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Spectral properties of the Dirichlet-to-Neumann operator for spheroids
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We study the spectral properties of the Dirichlet-to-Neumann operator and the related Steklov problem in
spheroidal domains ranging from a needle to a disk. An explicit matrix representation of this operator for both
interior and exterior problems is derived. We show how the anisotropy of spheroids affects the eigenvalues and
eigenfunctions of the operator. As examples of physical applications, we discuss diffusion-controlled reactions
on spheroidal partially reactive targets and the statistics of encounters between the diffusing particle and the
spheroidal boundary.
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I. INTRODUCTION

The Dirichlet-to-Neumann operator M plays an impor-
tant role in applied mathematics, physics, and engineering.
One of its most known applications is related to electrical
impedance tomography, also known as Calderon’s problem
[1–5], in which the electric conductivity in the bulk has to
be determined from electric measurements on the boundary.
The Dirichlet-to-Neumann operator is also employed as a
“building block” for analyzing and solving spectral and scat-
tering problems in complex media via domain decomposition
(see Refs. [6–10] and references therein). The eigenfunctions
of M often appear as a basis for representing and approx-
imating harmonic functions and related quantities [11–15].
In chemical physics, diffusion-controlled reactions and other
diffusion-mediated surface phenomena can be described by
means of the operator M [16–19]. In particular, the statistics
of encounters between a diffusing particle and the confining
boundary can be determined via a spectral expansion based
on the Dirichlet-to-Neumann operator [20–22]. Its relations
to other first-passage time statistics were also investigated
[18,23].

The spectral properties of the Dirichlet-to-Neumann op-
erator and the related Steklov problem were thoroughly
investigated for Euclidean domains and Riemannian mani-
folds (see the recent book [24] and reviews [25,26]). We
focus here on the most basic setting of an Euclidean domain
� ⊂ Rd with a smooth bounded boundary ∂�. The Dirichlet-
to-Neumann operator M is defined as a map of a function
f ∈ H

1
2 (∂�) on the boundary ∂� onto another function g ∈

H− 1
2 (∂�) on that boundary such that g = (∂nu)|∂� = M f ,

where ∂n is the normal derivative oriented outwards the do-
main �, and u is the unique solution of the Dirichlet boundary
value problem:

�u = 0 in �, u = f on ∂�, (1)

*denis.grebenkov@polytechnique.edu

with � being the Laplace operator (here H± 1
2 (∂�) are ap-

propriate functional spaces, see Ref. [24] for mathematical
details and references). In other words, the operator M trans-
forms the Dirichlet boundary condition u|∂� = f on ∂� into
an equivalent Neumann boundary condition (∂nu)|∂� = M f .
For instance, if f is a given concentration or temperature
profile maintained on ∂�, then the Laplace equation describes
the steady-state regime of molecular or heat diffusion, and
(∂nu)|∂� is proportional to the flux density on ∂�.

When � is bounded, M is known to be pseudo-differential
self-adjoint operator with a discrete spectrum, i.e., there is an
infinite countable sequence of eigenpairs {μk, vk} satisfying
Mvk = μkvk; the nonnegative eigenvalues μk are enumerated
by k = 0, 1, 2, . . . in an increasing order,

0 � μ0 � μ1 � . . . ↗ +∞, (2)

whereas the associated eigenfunctions {vk} form a complete
basis in the space L2(∂�) of square-integrable functions on
∂� [24]. Alternatively, one can search for solutions of the
Steklov problem,

�Vk = 0 in �, ∂nVk = μkVk on ∂�, (3)

where the Steklov eigenvalues standing in the boundary con-
dition are identical to μk . This tight relation implies that
each Steklov eigenfunction Vk can be obtained as a harmonic
extension of the eigenfunction vk of M.

Despite numerous mathematical studies of spectral prop-
erties of the Dirichlet-to-Neumann operator [24], intricate
relations between its spectrum and the geometric features of
the boundary ∂� are not yet fully understood. The eigenvalues
and eigenfunctions of M are known explicitly only in few
simple domains such as a ball, a space between concentric
spheres, the exterior of a ball, and rectangular cuboids [24,27].
In particular, the role of the boundary anisotropy remains
unclear. The situation is even worse for the exterior problem
when � = Rd\�0 is the exterior of a bounded domain �0.
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Even though the domain � is unbounded, its boundary ∂�

is bounded that implies again the discrete spectrum of the
Dirichlet-to-Neumann operator M [12,13,15,28–30]. How-
ever, the analysis of the exterior problem is more difficult;
in particular, the mathematical proofs substantially differ for
space dimensions d = 2 and d � 3. Relations between spec-
tral properties and the geometric shape of ∂� were much
less studied. For instance, to our knowledge, the exterior of
a ball is the unique example, for which the eigenvalues and
eigenfunctions of M are known explicitly for the exterior
problem.

