental notions of the thermodynamic
Bethe ansatz and the generalized Gibbs ensemble.

The goal of this perspective article is to present the state
of the art in the modern theoretical and experimental soliton
gas research, highlighting the connections with other areas of
nonlinear physics and mathematics and outlining the avenues
for future investigations.

The structure of the article is as follows: In Sec. II we
introduce the concept of soliton gas, from rarefied to dense,
and present a straightforward phenomenological approach to
the construction of the spectral kinetic equation for integrable
systems with known two-soliton interactions. In Sec. III we
proceed with outlining the results of the spectral theory of
soliton gas based on the thermodynamic limit of finite-gap
potentials and their modulations for the KdV and fNLS equa-
tions. In Sec. IV, we summarize the basic concept of IST
and the recent progress allowing the numerical computation
of N-soliton solutions with N large. In Sec. V, we review the
experimental results on soliton gases. In Sec. VI, we show
how soliton gas theory can be used to understand and predict
integrable turbulence phenomena. In Sec. VII we review the
key results of GHD and their links with soliton gases. Finally,
in Sec. VIII, we review fundamental open questions and per-
spectives of this field of research.

II. THE CONCEPT OF SOLITON GAS

As mentioned in the Introduction, a soliton gas (SG) can
be informally defined as an infinite ensemble of interacting
solitons characterized by random amplitude and phase (po-
sition) distributions. Looking more closely at this intuitive
concept, however, raises many questions, both conceptual and
technical. In fact, at the moment there is no conventionally
accepted rigorous mathematical definition of SG as a (gen-
uine or probabilistic) solution to an integrable PDE, instead,
we have several physics- or applied-mathematics-inspired SG
models that focus on particular (wave vs particle) properties of
solitons as the elementary SG constituents. The fact that these
models provide consistent results that also agree with both
direct numerical simulations of the corresponding integrable
PDEs and physical experiments lends some confidence in
their validity and also provides a strong motivation towards
reconciliation of the existing models and the development of
a comprehensive mathematical theory of SGs.

A. Solitons in integrable systems

We first outline the basic properties of solitons using the
KdV equation as a prototypical example. We consider the
KdV equation in the form

ut + 6uux + uxxx = 0. (1)

Equation (1) belongs to the class of completely integrable
equations and, for a broad class of initial conditions, its inte-
grability is realized via the inverse scattering transform (IST)
method [13] sometimes called a nonlinear Fourier transform.
The inverse scattering theory associates a single soliton solu-
tion of the KdV equation with a point of discrete spectrum
λ = λ1 < 0 of the Schrödinger operator

L = −∂2
xx − u(x, t ). (2)

Assuming u → 0 as x → ±∞, the KdV soliton solution cor-
responding to the eigenvalue λ1 = −η2

1, η1 > 0 is given by

us
(
x, t ; η1, x0

1

) = 2η2
1sech2[η1

(
x − 4η2

1t − x0
1

)]
, (3)

where 2η2
1 is the soliton amplitude, 4η2

1 its speed, and x0
1 its

initial position or “phase.” Note that soliton has finite width
≈1/η1, which affects the notion of the interaction range,
particularly for small-amplitude solitons. In what follows we
refer to η as a spectral parameter with the understanding that
η = √−λ. Along with the simplest single-soliton solution
(3), the KdV equation supports N-soliton solutions uN (x, t )
characterized by N discrete spectral parameters 0 < ηN <

ηN−1 < · · · < η1 and the set of the so-called norming con-
stants that could be interpreted in terms of the initial positions
of solitons—the analogs of {x0

i |i = 1, . . . , N} in (3) (note that
the actual position of a soliton within the N-soliton solu-
tion depends nontrivially on all norming constants). Thus,
N-soliton solution can be viewed as a nonlinear superpo-
sition of N single-soliton solutions, the notion supported
by the asymptotic behavior at t → ±∞, when uN (x, t ) as-
sumes the form of rank-ordered soliton trains, uN (x, t ) −−−−→

t→±∞∑N
i us(x, t ; ηi, x±

i ), with appropriately chosen phases x±
i de-

pending on the configuration at t = 0, see Refs. [5,15,79].
It should be stressed that general solutions to the KdV

equation exhibit, along with solitons, a dispersive radiation
component corresponding to the continuous spectrum of the
Schrödinger operator (2). However, the soliton gas construc-
tion considered here involves only discrete spectrum.

The integrable structure of the KdV equation has profound
implications for the dynamics of soliton interactions:

(1) The KdV evolution preserves the IST spectrum, ∂tη j =
0, implying that soliton collisions are “elastic” i.e., solitons
remain unchanged [retaining their amplitude, speed and the
waveform (3)] upon interactions. In other words, the solution
exhibiting N solitons at t → −∞ will exhibit exactly the
same N solitons (modulo their phases) at t → +∞.

(2) The collision of two solitons with spectral parameters
ηi and η j , i �= j results in the asymptotic shifts of their posi-
tions at t → +∞ relative to the respective free propagation
trajectories from t → −∞. These position shifts correspond
to the phase shifts of the discrete spectrum norming constants
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and are given by

�i j ≡ �(ηi, η j ) = sgn(ηi − η j )

ηi
ln

∣∣∣∣ηi + η j

ηi − η j

∣∣∣∣, (4)

so that the taller soliton acquires shift forward and the smaller
one—shift backwards.

(3) Solitons interact pairwise so that the resulting phase
shift �i of a given soliton with spectral parameter ηi after its
interaction with M solitons with parameters η j , j �= i, is equal
to the sum of the individual phase shifts,

�i =
M∑

j=1, j �=i

�i j . (5)

Thus the interaction of any N solitons can be factorized, with
respect to the phase shifts, into superposition of two-soliton
interactions, i.e., multiparticle effects are absent.

It is important to stress that the collision phase shifts
are the far-field effects. Mathematically they are the arti-
facts of the asymptotic representation of the exact two-soliton
solution of the KdV equation as a sum of two indi-
vidual solitons: u2(x, t ; η1, η2) � us(x + �12, t ; η1) + us(x +
�21, t ; η2), which is only valid if solitons are sufficiently sep-
arated (the long-time asymptotics). The interaction of solitons
is a complex nonlinear process [80] and the resulting wave
field u(x, t ) in the interaction region cannot be represented
as a superposition of the phase-shifted one-soliton solutions.
We note that the above properties of soliton collisions (the
preservation of soliton parameters and pairwise phase shifts)
are not exclusive to KdV but are generic features of other
integrable systems supporting soliton propagation.

For the NLS equation

iψt + ψxx + 2σ |ψ |2ψ = 0, ψ ∈ C, (6)

in the focusing regime, σ = +1, the single-soliton solution is
characterized by a discrete complex eigenvalue λ1 = a + ib
and c.c., of the linear scattering operator called the Zakharov-
Shabat operator [81], the focusing NLS (fNLS) analog of the
Schrödinger operator (2), see Sec. IV A. The fNLS soliton is
given by

ψs(x, t ) = 2b
e−2i[ax+2(a2−b2 )t]+iφ0

cosh[2b(x + 4at − x0)]
, (7)

where x0 is the initial position of the soliton and φ0 the initial
phase. One can see that the fNLS soliton represents a localized
wave packet with the envelope propagating with the group
velocity cg = −4a = −4Reλ1 and the carrier wave having
the phase velocity cp = 2(b2 − a2)/a = −2Re(λ2

1)/Reλ1. In
contrast with the KdV equation, the amplitude and velocity of
the fNLS soliton are two independent parameters (as well as
the position and phase).

Similar to other integrable models, solitons of the fNLS
equation interact pairwise and experience position and phase
shifts upon the interaction (note that for fNLS solitons the
position and phase shifts are independent quantities). Unlike
the KdV equation, the fNLS solitons are bidirectional but the
position shifts in the overtaking and head-on soliton collisions
are given by the same expression,

�(λ,μ) = sgn[Re(μ − λ)]

Imλ
ln

∣∣∣∣μ − λ∗

μ − λ

∣∣∣∣ (8)

(the associated phase shift expression can be found elsewhere,
see, e.g., Ref. [81]). In some other bidirectional integrable
systems such as the Kaup-Boussinesq equations describing
shallow water waves and the resonant NLS equation having
applications in magnetohydrodynamics of cold collisionless
plasma the soliton collisions are anisotropic, i.e., the head-
on and overtaking position shifts are described by different
expressions, see Ref. [26].

B. Soliton gas: Phenomenological model

1. Rarefied soliton gas

Inspired by the historical Zakharov 1971 paper [18] we
first introduce SG phenomenologically as an infinite random
ensemble of well-separated KdV solitons distributed on R
with some nonzero spatial density α � 1. The solitons in such
a gas are essentially considered as freely moving particles
“dressed” with individual rapidly decaying wave fields (3) and
involved in short-range pairwise interactions accompanied by
the phase shifts (4). It turns out that this simple “flea-gas”
model exhibits some nontrivial emergent, macroscopic fea-
tures. To model a homogeneous rarefied SG on R we first
introduce N-soliton ensemble as an approximate random KdV
solution in the form of a “stochastic soliton train,” a sum of
N � 1 well-separated solitons

UN
(
x, t ; {ηi},

{
x0

i

})
:=

N∑
i=1

2η2
i sech2

[
ηi
(
x − 4η2

i t − x0
i

)]
(9)

satisfying the periodicity condition UN (x + L, t ) = UN (x, t ),
where L ∝ N , and equipped with certain probability distribu-
tions for the spectral parameters η j and the soliton positions
x j = x0

j + 4η2
j t , j = 1, . . . , N as specified below. (i) Let the

soliton spectral parameters 0 < ηN < ηN−1 < · · · < η1 in (9)
be the N values of the continuous random variable η dis-
tributed on a fixed, simply connected interval 
 ∈ R+ with
smooth density φ(η) > 0 defined via

N → ∞ : η j+1 − η j ∼ 1

φ(η j )N
, (10)

so that
∫



φ(η)dη = 1. Hence φ(η) is the probability density
for η ∈ 
. (ii) Let {x0

j }N
j=1 be N independent random values

each uniformly distributed on the period [0, L], so that the
spatial density of solitons (irrespective of the amplitude) is
given by α = N/L. (iii) For the rarefied ensemble approx-
imation to be valid we require that α � η0, where η0 is
the typical value of the spectral parameter of the solitons
in (9). Additionally we assume that the lower boundary of
the spectral interval 
 is located not too close to the origin
so that one can exclude the possibility of the presence of
small-amplitude, wide, solitons. We propose that a homoge-
neous rarefied SG can be approximated on any sufficiently
large interval of space I (x0, L) = [x0 − L/2, x0 + L/2] by N-
soliton ensemble (9) with given φ(η) and α = N/L. We note
that, as N → ∞, the classical result from the ergodic theory
of ideal gas (see, e.g., Ref. [82]) implies that the uniform
measure on I (x0, L) for the random initial soliton positions
x0

i transforms under the above (thermodynamic) limit into the
invariant Poisson measure for xi = x0

i + 4η2
i t on R [i.e., the
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probability of finding n solitons in the space interval � ⊂ R
at any t is given by P�(n, α) = e−α|�|(α|�|)n/n!]. Thus we
arrive at the model of a rarefied soliton gas as an infinite
sequence of soliton pulses on R, denoted U∞(x, t ; {ηi}, {xi

0}),
with independent random parameters {ηi} and {xi

0} distributed
according to the probability measures φ(η) and P�(n, α) on 


and R, respectively. Due to the small spatial density α � η0,
most of the individual solitons in a rarefied gas overlap only
in the regions of their exponential tails, except for the rare
events of soliton collisions. Thus, each realization of the rar-
efied SG U∞ represents an approximate solution of the KdV
Eq. (1) almost everywhere on R. We supply the described
phenomenological model with the “scattering shifts” (4) in
two-soliton collisions and explore the emergent large-scale
kinetics, or hydrodynamics, of such a SG. We now introduce
the key aggregated spectral characteristic of SG—the density
of states (DOS) defined as the number of solitons per unit
interval of the spectrum η and unit interval of space (i.e., the
density of “particles” in the spectral phase space S = 
 × R).
In the above model of rarefied SG the DOS is given by

f (η) = αφ(η) > 0. (11)

We call (11) the phenomenological DOS. We note that gener-
ally the spatial density α can depend on the spectral parameter,
α = α̃(η) (see Sec. III where SGs are introduced in a more
general mathematical setting of finite-gap solutions), but the
simplified phenomenological definition (11) with α = const
is consistent with the way SGs are usually realized in practice
(numerically or experimentally) via appropriately configured
N-soliton ensembles, see Secs. IV and V. Importantly, for a
homogeneous (equilibrium) SG the DOS does not depend on
space and time. As a matter of fact, for a given DOS the spatial
density of a SG (the total number of solitons per unit length
irrespective of the amplitude) is evaluated by integrating the
DOS over 
:

α =
∫




f (η)dη. (12)

In a rarefied gas with α � η0 and in the absence of small-
amplitude solitons the soliton interactions can be viewed as
short-range (the width of the typical dominant interaction
region is much less than the “free path” between soliton
collisions). Then the total spatial shift of a soliton with spec-
tral parameter η (we call it an η soliton) accumulated over
a sufficiently large time interval dt , due to the interactions
with “μ solitons” having spectral parameters μ ∈ 
, μ �= η,
is approximately evaluated as

�η ≈
∫




[�(η,μ)|s0(η) − s0(μ)| f (μ)dμ]dt, (13)

where s0(η) is the speed of an isolated, noninteracting, η

soliton. It is assumed in (13) that in a rarefied gas the collision
rate is at leading order defined by the free soliton velocities.
For the KdV equation s0(η) = 4η2 and �(η,μ) is given by
Eq. (4). Then the path covered by the η soliton over the
time interval dt is given by s0(η)dt + �η and so the effective
(average) velocity s(η) of a soliton in a KdV soliton gas is

FIG. 2. Comparison for the propagation of a free soliton with
the spectral parameter η in a void (black dashed line) with the
propagation of the trial soliton with the same spectral parameter (red
solid line) through a rarefied soliton gas with the DOS supported on a
narrow spectral interval around some η0 < η (direct KdV simulations
from Ref. [22]). One can see that the trial soliton propagates faster
in the gas due to the interactions with smaller solitons. Reproduced
with permission

given by [18]

s(η) ≈ 4η2 + 1

η

∫



ln

∣∣∣∣η + μ

η − μ

∣∣∣∣ f (μ)[4η2 − 4μ2]dμ. (14)

Note that the value of η can be either inside or outside 


distinguishing between the notions of the “tracer” (η ∈ 
)
and the “trial” (η /∈ 
) soliton. See Fig. 2 for the numerical
simulations illustrating the effect of soliton interactions on
the effective velocity of a trial soliton propagating through a
soliton gas.

For a weakly nonhomogeneous (out of equilibrium) SG
f (η) → f (η; x, t ), s(η) → s(η; x, t ), where (x, t ) variations
of f and s occur on a macroscopic “Euler” scale (i.e., x
and t are slow variables here). More precisely, there are
three spatiotemporal scales involved in weakly nonhomo-
geneous SG dynamics: (i) the microscopic scale ε ∼ η−1

0
associated with the KdV field variations within individual
solitons; (ii) mesoscopic scale δ involving large numbers of
solitons (i.e., δ � α−1 � ε for rarefied gas) but characterized
by an approximately x, t-independent DOS; and (iii) macro-
scopic (Euler) scale γ ∼ | f / fx| ∼ | f / ft | � δ � ε at which
appreciable variations of f (η) occur. We note that this scale
separation is at heart of GHD, where the mesoscopic scale is
associated with the notion of “fluid cells,” where the entropy
is locally maximized with respect to the infinite number of
conserved quantities [45,76], see Sec. VII. Now, isospectrality
of the KdV evolution within the IST framework implies the
continuity equation (Euler-scale variations) for the spectral
phase-space density (the DOS),

∂t f + ∂x(s f ) = 0, (15)

which, together with (14), provides the spectral kinetic de-
scription of a rarefied KdV soliton gas. Equation (15) can
be viewed as a modulation equation for SG. Indeed, there
is a deep connection between the SG kinetic theory and
the Whitham modulation theory for nonlinear multiperiodic
waves [49,65], see Sec. III. Solution f (η; x, t ) of the kinetic
Eqs. (15), (14) describes the evolution of the DOS and, via
Eq. (12), the associated evolution of the Poisson probability
measure P�(n, α) for the soliton positions in rarefied SG
via the density parameter α(x, t ) (assuming that the Poisson
statistics remains valid in the weakly interacting gas at the
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FIG. 3. Typical realizations of rarefied (left) vs dense (right)
KdV soliton gases with the same spectral density φ(η) =
η/(1 − η2)1/2 but different spatial densities: α � 0.1 (left) and α �
0.3 (right). (See Ref. [30] for the algorithm of the numerical synthesis
of dense KdV SG used to produce this figure.)

mesoscopic scale). Furthermore, one can evaluate by (14)
the average (“effective”) velocity s(η; x, t ) of a trial soliton
propagating through such a weakly nonuniform rarefied SG.
The explicit representation of the SG wave field as a sum of
the soliton pulses enables the evaluation of the KdV conserved
quantities in terms of the spectral DOS moments (such expres-
sions will be presented later in Sec. II C for the general case of
a dense gas). One, however, should keep in mind that solutions
to the approximate kinetic Eqs. (15) and (14) only make sense
as long as the interaction term in the velocity expression (14)
is small. In other words, the rarefied gas theory only allows
for the evaluation of small corrections to the parameters of an
“ideal” gas of noninteracting solitons, see Ref. [83].

2. Dense soliton gas

If the KdV SG is sufficiently dense, the simple heuristic
construction of the previous section based on the assumption
of short-range interactions between isolated solitons compos-
ing the gas becomes invalid as solitons in a dense gas strongly
overlap and, hence, are involved in a continual nonlinear inter-
action so that the corresponding KdV solution can nowhere be
represented as a linear superposition of individual solitons as
in (9), cf. Fig. 3 left and right. In particular, the approximation
(13) for the total phase shift based on the free soliton velocities
ceases to be valid.

A natural way to approach the mathematical construc-
tion of a dense SG would be to consider N-soliton KdV
solutions in the limit N → ∞. Establishing such a limit,
however represents a nontrivial mathematical problem even in
a deterministic setting. We mention recent works [52,74,84]
which use the Riemann-Hilbert problem techniques to con-
struct special classes of infinite-soliton solutions for KdV,
mKdV, and fNLS equations. These (deterministic) approaches
hold promise for an extension to a random setting and the
construction of a rigorous probabilistic model for SG (see
also Refs. [62,85] for other promising directions). At the same
time, it is clear that any practical (numerical or experimental)
realization of soliton gas can only involve a finite number
of solitons so we first attempt to define dense soliton gas
phenomenologically, as a natural extension of the rarefied
SG model in the previous section based on the properties
of N-soliton solutions. To this end we assume that dense
homogeneous SG can be approximated on any sufficiently
large interval I (x0, L) = [x0 − L/2, x0 + L/2], L � 1 by a
dense N-soliton ensemble by which we imply an ensemble

of all exact N-soliton KdV solutions uN (x, t ) localized on
I (x0, L) (e.g., exponentially decaying outside of I) with N ∝
L � 1 and characterized by a given spectral density φ(η) for
η ∈ 
 defined by (10) and the spatial density α = N/L (the
assumption of the linear growth of L with N for large N
is consistent with IST-based numerical simulations of KdV
SGs in Refs. [30,78]; see also Sec. IV for the correspond-
ing focusing NLS simulations). To complete the definition
one needs to provide a suitable characterization of soliton
positions x0

i within an N-soliton ensemble. As the individ-
ual solitons are generally not discernible in a dense gas
(cf. Fig. 3 right) a more consistent term for x0

i would be
“soliton spatial phases.” A GHD inspired way to formally
define x0

i in a dense soliton ensemble involves the concept
of “asymptotic coordinates,” see Refs. [78,86]. Within the
IST framework the soliton spatial phases are determined
by the phases of the so-called norming constants associated
with solitonic spectrum, see Refs. [5,15,79]. (Note that dif-
ferent implementations of N-soliton solutions—standard IST
vs Darboux transformation—involve different definitions of
norming constants, cf. Ref. [87]. We get to this subtle point in
Sec. IV A). In a dense N-soliton ensemble the soliton spatial
phases x0

i are assumed to be uniformly distributed on some
interval Is = I (x0, Ls) where the “asymptotic space width”
Ls < L depends on N and on the spatial and spectral densities
α and φ(η) [30]. We note that for critically dense soliton
ensembles, termed soliton condensates, the interval Is shrinks
to a single point, Is → {x0} [30]. A detailed description of the
IST-based numerical realization of dense N-soliton ensembles
for the fNLS equation is presented in Sec. IV. We now turn
to the spectral characterization of SG in terms of DOS. The
definition (11) of the SG phenomenological DOS f (η) holds
for the dense homogeneous (equilibrium) SG. For a weakly
nonhomogeneous SG, as described in Sec. II B 1, we assume
scale separation, where the gas is considered to be at local
equilibrium over the intermediate, mesoscopic, scale involv-
ing sufficiently large numbers of solitons, while appreciable
(x, t )-variations of the DOS occur on a larger, macroscopic,
Euler, scale. The generalization of Zakharov’s kinetic equa-
tion to the case of a dense gas was derived in Ref. [19] (see
Sec. III B below). It involves the same continuity Eq. (15) for
the DOS but the approximate expression (14) for the tracer
velocity is replaced by the exact integral equation of state:

s(η) = 4η2 + 1

η

∫



ln

∣∣∣∣η + μ

η − μ

∣∣∣∣ f (μ)[s(η) − s(μ)]dμ, (16)

where we have dropped for brevity the (x, t ) dependence
for f (η) and s(η). In simple terms, the integral Eq. (16)
represents an extrapolation of the rarefied gas properties to
a dense gas, realized by replacing s0(η) → s(η) in the col-
lision rate expression (13). This result is quite remarkable
and highly nonintuitive since the very notion of the phase
shift is a byproduct of the asymptotic representation of the
exact two-soliton solution as a sum of two separate solitons at
t → ±∞ and as such is formally not applicable to a dense
SG, in which solitons never separate. The KdV result (16)
has led in Ref. [20] to the conjecture that the phenomenolog-
ical interpretation of Eq. (16) as the “collision-rate ansatz”
can be used as a general principle for the construction of
the SG equation of states for other integrable models given
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the free soliton velocity s0(η) and the phase shift expres-
sion �(η,μ) = sgn[(s0(η) − s0(μ)]G(η,μ), specific to each
integrable system:

s(η) = s0(η) +
∫




G(η,μ) f (μ)[s(η) − s(μ)]dμ. (17)

We note that the collision-rate ansatz (17) was also pivotal to
the (independent) formulation of GHD, see Sec. VII.

In the fNLS case [Eq. (6) with σ = +1] the solitonic
spectrum {λ j} in the associated linear (Zakharov-Shabat) scat-
tering problem is complex-valued (see Sec. IV A below) so
that the DOS f (λ) is generally supported on some compact
Schwarz symmetric two-dimensional (2D) set � ⊂ C so it
is sufficient to consider only the upper half plane part �+
(here Schwarz symmetry means that if λ ∈ C is a point of the
spectrum then so is the c.c. point λ∗). Then, using s0(λ) =
−4Reλ for the free-soliton velocity and the expression (8)
for the two-soliton scattering shift, the (conjectured) kinetic
equation for the fNLS soliton gas assumes the form [20]

ft + ( f s)x = 0,

s(λ; x, t ) = −4Reλ + 1

Imλ

∫∫
�+

ln

∣∣∣∣μ − λ∗

μ − λ

∣∣∣∣[s(λ; x, t )

− s(μ; x, t )] f (μ; x, t )dξdζ , (18)

where μ = ξ + iζ and �+ ⊂ C+ \ iR+. Equation (18) was
rigorously derived in Ref. [24] (see also Ref. [29]) in the
framework of the thermodynamic limit of finite-gap po-
tentials, see Sec. III C confirming the formal construction
proposed in Ref. [20]. The special case when all discrete
spectrum points are located on the imaginary axis, �+ ⊂ iR+,
corresponds to nonpropagating multisoliton solutions called
bound states [81]. This case requires a separate consideration
since for the corresponding bound-state soliton gas Reλ = 0
the equation of state in (18) immediately yields s(λ) = 0,
resulting in the stationary DOS, ft = 0. Finally, the above
construction of SG kinetic theory based on the collision-rate
ansatz can be extended to the so-called anisotropic bidirec-
tional SGs in integrable systems exhibiting different signs of
phase shifts for overtaking and head-on collisions (a phys-
ically relevant example is the Kaup-Boussinesq system for
shallow-water waves). The theory of bidirectional soliton
gases was developed in Ref. [26].

C. Conserved quantities

One of the fundamental properties of integrable dynamics
is the availability of an infinite set of conservation laws

∂t Pn + ∂xQn = 0, n = 1, 2, . . . , (19)

where the Pn and Qn are functions of the field variable u and
its derivatives. For the KdV equation, of particular interest are
the first three conserved densities:

P1 = u, P2 = u2, P3 = u2
x

2
− u3, (20)

typically associated with the “mass,” “momentum” and
“energy” conservation. Their counterparts for the fNLS
equation have the form [81]

P1 = |ψ |2, P2 = Im(ψxψ
∗), P3 = |ψ |4 − |ψx|2. (21)

FIG. 4. Schematic illustrating the N-soliton approximation of the
windowed portion uL (x) of a realization of KdV soliton gas at some
t = t∗ (upper row) and its evolution into a soliton train at t = τ � t∗

(lower plot).

For nonequilibrium soliton gas dynamics conservation
Eq. (19) are replaced by their averaged analogs:

∂t 〈Pn[u]〉 + ∂x〈Qn[u]〉 = 0, n = 1, 2, . . . , (22)

where 〈·〉 denotes ensemble averaging, and the x, t variations
in (19) occur on much larger scales than in (19).

In contrast with the discrete set of conservation laws (19)
for the original equation, kinetic Eq. (15) possesses a contin-
uum of conserved quantities. Indeed, (15) implies that for any
h(η) �= 0,

∫



h(η) f (η; x, t )dη is a density of the conserved
quantity with

∫



h(η) f (η; x, t )s(η; x, t )dη being the corre-
sponding flux density. For the KdV equation, the densities of
the special “Kruskal” series (22) are given by [19,23]

〈Pn[u]〉 = Cn

∫



η2n−1 f (η)dη, n = 1, 2, . . . , (23)

where the coefficients Cn depend on the normalization of the
conserved densities. For the physical densities (20) we have

C1 = 4, C2 = 16/3, C3 = 32/5. (24)

Expressions (23) and (24) are readily obtained by consid-
ering a large portion of a homogeneous soliton gas: uL =
χ[0,L]u(x, t ) with L � α−1 at some arbitrary t = t∗, which is
approximated by N-soliton ensemble defined in Sec. II B 2.1

Assuming ergodicity, one can replace the ensemble average
〈Pn〉 by the spatial average L−1

∫ x0+L
x0

Pn[uL]dx over a single
realization. Since this spatial average is a conserved quantity
it can be evaluated over the long-time asymptotic solution:
uL ∼∑i us(x, t ; ηi ) as t → ∞ (a soliton train), see Fig. 4 for
the illustration of this concept.

1To avoid boundary effects one can assume that the transition to
zero at the edges of the “window” χ[0,L] is smooth but sufficiently
rapid (e.g., exponential) so that such a windowed portion uL (x) of
a soliton gas can be more faithfully approximated by the N-soliton
solution for some N � 1, i.e., the continuous spectrum can be ne-
glected.
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A fundamental restriction imposed on the DOS f (η) fol-
lows from non-negativity of the variance, A = 〈u2〉 −
〈u〉2 � 0, or equivalently, recalling (23) and (24),∫




η3 f (η)dη − 3

(∫



η f (η)dη

)2

� 0. (25)

Using the phenomenological DOS (11) the inequality (25)
provides an upper bound on the admissible values of the
spatial density α of a SG with a given spectral density φ(η),
see Ref. [23].

For the fNLS equation the averaged conserved densities
can also be expressed in terms of moments of the DOS as
[29]

〈Pn[ψ]〉 = Cn

∫∫
�+

Im(λn) f (λ)dξdζ , n = 1, 2, . . . ,

(26)

where λ = ξ + iζ and the coefficients Cn for the physical
conserved quantities (21) are

C1 = 4, C2 = −4, C3 = 16/3. (27)

The specific values (27) can be obtained by the above phe-
nomenological windowing procedure applied to the fNLS gas
[34].

III. SPECTRAL KINETIC THEORY OF SOLITON GAS

A. General framework

The phenomenological kinetic theory of soliton gas de-
scribed in Sec. II B is essentially based on the interpretation
of solitons as quasiparticles experiencing short-range pairwise
interactions accompanied by the well-defined position shifts.
As was already stressed, although this theoretical framework
is justifiable in the case of rarefied gas, it is less satisfactory for
a dense gas where solitons experience significant overlap and
continual nonlinear interactions so that they could become in-
distinguishable as separate entities. This suggests that a more
consistent theoretical approach involving the wave aspect of
the soliton’s “dual identity” is necessary. In this section we
outline a general mathematical framework for the spectral
theory of soliton gas based on the thermodynamic limit of
nonlinear multiphase solutions of integrable equations. This
approach has been first developed in Ref. [19] for KdV equa-
tion and more recently applied to the description of fNLS
soliton and breather gases [24].

With the KdV equation as the simplest prototypical exam-
ple in mind we consider the family of multiphase solutions of
the form

u(x, t ) = FN (θ1, . . . , θN ), θ j = k jx − ω jt + θ0
j , (28)

where k j and ω j , j = 1, . . . , N are the wave numbers and
frequencies (generally incommensurable), and the function
FN is 2π periodic with respect to each phase component
θ j ∈ [−π, π ), θ0

j being initial phases. [In the context of the
NLS Eq. (6) the representation (28) is valid for |ψ |]. We
stress that the existence of multiphase quasiperiodic solutions
(28) to a nonlinear dispersive equation is a unique property of
integrable systems. Such solutions are typically expressed in

terms of Riemann theta functions, see, e.g., Ref. [6], but we
will not be using their specific form here.

It was discovered in 1970s that multiphase solutions to
integrable equations have remarkable spectral properties de-
fined within the (quasi-)periodic analog of IST called the
finite-gap theory, see Refs. [5,6]. The fundamental result of
the finite gap theory is that the IST spectrum SN of the N-
phase solution (28) lies in the union of N + 1 disjoint bands
γ j = [λ2 j−1, λ2 j], j = 1, . . . , N + 1,

λ ∈ SN ≡ ∪N+1
i=1 γi, γi ∩ γ j = ∅, i �= j, (29)

separated by N finite gaps c j = (λ2 j, λ2 j+1). The number N
of spectral gaps is called the genus.

For the preliminary discussion of this section it is con-
venient to assume that the spectrum SN is real-valued. This
is the case for the (unidirectional) KdV equation and (bidi-
rectional) defocusing NLS equation [Eq. (6) with σ = −1].
The case of complex band spectrum, SN ⊂ C, arises for the
fNLS equation, and this case will be considered separately
in Sec. III C. We also note that one of the spectral bands
could be semi-infinite (as is the case for the KdV equation),
then γN+1 = [λ2N+1,+∞). Thus the spectrum of a finite-gap
solution (also called finite-gap potential) is fully parametrized
by the state vector λ = (λ1, λ2, . . . , λD ), where D = 2N + 1
or D = 2N + 2 depending on the presence or absence of the
semi-infinite band.

One of the important outcomes of the finite-gap theory are
the nonlinear dispersion relations (NDRs) linking the physical
parameters of the multiphase solution (28) such as the wave
numbers, the frequencies and the mean with the components
of the D-dimensional spectral state vector λ. In particular,
for the N-component wave number and frequency vectors
k = (k1, . . . , kN ) and ω = (ω1, . . . , ωN ) in (28) the NDRs can
be represented as

k j = Kj (λ), ω j = � j (λ), j = 1, . . . , N, (30)

where Kj (λ), � j (λ) are typically expressed in terms of com-
plete hyperelliptic integrals, see, e.g., Refs. [6,24,65].

By manipulating the endpoints of spectral bands λ j one can
modify the waveform of the solution (28). In particular, by
collapsing all spectral bands into double points, λ2 j−1, λ2 j →
λ

j
∗, j = 1, . . . , N , the N-gap solution transforms into N-

soliton solution with the discrete spectrum eigenvalues λ
j
∗ [5]

(for the KdV equation λ
j
∗ = −η2

j , see Sec. II A). This solitonic
transition corresponds to the limit k j, ω j → 0, (ω j/k j ) →
s0(λ j

∗) = O(1), where s0(λ) is the velocity of a free soliton
corresponding to the discrete spectral eigenvalue λ

j
∗. (We

note that any linear combination of wave numbers with in-
teger coefficients is also a wave number, so by {k j}N

j=1 we
always assume a particular, “fundamental,” set of the wave
numbers that vanish in the solitonic limit). Thus, finite-gap
potentials represent periodic or quasiperiodic generalizations
of multisoliton solutions. Importantly, finite-gap potentials,
unlike N-soliton solutions, are nondecaying functions with
nonzero mean, which makes them natural building blocks
for the construction of equilibrium, spatially uniform, soliton
gases. Another advantage of using finite-gap solutions for the
soliton gas construction is the presence of a natural proba-
bility measure—the uniform measure on the N-dimensional
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phase torus TN of (28), i.e., for each phase, θ0
j ∈ [−π, π ) is

assumed to be a random value uniformly distributed on the
period. Assuming incommensurability of the wave numbers
k j and frequencies ω j this measure gives rise to the ergodic
random process with realizations defined by (28).

The dynamics of weakly nonuniform finite-gap potentials
are described by the Whitham modulation theory [49,65,88],
which prescribes slow evolution of the spectrum, λ j (x, t ), on
the spatiotemporal scales much larger than those associated
with “rapid” variations of the wave (28) itself. The modulation
system inherently includes wave conservation equations

∂t k j + ∂xω j = 0, j = 1, . . . , N, (31)

where k j (λ) and ω j (λ) are given by the NDRs (30).
We now define equilibrium soliton gas via the thermody-

namic limit of finite-gap potentials [24]. Namely, we consider
a sequence of finite-gap potentials (28) such that

N → ∞ : k1, . . . , kN → 0,

N∑
j=1

k j → 2πα = O(1),

(32)

with a similar behavior for the frequency components ω j ,
so that ω j/k j = O(1). The limit (32) suggests the following
asymptotic scaling for the fundamental wave numbers and
frequencies as N → ∞:

N → ∞ : k j ∼ ω j ∼ N−1. (33)

It can be shown quite generally that under the limit (32)
the uniform distribution for the initial phases θ0

j ∈ [−π, π ),
j = 1, . . . , N transforms to the Poisson distribution with the
density parameter α on R for the “position phases” l0

j ≡ θ0
j /k j

[25], which corroborates the soliton position distribution in
phenomenological model of rarefied SG in Sec. II B 1. We as-
sociate the limiting random process limN→∞ FN (θ) satisfying
(32) with SG assuming the existence of such a limit in some
probabilistic sense. By construction this process is ergodic.
As we shall see, the above definition is consistent with the
phenomenological construction of SG in Sec. II B 2.