In this paper, we study the spectral properties of the
Dirichlet-to-Neumann operator M on prolate and oblate
spheroidal surfaces that allow one to model various
anisotropic shapes in three dimensions, ranging from a nee-
dle to a disk. We focus on the less studied exterior spectral
problem (an extension to the interior problem is summarized
in Appendix A). By employing the prolate/oblate spheroidal
coordinates to represent a general solution of the Laplace
equation (1), we obtain a convenient matrix representation
of the operator M. This matrix can then be truncated and
diagonalized numerically to approximate the eigenvalues μk

and eigenfunctions vk of M. This efficient technique allows us
to investigate how the spectral properties of the Dirichlet-to-
Neumann operator depend on the anisotropy of the boundary,
especially in the limits of elongated (needlelike) and flattened
(disklike) spheroids. While similar techniques were applied
in the past for solving various boundary value problems in
spheroidal domains (see, e.g., Refs. [31–42] and references
therein), we are not aware of earlier studies of the spec-
tral properties of the Dirichlet-to-Neumann operator in these
domains. Sections II and III are devoted respectively to pro-
late and oblate spheroidal domains. In Sec. IV, we discuss
two applications of these results for understanding diffusion-
controlled reactions and the statistics of boundary encounters.
Section V summarizes our findings and presents future
perspectives.

II. PROLATE SPHEROIDS

In this section, we study the Dirichlet-to-Neumann oper-
ator M in the exterior of a prolate spheroid with semiaxes
a � b:

� =
{

(x, y, z) ∈ R3 :
x2

a2
+ y2

a2
+ z2

b2
> 1

}
. (4)

In the prolate spheroidal coordinates (α, θ, φ),⎛
⎝x

y
z

⎞
⎠ = aE

⎛
⎝sinh α sin θ cos φ

sinh α sin θ sin φ

cosh α cos θ

⎞
⎠

⎧⎨
⎩

0 < α < ∞
0 � θ � π

0 � φ < 2π

⎫⎬
⎭,

with aE = √
b2 − a2 [Fig. 1(a)], the scale factors determining

the surface and volume elements are [43]

hα = hθ = aE

√
sinh2 α + sin2 θ, (5a)

hφ = aE sinh α sin θ. (5b)

In these coordinates, the domain � is characterized by α >

α0 = tanh−1(a/b), while its boundary ∂� is determined by

FIG. 1. Illustration for prolate (a) and oblate (b) spheroidal coor-
dinates (α, θ, φ). Note that the angle θ is defined differently in two
cases.

the condition α = α0. The action of the Laplace operator onto
a function u reads

�u = 1

a2
E (sinh2 α + sin2 θ )

[
1

sinh α

∂

∂α

(
sinh α

∂u

∂α

)

+ 1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)]
+ 1

a2
E sinh2 α sin2 θ

∂2u

∂φ2
.

(6)

A. Matrix representation

A general solution of the Laplace equation reads

u(α, θ, φ) =
∞∑

n=0

n∑
m=−n

AmnQm
n (cosh α)Ymn(θ, φ), (7)

where Amn are arbitrary coefficients, Qm
n (z) are the associated

Legendre functions of the second kind (see Appendix B), and

Ymn(θ, φ) = amnPm
n (cos θ )eimφ,

amn =
√

2n + 1

4π

(n − m)!

(n + m)!
(8)

are the normalized spherical harmonics, with Pm
n (x) being

the associated Legendre polynomials. The normal derivative
reads

∂u

∂n

∣∣∣∣
∂�

= − 1

hα

∂αu

∣∣∣∣
α=α0

= −
∞∑

n=0

n∑
m=−n

AmnYmn(θ, φ)
sinh α0 Q′m

n (cosh α0)

aE

√
cosh2 α0 − cos2 θ

,

(9)

where prime denotes the derivative with respect to the ar-
gument. In other words, for a square-integrable function
f on ∂�, decomposed on the complete basis of spherical
harmonics,

f (θ, φ) =
∞∑

n=0

n∑
m=−n

fmnYmn(θ, φ) (10)
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[with coefficients fmn = AmnQm
n (cosh α0)], the action of the

Dirichlet-to-Neumann operator M is

[M f ](θ, φ) =
∞∑

n=0

n∑
m=−n

fmn
cmn Ymn(θ, φ)√

cosh2 α0 − cos2 θ
, (11)

where

cmn = − sinh α0 Q′m
n (cosh α0)

aE Qm
n (cosh α0)

. (12)

At the same time, the function M f can also be decomposed
on the complete basis of Ymn:

[M f ](θ, φ) =
∞∑

n=0

n∑
m=−n

gmnYmn(θ, φ). (13)

Its coefficients gmn can be obtained by multiplying Eq. (11) by
Y ∗

m′n′ (θ, φ) sin θ and integrating over θ and φ:

gm′n′ =
∫ 2π

0
dφ

∫ π

0
dθ sin θ Y ∗

m′n′ (θ, φ)

×
∞∑

n=0

n∑
m=−n

fmn
cmn Ymn(θ, φ)√

cosh2 α0 − cos2 θ

=
∞∑

n=0

n∑
m=−n

fmnMmn,m′n′ ,

where

Mmn,m′n′ = 2π δm,m′amnamn′ cm′n′ F m
n,n′ (cosh α0), (14)

and

F m
n,n′ (z) =

∫ 1

−1
dx

Pm
n (x)Pm

n′ (x)√
z2 − x2

. (15)

We stress that the elements of the (infinite-dimensional) ma-
trix M are enumerated by double indices mn and m′n′. In
practice, we employ the following order:

mn : 00 (−1)1 01 11 (−2)2 (−1)2 02 12 22 . . . ,

which is borrowed from the enumeration of spherical harmon-
ics. As a consequence, Eq. (13) can be written as

[M f ](θ, φ) =
∞∑

n=0

n∑
m=−n

[M f ]mnYmn(θ, φ), (16)

i.e., the matrix M represents the operator M on the orthonor-
mal basis of spherical harmonics.