As we show in the next section, the thermodynamic limit
(32) is achieved by imposing a special band-gap distribution
(scaling) for the spectrum SN for N � 1. Generally the spec-
tral bands are required to be exponentially narrow compared
with the gaps although the superexponential and subexpo-
nential scalings are also possible and these corresponds to
the noninteracting (ideal) soliton gas and soliton condensate
respectively. In all cases we call the corresponding limit as
N → ∞ of a function F (λ) defined on SN the thermodynamic
limit of F .

The DOS f (λ) is then defined via the thermodynamic limit
of the partial sum

1

2π

M�N∑
j=1

k j →
∫ λ

λmin

f (λ′)dλ′, (34)

where λ is a continuous spectral variable interpolating the
discrete positions λ∗

j of the band centers; as a matter of fact∫ λmax

λmin
f (λ′)dλ′ = α, cf. (12).

Similarly, we have

1

2π

M�N∑
j=1

ω j →
∫ λ

λmin

v(λ′)dλ′, (35)

where v(λ) is the spectral flux density; then s(λ) = v(λ)/ f (λ)
has the meaning of the soliton gas transport velocity that can
also be interpreted as an average tracer soliton velocity in the
gas.

The next steps can be outlined as follows: Applying the
thermodynamic limit (34) and (35) to the discrete NDRs
(30) for finite-gap solutions one obtains the limiting, contin-
uous NDRs for an equilibrium soliton gas which then yield
the equation of state s(λ) = F[ f (λ)] in the form of a lin-
ear integral Eq. (17). Furthermore, assuming f ≡ f (λ; x, t ),
s ≡ s(λ; x, t ) and applying the thermodynamic limit to the
modulation Eqs. (31), one obtains the continuity Eq. (15) for
the DOS in a nonequilibrium gas. This procedure is detailed
in the next section.

B. Korteweg–de Vries equation

We now present the results of the application of the above
general spectral construction to the KdV Eq. (1) following
Refs. [19,25] The key input ingredient of the theory are the
discrete NDRs (30) for finite-gap potentials. The specific ex-
pressions for the KdV NDRs can be found elsewhere (see,
e.g., Refs. [19,25,65]), here we only discuss their thermody-
namic limit as N → ∞.

First we recall that the N-soliton limit of an N-gap solution
is achieved by collapsing all the finite bands γ j in the spectral
set SN (29) into double points corresponding to the soliton
discrete spectral values. It was proposed in Ref. [19] that
the special infinite-soliton limit of the spectral N-gap KdV
solutions, namely, the thermodynamic limit, provides spectral
description the KdV soliton gas. The thermodynamic limit is
achieved by assuming a special band-gap distribution (scal-
ing) of the spectral set SN for N � 1 on the fixed interval
[λ1, λ2N+1] (e.g., [−1, 0]). Specifically, we require the spec-
tral bands γ j to be exponentially narrow compared with the
gaps c j so that for N → ∞ the spectral set SN is asymptoti-
cally characterized by two continuous positive functions: the
density φ(η) of the lattice points η j ∈ 
 ⊂ R+ defining the
band centers via −η2

j = (λ2 j + λ2 j−1)/2, and the logarithmic
bandwidth distribution τ (η) defined for N → ∞ by

η j − η j+1 ∼ 1

Nφ(η j )
, τ (η j ) ∼ − 1

N
ln(λ2 j − λ2 j−1),

(36)

with
∫



φ(η)dη = 1. Note that the definition of φ(η) agrees
with expression (10) for the density of soliton spectra in
the phenomenological model of SG. Additionally, invoking
the asymptotic behaviors (33) we introduce the interpolating
functions κ (η), ν(η) for the scaled wave numbers and frequen-
cies

k j ∼ κ (η j )

N
, ω j ∼ ν(η j )

N
. (37)
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Then the definitions (34) and (35) of the DOS and the spectral
flux density imply

f (η) = 1

2π
κ (η)φ(η), v(η) = 1

2π
ν(η)φ(η), (38)

where we have used a more convenient in the KdV con-
text spectral variable η instead of λ = −η2. Note that the
expression for the DOS f (η) in (38) is consistent with the
phenomenological definition (11) with the important differ-
ence that now the spatial density of SG depends on the spectral
parameter and is given by α̃(η) = κ (η)/2π .

Now, considering the KdV finite-gap NDRs (30) subject to
the thermodynamic scaling (36) and (37) and letting N → ∞,
yields the integral equations [19,25]∫




ln

∣∣∣∣μ + η

μ − η

∣∣∣∣ f (μ)dμ + f (η)σ (η) = η,∫



ln

∣∣∣∣μ + η

μ − η

∣∣∣∣v(μ)dμ + v(η)σ (η) = 4η3 (39)

for all η ∈ 
 (if 
 is a fixed, simply connected compact in-
terval one can set 
 = [0, 1] without loss of generality). Here
the spectral scaling functionσ : 
 → [0,∞) is a continuous
non-negative function that encodes the Lax spectrum of the
soliton gas via σ (η) = τ (η)/φ(η). Equations (39) are the KdV
soliton-gas NDRs.

Eliminating σ (η) > 0 from the NDRs (39) yields the
equation of state (16) for the KdV soliton gas. Next, for a non-
homogeneous soliton gas f (η) ≡ f (η; x, t ), v(η) ≡ v(η; x, t ),
and the application of the thermodynamic limit to the mod-
ulation Eq. (31) yields the continuity Eq. (15) for the DOS.
Indeed, (31) implies⎛⎝ 1

2π

M�N∑
j=1

k j

⎞⎠
t

+
⎛⎝ 1

2π

M�N∑
j=1

ω j

⎞⎠
x

= 0 (40)

for M = 1, . . . , N . Applying the thermodynamic limit (34)
and (35) to (40) we obtain the kinetic equation ft + ( f s)x = 0
as required, see Eq. (15). Assuming fixed spectral support 


in the NDRs (39) it is not difficult to show that the evolution
of σ (η; x, t ) in a nonhomogeneous SG satisfies the Riemann-
type equation

σt + s(η; x, t )σx = 0, (41)

which can be used instead of the continuity Eq. (15).
Summarizing, the SG spectral kinetic Eqs. (15) and (16)

represent the thermodynamic limit of the KdV-Whitham mod-
ulation system [19]. We note that condition σ > 0 used in
the derivation of the equation of state (16) implies the re-
striction η−1

∫



ln |μ+η

μ−η
| f (μ)dμ < 1 on the admissible DOS

f (η), complementing the earlier formulated restriction (25).
The limiting case σ = 0 corresponds to the special soliton gas
termed soliton condensate, see Sec. III D below.

C. Focusing nonlinear Schrödinger equation

The spectral theory of SG for the fNLS equation was de-
veloped in Ref. [24]. It follows the same general framework
of the thermodynamic limit of finite-gap potentials outlined in
Sec. III A and resulting in the kinetic Eq. (18) for the dense

gas of fundamental fNLS solitons. However, due to the fact
that the finite-gap spectral set for the fNLS equation lies in
the complex plane, λ ∈ C, the spectral theory of fNLS soliton
gas admits a much broader range of scenarios than the KdV
theory. In particular, it covers the case of breather gases,
including infinite random ensembles of interacting Akhme-
diev, Kuznetsov-Ma, and Peregrine breathers [66]. Another
highly nontrivial object is the gas of bound state fNLS solitons
(bound states are N-soliton solutions with all discrete spectral
parameters λ j , j = 1, . . . , N having the same, possibly zero,
real part [81]). The latter was shown in Ref. [47] to represent
an accurate model for the nonlinear stage of the development
of spontaneous (noise-induced) modulation instability, see
Sec. VI B.

The SG theory for the fNLS equation is more technically
involved than in the KdV case. Here we only present the
NDRs for the fNLS soliton gas, a counterpart of the KdV
NDRs (39):∫


+
ln

∣∣∣∣μ − λ̄

μ − λ

∣∣∣∣ f (μ)|dμ| + σ (λ) f (λ) = Imλ,∫

+

ln

∣∣∣∣μ − λ̄

μ − λ

∣∣∣∣v(μ)|dμ| + σ (λ)v(λ) = −4ImλReλ, (42)

where 
+ is the upper part of the 1D Schwarz-symmetric
curve 
 ⊂ C—the spectral support of the DOS f (λ) (in the
general 2D case the integration with respect to arc length
of 
+ in (42) is replaced by the integration over a 2D
compact domain �+ ⊂ C+:

∫

+ · · · |dμ| → ∫∫

�+ · · · dξdζ ,
where μ = ξ + iζ ).

Eliminating the spectral scaling function σ (λ) from the
NDRs (42) we obtain the equation of state in the kinetic
Eq. (18). The continuity equation in (18) is derived via the
thermodynamic limit of the modulation Eq. (31), similar to
the KdV case. See Ref. [24] for details.

D. Polychromatic soliton gases and soliton condensates

Integration of the spectral kinetic Eqs. (15) and (17) for a
soliton gas in any generality represents a challenging mathe-
matical problem. One can, however, consider some physically
interesting particular cases that admit effective analytical
treatment. The most obvious one is the case of spectrally
polychromatic gases studied in Ref. [21]. The DOS of a
polychromatic soliton gas represents a linear combination of
the “monochromatic” components in the form of Dirac δ-
functions centered at distinct spectral points ζ j ∈ 
 (note that

 can be real or complex domain, depending on the original
dispersive equation)

f (λ; x, t ) =
M∑

j=1

w j (x, t )δ(λ − ζ j ), (43)

where w j (x, t ) > 0 are the components’ weights and
{ζ j}M

j=1 ⊂ 
, (ζ j �= ζk ⇐⇒ j �= k). Substitution of (43) into
the kinetic Eqs. (15) and (17) reduces it to a system of hyper-
bolic hydrodynamic conservation laws

(wi )t + (wisi )x = 0, i = 1, . . . , M, (44)
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where the component densities wi(x, t ) and the transport ve-
locities s j (x, t ) ≡ s(ζ j, x, t ) are related algebraically:

s j = s0 j +
M∑

m=1,m �= j

G jmwm(s j − sm), j = 1, 2, . . . M.

(45)

Here we used the notation s0 j ≡ s0(ζ j ), Gjm ≡ G(ζ j, ζm),
j �= m. One should also mention an important restriction∑M

m=1,m �= j G jmwm < 1, a counterpart of the condition of posi-
tivity for the spectral scaling function σ in the thermodynamic
limit construction.

We note that the δ-function representation (43) is a mathe-
matical idealization, which has a formal sense in the context
of the integral equation of state (17) but cannot be applied to
the original dispersion relations where it appears in both the
integral and the secular terms [cf. (39) for the KdV equation].
In a physically realistic description the δ functions in (43)
should be replaced by some narrow distributions around the
spectral points ζ j , i.e., we first take the thermodynamic limit
N → ∞ and then allow the distributions to become sharply
peaked, see Ref. [93].

For M = 2 system (45) can be solved to give explicit ex-
pressions for s1,2(w1,w2):

s1 = s01 + G12w2(s01 − s02)

1 − (G12w2 + G21w1)
,

s2 = s02 − G21w1(s01 − s02)

1 − (G12w2 + G21w1)
. (46)

As was shown in Ref. [20] (see also Ref. [27]) the two-
component system (44) and (46) is equivalent to the so-called
Chaplygin gas equations that occur in certain theories of
cosmology (see, e.g., Ref. [89]), and to the Born-Infeld equa-
tions arising in nonlinear electromagnetic field theory [49,90].

It was shown in Ref. [21] that system (44) and (45) for
any M ∈ N possesses M Riemann invariants and belongs
to the special class of linearly degenerate, semi-Hamiltonian
systems of hydrodynamic type [91]. Linear degeneracy of (44)
and (45) implies the absence of wave breaking and shock for-
mation for generic initial-value problems with smooth Cauchy
data [92]. On the other hand, it implies that the solution to a
Riemann (the evolution of an initial discontinuity) problem
for polychromatic soliton gas will be given by a combination
of differing constant states wi = const j , separated by contact
discontinuities propagating with classical shock speeds found
from the Rankine-Hugoniot conditions for the conservation
laws (44) and (45). Such weak solutions were constructed in
Refs. [20,22,25,26,93] for various soliton gases. More gen-
eral solutions are available via the hodograph transform, see
Refs. [21,27].

Another special class of soliton gases is presented by
soliton condensates whose properties are dominated by the
collective effect of soliton interactions while the individual
soliton dynamics are completely suppressed. Soliton con-
densates were first introduced in Ref. [24] for the fNLS
equation and then thoroughly studied in Ref. [30] for the
KdV equation. Spectrally, a soliton condensate is realized
by vanishing the spectral scaling function, σ (η) → 0, in the
soliton gas NDRs [Eq. (39) for KdV or (42) for fNLS]. For

the KdV case the condensate NDRs are then given by [30]∫



ln

∣∣∣∣μ + η

μ − η

∣∣∣∣ f (μ)dμ = η,

∫



ln

∣∣∣∣μ + η

μ − η

∣∣∣∣v(μ)dμ = 4η3.

(47)

For the simplest case 
 = [0, q] these are solved by

f (η) = η

π
√

q2 − η2
, v(η) = 6η(2η2 − 1)

π
√

q2 − η2
. (48)

The counterpart fNLS solution of the NDRs (42) with λ ∈

+ = [0, iq] and σ = 0 is given by [24]

f (λ) = −iλ

π
√

q2 + λ2
, v(λ) = 0, (49)

and describes the DOS f (λ) in the nonpropagating, bound
state (s = v/ f = 0) soliton condensate. By choosing a dif-
ferent 1D support 
+ ⊂ C+ one can construct other types
of fNLS soliton condensates. For example, if 
+ = {ξ +
iη | ξ 2 + η2 = 1, η > 0} (a semicircle) then the correspond-
ing condensate DOS f (λ) = Imλ

π
[24]. Such a “circular” soli-

ton condensate propagates with the speed s(λ) = −8Reλ—
twice the speed of a free fNLS soliton.

Concluding this section, we mention an important gener-
alization of the spectral theory of KdV soliton condensates
developed in Ref. [30] by assuming the spectral support

 in (47) to be a union of N + 1 finite disjoint intervals,
termed “s-bands,” 
 = [0, β1] ∪ [β2, β3] ∪ [β2 j, β2 j+1], j =
0, . . . N , with β j = β j (x, t ). It was shown in Ref. [30] that the
kinetic Eqs. (15) and (16) then imply that the endpoints β j

of the s-bands vary according to the genus N KdV-Whitham
equations [65], providing the connection of nonequilibrium
soliton gas with the fundamental objects of dispersive hydro-
dynamics such as rarefaction and dispersive shock waves [50].
The fNLS counterpart of the KdV theory of soliton conden-
sates was recently developed in Ref. [94]. Finally we mention
a very recent paper [34] where fNLS soliton condensates were
used to explain important statistical features of integrable
turbulence related to the formation of extreme events (rogue
waves).

IV. INVERSE SCATTERING TRANSFORM APPROACHES
TO SYNTHESIS AND ANALYSIS OF SOLITON GAS

As shown in the previous sections, the IST and finite-
gap theory lay the foundations for the theory of soliton gas,
demonstrating that soliton collisions are elastic and providing
exact relations for the shifts in soliton positions, ultimately
leading to the kinetic equation. Here, on the example of the
fNLS equation, we discuss how the IST method allows one to
observe the wave field of soliton gas in practice by generat-
ing such fields in numerical simulations or experiments from
known soliton parameters. Also, we discuss the numerical
techniques to solving the (opposite) direct-scattering problem
and determining the complete set of soliton parameters—
eigenvalues and norming constants—from numerically or
experimentally observed wave fields. Combined, the solutions
of these two problems form a complete recipe for the IST
synthesis and analysis of soliton gas.

061001-12



SOLITON GAS: THEORY, NUMERICS, AND … PHYSICAL REVIEW E 109, 061001 (2024)

Note that the similar IST-based algorithms are also
available for the KdV equation, see, e.g., Refs. [30,95] for the
numerical synthesis of multisoliton solutions. Our choice of
using the fNLS soliton gas as the main example is motivated
by the rich phenomenology and its important physical applica-
tions supported by recent experiments, see Sec. V for details.

Also note that, in general, the IST can be formulated by
using different types of boundary conditions, such as van-
ishing and constant [5,96]. Recently, a considerable progress
has been made in the description of localized modulation
instability by using the IST with constant boundary conditions
[97–100]. In the present paper, we focus on the vanishing
boundary conditions suitable for numerical simulations of
multisoliton solutions.

In the case of a rarefied soliton gas, its wave field can be
constructed as an arithmetic sum of wave fields of single soli-
tons with eigenvalues and positions chosen in accordance with
the desired DOS, see Sec. II B 1. The dynamical and statistical
properties of such gases have been studied previously using
the weak-interaction model, two-soliton interaction models
and direct numerical simulations, see, e.g., Refs. [69,101–
104].

Constructing a wave field for a dense soliton gas requires
full consideration of the interaction of solitons. In this section,
we describe an approach based on the numerical construction
of exact dense N-soliton solutions containing a large num-
ber N of solitons, which is used in recent numerical and
experimental studies [47,48,57,105]. Although multisoliton
solutions are localized in space, for large N edge effects can
be neglected and the central part of the wave field can be
considered as a continuous section of soliton gas. By changing
the soliton norming constants, it is possible to influence the
distribution of solitons in the physical space, even though the
exact mathematical link between the norming constants and
the soliton spatial density (or, more generally, the DOS) is still
missing.

Albeit explicit formulas for exact multisoliton solutions
have been known for decades, see, e.g., Ref. [5], their prac-
tical application was impossible due to numerical errors in
the form of extreme gradients that appeared already starting
from N ≈ 10 solitons. The main source of these errors is
the roundoff during a large number of arithmetic operations
with exponentially small and large numbers. A solution to
this problem has been found only recently in Ref. [48] with
a specific implementation of the dressing method combined
with high-precision arithmetic computations, making it possi-
ble to successfully generate wave fields containing hundreds
of solitons.

Concerning the direct-scattering procedure, there are sev-
eral well established methods for the computation of soliton
eigenvalues, see, e.g., the Fourier collocation and Boffetta–
Osborne methods. In the present paper, we focus on a highly
challenging problem of the accurate identification of soliton
norming constants, which is hampered by several types of
numerical instabilities and has been solved only very recently
in Refs. [106,107].

In this section, we consider the fNLS equation in the
form

iψt + 1
2ψxx + |ψ |2ψ = 0, (50)

following the studies [47,48,106,108,109] on the application
of numerical IST and also other literature where the coeffi-
cients used in Eq. (50) are conventional.

A. Inverse scattering transform method formalism

The IST method is based on the correspondence between
an integrable nonlinear PDE and a specific auxiliary system of
two linear equations (Lax pair), which consists of a stationary
eigenvalue problem and an evolutionary problem for the same
auxiliary function. The considered PDE is then obtained from
the Lax pair as a compatibility condition. Using this compati-
bility condition, one can prove the fundamental property of the
auxiliary system that its eigenvalue spectrum does not change
with the evolution of wave field [5].

For the fNLS Eq. (50), the Lax pair is known as the
Zakharov–Shabat system [81] for a two-component vector
wave function �(x, λ) = (φ1, φ2)T,

�x =
( −iλ ψ

−ψ∗ iλ

)
�, (51a)

�t =
( −iλ2 + i

2 |ψ |2 λψ + i
2ψx

−λψ∗ + i
2ψ∗

x iλ2 − i
2 |ψ |2

)
�, (51b)

where the superscript T stands for the matrix transpose and
λ = ξ + iη is a complex-valued spectral parameter. The first
Eq. (51a) is equivalent to the eigenvalue problem for λ written
via the Lax operator L̂ as

L̂� = λ�, L̂ = i

(
1 0
0 −1

)
∂

∂x
− i

(
0 ψ

ψ∗ 0

)
. (52)

One can check that the fNLS equation, i.e., Eq. (6) with
σ = 1, can be obtained in the antidiagonal elements of the
compatibility condition,

�xt = �tx. (53)

Note that, for the KdV Eq. (1), the equivalent Lax operator
represents the self-adjoint Schrödinger operator (2), for which
the spectral theory is well developed in quantum mechanics,
see, e.g., Refs. [110]. For the fNLS equation, the Lax operator
is not self-adjoint, meaning that its eigenvalues can be located
in the entire complex plane, although it is sufficient to con-
sider only the upper half of it, η = Imλ � 0. The latter follows
from the fact that, for every solution � = (φ1, φ2)T of the
Zakharov–Shabat system, which corresponds to an eigenvalue
λ, there exists a counterpart �̃ = (−φ∗

2 , φ∗
1 )T corresponding

to the complex-conjugate eigenvalue λ∗. Despite these differ-
ences, there are many similarities in the spectral theory of the
operator (52) and the Schrödinger operator, and we encourage
the reader to keep in mind this analogy, according to which the
wave field ψ of the fNLS equation is considered as a potential,
and the vector function � as a wave function. In what follows,
we consider only a rapidly decaying potentials ψ (x).

Similarly to quantum mechanics, the scattering problem
(51a) for the wave function � can be introduced with the fol-
lowing asymptotics at infinity (the so-called “right” scattering
problem, in contrast with the “left” scattering problem, see,
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e.g., Refs. [111]),

lim
x→−∞

{
� −

(
e−iλx

0

)}
= 0, (54)

lim
x→+∞

{
� −

(
a(λ)e−iλx

b(λ)eiλx

)}
= 0. (55)

These asymptotics represent a two-component generalization
of the “right” scattering problem for the Schrödinger operator.
The scattering coefficients a(λ) and b(λ) have the mean-
ing that a wave (ae−iλx, 0)T comes from the right side of
the potential ψ (x) and then splits into the transmitted wave
(e−iλx, 0)T at x → −∞ and the reflected wave (0, beiλx )T at
x → +∞. Hence, the quantity r = b/a represents the so-
called reflection coefficient. Note that the alternative choice of
the asymptotics corresponding to the left-scattering problem
is also common in the IST constructions, see, e.g., Ref. [111].

The eigenvalue spectrum of the scattering problem consists
of the eigenvalues λ corresponding to bounded solutions �

of the Zakharov–Shabat system with asymptotics (54) and
(55). Such solutions exist for real-valued spectral parameter,
λ = ξ ∈ R, and also for complex-valued λ, η = Imλ > 0, if
and only if a(λ) = 0. For rapidly decaying potentials ψ (x),
the latter part of the eigenvalue spectrum usually consists of a
finite number of discrete points λn, a(λn) = 0, n = 1, . . . , N
(discrete spectrum), and the overall eigenvalue spectrum con-
tains also the real line λ = ξ ∈ R (continuous spectrum), see
Ref. [5]. The full set of the scattering data represents a com-
bination of the discrete {λn, ρn} and continuous {r} spectra,

{λn|a(λn) = 0, Imλn > 0},
ρn = b(λn)

a′(λn)
, r(ξ ) = b(ξ )

a(ξ )
, (56)

where a′(λ) is complex derivative of a(λ) with respect to λ,
ρn are the so-called norming constants associated with the
eigenvalues λn, and r(ξ ) is the reflection coefficient defined
on the real line ξ ∈ R. Most importantly, the time evolution
of the scattering data (56) is trivial,

∀ n : λn = const, ρn(t ) = ρn(0)e2iλ2
nt ,

r(ξ, t ) = r(ξ, 0)e2iξ 2t , (57)

and the wave field ψ (x, t ) can be recovered from it at any
moment of time with the IST by solving the integral Gelfand-
Levitan-Marchenko (GLM) equations [5]. However, in the
general case, the latter procedure can only be done numer-
ically, asymptotically at large time, or in the semiclassical
approximation [112,113].

Note that the function a(λ) is analytic in the upper half
of the λ plane and has simple zeros at the eigenvalue points
a(λn) = 0 (we do not consider the degenerate case when
an eigenvalue point represents a multiple zero), see, e.g.,
Refs. [5,96]. Meanwhile, the analyticity is not always the case
for the function b(λ). However, in numerical simulations or
experiments, the wave field ψ (x) is always confined to a finite
region of space, i.e., it has compact support, and in this case
the function b(λ) is also analytic in the upper half of the λ

plane [5,96]. This property of a(λ) and b(λ) is essential for al-
gorithmic implementations of the direct-scattering transform
discussed below.

In the physical space, the continuous spectrum with
nonzero reflection coefficient r(ξ ) corresponds to nonlinear
dispersive waves, while the discrete eigenvalues λn together
with the norming constants ρn—to solitons. In particular,
the eigenvalues λn = ξn + iηn contain information about the
soliton amplitudes An = 2ηn and group velocities Vn = −2ξn,
while the soliton norming constants—about their positions
in space xIST

n ∈ R and complex phases θ IST
n ∈ [0, 2π ). In a

weakly nonlinear case, the discrete spectrum disappears and
the function r(ξ ) tends to a conventional Fourier spectrum of
the wave field ψ (x), so that the IST is often considered as a
nonlinear analog to the Fourier transform.

In the (opposite) reflectionless case r(ξ ) = 0, the disper-
sive waves are absent and the IST procedure can be performed
analytically by solving the GLM equations, leading to an
exact N-soliton solution (N-SS) ψ(N )(x, t ). There is also an
alternative procedure for the construction of N-SS called
the dressing method [5,114], also known as the Darboux
transformation [115,116]. The dressing method allows one to
add solitons to the resulting solution recursively by one at a
time using a special algebraic construction [5,114,116]. The
numerical implementation of this construction turns out to
be much more stable and resource-efficient than solving the
GLM equations, making it possible to build multisoliton wave
fields containing large number of solitons [48].

The dressing procedure starts from the trivial potential
of the fNLS equation, ψ(0)(x) = 0 for x ∈ R, and the cor-
responding matrix solution of the Zakharov–Shabat system
(51),

�(0)(x, λ) =
(

e−iλx 0
0 eiλx

)
; (58)

here we fix time, t = 0, for definiteness. At the nth step of
the recursive method, the n-soliton potential ψ(n)(x) is con-
structed via the (n − 1)-soliton potential ψ(n−1)(x) and the
corresponding matrix solution �(n−1)(x, λ) as

ψ(n)(x) = ψ(n−1)(x) + 2i(λn − λ∗
n )

q∗
n1qn2

|qn|2 , (59)

where the vector qn = (qn1, qn2)T is determined by �(n−1)

(x, λ) and the scattering data of the nth soliton {λn,Cn},

qn(x) = [�(n−1)(x, λ∗
n )]∗ ·

(
1

Cn

)
. (60)

Here Cn, n = 1, . . . , N , are the soliton norming constants in
the dressing method formalism, see the discussion below. The
corresponding matrix solution �(n)(x, λ) of the Zakharov–
Shabat system is calculated via the so-called dressing matrix
σ (n)(x, λ),

�(n)(x, λ) = σ (n)(x, λ) · �(n−1)(x, λ), (61)

σ
(n)
ml (x, λ) = δml + λn − λ∗

n

λ − λn

q∗
nmqnl

|qn|2 , (62)

where m, l = 1, 2 and δml is the Kronecker delta. The time de-
pendency is recovered using the time-evolution of the norming
constants,

Cn(t ) = Cn(0)e−2iλ2
nt , (63)

and repeating the dressing procedure at each time t .
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The norming constants Cn are related to the IST norming
constants ρn as follows [106,117] (this equation is valid for
pure multisoliton solutions only):

Cn(t ) = 1

ρn(t )

N∏
k=1

(λn − λ∗
k )

N∏
j �=n

1

λn − λ j
, (64)

and can be parametrized in terms of soliton positions xDM
n and

phases θDM
n ,

Cn = − exp
[
2iλnxDM

n + iθDM
n

]
. (65)

Note that the IST norming constants ρn have an alternative
parametrization via IST positions xIST

n and phases θ IST
n , which

coincide with the dressing method positions xDM
n and phases

θDM
n and also with the observed in the physical space positions

and phases only for the one-soliton solution (7). In presence of
other solitons or dispersive waves, all three types of positions
and phases may differ significantly from each other; see, e.g.,
the discussion in Ref. [108] and the references wherein.

B. Inverse scattering transform synthesis of
soliton-gas wave field

The discussed method for the numerical construction of
soliton-gas wave field is based on the computation of N-SS
for a large number of solitons N using the straightforward
algorithmic implementation of the dressing method. The
high-precision arithmetics is applied to accurately resolve
operations with exponentially small and large numbers com-
ing from the elements of vectors qn in Eqs. (58)–(62). The
required number of digits grows with N nontrivially and
depends on specific choice of the soliton eigenvalues and
norming constants but usually stays in the hundreds for N �
100 and thousands for N � 1000; see Refs. [47,48,108] for
detail. Note that, while this inherent difficulty of the dressing
method and other schemes based on the IST theory cannot be
entirely avoided, the recently developed optimizations [118]
can substantially reduce the necessary number of digits.

For the fNLS equation, soliton gas is characterized by the
distribution of soliton eigenvalues (amplitudes and velocities)
and soliton norming constants (positions and phases). Soli-
ton eigenvalues are generally problem-specific and cannot be
easily changed without modifying the context in which the
soliton gas is studied. Soliton phases can usually be chosen as
random values uniformly distributed over the interval [0, 2π );
in this case, evolution over time, see Eq. (63), preserves this
distribution. In what follows, we focus on the study of dense
soliton gases that are in equilibrium and have wave fields
that are statistically homogeneous in space. This poses two
problems: (i) how to achieve a high spatial density of solitons
and (ii) how to construct multisoliton wave fields, which are
statistically homogeneous over a wide region in the physical
space for random soliton phases.

As has been observed empirically in Refs. [47,48], if
soliton positions are distributed within the interval xDM

n ∈
[−L0/2, L0/2] and L0 approaches zero, then the characteristic
size of the corresponding N-SS in the physical space shrinks
to some finite nonzero limit and the soliton spatial density
reaches its maximum value. However, for L0 = 0 the N-SS
becomes symmetric, ψ (x) = ψ (−x). To avoid this artificial

symmetry, one can use sufficiently small intervals L0 � 1, so
that the symmetry is not observed and the characteristic size of
the N-SS remains close to the size in the limiting case L0 = 0.

In Ref. [48], a method has been developed for the con-
struction of statistically homogeneous soliton gas wave fields,
which starts from the computation of N-SS wave fields using
rather arbitrary soliton positions from a small interval xDM

n ∈
[−L0/2, L0/2], L0 � 1. Then, these wave fields are put into a
sufficiently large box x ∈ [−Lp/2, Lp/2] where they are small
near the edges,

|ψ (±Lp)| � 10−16 max |ψ (x)|,
so that one can treat this box as a periodic one and simulate the
time evolution of the constructed solutions inside it using the
direct numerical simulation of the fNLS equation. If soliton
velocities are random, then after some time the wave fields
spread over the box Lp and the system arrives to a statisti-
cally steady state, in which its basic statistical functions no
longer depend on time. Then this state is used as a model of
statistically homogeneous soliton gas of spatial density N/Lp

in an infinite space; in Ref. [48], it has been confirmed that
for large enough number of solitons N and box size Lp the
results depend on them only in the combination N/Lp. Note
that such “periodization” of solitons requires the periodic box
Lp to be significantly larger than the characteristic size of the
initial N-SS, decreasing the maximum soliton density that can
be achieved with the described method.

In terms of the finite-gap theory, the periodic evolution
in time replaces N-SS by N-band periodic solutions having
exponentially narrow bands compared with the gaps, as the
characteristic soliton width is much smaller than the box size
Lp. This allows one to neglect the difference between the two
types of solutions, similarly as it is done in Sec. III A, where,
vice versa, the soliton gas is considered as a limit of finite-gap
solutions.

Figure 5 illustrates the periodization method on the ex-
ample of a single 128-SS generated from solitons having
uniformly distributed positions xDM

n ∈ [−L0/2, L0/2], L0 = 2,
and phases θDM

n ∈ [0, 2π ), equal amplitudes An = π/3.2 ≈ 1
and Gaussian-distributed velocities with zero mean and stan-
dard deviation V0 = 2, Vn ∼ N (0,V 2

0 ). The initial 128-SS has
characteristic size in the physical space δX � 280, and on
average the wave field is greater at the center than closer to
the edges of the solution, see Fig. 5(a). Then, this solution is
placed into the periodic box x ∈ [−Lp/2, Lp/2], Lp = 128π ,
and the evolution is simulated until the final time t = 200,
when the wave field in average becomes fairly uniform, see
Fig. 5(b). As has been verified in Ref. [48], the soliton eigen-
values �n calculated at the final simulation time with the
Fourier collocation method [119] almost coincide with the
eigenvalues λn of the initial 128-SS with the relative differ-
ences between the two |λn − �n|/|λn| of 10−9 order.

The described above periodization method can be applied
only when the soliton velocities are distributed over some
finite interval of values. In Ref. [47], it has been observed that
for the special case of bound-state soliton gas, i.e., when all
solitons have the same velocity (which one can set to zero
for simplicity), a certain distribution of soliton eigenvalues
(i.e., amplitudes) leads to a statistically homogeneous mul-
tisoliton wave fields in a wide region of the physical space
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(a)

(b)

(c)

FIG. 5. (Adapted from Ref. [48] and [47]) (a) Wave field of 128-
SS constructed from solitons having equal amplitudes An = π/3.2 ≈
1, Gaussian-distributed velocities with zero mean and standard devi-
ation V0 = 2, Vn ∼ N (0,V 2

0 ), uniformly distributed positions xDM
n ∈

[−L0/2, L0/2], L0 = 2, and phases θDM
n ∈ [0, 2π ). (b) The same

wave field after placing it into the periodic box x ∈ [−Lp/2, Lp/2],
Lp = 128π and simulating the time evolution within the fNLS equa-
tion up to the final time t = 200. (c) Wave field of 128-SS constructed
from solitons having amplitudes distributed according to the Bohr-
Sommerfeld quantization rule for a rectangular box, see Eq. (69)
below, zero velocities Vn = 0, uniformly distributed positions xDM

n ∈
[−L0/2, L0/2], L0 = 2, and phases θDM

n ∈ [0, 2π ). Right insets in
panels (a) and (c) and the inset in panel (b) show a zoom of the
wave fields. Left insets in panels (a) and (c) demonstrate soliton
eigenvalues (note the swapped notations between the axes).

for sufficiently small soliton positions |xDM
n | � 1 and ran-

dom soliton phases; see Fig. 5(c). The figure shows 128-SS
constructed from solitons having zero velocity Vn = 0 and
uniformly distributed positions and phases over the intervals
xDM

n ∈ [−L0/2, L0/2], L0 = 2, and θDM
n ∈ [0, 2π ). The am-

plitudes are distributed according to the Bohr-Sommerfeld
quantization rule, which is deduced from the solution of the
direct-scattering problem for the rectangular box potential;
see Sec. VI B for detail. The resulting wave field turns out
to be statistically homogeneous 〈|ψ (x)|2〉 ≈ 1 over more than

70% of its characteristic size in the physical space for random
soliton phases [47]. Cutting out the remaining 30% at the
edges where the wave field is not statistically homogeneous,
one can use this 70% part as a model of statistically homo-
geneous bound-state soliton gas. As discussed in Sec. VI B,
this soliton gas accurately models the long-time statistically
stationary state of the noise-induced modulation instability of
the plane-wave solution.