The eigenvalues of the matrix M coincide with the eigen-
values μk of the Dirichlet-to-Neumann operator M; in turn,
each eigenvector Vk of M, satisfying MVk = μkVk , deter-
mines the coefficients in the representation of the associated
eigenfunction vk on the basis of spherical harmonics:

vk (θ, φ) =
∞∑

n=0

n∑
m=−n

[Vk]mnYmn(θ, φ). (17)

In Appendix B 4, we check the orthogonality of these
eigenfunctions to each other; moreover, they can also be

normalized as

(vk, vk′ )L2(∂�) =
∫

∂�

ds v∗
k vk′

=
∫ π

0
dθ

∫ 2π

0
dφ hθ hφ v∗

k (θ, φ) vk′ (θ, φ)

= δk,k′ . (18)

Using Eq. (7) for a general solution of the Laplace operator,
one easily finds a harmonic extension of the eigenfunction
vk into �, i.e., the Steklov eigenfunction associated to the
eigenvalue μk :

Vk (α, θ, φ) =
∞∑

n=0

n∑
m=−n

Qm
n (cosh α)

Qm
n (cosh α0)

[Vk]mnYmn(θ, φ). (19)

The asymptotic behavior of Qm
n (z) for large |z|, Qm

n (z) ∝
z−n−1 implies the expected power-law decay of Steklov eigen-
functions in the leading order as |x| → ∞:

Vk (α, θ, φ) � [Vk]00√
4π Q0(cosh α0)

1

cosh α

� [Vk]00√
4π Q0(cosh α0)

aE

|x| , (20)

where |x| = aE

√
cosh2 α − sin2 θ is the distance from the

origin to a point x = (α, θ, φ).

B. Classification of eigenfunctions

Since the Dirichlet-to-Neumann operator M does not af-
fect the angle φ, the matrix elements Mmn,m′n′ are nonzero
only when m = m′. In other words, the action of M onto
a function f (θ )eimφ does not alter its dependence on φ:
M( f (θ )eimφ ) = g(θ )eimφ . As a consequence, any eigenfunc-
tion vk depends on φ via a factor eimφ for some integer m (or
via a linear combination of eimφ and e−imφ , see below). This
property allows one to classify all eigenfunctions according
to their dependence on φ and thus to enumerate them as
vmn(θ, φ), in analogy to spherical harmonics Ymn(θ, φ). Here
the index m determines the dependence of the eigenfunc-
tion on φ, vmn(θ, φ) ∝ eimφ , whereas the nonnegative index
n = |m|, |m| + 1, |m| + 2, . . . enumerates all such functions
so that the associated eigenvalues μmn appear in an increasing
order (for each fixed m):

0 � μm|m| � μm(|m|+1) � . . . . (21)

Note that the index n starts from |m| to automatically satisfy
the conventional restriction |m| � n, known for spherical har-
monics.

An alternative way to look at this classification consists in
representing the matrix M as

M =
∞∑

m=−∞
Mm, (22)
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where the (sub)matrix Mm is composed of elements Mmn,mn′ (and 0 otherwise). For instance, one has1

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M00,00 0 0 0 0 0 M00,02 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 M01,01 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

M02,00 0 0 0 0 0 M02,02 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

If a vector X has the form Xmn = δm,m0 xn (i.e., its nonzero
elements appear only for m = m0), then MmX = 0 for all
m �= m0. In other words, the space 
2 of all vectors with
square-summable elements can be decomposed into an (infi-
nite) direct product of subspaces 
2

m enumerated by m ranging
from −∞ to +∞. As a consequence, one can diagonalize
separately each matrix Mm and then combine their eigen-
values μmn and eigenvectors Vmn (enumerated by the index
n = |m|, |m| + 1, . . .) to construct the eigenvalues and eigen-
vectors of the matrix M. We expect that the union of all
eigenvalues μmn gives all eigenvalues of the matrix M, i.e.,
such a decomposition determines the whole spectrum of M.
This statement is elementary in the finite-dimensional case, in
particular, for a truncation of the matrix M that we will use for
numerical computations. We can then rewrite the expansions
(17), (19) as

vmn(θ, φ) =
∞∑

n′=|m|
[Vmn]mn′Ymn′ (θ, φ), (24a)

Vmn(α, θ, φ) =
∞∑

n′=|m|

Qm
n′ (cosh α)

Qm
n′ (cosh α0)

[Vmn]mn′Ymn′ (θ, φ).

(24b)

We note that the symmetry

Pm
n (−x) = (−1)m+nPm

n (x), (25)

implies M−m = Mm that allows one to restrict m to be non-
negative. As a consequence, any eigenvalue μmn with m �= 0
should be (at least) twice degenerate. This degeneracy im-
plies that any linear combination of v(−m)n and vmn is also
an eigenfunction. As a consequence, if the eigenfunctions are
constructed by using the decomposition (17) based on the
diagonalization of the whole matrix M and then classified ac-
cording to their dependence on φ, each eigenfunction vk may
in general exhibit the dependence on φ as a linear combination
of eimφ and e−imφ . An appropriate rotation by a 2×2 matrix
can transform a pair of such eigenfunctions into those that
are proportional to eimφ and e−imφ . However, this step is not
needed in practice, as we will diagonalize the matrices Mm to
produce directly the desired dependence eimθ on φ.

1Note that M0n,0n′ = 0 for odd n + n′ due to the symmetry (25) of
the associated Legendre polynomials and the fact that the function
1/

√
z2 − x2 in Eq. (15) is symmetric.

In the following, we use interchangeably both notations
μk, vk and μmn, vmn for eigenvalues and eigenfunctions. We
recall that the single-index enumeration relies on the global
ordering of all eigenvalues μk in Eq. (2). In turn, the
double-index enumeration is based on the symmetries of
eigenfunctions, namely, on their dependence on φ via eimφ ,
whereas the second index n employs the ordering of μmn for
each m in Eq. (21).

C. Limit of a sphere

In the limit a → b, the prolate spheroid approaches the
sphere of radius b. In this limit, one has aE → 0 and α0 → ∞
such that aE cosh α0 = b remains constant. As a consequence,
the coefficients in Eq. (12) diverge as cmn ≈ n+1

b sinh α0,
whereas the matrix elements in Eq. (15) behave in the leading
order as

F m
n,n′ (cosh α0) ≈ δn,n′

2πa2
mn cosh α0

, (26)

implying that Mmn,m′n′ → n+1
b δn,n′δm,m′ . The diagonal struc-

ture of this matrix yields

μmn = n + 1

b
, vmn = 1

b
Ymn(θ, φ). (27)

We retrieve therefore the well-known eigenvalues and eigen-
functions of the Dirichlet-to-Neumann operator for the
exterior of a sphere. Note that the eigenvalues do not depend
on m; moreover, since m ranges from −n to n, the degeneracy
of the eigenvalue μmn is 2n + 1, as expected for a sphere due
to its rotational symmetry. As illustrated below, the anisotropy
of spheroids breaks this symmetry and reduces the degeneracy
of eigenvalues.

D. Numerical implementation

For a practical implementation, the infinite-dimensional
matrix M has to be truncated to a finite size. In a basic
setup, one can choose the truncation order nmax to keep n =
0, 1, 2, . . . , nmax, and then construct the truncated matrix of
size (nmax + 1)2 × (nmax + 1)2, as detailed in Appendix B. A
numerical diagonalization of the truncated matrix provides
an approximation for a number of eigenvalues and eigen-
functions of M. As illustrated below, the accuracy of this
approximation increases rapidly with the truncation order
nmax.
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A much faster procedure consists in dealing with the
reduced matrices M̂m, which are obtained from Mm by remov-
ing zero columns and rows. For instance, the matrix M0 from
Eq. (23) has the following reduced form:

M̂0 =

⎛
⎜⎜⎜⎝

M00,00 0 M00,02 . . .

0 M01,01 0 . . .

M02,00 0 M02,02 . . .

. . . . . . . . . . . .

⎞
⎟⎟⎟⎠. (28)

In practice, we start from the truncated matrix M of size
(nmax + 1)2 × (nmax + 1)2 and then dispatch its columns and
rows according to m ranging from 0 to nmax, into matrices
M̂m. As the reduced matrix M̂m is of much smaller size
(nmax + 1 − m) × (nmax + 1 − m), its numerical diagonaliza-
tion is significantly faster. Its eigenvalues approximate the
eigenvalues μmn of the Dirichlet-to-Neumann operator M;
in turn, its eigenvectors determine the eigenfunctions vmn of
M via Eq. (24a), and the Steklov eigenfunctions Vmn via
Eq. (24b). The former eigenfunctions are orthogonal to each
other by construction. In turn, one needs to impose their
normalization according to Eq. (18). We recall that this nor-
malization is fixed up to an arbitrary phase factor eiα . Further
simplifications can be achieved for the axisymmetric problem,
see Appendix B 5. It is worth noting that the reduced matrices
M̂m form a block-diagonal matrix

M̂ =

⎛
⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . .

. . . M̂−1 0 0 . . .

. . . 0 M̂0 0 . . .

. . . 0 0 M̂1 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎠, (29)

which can be seen as a transformation of the original matrix
M by reordering its columns and rows. Since these two ma-
trices have the same eigenvalues, it is much faster to search
for the eigenvalues of the matrix M̂, which are obtained by
combining the eigenvalues of its diagonal blocks M̂m.

To illustrate the fast convergence of the numerical method,
we choose the prolate spheroid with semiaxes a = 0.5 and
b = 1 and compute three eigenvalues μ00(nmax), μ01(nmax),
and μ02(nmax) of the truncated matrix M of size (nmax +
1)2 × (nmax + 1)2 as functions of the truncation order nmax. To
estimate the truncation error, we subtract from μ0n(nmax) its
value at nmax = 20, considered as a proxy of the limiting value
μ0n(∞). Figure 2 shows how fast the error decreases with
nmax. We checked the rapid convergence for other values of m
and n, as well as for various aspect ratios (not shown). In par-
ticular, we found that larger truncation orders may be needed
to achieve high accuracy when a/b gets smaller. Moreover,
when a/b is close to 1, the matrix elements F m

n,n′ (cosh α0) van-
ish according to Eq. (26) that requires a suitable rescaling and
further improvements of the numerical procedure described in
Appendix B. Since the case of a sphere is fully explicit, we do
not study geometric settings of almost spherical domains.