We believe that there are other distributions of soliton am-
plitudes leading to the statistically homogeneous multisoliton
wave fields in a wide region of physical space for sufficiently
small soliton positions |xDM

n | � 1 and random soliton phases.
The general question of constructing multisoliton bound-state
wave fields with a given profile 〈|ψ (x)|2〉 = P(x) in the phys-
ical space and a given set of amplitudes An by using random
soliton phases and a specific distribution of soliton positions
represents a challenging problem for future studies.

C. Direct scattering transform analysis

In this section, we discuss the direct scattering transform
(DST) analysis, which allows one to study the nonlinear
composition of numerically or experimentally observed wave
fields. Focusing only on the discrete spectrum (soliton eigen-
values and norming constants), we assume that the wave field
in question is given in a simulation box x ∈ [−L/2, L/2] and
outside this box it equals zero. If the actual boundary condi-
tions are different, then one can assume that the box L is large
enough compared with the characteristic sizes of nonlinear
structures, so that the difference in the boundary conditions
and the resulting edge effects can be neglected. Note that in
this formulation the scattering coefficients a(λ) and b(λ) are
analytic functions in the upper half of the λ plane, that is
essential for the algorithms discussed below.

In what follows, we describe the DST procedure pre-
sented in the recent study [109]. This procedure, based on
the standard DST methods [119–121] supplemented by the
latest studies [106,107,122] for the accurate calculation of the
norming constants, contains several steps which are discussed
below.

First, if there is a discontinuity of the wave field at x =
±L/2, then it is smoothed using a smoothing window of the
same size as the characteristic soliton width. It is assumed
that the number of solitons inside the box L is large and that
these discontinuities, together with their smoothing, do not
introduce significant inaccuracies in the results.

Second, an approximate location of the soliton eigenval-
ues is found using the standard Fourier collocation method
[119]. Being fast and fairly accurate, this method is based
on the Fourier decomposition of the wave field, which artifi-
cially shifts the continuous spectrum eigenvalues to the upper
half of the λ plane due to the implied periodization. Also,
it does not distinguish between the eigenvalues of discrete
and continuous spectra, leading to the problem of identifying
low-amplitude solitons.

Third, to cope this this problem, the wave field is consid-
ered in two larger boxes x ∈ [−3L/4, 3L/4] and x ∈ [−L, L]
by filling with zeros ψ = 0 the intervals where the wave
field is not defined. Then, the Fourier collocation method is
executed in both boxes and only the eigenvalues coinciding
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in both calculations are selected as belonging to the discrete
spectrum. While the latter provides a good approximation of
the soliton eigenvalues, i.e., zeros of the coefficient a(λ), this
approximation is still insufficient for the accurate calcula-
tion of the norming constants, which requires knowledge of
roots a(λn) = 0 to hundreds of digits [106]. That is why the
calculated eigenvalues are then used as seeding values for a
high-accuracy root-finding procedure.

The fourth and the final step of the described DST pro-
cedure consists in application of the standard second-order
Boffetta–Osborne method [120] on a fine interpolated grid
using high-precision arithmetic operations, as suggested in
Refs. [106,107]. The Boffetta–Osborne method is based on
the calculation of the so-called extended 4 × 4 scattering ma-
trix S, which translates the solution of the Zakharov–Shabat
system � together with its derivative �′ = ∂�/∂λ from x =
−L to x = L,(

�(L)
�′(L)

)
=
(

� 0
�′ �

)
︸ ︷︷ ︸

S

(
�(−L)
�′(−L)

)
. (66)

Here �(λ) is 2 × 2 matrix, such that �(L) = �(λ)�(−L),
and the scattering coefficients are connected with the elements
of matrix S as

a(λ) = S11e2iλL, b(λ) = S21,

a′(λ) = [S31 + iL(S11 + S33)]e2iλL. (67)

Note that instead of the standard second-order Boffetta–
Osborne method one can use the higher-order methods
obtained with the Magnus expansion; see Refs. [107,122] for
detail. A fine spatial grid and the high-precision arithmetic
operations are necessary to (i) neglect the round-off errors
when calculating the wave function � of the Zakharov–Shabat
system, (ii) avoid the anomalous errors in computation of
the norming constants, and (iii) suppress the numerical in-
stability of the wave scattering through a large potential,
see Refs. [106,107] for detail. Also note that when avoiding
the anomalous errors, one can supplement the DST procedure
with the bidirectional algorithm and its improvements, see
Ref. [123], to decrease the necessary number of digits in the
high-precision operations.

The Boffetta–Osborne method allows one to find the scat-
tering coefficients a(λ) and b(λ) for any value of λ by the
direct numerical integration of the Zakharov–Shabat system
on the interval [−L/2, L/2] with boundary conditions (54).
Note that a(λ) and b(λ) are analytic functions in the upper-
half of the λ plane, as the potential ψ (x) has a compact
support. Then, with the help of the Newton method, one can
find roots a(λn) = 0 with the necessary precision by using
the eigenvalues obtained by the Fourier collocation method as
seeding values. Finally, the norming constants are calculated
according to their definition (56) using the extended scattering
matrix S, see Eq. (67), to find the derivative a′(λ).

Figure 6 illustrates the performance of this DST procedure
on the example of a periodic wave field that was grown from
small statistically homogeneous in space noise within the
fNLS equation, supplemented by a small linear pumping term,
until the intensity, averaged over the simulation box, reached
unity, |ψ |2 = 1; see Ref. [109] for details. The solid blue and

FIG. 6. (Adapted from Ref. [109].) Numerical DST analysis of
a periodic wave field that was “grown” from small statistically ho-
mogeneous in space noise within the fNLS equation, supplemented
by a small linear pumping term, until the intensity, averaged over the
simulation box, reached unity, |ψ |2 = 1; see Ref. [109] for details.
Panel (a) shows the absolute values of the “grown up” wave field
|ψ | (solid blue) and the multisoliton solution |ψs| (dashed red); ψs

is constructed using the soliton parameters obtained in the DST
procedure. Panel (b) represents zoom of panel (a), also demonstrat-
ing the complex phases of the grown up wave field (solid green)
and the multisoliton solution (dashed black). The dots in panels
(c) and (d) illustrate soliton amplitudes An, velocities Vn, positions
xDM

n and phases θDM
n .

green lines in Figs. 6(a) and 6(b) show the amplitude |ψ |
and complex phase argψ of the grown up wave field, while
the dots in Figs. 6(c) and 6(d) demonstrate the calculated
soliton amplitudes An, velocities Vn, positions xDM

n and phases
θDM

n . Using these soliton parameters, one can construct the
corresponding exact multisoliton solution as discussed in the
previous section; it turns out that this solution approximates
the original wave field very well, as illustrated by the dashed
red and black lines in Figs. 6(a) and 6(b).

Note that the average intensity of the multisoliton solution
ψs in Fig. 6 equals 99% of that of the original grown up wave
field ψ . Also, most of the solitons of this solution have zero
velocities, forming a bound state. In Ref. [109], such a situa-
tion is observed if the initial noise amplitude and the pumping
coefficient are small enough. If this is not the case, then the
grown up wave fields with intensity of unity order |ψ |2 ≈ 1
also represent soliton-dominated states, which are not bound
as these solitons have different velocities. Moreover, as shown
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in the paper, during the growth stage the solitonic part of the
wave field becomes the dominant one very early when the
average intensity is still small, |ψ |2 � 0.1, and the dispersion
effects are leading in the dynamics. These observations in-
dicate that the soliton gas model can be applicable even to
weakly nonlinear cases, so that a soliton gas can be a very
common object in nature.

Concluding this section we mention that a similar DST
or IST based algorithms enable the numerical analysis and
synthesis of breather gases, see Refs. [66,124]. Also, soli-
ton gas can interact with a portion of dispersive radiation
described by a nonzero reflection coefficient. In this case,
one can use numerical IST algorithms directly solving the
GLM equations or based on the Riemann-Hilbert problem to
synthesize wave fields characterized by nonzero continuous
and discrete spectra [125–127].

V. EXPERIMENTS

From the experimental point of view, a few attempts to
generate and to observe soliton gases have been made in some
optical fiber experiments performed at the end of the 1990s
[35–37]. The soliton gas was generated by the synchronous
injection of laser pulses inside a passive ring cavity. No direct
observation but only averaged measurements of the Fourier
power spectrum and of the second-order autocorrelation func-
tion characterizing the optical soliton gas have been reported
in these pioneering experiments. Moreover, the dynamics of
the ring resonator was so complex that many features ranging
from purely temporal chaos to spatiotemporal chaos or turbu-
lence were observed in this fiber system [37].

Analyzing ocean waves recordings, Costa et al. have re-
ported the observation of random wave packets in shallow
water waves in 2014 [38]. The wave packets have been an-
alyzed using numerical tools of nonlinear spectral analysis
[128] and interpreted as being composed of random solitons
that might be associated with KdV soliton gas. One year later,
large ensembles of interacting and colliding solitons have
been observed in a laboratory environment [39]. The exper-
imental system was a water cylinder deposited on a heated
channel and levitating on its own generated vapor film owing
to the Leidenfrost effect. Multiple soliton propagation was
observed at the surface of the water cylinder and the Fourier
analysis that was made in an attempt to characterize the
multiple coherent structures revealed a “soliton turbulence-
like spectrum.” Note also that a striking transition between
weak turbulence and solitonic regimes has been evinced in
the hydrodynamic experiments reported in Ref. [129]. In these
experiments, water waves have been generated by exciting
horizontally a water container by using an oscillating table.
The weak turbulence regime observed at low forcing and/or
large depth was shown to abruptly evolve into a solitonic
regime at larger forcing and/or small depth. Remarkably,
these results establish a possible link between the field of
integrable turbulence and the field of wave turbulence.

In the recent laboratory experiments reported in Ref. [41],
Redor et al. have taken advantage of the process of fission of a
sinusoidal wave train to generate a bidirectional shallow water
soliton gas in a 34-m-long flume. The space-time observations
revealed complex dynamics where large numbers of collid-

ing solitons retained their profile adiabatically, although their
amplitude was slowly decaying because of some unavoidable
damping. The Fourier analysis of the observed nonlinear wave
field has clearly revealed the interplay between multiple soli-
tons and dispersive radiation. Further analysis making use
of the periodic scattering transform have been implemented
in Ref. [130] to discriminate linear wave motion states from
integrable turbulence and soliton gas. Moreover the statistical
properties of the soliton gas have been given in terms of
probability density distribution, skewness, and kurtosis [130].

The experiments reported in Refs. [41,56,130] have been
made in the presence of an unavoidable slow damping but it
has been shown that a stationary state typified by the interplay
among random bidirectional solitons can be achieved because
of the continuous energy input by the wavemaker. In these
shallow-water experiments, a route to integrable turbulence
has been discovered through the disorganization of wave mo-
tion that is induced by the wave maker [130]. This route has
been shown to depend on the nonlinearity of the waves but
also on the amplitude amplification and reduction due to the
wavemaker feedback on the wave field [130].

Using an approach fully based on the IST method while
also relying on the concept of DOS, a soliton gas has been
generated in hydrodynamic experiments performed in the
deep-water regime where wave propagation is described at
leading order by the 1D fNLS equation [57]. The experiment
has been performed in a wave flume being 148 m long, 5 m
wide, and 3 m deep. Unidirectional waves have been gener-
ated at one end of the tank with a computer assisted flap-type
wave maker and the flume is equipped with an absorbing
device strongly reducing wave reflection at the opposite end.
In these experiments the space-time evolution of the generated
wave packet is measured with 20 gauges uniformly distributed
along the tank.

The experiment reported in Ref. [57] starts from the nu-
merical generation or synthesis of a soliton gas by using
the methodology described in Sec. IV. An ensemble of 128
solitons having spectral parameters being distributed in a rect-
angular region of the spectral IST plane has been numerically
generated. The solitons have the modulus of their norming
constants being equal to unity while their phases are randomly
distributed between −π and +π . In the experiment, the gener-
ated soliton gas has the form of a random wave field spreading
over ≈1200 s, see Fig. 7. It represents a dense soliton gas in
which solitons are not isolated and not well separated like in
a rarefied gas.

In the experiments reported in Ref. [57], a large number
of discrete eigenvalues were distributed with some density
within a limited region of the complex plane. This justifies
the introduction of a statistical description of the spectral
(IST) data. This represents a key point for the analysis of the
observed wave field in the framework of the SG theory. In
Ref. [57], the DOS of a homogeneous soliton gas has been
measured for the first time in experiments, which provides
an essential first step towards experimental verification of
the kinetic theory of nonequilibrium SGs. Nonlinear spectral
analysis of the generated hydrodynamic soliton gas reveals
that the DOS slowly changes under the influence of pertur-
bative higher-order effects that break the integrability of the
wave dynamics.

061001-18



SOLITON GAS: THEORY, NUMERICS, AND … PHYSICAL REVIEW E 109, 061001 (2024)

FIG. 7. Gas of 128 solitons propagating in a 140-m-long 1D water tank [57]. (a) Water elevation (red line) and modulus of the wave
envelope measured at Z = 6 m, close to the wave maker. (b) DOS of the soliton gas measured at Z = 120 m. (c) Discrete IST spectrum
measured at Z = 6 m. (d) Discrete IST spectrum measured at Z = 120 m. (e) Space-time evolution of modulus of the wave envelope recorded
by the 20 gauges regularly spaced along the tank. Reproduced with permissions from Ref. [57]

Very recently an experiment on the interaction of
monochromatic SGs modeled by the superposition of the δ-
function DOS (see Sec. III D) was performed in a deep-water
tank [131] confirming physical relevance of exact analyti-
cal solutions of the fNLSE SG kinetic equation obtained in
Ref. [20]. Moreover, in recent optical fiber experiments, the
effective velocity of a test soliton propagating in a homoge-
neous SG has been measured for the first time and compared
quantitatively to the prediction of the SG theory [32]

VI. APPLICATIONS OF SOLITON GASES

Since the first paper of Zakharov [18], a peculiar interest
has been ascribed to SG as a fundamental mathematical and
physical concept. Importantly, it has been recently shown that
SG theory can provide a powerful framework to describe the-
oretically the complex statistics underlying some well-known
and fundamental nonlinear dispersive waves phenomena. It
is indeed natural to expect that SG theory can be used to
describe some specific regimes of integrable systems (inte-
grable turbulence, see Sec. VI A) [7,12,54,55,70,132,133].
In particular, by using numerical simulations, it has been
shown in 2019 that the long-term statistical properties of the
so-called spontaneous modulation instability coincides with
those of a specifically designed SG, see Sec. VI B and [47].
Very recently, a general relationship between the DOS of
a SG and the kurtosis (fourth-order moment) of wave field
has been derived, see Sec. VIII B. These results provide the
first theoretical description of the long-term evolution of the
noise-induced modulation instability and pave the way for
the description of integrable turbulence by using the SG
theory.

A. Integrable turbulence

A soliton gas is a peculiar case of a more general phe-
nomenon named “integrable turbulence” by Zakharov [4].
Integrable turbulence represents the dynamical and statisti-

cal phenomena emerging during the propagation of nonlinear
random waves in an integrable system. In nonintegrable sys-
tems, the propagation of nonlinear random waves can be
described in the weakly nonlinear regime by the so-called
wave turbulence theory [1,134]. In wave turbulence, the ex-
changes of energy among different scales are dominated
by resonant interactions among Fourier components. In this
framework, wave turbulence theory predicts, in particular,
the out-of-equilibrium phenomena (Kolmogorov-Zakharov
cascade) or thermodynamic equilibrium (Rayleigh-Jeans dis-
tribution) [1,134–137].

The physics of integrable wave systems is of profoundly
different nature because of the infinite number of constants
of motion and of the absence of resonances. In particular,
nonlinear random integrable waves cannot reach the ther-
modynamical Rayleigh-Jeans equilibrium [135,138]. For this
reason, Zakharov has introduced a new field of research, the
integrable turbulence (IT), which is defined as the statistical
description of integrable systems [4]. Since this seminal paper
in 2009, integrable turbulence has received a growing interest
both from the theoretical [4,7–9,47,70,75,103,132,139–144]
and experimental [10,12,54,55,133,141,145] points of view.

In practice, integrable turbulence corresponds to the prop-
agation of random waves in systems described by integrable
equations such as the 1D NLS, the KdV or the Sine-Gordon
equations. In this Sec. VI, we focus on recent results on the
1DNLS integrable turbulence. The one-dimensional focusing
NLS equation provides a bridge between nonlinear optics and
hydrodynamics [145,146]. The 1D focusing NLS equation de-
scribes at leading-order deep-water wave trains or optical
fiber in anomalous dispersion regime and it plays a central
role in the study of rogue waves [147–151]. The relevant
approach to study nonlinear random waves is a statistical
description, including probability density functions (PDFs) of
wave amplitude ψ or of intensity |ψ |2 and moments such as
the kurtosis κ4 = 〈|ψ |4〉/〈|ψ |2〉2. The last years, the statistical
properties of integrable turbulence has been widely studied by
using numerical simulation of the NLS equations. Preserving
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integrability in long-term simulations is a delicate and chal-
lenging task, but to the best of the knowledge, integrable
turbulence is characterized by stationary statistical properties
of the field for long time t . This existence of stationary sta-
tistical states in the long-time evolution of the wave system is
the most fundamental known feature of integrable turbulence.