A similar error analysis was performed for other problems
(interior of a prolate spheroid, oblate spheroids, see below).
In the following, we generally use nmax = 10 that is sufficient
to produce accurate numerical results for all the considered
settings.

0 5 10 15 20
10-15

10-10

10-5

100

FIG. 2. Illustration for the convergence of the numerical method
in the case of the exterior of the prolate spheroid with semiaxes a =
0.5 and b = 1. Three eigenvalues μ00(nmax), μ01(nmax), and μ02(nmax)
of the truncated matrix M of size (nmax + 1)2 × (nmax + 1)2 as func-
tions of the truncation order nmax are shown by symbols. Their values
at nmax = 20, considered here as a benchmark, are subtracted to
estimate the error of truncation.

E. Examples of eigenfunctions

Figure 3 illustrates ten eigenfunctions vmn of the Dirichlet-
to-Neumann operator M for the exterior of the prolate
spheroid with semiaxes a = 0.5 and b = 1. The ground eigen-
function v00 is not constant (see below), even though its minor
changes are difficult to see due to the chosen colorbar, for
which color changes in the same range of values from −1 to
1 for all shown eigenfunctions. The geometric structure of the
remaining shown eigenfunctions resembles that of the spheri-
cal harmonics Ymn(θ, φ). Note that the eigenfunctions vmn and
v(−m)n correspond to the same eigenvalue μmn and differ only
by the factor e±imφ ; for this reason, the eigenfunctions v(−m)n

are not shown.

-1

-0.5

0

0.5

1

FIG. 3. Several eigenfunctions vmn of the Dirichlet-to-Neumann
operator M for the exterior of the prolate spheroid with semiaxes
a = 0.5 and b = 1. The associated eigenvalues are shown on the
top. The eigenfunctions with even m + n are symmetric with respect
to the horizontal plane z = 0, whereas the eigenfunctions with odd
m + n are antisymmetric, in agreement with Eq. (32). The truncation
order is nmax = 10.
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0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

FIG. 4. The xz projection of the eigenfunctions vmn(θ, φ) of the
Dirichlet-to-Neumann operator M for the exterior of the prolate
spheroid with semiaxis a and b = 1, with mn = 00 (top) mn = 01
(middle), and mn = 11 (bottom). Thin line shows the normalized
spherical harmonics Ymn(θ, 0) that corresponds to a/b = 1. The trun-
cation order is nmax = 10.

Figure 4 presents the behavior of vmn(θ, φ) as a function of
θ for φ = 0 (i.e., its projection onto the xz plane) for prolate
spheroidal surfaces of variables minor semiaxis a (with fixed
b). As a → b, the surface becomes spherical, and the eigen-
functions vmn coincide with normalized spherical harmonics
Ymn. In turn, as a decreases, the eigenfunctions vmn deviate
further and further from spherical harmonics. Note that v00

and v01 are axisymmetric (independent of φ), so that their
structure, shown for φ = 0, remains the same for any φ. In

TABLE I. Several eigenvalues μmn of the Dirichlet-to-Neumann
operator M for the exterior of the prolate spheroid with semiaxes
a and b = 1. The matrices M̂m are truncated to the size (nmax + 1 −
m) × (nmax + 1 − m), with nmax = 10. Further increase of nmax did
not change the shown eigenvalues.

a/b μ00 μ01 μ02 μ11 μ12 μ22

0.1 3.960 6.787 8.740 11.041 12.764 20.748
0.2 2.558 4.820 6.523 6.035 7.649 10.797
0.3 2.019 4.011 5.577 4.379 5.924 7.512
0.4 1.717 3.514 4.964 3.554 5.034 5.889
0.5 1.516 3.145 4.489 3.057 4.467 4.926
0.6 1.367 2.844 4.092 2.721 4.054 4.287
0.7 1.250 2.588 3.754 2.475 3.726 3.832
0.8 1.153 2.365 3.464 2.285 3.451 3.490
0.9 1.071 2.171 3.215 2.130 3.212 3.220
1.0 1 2 3 2 3 3

turn, the structure of v11 is affected by the factor eiφ ; in partic-
ular, it is complex-valued, and its real part becomes negative
for φ between π/2 and 3π/2. Table I summarizes the first
eigenvalues μmn for various prolate spheroids.

F. Asymptotic behavior for elongated spheroids

In the limit a → 0, prolate spheroids get thinner and thin-
ner, approaching a needle of length 2b. In this limit, one
has α0 → 0, and the coefficients cmn diverge in the leading
order as

cmn ≈
{ 1

a ln(b/a) (m = 0),

|m|
a (m �= 0).

(30)

In turn, the coefficients F m
n,n′ (1) are finite. As a consequence,

the eigenvalues μmn of the matrix Mm diverge as a → 0 as

μmn ≈
{ qn

a ln(b/a) (1 + O[1/ ln(b/a)]) (m = 0),

|m|
a (m �= 0),

(31)

with some prefactors qn. Figure 5 illustrates the behavior of
the first eigenvalues μmn as functions of the minor semiaxis
a (with fixed b = 1). At a = 1, one retrieves the eigenvalues
(n + 1)/b for the exterior of a sphere of radius b. In turn,
the eigenvalues μmn diverge as a → 0 according to Eq. (31).
Note that the asymptotic behavior (31) with the numerical
prefactor q0 ≈ 1 is quite accurate for μ00. In turn, logarithmic
corrections to the leading order are more significant for μ0n

with n > 0.

G. Reflection symmetry

Since the domain � is symmetric under reflection with
respect to the horizontal plane z = 0, the Steklov eigen-
functions inherit this symmetry. In fact, if V (x, y, z) is a
Steklov eigenfunction, corresponding to an eigenvalue μ, then
V (x, y,−z) is also an eigenfunction corresponding to the
same μ. Moreover, their linear combinations V±(x, y, z) =
V (x, y, z) ± V (x, y,−z) are also eigenfunctions, if they are
not zero. There are thus three options: (i) V (x, y, z) is symmet-
ric: V (x, y, z) = V (x, y,−z); (ii) V (x, y, z) is antisymmetric:
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FIG. 5. Several eigenvalues μmn of the Dirichlet-to-Neumann
operator M for the exterior of the prolate spheroid as functions of
its minor semiaxis a, with b = 1. At a = b, one retrieves the eigen-
values (n + 1)/b for the exterior of a sphere of radius b. Thin lines
from bottom to top present 1/(a ln(b/a)), 1/a and 2/a that capture
the asymptotic behavior of μmn with m = 0, 1, 2, respectively. The
eigenvalues are obtained by diagonalizing M̂m truncated to the size
(nmax + 1 − m) × (nmax + 1 − m), with nmax = 10.

V (x, y, z) = −V (x, y,−z); or (iii) V (x, y, z) is neither sym-
metric, nor antisymmetric, in which case V+(x, y, z) and
V−(x, y, z) are symmetric and antisymmetric, respectively.

The structure of the matrices Mm implies that the Steklov
eigenfunctions Vmn(α, θ, φ), determined by Eq. (24b), are
symmetric (respectively, antisymmetric) under reflection with
respect to the horizontal plane z = 0 when m + n is even
(respectively, odd). Indeed, the relation (25) causes that the
matrix elements Mmn,mn′ are zero when n + n′ is odd. As a
consequence, the elements [Vmn]mn′ of its eigenvector Vmn are
zero when n + n′ is odd, so that

vmn(π − θ, φ) =
∞∑

n′=0

[Vmn]mn′ (−1)m+n′
Ymn′ (θ, φ),

where we used Ymn′ (π − θ, φ) = (−1)m+n′
Ymn′ (θ, φ) accord-

ing to Eq. (25). As the terms with odd n + n′ vanish, one
concludes that

vmn(α, π − θ, φ) = (−1)m+nvmn(θ, φ). (32)

This reflection symmetry is clearly illustrated in Fig. 3. The
same symmetry is preserved for the Steklov eigenfunctions:

Vmn(α, π − θ, φ) = (−1)m+nVmn(α, θ, φ). (33)

H. Half-spheroid in the half-space

The above symmetries provide a complementary insight
onto the Steklov problem in the upper half-space. Let

�+ =
{

(x, y, z) ∈ R3 :
x2

a2
+ y2

a2
+ z2

b2
> 1, z > 0

}
= {(α, θ, φ) : α > α0, 0 � θ < π/2, 0 � φ < 2π}

be the exterior of a prolate spheroid in the upper half-space
(the second line highlights that the upper half-space corre-
sponds to 0 � θ < π/2 in the prolate spheroidal coordinates).

The boundary of this domain is the union of the upper half-
spheroidal surface,

∂�+ = {(α, θ, φ) : α = α0, 0 � θ < π/2, 0 � φ < 2π},
and the remaining horizontal plane at z = 0 with a circular
hole of radius a:

∂�0 = {(α, θ, φ) : α > α0, θ = π/2, 0 � φ < 2π}.
According to Eq. (33), antisymmetric Steklov eigen-

functions Vmn (with odd m + n) vanish at θ = π/2 that
corresponds to the Dirichlet boundary condition on ∂�0. As a
consequence, they solve the mixed Steklov-Dirichlet exterior
problem:

�Vmn = 0 in �+, (34a)

∂nVmn = μmnVmn on ∂�+, (34b)

Vmn = 0 on ∂�0 (34c)

(here the notation ∂n for the normal derivative should not
be confused with the index n). Equivalently, one can speak
of eigenvalues μmn and eigenfunctions vmn of the Dirichlet-
to-Neumann operator MD that maps a given function f on
the half-spheroidal boundary ∂�+ onto another function g =
MD f = (∂nu)|∂�+ , where u satisfies

�u = 0 in �+, u|∂�+ = f , u|∂�0 = 0. (35)

For instance, v01, v03, v12, and v23 shown in Fig. 3 are exam-
ples of eigenfunctions of MD.

In turn, the symmetric Steklov eigenfunctions Vmn (with
even m + n) satisfy

(∂nVmn)|∂�0 =
(

1

hθ

∂θVmn

)∣∣∣∣
θ=π/2

= 0,

which corresponds to the Neumann boundary condition on
∂�0. In other words, they solve the mixed Steklov-Neumann
exterior problem:

�Vmn = 0 in �+, (36a)

∂nVmn = μmnVmn on ∂�+, (36b)

∂nVmn = 0 on ∂�0. (36c)

Equivalently, one can speak of eigenvalues μmn and eigen-
functions vmn of the Dirichlet-to-Neumann operator MN that
maps a given function f on the half-spheroidal boundary
∂�+ onto another function g = MN f = (∂nu)|∂�+ , where u
satisfies

�u = 0 in �+, u|∂�+ = f , (∂nu)|∂�0 = 0. (37)

For instance, v00, v02, v11, v22, v13, and v33 shown in Fig. 3 are
examples of eigenfunctions of MN .