IT phenomena in the 1D NLS dynamics can be classified
by considering the statistical properties of the initial condi-
tions. Two classes of initial conditions have been extensively
investigated : (i) the plane wave perturbed by a small random
noise and, (ii) partially coherent waves.

The homogeneous solution of the 1D focusing NLS equa-
tion (the plane wave or condensate) is unstable in the
presence of long-wave perturbation. When the perturbation
is a random process, this dynamical mechanism, known as
the “noise-induced” or spontaneous modulation instability
(MI) [7,10,152], represents a prominent example of the IT
phenomena. Surprisingly, the long-term statistical state is
characterized by a Gaussian local statistics of the field ψ i.e.,
by a kurtosis κ4 = 2 [7] while the other statistical properties
such as the Fourier spectra or two-point correlations are not
trivial [10]. These statistical quantities have been quantita-
tively measured in experiments but up to very recent studies,
no theoretical description was available. In the Sec. VI B, we
show that the soliton gas concept provides a powerful theo-
retical tool to predict quantitatively the statistical properties
of the long term evolution of the spontaneous modulation
instability.

Partially coherent waves provide a second kind of inte-
grable turbulence. The initial condition is provided by the
linear superposition of numerous Fourier modes and is char-
acterized by a Gaussian statistics of the field [134,135]. Such
initial conditions have been extensively investigated in numer-
ical simulations of the defocusing and of the focusing NLS
equation and in experiments [9,12,54,55,133,145,153]. The
long-term evolution is characterized by non-Gaussian statis-
tics. Note that in the focusing regime of NLS, the strongest
deviation from Gaussianity is characterized by a kurtosis κ4 =
4 [154] (corresponding to the numerous emergence of extreme
event rogue waves).

The evolution of the statistical properties of partially coher-
ent waves in the framework of 1D NLS integrable turbulence
can be described by using a nonconventional wave turbulence
theory approach [138,155]. This theoretical approach predicts
the deviation from Gaussianity for a weak nonlinearity but is
not valid in the high nonlinearity regime. In particular, up to
now, the maximum value of the kurtosis κ4 = 4 was not under-
stood. In Sec VIII B, we summarize a very recent theoretical
study based on SG theory which explains this maximum value
of the kurtosis.

As mentioned above, soliton gas is a peculiar case of
integrable turbulence. Indeed, in the framework of IST with
zero boundary conditions, integrable turbulence can always
be described by the combination of the discrete and of the
continuous spectra. By focusing on the spontaneous MI,
we show in the Sec. VI B that soliton gas theory provides
a powerful framework to tackle the problem of the statis-
tical description of integrable turbulence in pure solitonic
cases.

FIG. 8. Numerical simulations of the one-dimensional focusing
NLS equation: Space-time diagrams of |ψ (x, t )|2 (a) Noise-induced
modulation instability of a plane wave (periodic boundary condi-
tions). (b) Dynamics of the random-phase bound N-SS (only the
central part of the N-SS having a total width L0 � 400 is plotted).
Reproduced with permission from Ref. [47].

B. Spontaneous modulation instability

The MI appears in many physical systems, such as deep
water waves [6], Bose-Einstein condensates [156] or nonlin-
ear optical waves [157]. If the plane wave is perturbed by
an initially small sinusoidal perturbation, the nonlinear stage
of MI is described by homoclinic solutions of the 1D focus-
ing NLS equation—the Akhmediev breathers [158–161]. As
reminded above, in the case of random initial perturbation,
single-point statistics evolves toward a stationary Gaussian
distribution (and κ4 = 〈|ψ |4〉/〈|ψ |2〉2 = 2) despite the pres-
ence of highly nonlinear breather-like structures [7,70,132].
The long-time (stationary) statistics is also typified by a
quasiperiodic structure of the autocorrelation function g(2) of
the wave field intensity [10].

In this section, we review numerical simulations that prove
that the nonlinear stage of the spontaneous MI in the fo-
cusing regime of the Eq. (6) (σ = +1) can be quantitatively
described by a specifically designed soliton gas [47].

Without loss of generality, we consider the plane-wave
solution of Eq. (6)—the condensate—of unit amplitude
ψc(t, x) = exp it . In the classical formulation of the sponta-
neous MI problem, the initial condition reads [7,162]

ψ (t = 0, x) = 1 + η(x), (68)

where η is a small noise, 〈|η|2〉 � 1, with zero average, 〈η〉 =
0. The destabilization of the condensate with respect to long-
wave perturbations was widely investigated, both numerically
by using periodic boundary conditions in a box of large size
[7,10,150,152], and experimentally [10,163,164]. The typical
spatiotemporal dynamics of the spontaneous MI can be seen
in Fig. 8(a).

To demonstrate that the statistical properties of the sponta-
neous MI coincide at long-time with those of SG, the first step
used in Ref. [47] is to modify the boundary conditions. The
idea is that if one fixes the time at which the nonlinear stage
of MI is characterized [typically t > 30 in Fig. 8(a)], the plane
wave with periodic boundary conditions can be replaced by a
box with zero boundary conditions. The width of the box has
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to be sufficiently large to avoid any influence of the edges in
the central part of the box at the considered time t .

By using the same idea, one expects that any homogeneous
SG can be locally modeled by an N-SS (with zero boundary
conditions). Moreover, in order to model the long-time dy-
namics of a stochastic field, it is natural to assume random
norming constants phases because the phase rotations −2iλ2

nt
for large t introduce an effective randomization. Note that
somehow, this random phases of the norming constant are
similar to the so-called “random-phase approximation” (i.e.,
random phases of the Fourier components) in wave turbulence
theory [1,134].

Finally, the last step is to determine the DOS of the SG
underlying the dynamics of the field. Here, the answer is
rather simple because the discrete spectrum of a real-valued
rectangular box of unit amplitude and width L0 is known. In
the limit L0 � 1, the discrete spectrum of the semiclassical
Zakharov-Shabat scattering problem is given by the Bohr-
Sommerfeld quantization rule, see, e.g., Refs. [5,81] and also
Ref. [112]:

λn = iβn = i

√√√√1 −
[

π
(
n − 1

2

)
L0

]2

, n = 1, 2, . . . , N, (69)

where N = int[L0/π ] (the density of the gas, i.e., the number
of solitons per unit length is thus 1/π ). The continuum limit
of Eq. (69) with N → ∞, βn → β gives the normalized dis-
tribution (density) φ(β ) of the IST eigenvalues:

φ(β ) = 1

N

dn

dβ
= β√

1 − β2
, (70)

which is sometimes called the Weyl distribution. Finally, here,
the DOS is simply [cf. (11)]

f (β ) = 1

L0

dn

dβ
= 1

π
φ(β ). (71)

This is nothing but the 1D focusing NLS bound-state soliton
condensate DOS (49) obtained in Sec. III D as the solution
of the NDRs (42) in the limit σ → 0 assuming the spectral
support 
+ = [0, i]. In Ref. [47] a large number of realiza-
tions of N-SSs that fulfill the required eigenvalues distribution
given by the Eq. (70) have been computed with random phase
for the norming constants by using the procedure described in
Sec. IV B. This realizations ensemble models a bound SG in
the limit N large (N = 128 in [47]). As the N-SS are bound
states (Reλn = 0), the expected dynamics of the wave field is
identical to the dynamics observed in the nonlinear stage of
the spontaneous MI. Indeed, the zero velocity of the solitons
prevent any dilution of the gas during the evolution.

The Fig. 8 displays the comparison between two NLS
equation simulations made with different initial conditions:
Fig. 8(a) corresponds to the dynamics of the plane wave
(initially perturbed with noise) while Fig. 8(b) corresponds
to the dynamics of one realization of the N-SS. The features
characterizing the spatiotemporal dynamics of the long-time
evolution of the plane wave (typically for time t > 20) seems
very similar to the one of the N-SS. As expected, the specif-
ically designed N-SS apparently is a very good model of the
nonlinear stage of the spontaneous MI.

FIG. 9. Comparison of ensemble averaged statistical character-
istics of the asymptotic state of the MI development and of random
phase 128 SSs. (a) Wave action spectrum Sk . (b) The PDF P (I ).
(c) Autocorrelation function of intensity (second-order degree of
coherence) g(2)(x). Reproduced with permission from Ref. [47].

More importantly, the statistical properties of SG coincide
in a quantitative manner with those of the asymptotic stage of
MI. For example, the long-term evolution of the noise-induced
MI is characterized by stationary values the potential Hnl and
kinetic Hl energy [7], 〈Hl〉 = 0.5 and 〈Hnl〉 = −1 where the
total energy (Hamiltonian) H , which is one of the infinite
constants of motion of the 1D-fNLS equation [5], reads

H = Hl + Hnl , Hl = 1

2

1

L

∫ L/2

−L/2
|ψx|2dx,

Hnl = −1

2

1

L

∫ L/2

−L/2
|ψ |4dx. (72)

Figure 9 shows the comparison between three other statistical
of both the long-time evolution of the spontaneous MI and of
the ensemble of N-SS. Figure 9(a) displays the wave-action
spectrum,

Sk ∝ 〈|ψk|2〉, ψk = 1

L

∫ L/2

−L/2
ψe−ikxdx. (73)
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Figure 9(b) displays the probability density function (PDF)
P (I ) of the field intensity I = |ψ |2 which is known to follow
the exponential distribution in the asymptotic statistics of the
unstable condensate [7,10]. Finally, Fig. 9(c) displays the
autocorrelation of the intensity g(2)(x) :

g(2)(x) = 〈I (y, t )I (y − x, t )〉
〈I (y, t )〉2

, (74)

which represents the second-order degree of coherence.
It is important to note that all these remarkable features

of the spontaneous MI have been observed in optical fibers
[10]. In other words, higher-order effects that break integra-
bility do not play an important role before the nonlinear wave
field reaches the stationary state. This validates the use of
the (integrable) theory of SG in order to describe the funda-
mental phenomenon of spontaneous MI observed in realistic
conditions.

Remarkably, all these statistical quantities computed in the
asymptotic state of the MI coincide with excellent accuracy
with those of the considered SG. In addition, further stud-
ies revealed that extreme amplitude waves emerging in the
asymptotic state of the MI and the soliton gas have identical
dynamical and statistical characteristics [105]. Note that this
agreement is weakly depend on the exact eigenvalues chosen
for the N-SS because the key ingredient are the statistical
distribution of the eigenvalues and the use of random phases
for the norming constants [in other words, similar statistical
results have been obtained in the case of soliton eigenvalues
randomly distributed according to the probability function
(70) [47]].

What are the main conclusions of this numerical study?
First, the asymptotic state of the spontaneous MI can be mod-
eled by a specific SG—the bound state soliton condensate. This
SG can be constructed with exact N-SSs of the 1D focusing
NLS equation by using large values of N and the Weyl’s dis-
tribution of IST eigenvalues coinciding with the one predicted
for the box potential in the semiclassical limit [81]. Moreover,
the long-term statistical state of MI corresponds to a full
stochastization of the phases of the norming constants i.e., the
solitons’ phases. Finally, note that for other distributions of
eigenvalues explored by the authors, the statistical properties
of the SG do not coincide with those of the MI and/or are
strongly nonhomogeneous in space [47].

These results open a promising direction in the theory of in-
tegrable turbulence by establishing a link between the MI and
SG dynamics. It is important to note that this quantitative link
is possible in the case of MI because for a “semiclassical” box,
the contribution of the “nonsoliton” part of the field, i.e., of the
continuous IST spectrum, decays exponentially with L0 and
so can be neglected [5]. As a consequence, this modeling of
integrable turbulence by using SG can be a priori generalized
to a broad class of IT problems when the (random) wave field
is strongly nonlinear, so that the impact of the nonsolitonic
content can be neglected in the asymptotic state (t → ∞). For
such a case, the general strategy to study the asymptotic state
should be to build N-soliton solutions with the distribution
φ(λ) of IST eigenvalues characterizing the field and random
phases of the norming constants (see Sec. VIII B). We review
in Sec. VIII B new results showing that this approach provides
a framework allowing to compute theoretically the observed

value of κ4 = 2 for the long-term evolution in the spontaneous
MI phenomenon [10] and κ4 = 4 for the semiclassical limit of
partially coherent waves [154].

VII. GENERALIZED HYDRODYNAMICS

A. The perspective of emergent hydrodynamics

As mentioned, it is very natural to understand the theory of
soliton gases within a kinetic perspective, as the fundamental
objects—the soliton DOS or phase-space density f (η; x, t )
introduced in Sec. II, its kinetic Eq. (15) and the equa-
tion of state Eq. (17) the effective velocity s(η; x, t ),—have
a clear kinetic interpretation in terms of soliton propagation
and scattering. This interpretation is mathematically accurate
at low densities, but at high densities, although compelling,
it remains nebulous. The kinetic viewpoint is in fact an a-
posteriori interpretation: as reviewed in Sec. III, the soliton
gas theory may be derived from an appropriate thermody-
namic limit of finite-gap (quasiperiodic) solutions and their
Whitham modulations.

Independently from the soliton gas theory, a framework for
the emergent large-scale behaviors of quantum and classical
many-body integrable systems out of equilibrium was more
recently developed, dubbed “generalized hydrodynamics”
(GHD) [76,77]. In this context, the problem is to determine
the dynamics of many-body systems out of equilibrium, as
done for instance in the quantum Lieb-Liniger gas [76], in
the Heisenberg quantum spin chain [77], in the classical Toda
model [165–167] and in the NLS [168] and sine-Gordon [169]
as a classical field equations. One seeks, for instance, the full
space-time profile of expectation values of local observables,
from an initial state that present variations on large scales;
or the full space-time profile of their correlation functions.
As it was realized [170], it turns out that the main objects
of GHD—the phase-space densities denoted in this context
ρp(η; x, t ), the kinetic equation referred to as the “GHD equa-
tion,” and the equation of state for the effective velocity
denoted veff (η; x, t )—have exactly the same structure as in
soliton gases. The spectral parameter η is identified with the
quasimomentum of the thermodynamic Bethe ansatz (TBA),
and, in quantum systems, quite surprisingly the two-body
scattering shift is simply identified with the semiclassical shift
of quantum wave packets, or the “kernel” of the TBA equa-
tions. The TBA [171–174] is a framework first developed at
the beginning of the 1960s to construct the thermodynamics
of Bethe-ansatz integrable systems.

However, by contrast to the theory of soliton gases, in
GHD a different viewpoint is emphasized. Certainly, a ki-
netic perspective can be taken, as was done in one of the
co-founding papers of GHD [77]: “Bethe quasiparticles” are
the kinetic objects, and the effective velocity veff (η) had in
fact been proposed earlier [175] as their emergent propagation
velocity within finite-density states. However, in the quantum
context it is more difficult to establish the validity of this
perspective, even at low densities. Furthermore, a quantum
modulation theory has not yet been developed. Instead, the
currently prevalent viewpoint, emphasized in the other co-
founding paper of GHD [76], is that of the emergence of
hydrodynamics at large space-time scales. This physical idea
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implies that the structure of GHD is in fact that of Euler
equations, instead of a kinetic theory, only generalized to
infinitely many conservation laws.

Euler hydrodynamics is the idea that locally, within each
“mesoscopic” region of space and time (sometimes referred
to as fluid cell), the system’s state looks as if it had relaxed.
A mesoscopic space-time region covers a length that is large
as compared with the microscopic scales (the interparticle
scales and interaction distances) but small as compared with
macroscopic scales (the length scales at which averages of
local observables show variations); and a time that is like-
wise large compared with microscopic, and small compared
with macroscopic, times. According to conventional physical
wisdom, a state that has “relaxed” is space-time stationary
and takes the Gibbs form. Thus, in Euler hydrodynamics, one
assumes that at every point in space-time, the state looks like it
is in Gibbs form. The Gibbs form arises from an entropy max-
imization principle, so these are “maximal entropy states,” and
we may therefore talk about “local entropy maximization.”
The local maximal entropy states depends on space-time, and
upon imposing all the available local conservation laws, this
gives the Euler equations for the system.

It has been worked out in the past 20 years (see the reviews
[176,177]) that the so-called generalized Gibbs ensembles
(GGEs), with density matrix

GGE: ρ ∝ e−∑i βiQi , (75)

where Qi = ∫ dxqi(x, t ), with dQi/dt = 0, are extensive con-
served quantities, correctly describe relaxation in many-body
integrable models. In the infinite-volume limit, infinitely
many conserved quantities Qi must be considered (under
some convergence condition). The emergent hydrodynamic
perspective then simply states that the local MES are GGEs,
so the local relaxation process is

〈o(x, t )〉initial state → 〈o〉GGE(x,t ) (76)

for “any” local observable o(x, t ). Here GGE(x, t ) is de-
scribed by “Lagrange parameters” βi(x, t ) which depend on
space-time. In the hydrodynamic approximation, the GGEs
only depend slowly on space and time, and one then im-
poses the local conservation laws ∂t qi(x, t ) + ∂x ji(x, t ) = 0
for GGE-average local densities qi(x, t ) and their currents
ji(x, t ), in order to obtain the long-wavelength, slow dynam-
ics,

∂

∂t
〈qi〉GGE(x,t ) + ∂

∂x
〈 ji〉GGE(x,t ) = 0. (77)

In principle, barring subtleties associated with hyperbolic sys-
tems of equations (see, for instance, Ref. [178]), these are
enough equations to have a well-posed initial-value problem.
The crucial ingredient in (77) is the “thermodynamic equa-
tions of state”: the way the average currents 〈 ji〉GGE are related
to the average densities 〈qi〉GGE. Once this is known explicitly,
the hydrodynamic Eq. (77) is written explicitly.