III. OBLATE SPHEROIDS

For the exterior of an oblate spheroid with semiaxes a � b,

� =
{

(x, y, z) ∈ R3 :
x2

b2
+ y2

b2
+ z2

a2
> 1

}
, (38)

the computation is very similar so that we only sketch the
main steps and formulas. In the oblate spheroidal coordinates
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(α, θ, φ),⎛
⎝x

y
z

⎞
⎠ = aE

⎛
⎝cosh α cos θ cos φ

cosh α cos θ sin φ

sinh α sin θ

⎞
⎠

⎧⎪⎨
⎪⎩

0 � α < ∞
−π

2 � θ � π
2

0 � φ < 2π

⎫⎪⎬
⎪⎭,

with aE = √
b2 − a2 [Fig. 1(b)], the scale factors determining

the surface and volume elements, are [43]

hα = hθ = aE

√
sinh2 α + sin2 θ,

hφ = aE cosh α cos θ.

In these coordinates, the domain � is still characterized by
α > α0 = tanh−1(a/b), and the action of the Laplace operator
reads

�u = 1

a2
E (sinh2 α + sin2 θ )

[
1

cosh α

∂

∂α

(
cosh α

∂u

∂α

)

+ 1

cos θ

∂

∂θ

(
cos θ

∂u

∂θ

)]
+ 1

a2
E cosh2 α cos2 θ

∂2u

∂φ2
.

(39)

A general solution of the Laplace equation reads

u(α, θ, φ) =
∞∑

n=0

n∑
m=−n

AmnQm
n (i sinh α)Ȳmn(θ, φ), (40)

where Ȳmn(θ, φ) = amnPm
n (sin θ )eimφ , and the action of the

Dirichlet-to-Neumann operator is

Mu|∂� = ∂u

∂n

∣∣∣∣
∂�

= − 1

hα

∂αu

∣∣∣∣
α=α0

=
∞∑

n=0

n∑
m=−n

AmnȲmn(θ, φ)
cosh α0 Q′m

n (i sinh α0)

iaE

√
cosh2 α0 − cos2 θ

.

(41)

Multiplying this relation by Ȳ ∗
m′n′ (θ, φ) cos θ and integrating

over θ and φ, one gets a matrix representation of the operator
M on the orthonormal basis of Ȳmn:

Mmn,m′n′ = 2πδm,m′amnam′n′ cm′n′ F̄ m
n,n′ (sinh α0), (42)

where

cmn = cosh α0 Q′m
n (i sinh α0)

iaE Qm
n (i sinh α0)

(43)

and

F̄n,n′ (z) =
∫ 1

−1
dx

Pm
n (x)Pm

n′ (x)√
z2 + x2

. (44)

According to Eq. (15), one also has

F̄ m
n,n′ (z) = iF m

n,n′ (iz). (45)

Since the structure of the matrix M is the same as for
prolate spheroids, many properties of eigenfunctions of the
Dirichlet-to-Neumann operator remain unchanged; in partic-
ular, they can be classified according to their dependence on
φ via eimφ ; we employ the double index mn in the following.
Using again the decomposition (22), one can diagonalize sep-
arately the matrices Mm to access the eigenvalues μmn and to

-1

-0.5

0

0.5

1

FIG. 6. Several eigenfunctions vmn of the Dirichlet-to-Neumann
operator M for the exterior of the oblate spheroid with semiaxes
a = 0.5 and b = 1. The associated eigenvalues are shown on the
top. The eigenfunctions with even m + n are symmetric (with respect
to the horizontal plane z = 0), whereas the eigenfunctions with odd
m + n are antisymmetric, in agreement with Eq. (32). The truncation
order is nmax = 10.

construct the eigenfunctions

vmn(θ, φ) =
∞∑

n′=0

[Vmn]mn′Ȳmn′ (θ, φ) (46)

and the Steklov eigenfunctions

Vmn(α, θ, φ) =
∞∑

n′=0

Qm
n′ (i sinh α)

Qm
n′ (i sinh α0)

[Vmn]mn′Ȳmn′ (θ, φ). (47)

As previously, the Steklov eigenfunctions Vmn are symmet-
ric for even m + n and antisymmetric for odd m + n under
reflection with respect to the horizontal plane z = 0. In partic-
ular, these eigenfunctions solve the mixed Steklov-Neumann
and Steklov-Dirichlet exterior problems for the exterior of an
oblate spheroid in the upper half-space.

Figure 6 illustrates several eigenfunctions vmn of the
Dirichlet-to-Neumann operator M for the exterior of the
oblate spheroid with semiaxes a = 0.5 and b = 1. Expectedly,
these eigenfunctions resemble spherical harmonics Ȳmn but ex-
hibit some differences. In particular, the ground eigenfunction
v00 is not constant, though its variations are small.

Figure 7 illustrates the behavior of three eigenvalues μ0n

as functions of the minor semiaxis a (with fixed b = 1). At
a = 1, one retrieves the eigenvalues (n + 1)/b for the exterior
of a sphere of radius b. As a decreases, oblate spheroids
become thinner and thinner, approaching a disk of radius b.
In contrast to the case of prolate spheroids, the eigenvalues
are finite in this limit. Curiously, each eigenvalue does not
change monotonously with a. Table II summarizes several
eigenvalues μmn for oblate spheroids with the minor semiaxis
a ranging from 0 to 1 (with b = 1).