Thus, the usual ideas of hydrodynamics are simply ex-
tended to the principle of “generalized thermalization” for
many-body integrability; this is the hydrodynamic basis for
GHD, justifying its name.

Crucially, the perspective of emergent hydrodynamics ap-
plies equally well to soliton gases [78]. For instance, KdV

and NLS soliton gases can be seen as special examples within
the frameworks of GHD and TBA. This has important con-
sequences for soliton gases. First, this directly provides their
thermodynamics (the free energy, the entropy, the tempera-
ture), and more generally, it puts the soliton gas theory in
the general statistical mechanics framework; this was miss-
ing before the connection with GHD was made. Second,
the large body of results in GHD, and indeed the statistical
mechanics viewpoint on hydrodynamics that is at the basis
of GHD, gives new formulas and insight which are not yet
obtainable by more mathematically accurate methods from
IST. These include, for instance, correlation functions in space
and time (see the review [179]), numerically confirmed in
the KdV soliton gas [78], and fluctuations of macroscopic
currents [180,181]. Finally, GHD provides guidance for the
generalization of soliton gas theory to, e.g., external forces
and diffusive and dispersive corrections. Results coming from
(and expected in the future to come from) connecting soliton
gases with GHD are typically hard to obtain by other methods,
yet are directly applicable to specific KdV and NLS soliton
gas setups and questions that are currently of interest. We
emphasize that, contrary to the historical theory of soliton
gas, GHD provides crucial spatiotemporal information such
as correlations, whose tests, we believe, will allow new un-
derstanding of experimental observations in the near future.
We discuss such perspectives in Sec. VIII E and at the end of
Sec. VIII C. But first, we overview the TBA framework at the
basis of the thermodynamics of integrable systems, and the
universal principles that explain why GHD and TBA are so
widely applicable, with some recent predictions obtained in
the KdV soliton gas.

B. The thermodynamic Bethe ansatz

In the hydrodynamic perspective, no kinetic theory is
invoked. This perspective emphasizes not the kinetic interpre-
tation of the equations, but rather their thermodynamic and
hydrodynamic interpretations. But how does one deal with in-
finitely many conservation laws, and a large space of maximal
entropy states? And how does a formulation that looks like a
kinetic theory emerge?

This is thanks to the structure of the TBA. To describe it,
take the integrable model of Bose particles interacting with a
δ-function potential, the repulsive Lieb-Liniger gas (see, e.g.,
the review [182] where its GHD is explained),

H = −
N∑

n=1

1

2

∂2

∂x2
n

+
N∑

n<m=1

cδ(xn − xm), c > 0. (78)

The fully symmetric N-particle Bethe ansatz eigenfunctions,
parametrized by Bethe roots ηn’s, take the form

�({x}) ∝
∑

P :permutations

∏
n<m

sgn(xP (n) − xP (m) )

× exp

[
i
∑

n

ηnxP (n)

+ i

4

∑
n �=m

φ(ηn − ηm)sgn(xP (n) − xP (m) )

]
. (79)
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The quantity φ(ηn − ηm) = 2 arctan ηn−ηm

c is the two-body
quantum-scattering phase shift occurring when a particle of
Bethe root ηn scatters with one of Bethe root ηm. Conserved
quantities (including the Hamiltonian) take a simple form on
these eigenfunctions:

Qi�({x}) =
N∑

n=1

hi(ηn)�({x}), (80)

where the functions hi(η) are the “one-particle eigenval-
ues.” These include the total number of particle Q0 [with
q0(x) =∑n δ(x − xn) and h0(η) = 1], the momentum Q1

[with q1(x) = 1
2

∑
n −i{∂xn , δ(x − xn)} and h1(η) = η], and

the energy Q2 = H [with h2(η) = η2/2]. In fact, local
conserved charges—those admitting a local density qi(x, t )—
have hi(η) ∝ ηi for all i ∈ N. In a system of finite length L, the
values of ηn are quantized as is usual in quantum mechanics;
however, the quantization condition is nontrivial: these are
the Bethe ansatz equations, involving φ(η) (see, for instance,
Ref. [182]).

The TBA is based on the basic statistical mechanics
principle of the equivalence of the microcanonical and macro-
canonical ensembles, but generalized to all conserved charges,
or equivalently all Bethe roots. Thus, the sum over eigen-
states involved in a GGE concentrates on a fixed distribution
of Bethe roots ρp(η), and one evaluates GGE averages of
conserved densities by using this distribution, 〈qi〉GGE =∫

dηρp(η)hi(η), as follows from (80). The TBA gives an
explicit map from βi to ρp(η). This map is obtained by mini-
mizing a free-energy functional that encodes the constraints
on quasimomenta arising from the Bethe ansatz equations.
The result may be written in the suggestive form:

ε(η) =
∑

i

βihi(η) −
∫

dη′

2π
ϕ(η − η′) ln(1 + e−ε(η′ ) ),

ρp(η) = −2π
∂

∂β0
ln(1 + e−ε(η) ), (81)

involving the pseudoenergy ε(η), defined as the solution of
the above nonlinear integral equation, and the differential
scattering phase, defined by

ϕ(η) = dφ(η)

dη
= 2c

η2 + c2
. (82)

In this sense, the phase-space density ρp(η; x, t ) does not
arise as a density for particle-like dynamical objects forming
a gas, but rather as a way of characterizing all averages of lo-
cal conserved densities in the x, t-dependent GGE that arises
from the Euler hydrodynamic principle,

〈qi〉GGE(x,t ) =
∫

dηρp(η; x, t )hi(η). (83)

Many-body integrable systems admit an infinite-dimensional
space of conserved quantities Qi, and the spectral parameter
is just seen as a continuous parametrization of this space
(interpreted as a particular choice of a “scattering basis,” see,
e.g., the discussion in Ref. [179]).

As mentioned above, the crucial ingredient is the relation
between GGE averages of currents and densities. Historically,

this was in fact the main stumbling block in developing the
hydrodynamics of integrable systems.

Average currents in GGE were first evaluated [76] using the
TBA and crossing symmetry of relativistic quantum field the-
ory; they were later derived directly from the Bethe ansatz and
other quantum integrability techniques and then from “self-
conserved” currents using the symmetry of current-charge
correlations; see the reviews [183,184]. The result is striking:
it takes the form

〈 ji〉GGE(x,t ) =
∫

dηveff (η; x, t )ρp(η; x, t )hi(θ ), (84)

where the effective velocity, here obtained, we recall, via
Bethe ansatz calculations, satisfies the classical-looking
collision-rate ansatz (17), with G(η, η′) = −ϕ(η − η′) and
s0(η) = η:

veff (η) = η +
∫

dμϕ(η − μ)ρp(μ)[veff (μ) − veff (η)].

(85)

Its x, t dependence veff (η) → veff (η; x, t ) comes from the
(x, t )-dependent GGE ρp(η) → ρp(η; x, t ). Note how the dif-
ferential scattering phase ϕ(η − η′), Eq. (82), arises: this is
exactly the semiclassical scattering shift of Bethe ansatz wave
packets. One then obtains, from (77) and assuming some com-
pleteness of the space of functions hi(θ ), the GHD equation

∂

∂t
ρp(η; x, t ) + ∂

∂x
[veff (η; x, t )ρp(η; x, t )] = 0. (86)

This is, in this perspective, a Euler hydrodynamic equation,
even though it looks like a kinetic Eq. (15).

We finally note that each value of the spectral parameter
η corresponds to a hydrodynamic normal mode—a “sound
mode” or the like—for the emergent Euler-scale equation,
and veff (η; x, t ) are the associated hydrodynamic velocities
tangent to their characteristics. Riemann invariants can be
explicitly constructed; indeed ε(η; x, t ), or any function of it,
satisfies the diagonalized Euler-scale equation, ∂tε(η; x, t ) +
veff (η; x, t )∂xε(η; x, t ) = 0, and so does the “cumulative den-
sity” or height field

∫ x
−∞ dx′ρp(η; x′, t ) (cf. the counterpart

Eq. (41) for the spectral scaling function σ (η; x, t ) in the SG
theory); likewise, for linear perturbations on top of a homo-
geneous stationary background, ρp(η) + δρp(η; x, t ), we have
∂tδρp(η; x, t ) + veff (η)∂xδρp(η; x, t ) = 0.

C. Universality and generalized hydrodynamics of the
Korteweg–de Vries soliton gas

Note that, curiously, one obtains, using the above de-
scription, a reinterpretation of the Liouville equation of
phase-space conservation in classical mechanics. Tradition-
ally it is understood in kinetic theory as a “collisionless”
Boltzmann equation. Now take, for instance, the Tonks-
Girardeau limit c → ∞, where the Lieb-Liniger model
becomes a model of nonintegracting fermions, with ϕ(η) = 0.
The resulting GHD equation is the Liouville equation. But
here, it is seen as a hydrodynamic equation, for a continuum
of sound modes emerging at large scales in this system of
noninteracting particles! The same holds for any system of
noninteracting particles, quantum or classical.
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This latter observation leads us to emphasize an important
concept: the hydrodynamic perspective has the advantage that
it is indifferent to the precise nature of the underlying many-
body system. It has a large amount of universality.

This universality arises at two levels. First, the general
structure of hydrodynamics at the Euler scale is always the
same, no matter the underlying many-body system, under
fairly general conditions (local interactions, and perhaps mi-
croscopic reversibility). The important point in establishing
the Euler-scale hydrodynamic theory of a given many-body
system is to characterize its full manifold of maximal entropy
states. One expects that the “extensive conserved quantities,”
widely studied in quantum many-body systems [185], span the
tangent spaces to this manifold, and according to Euler hydro-
dynamics, their densities are the emergent dynamical degrees
of freedom onto which the microscopic dynamics projects at
large scales; at the linearized level, this phenomenon has been
rigorously established in quantum spin chains [186] and lat-
tices [187]. Once the space of extensive conserved quantities
is understood, the hydrodynamic principles—local relaxation
and the conservation laws—are completely general and do
not require any strong dynamical assumptions such as chaos
or any particular structures for the underlying microscopic
theory.

Second, within the family of many-body integrable models,
the description of Sec. VII B is also completely universal.
The microscopic system may be quantum or classical, com-
posed of continuous fields, particles, solitons, spins, etc.—the
same structure emerges for its Euler-scale hydrodynamics.
The model-dependent aspects are the phase space S of pos-
sible values of the spectral parameter η (it is R>0 in the KdV
soliton gas, R in the repulsive LL model, C in the soliton gas
of focusing NLS, etc.), and the basic dynamical quantities, in-
cluding the two-body shift G(η,μ) [it is −2c/[(η − μ)2 + c2]
in the repulsive LL model, 1

η
ln | η+μ

η−μ
| in the KdV soliton gas,

etc.], as well as a “bare” velocity s0(η) entering as the source
term in the equations of state, Eqs. (17), (16), and (85) (η in
the LL model, 4η2 in the KdV soliton gas, etc.). Thus, GHD,
as a theory for many-body integrable systems, includes soliton
gases. The full equivalence between TBA and GHD quantities
and those traditionally considered in soliton gases is given
in Ref. [78], and the thermodynamics and GHD of soliton
gases has been worked out for KdV [78] and focusing NLS
[168]. One obtains, for instance for the KdV soliton gas, the
thermodynamic entropy and free energy per unit space and
spectral parameter as, respectively,

S(η) = f (η)

(
1 + ln

4σ (η)

π

)
, F (η) = − η

σ (η)
. (87)

These results arise from the universality of the GHD and TBA
frameworks, but have yet to be derived more accurately using
the methods of the previous sections.

This universality of the hydrodynamic description of in-
tegrable models has its source in an important aspect of
many-body integrability, that of factorized, elastic scattering.
Factorized scattering for solitons was reviewed in Sec. II A,
see Eq. (5). It is also made apparent in the LL Bethe ansatz
wave function (79): the structure in the exponential implies
that the phase of a full many-particle scattering is the sum

of two-body scattering phases. If we put the LL model in a
finite segment and let the particles expand in the vacuum, then
ηn are the values of asymptotic momenta that will be seen
at long times in this time-of-flight “gedenkenexperiment”. In
general, for both quantum and classical models, the spectral
space is nothing else than the set of possible objects that
emerge at long times (solitons, particles, bound states, waves,
etc.), and a basic dynamical analysis will give the bare ve-
locities and two-body scattering shifts for such objects. It
turns out that the TBA form of the thermodynamics then
emerges quite generally solely from this scattering picture;
in classical systems this was first observed [167] in the Toda
model—thus the TBA does not require the Bethe ansatz! In a
fluid, a mesoscopic cell can be “observed” by taking it out
of the fluid and making a time-of-flight experiment on it,
in order to determine the distribution of spectral parameters
that characterize it. The manifold of GGEs is a manifold of
distributions on the spectral space. In particular, the soliton
gas is simply the case where we restrict the manifold of GGEs
to be distributions of solitons only; and this restriction is stable
under the Euler hydrodynamic evolution. This explains the
general structure of GHD and why many of the results from
GHD can immediately be applied to soliton gases.

In fact, the scattering picture has far-reaching ramifica-
tions. One of them is the geometric viewpoint on GHD,
whereby the GHD equations are seen as arising from a change
of coordinates—or a change of metric—from the free-particle
Liouville equations [45,86]. The change of metric is state-
dependent (much like in Einstein’s gravity!), and represents
the map to the freely propagating asymptotic coordinates.
This leads to an integral-equation solution [86], a “solution
by characteristics” akin to the hodograph transform.

VIII. OPEN PROBLEMS

Over the last few years, various fundamental questions in-
spired by the exciting theoretical and experimental challenges
have emerged in the growing fields of SGs and of GHD. We
summarize here some of the most important of these open
problems.

A. Spectral theory and rigorous asymptotics

The spectral theory of soliton gas outlined in Sec. III is
based on the thermodynamic limit of finite-gap potentials
and their Whitham modulation equations. At the core of this
theory is the special distribution (scaling) of finite-gap spec-
tra ensuring appropriate balance of terms in the nonlinear
dispersion relations. Can this thermodynamic spectral scal-
ing be obtained as a long-time asymptotics in some class of
initial-value problems for integrable equations? One possible
scenario to be explored was proposed in Ref. [188] where one
considers a chain of topological bifurcations of local invari-
ant tori parametrized by slowly evolving finite-gap spectra
that emerge in the zero-dispersion (semiclassical) limit of the
fNLS equation. This scenario resembles the classical Landau-
Hopf transition to turbulence (see, e.g., Ref. [189]) realized in
the framework of an integrable dispersive system.

A related major open question is rigorous mathemati-
cal justification of the spectral kinetic theory. While the
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derivation of the SG kinetic equation via the thermodynamic
limit of finite-gap modulation theory has been rigorously jus-
tified [29] the asymptotic validity of the kinetic equation in
the framework of the original nonlinear dispersive PDE is
yet to be established. It would be highly desirable to have
a rigorous asymptotic derivation of the kinetic equation for
KdV, NLS and other integrable models “from first principles.”
An important step in this direction has been recently made
in Ref. [52] where it was shown that kinetic equation for
soliton gas describes the leading order asymptotic behavior
of a special class of “deterministic” soliton gases for the
modified KdV equation constructed as an infinite-soliton limit
of N-soliton solutions by invoking the theory of the so-called
primitive potentials [75] (see also Ref. [74]). At the spectral
level, the characterization of the gases studied in Ref. [52]
coincides with that of soliton condensates [30] so the exten-
sion of the rigorous asymptotic theory to more general classes
of inherently random soliton gases remains an outstanding
problem. This would pose a number of challenging and in-
teresting questions at the intersection of applied analysis and
probability theory. Related to this, making a rigorous con-
nection between the IST- or finite-gap-based spectral theory
of soliton gas and the statistical mechanics foundations and
results of GHD (generalized Gibbs ensembles, correlations,
etc.) is a major open problem, see also Sec. VIII E. The first
step in this direction was made very recently in Ref. [78] but
much remains to be done from the point of view of rigorous
analysis.

The existing numerical realizations of SGs are based on
N-soliton solutions (see Sec. IV). At the same time the
spectral kinetic theory described in Sec. III uses finite-gap
multiperiodic solutions in the thermodynamic limit. Numer-
ical realization of soliton gases via finite-gap potentials of
large genus subject to the thermodynamic spectral scaling is
of immediate relevance and interest.

Finally we mention that the spectral theory of soli-
ton gas can be applied to any integrable dispersive PDE
supporting finite-gap solutions associated with hyperelliptic
Riemann surfaces. One can expect new interesting be-
haviors in integrable models qualitatively different from
the already considered examples of the KdV and fNLS
equations. These include the sine-Gordon equation (kink
gas), the Camassa-Holm equation (peakon gas) and others.
The theory of two-dimensional soliton gases (e.g., for the
Kadomtsev-Petviashvili or Davey-Stewartson equations) is
another completely uncharted territory yet to be explored.

B. Thermodynamics and Statistics

The statistical description of random waves in integrable
systems represents a fundamental application of the SG the-
ory. We have reviewed several important recent steps achieved
in this challenging direction of research. Generalized hydro-
dynamics provides a framework to establish a thermodynamic
description of soliton gases. However, up to now, there is
no existing comparison between SGs experiments and GHD
theoretical results. On the other hand, the possible correspon-
dence between SGs and natural phenomena stimulates the
study of statistical properties of SGs (for example, numerical
simulations show that the so-called spontaneous modulation

instability is with high accuracy by a specifically designed SG,
see Sec. VI B).

Very recently, some of the authors of this review and their
collaborators have derived a general formula for the kurtosis
for a homogeneous SG [34]. Derived in the framework of the
spectral SG theory, the kurtosis is expressed as a function of
the DOS:

κ4 = 〈|ψ |4〉
〈|ψ |2〉2 = − Im

(
2
3λ3 + 1

4λ2s(λ)
)

Im(λ)2
, (88)

where the averaging procedure is defined by h(λ) =∫
h(λ) f (λ)dλ and f (λ) is the DOS of the homogeneous SG

( f does not depends on x and t). The use of Eq. (88) requires
the knowledge of the DOS underlying the nonlinear waves un-
der study. Note that the DOS is only known for some specific
cases such as δ-correlated Gaussian noise for ψ (t = 0, x) [63]
or the condensate with small additional noise (Weyl’s bound
state SG). The DOS can also be computed for slowly varying
random semiclassical fields (the partially coherent waves).

Applying the Eq. (88) to the Weyl’s bound state SG [λ ∈
iR+, s(λ) ≡ 0] corresponding to the long-term evolution of
the spontaneous MI (see Sec. VI B), it is easy to show that
κ4 = 2. This corresponds to the value of κ4 for the expo-
nential distribution of |ψ |2 empirically found in numerical
simulations and experiments devoted to the spontaneous MI
[7,10,54]. Note that this result is consistent with the virial
theorem (Hnl = 2Hl ) known in the context of zero boundary
conditions in NLS [190]. Beyond the MI problem, it is pos-
sible to compute the DOS of any soliton gas generated by
the propagation of a semiclassical field (if Hnl � Hl initially).
Using this approach, one can also show that the correspond-
ing value of the kurtosis is κ4 = 4 in the case of partially
coherent waves. Remarkably, this corresponds to the largest
value found recently in numerical simulation in the case of the
strongly nonlinear regime of partially coherent waves [154].

These recent results pave the way to a general statistical
description of nonlinear random waves naturally found in
various physical systems. However, it is important to note that
the evaluation of the kurtosis is only the first step toward a
general statistical theory. Among the various questions, one
finds the evaluation of the probability density functions (of
the nonlinear wave field or its amplitude, for example) and
of correlation functions [such as g(2), see Eq. (74)]. Note that
the probability density function of intensity for the defocusing
NLS and some correlations for the focusing NLS have been
predicted in the framework of GHD [168,191].

The spectral power density (Fourier spectrum) 〈|ψ̃ (k, t )〉|2
is a key measurable variable of turbulence, allowing, for
example, the characterization of the Kolmogorov cascade.
Moreover the spectrum can be easily and directly measured
in optical experiments devoted to the observation of SGs.
The analysis and the understanding of Fourier spectra of SGs
thus represents an important direction of research. The natural
framework of the SG theory is the IST and the relationship
between the IST spectrum and the Fourier spectrum is highly
nontrivial from the mathematical point of view.

It is important to emphasize again that the SG theory pro-
vides a promising framework to describe and understand the
statistics of wave systems close to integrability. The sponta-
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neous modulation instability in the focusing regime of the
one-dimensional focusing NLS equation is the first exam-
ple of physical phenomena quantitatively described by a SG
(see Sec. VI B) and Ref. [47]). One natural question is the
possible link between natural phenomena and breather gases.
In particular, as the Akhmediev breather is an exact solution
associated with the sinusoidal perturbation of a plane wave,
one might expect that the spontaneous modulation instability
can also be described by a breather gas.

The general description of integrable turbulence (random
waves in integrable systems) is still an open question. Any
random waves in integrable systems can be decomposed into
radiative modes and solitons, the former being associated
with the continuous spectrum and the latter being associated
with the discrete spectrum in the framework of the IST (see
Sec. II A). SGs thus correspond to the peculiar case of inte-
grable turbulence having no continuous spectrum. The study
of nonlinear random waves phenomena by using a SG descrip-
tion is based on the conjecture that continuous spectrum can
be neglected in the strongly nonlinear regime. One can natu-
rally ask: what happens, for example, with partially coherent
wave for weaker nonlinearity?

The general description of integrable turbulence thus re-
quires the development of a statistical theory involving both
discrete and continuous spectrum. In principle, the general
case can be described in the framework of the finite gap theory
(see Sec. III). On the other hand, by taking into account the
nonresonant interactions, a nonstandard wave kinetic theory
(developed in the basis of Fourier components) describes the
statistical behavior and the Fourier spectrum of integrable
turbulence [135,138,155]. One of the fundamental and inter-
esting open questions is the IST formulation in the weakly
nonlinear regime when the wave system is dominated by ra-
diation components (continuous spectrum). Investigations of
this question may build a bridge between finite gap theory and
wave turbulence theory.

C. Experimental challenges

Experiments devoted to the study of SGs can be classified
by the wave generation techniques and by the data analysis
types. While solitons can simply be generated one by one
in diluted SGs, the experimental realization of dense SG is
highly nontrivial. One possible approach is the use of dynam-
ical phenomenon such as the soliton fission [41] in which the
DOS is not controlled. Another strategy has been recently
demonstrated in order to achieve a controlled generation of
dense SG [57]: by using the numerical procedure described
in Sec. IV B, N-soliton solutions with random parameters are
computed and then used to build the experimental SG.

It is important to note that, up to now, the procedure
based on N solitons allows for the generation of homogeneous
dense SG having an arbitrary DOS f (λ). The generation of
a nonhomogeneous dense SG with a space-dependent DOS
f (λ, x) is an open problem. In the context of the focusing
NLSE, this extremely challenging task will require a deep
theoretical understanding of the precise link between the po-
sitions of the solitons and the amplitudes of the norming
constants in the N-soliton solution with N � 1. Solving this

problem would be a fundamental milestone in the study of
SGs. Indeed, the most intriguing and complex phenomena are
expected to emerge in the context of nonhomogeneous SG
whose nonequilibrium, macroscopic dynamics are described
by the nontrivial continuity Eq. (18). The experimental test of
this continuity equation requires the generation of nontrivial
space-dependent initial DOS f (λ; x, 0). The first example of
the experimental verification of the continuity equation for the
collision of spectrally “monochromatic” SGs realized in deep
water tank was reported recently in Ref. [33].

On the other hand, the study of nonhomogeneous SG will
also require the development of new tools for the data analy-
sis. The measurement of a space-dependent DOS is not trivial;
one will have first to define the local DOS of a measurable
field. One of the difficulties is the scale separation: in the
theory, the DOS evolves spatially very slowly and the number
of solitons in one fluid cell dx tends to infinity. In experiments,
the number of solitons is limited and thus, the measurement of
the local DOS is a complex and challenging task.

In Sec. V we have reported several experiments devoted to
the study of NLS SG. Some studies have also been reported
with KdV-type soliton gas in shallow water experiments [41].
Extensive experimental studies of KdV SG (in hydrodynamics
or electric lines for example) are interesting future direction
of research. In particular, one of the challenges is the imple-
mentation in the context of the physical systems described by
KdV of the approach used in NLS study: compute numerically
large N-soliton solutions of KdV and launch them as initial
condition in an experiment.

The experimental test of the GHD is another open exciting
challenge. This includes, for example, the measurement of
space-time correlation in SGs, the measurement of GGEs,
etc.

D. Breakdown of integrability

In the “real-world” experiments, integrable equations such
as the 1DNLS or KdV, only describe the systems at leading
order. This means that in any experiments, at long time (or
long propagation distance), high-order effects break integra-
bility and play a role in the dynamics and in the statistics of the
wave field. Integrability can be broken by linear effects (losses
or high-order dispersion for example) or nonlinear (stimu-
lated Raman scattering in optical fiber for example). These
effects induce nonelastic collisions of solitons (for example,
two interacting solitons do not recover their initial amplitudes
and velocities over large time). The study of the influence of
higher-order effects on SG is of fundamental and practical
importance. This includes also the influence of external forces
on solitons (induced for example by some potential).

In various systems, the high-order effects can be consid-
ered as small perturbations of the integrable system. As a
consequence, IST spectra can be seen as slowly varying quan-
tities that evolve adiabatically. The IST perturbation theory of
nearly integrable systems is well elaborated for simple wave
field patterns, such as single and two-soliton pulses [192];
meanwhile, the collective multisoliton dynamics under the
influence of weak external forces now is treated only with
numerical simulations [109,193]. Building a theory of SG
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including perturbative effects is an open and fundamental
problem. GHD is a promising framework to investigate per-
turbative effects (see Sec. VIII E).

E. Lessons from generalized hydrodynamics: Correlations,
external forces, diffusion, integrability breaking

Communities working on soliton gases, and on quantum
and classical many-body systems and statistical mechanics,
have been mostly disconnected until recently. Certainly, mak-
ing a better connection between the ideas that have arisen in
both communities would be fruitful.

For instance, the metric transform from the Liouville
equation to the GHD equation [86] is nothing else but a
generalization of the transformation used extensively in ad-
dressing the hard rod gas [194]. In this transformation, each
quasiparticle is given a precise location, and occupies a certain
momentum-dependent space that, if taken away, reduces the
quasiparticles’ dynamics to that of free particles. Can some-
thing like this be achieved in KdV or NLS soliton gases?

Furthermore, the hydrodynamic viewpoint on GHD has
been extremely powerful. It has allowed for the extension of
known structures of hydrodynamics to the realm of integrabil-
ity. Taking and developing the full hydrodynamic perspective
in soliton gases should lead to interesting new result, and this
is still at its infancy. Here we briefly mention four directions:
correlation functions, the inclusion of external forcing, the dif-
fusive and higher-order corrections, and the inclusion of small
integrability-breaking effects via Boltzmann-like equations.
In fact, many more exact expressions potentially applicable
to integrable turbulence have been obtained using quantum
methods, we mention for instance the probability density
function of the modulus of the NLS field [191].

Correlation functions in space-time are natural objects to
be studied by hydrodynamics. The basic idea is that the prop-
agation of hydrodynamic modes gives the leading large-scale
correlations between local observables. Technically, one stud-
ies the linearized Euler equation for small variations δ〈qi〉 on
top of a homogeneous, stationary state. This gives the follow-
ing form for the Fourier transform of connected correlation
functions Si j (k, t ) = ∫ dxeikx〈qi(x, t )q j (0, 0)〉c in that state:

Si j (k, t ) ∼ (exp [iktA]C)i j, Ai j = ∂〈 ji〉
∂〈q j〉 ,

Ci j = −∂〈qi〉
∂β j

(k → 0, t → ∞, kt fixed). (89)

The flux Jacobian A and static covariance C can be written
in terms of TBA quantities, giving rather explicitly (see the
review [179])

Si j (k, t ) ∼
∫

dηρp(η) fstat (ε(η))
∂ε(η)

∂βi

∂ε(η)

∂β j
eiktveff (η), (90)

where fstat (ε) encodes the statistics of the fundamental par-
ticles (the asymptotic objects), e.g., fstat (ε) = 1/(1 + e−ε ) in
the LL model, and fstat (ε) = 1 in the KdV soliton gas [78].
This formula was verified numerically in various integrable
models; see the review [179] and more recent results in the
KdV soliton gas [78] and the Toda model [195]. For instance,
in the KdV soliton gas one obtains the following correlation

function of the KdV field at large time separations:

〈u(ξ t, t )u(0, 0)〉 − 〈u(0, 0)〉2 t→∞∼ t−1
∑

η:s(η)=ξ

16σ (η)2 f (η)3

|s′(η)| .

(91)

We emphasize that this formula arises from the general hydro-
dynamic response theory as applied to GHD, and still needs
to be understood from the IST perspective.

One can go much further and obtain two-point correla-
tion functions not just of conserved densities, but also of
currents, and in fact of arbitrary observables, by the use of
hydrodynamic projections [186], as well as, quite surprisingly,
two-point correlation functions in nonstationary backgrounds.
Going beyond, based on similar ideas, the Euler-scale
large-deviation theory of integrated currents and other ex-
tensive quantities (ballistic fluctuation theory) and nonlinear-
response functions have been obtained. See the review [179].
More generally, the ballistic macroscopic fluctuation theory
[181], which has in particular been applied to GHD, gives a
complete framework where many-point correlation functions
and Euler-scale large-deviation theory can be evaluated, pre-
dicting novel long-range spatial correlations in moving fluids
[180]. All these results apply, in principle, to soliton gases as
well. For instance, one obtains, in the NLS soliton gas, pre-
dictions for “dynamical free energies,” such as G4(�) defined
via the asymptotic

ln

〈
exp

[
�

∫ T

0
dt (|ψ (0, t )|4 − 2|ψx(0, t )|2)

]〉
T →∞∼ TG4(�).

This quantity is in principle available by combining the afore-
mentioned ballistic fluctuation theory with the soliton-gas
thermodynamics of Ref. [168]. But, in this context, numerical
verifications and a full theoretical underpinning are still very
much lacking.

Generalized external forces may be written as external
fields coupled to conserved densities. These change the
Hamiltonian to H + V where V =∑i

∫
dxVi(x)qi(x). Al-

though generically V breaks the integrability of H , with
Vi(x) slowly varying in space, Euler hydrodynamic equa-
tions with generalized force terms remain valid for all original
conservation laws—indeed, for conventional gases, Euler
equations can be written within external force fields, even
when such fields break momentum conservation. Within
GHD, the corresponding force terms have been obtained
[196], with (86) modified to

∂

∂t
ρp(η; x, t ) + ∂

∂x
[veff (η; , x, t )ρp(η; x, t )]

+ ∂

∂η
[aeff (η; , x, t )ρp(η; x, t )] = 0. (92)

Quite surprisingly, the effective acceleration aeff (η; , x, t ) sat-
isfies a “collision-rate ansatz” as (85) but with the bare
velocity η replaced by the bare acceleration a(η; x) =
−∑i V ′

i (x)hi(η). It is this GHD equation, for the LL model
and with a simple external force field, was verified experi-
mentally in cold atomic gases restrained to one dimension of
space [197–199], see the review [182]. This is the simplest
situation of externally changing parameters: the more general
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situation was worked out [200], including time dependence,
and varying the coupling strength c → c(x, t ) in (78), some-
thing which is crucial for comparison with some experiments.
External force fields and slowly varying couplings also nat-
urally occur in many situations where soliton gases emerge.
The theory from GHD is in principle fully applicable to soli-
ton gases; however, again up to now, the application to soliton
gases and the IST perspective on such GHD results are still
completely missing.

Hydrodynamics is a derivative expansion, and as such,
one may wonder about the higher-derivative corrections. At
second derivative, this is the diffusive correction, such as the
viscosity term in Navier-Stokes equations. Again, an exact
expression of the diffusive matrix—or diffusive operator on
spectral space—has been evaluated in GHD with convincing
comparisons against numerical results, see the review [179].
The form obtained is

∂

∂t
ρp(η; x, t ) + ∂

∂x
[veff (η; , x, t )ρp(η; x, t )]

= 1

2

∂

∂x

(∫
dη′Dη,η′ [ρp(·; x, t )]

∂

∂x
ρp(η′; x, t )

)
. (93)

The diffusion kernel Dη,η′ [ρp] is evaluated from the Kubo
formula involving space-time integrated current two-point
functions, using form factor methods of quantum integrability
[184,201]. The general formula, applicable to quantum and
classical models alike, is conjectured by comparison with
the diffusion kernel obtained in the 1980s for the classical
hard-rod gas [202]. Again, the general formula involves the
statistical factor f (ε). The combination of diffusion with ex-
ternal forces has also been evaluated [203]. The third-order,
dispersive correction was proposed recently [204], although
much work is still needed to fully establish it.

Is there diffusion in soliton gases? If so, is it correctly
described by the GHD formula? Furthermore, can we evaluate
the exact third-order dispersion term? A natural conjecture
concerns the condensate limit; in the GHD of quantum inte-
grable models, the condensate limit had been studied earlier,
and is known as zero-entropy GHD [205]. The connection
between soliton-gas condensate limit and zero-entropy GHD
was partially made in Ref. [30]. Do dispersive terms of GHD
(soliton gases) reproduce, in the zero-entropy (condensate)
limit, dispersive terms of the fundamental dynamical equa-
tions (e.g., the KdV equation)?

Finally, the effects of small perturbations that break in-
tegrability has been studied. The development is still in its
infancy, with various approaches and different physical situ-
ations proposed, see the review [206]. The perspective taken
in GHD is different from that taken in soliton gases, and it
would be fruitful to make a better connection. One important
point that has been emphasized [207] generalizes the view-
point discussed above, whereby the Liouville equation—the
kinetic equation for free particles—is seen as a Euler-scale
hydrodynamic equation. It is possible to modify the Euler-

scale hydrodynamic equation to account for terms that break
the conservation laws on which it is based. There are general
Kubo-like formulas this modification, and when applied to
GHD, these give terms that can be written, at least in quantum
models, in a form-factor expansion. Specialized to the GHD
of free particles, these terms are nothing else but Boltzmann
collision terms from the Boltzmann equation; form factors of
interacting integrable models generalize Boltzmann collision
terms. Is there a parallel notion of form factors that can be
used to evaluate Boltzmann collision terms in soliton gases?
Thus, again, we obtain a different viewpoint: the Boltzmann
equation, a kinetic equation, is re-interpreted as a hydrody-
namic equation, with terms that break the infinitely many
conservation laws admitted by free particles. This reinterpre-
tation has, potentially, far-reaching consequences, which still
need to be addressed.
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