A. Limit of a disk

Let us focus on the limit of the disk when a = 0 and
thus α0 = 0. One can introduce the radial coordinate as
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FIG. 7. Three eigenvalues μ0n of the Dirichlet-to-Neumann op-
erator for the exterior of an oblate spheroid as functions of its minor
semiaxis a, with b = 1. At a = b, one retrieves the eigenvalues
(n + 1)/b for the exterior of a sphere of radius b. As a → 0, one
gets the eigenvalues for the exterior of a disk of radius b. The
axisymmetric matrix M0 from Eq. (B44) was truncated to the size
(nmax + 1) × (nmax + 1), with nmax = 20.

r =
√

x2 + y2 = b| cos θ |, with 0 < θ < π/2 corresponding
to the upper side of the disk, and −π/2 < θ < 0 correspond-
ing to its lower side. Formally, one can set r = b cos θ and
associate positive r with the upper side of the disk and nega-
tive r with its lower side.

As α0 → 0, the functions F̄ m
n,n′ (z) from Eq. (44) logarith-

mically diverge in the limit z = sinh α0 → 0. For any α0 > 0,
one can still use the truncated matrix M (or Mm) to approxi-
mate the eigenvalues and eigenfunctions but larger and larger
truncation orders are needed as α0 decreases. For this reason,
it is convenient to use an alternative matrix representation,
which corresponds to the operator M−1 and remains valid
even in the limit α0 = 0. This representation is described in
Appendix B 2.

Figure 8 illustrates several eigenfunctions vmn of the
Dirichlet-to-Neumann operator for the exterior of the disk

TABLE II. Several eigenvalues μmn of the Dirichlet-to-Neumann
operator M for the exterior of the oblate spheroid with semiaxes
a and b = 1. The matrices M̂m are truncated to the size (nmax +
1 − m) × (nmax + 1 − m), with the truncation order nmax = 10. Fur-
ther increase of nmax or decrease of δ do not change the shown
eigenvalues.

a/b μ00 μ01 μ02 μ11 μ12 μ22

0.0 1.158 2.006 4.317 2.755 3.453 4.121
0.1 1.204 2.057 4.314 2.811 3.512 4.197
0.2 1.220 2.094 4.206 2.796 3.539 4.166
0.3 1.217 2.117 4.040 2.732 3.536 4.058
0.4 1.200 2.129 3.850 2.634 3.506 3.900
0.5 1.173 2.128 3.666 2.520 3.453 3.721
0.6 1.141 2.118 3.498 2.401 3.381 3.543
0.7 1.106 2.098 3.350 2.286 3.295 3.379
0.8 1.070 2.071 3.220 2.180 3.200 3.234
0.9 1.034 2.038 3.105 2.085 3.101 3.108
1.0 1 2 3 2 3 3

-1

-0.5

0

0.5

1

FIG. 8. Several eigenfunctions vmn of the Dirichlet-to-Neumann
operator M for the exterior of the disk of radius b = 1. The as-
sociated eigenvalues are shown on the top. Normalization by the
maximum of |vmn| was employed for a better visualization. The
symmetric (respectively, antisymmetric) shape of the eigenfunction
vmn for even (respectively, odd) m + n allows one to reconstruct its
structure on the bottom side of the disk, which is not visible. The
truncation order is nmax = 10.

of radius b = 1. One can see that the ground eigenfunction
v00 shows more significant variations as compared to that
shown in Fig. 6. We stress that the eigenfunctions are also
present on the bottom side of the disk, which is not visible.
Their structure on this hidden side can be easily reconstructed
from their symmetry with respect to the horizontal plane: vmn

is symmetric (respectively, antisymmetric) for even (respec-
tively, odd) m + n. For instance, the eigenfunction v01, which
is positive on the upper side of the disk, takes negative values
on the bottom side. Figure 9 illustrates more explicitly the
dependence of first axisymmetric eigenfunctions v0n on the
angle θ .

1. Axisymmetric setting

Let us briefly discuss the action of the Dirichlet-to-
Neumann operator onto rotationally invariant functions that
do not depend on the angle φ. If a function f (θ ) is de-
composed on the normalized Legendre polynomials ψn(θ ) =√

n + 1/2 Pn(sin θ ),

f (θ ) =
∞∑

n=0

fnψn(θ ), (48)

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

FIG. 9. Four eigenfunctions v0n(θ ) of the Dirichlet-to-Neumann
operator for the exterior of a disk of radius b = 1, as a function
of r = b cos θ . The associated eigenvalues are 1.158, 2.006, 4.317,
and 5.125. The axisymmetric matrix M0 is truncated to (nmax + 1) ×
(nmax + 1), with nmax = 20.
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then the action of M reads

M f =
∞∑

n=0

fnψn(θ )
c0n

b
√

1 − cos2 θ
. (49)

Setting b = 1 for simplicity and using r = cos θ , we get, for
instance,

M1 = c00√
1 − r2

, (50a)

M
√

1 − r2 = c01, (50b)

where

c0n = −iQ′
n(0)

Qn(0)
= 2

(
�(n/2 + 1)

�(n/2 + 1/2)

)2

(51)

(see Appendix B 5 for details). For instance, c00 = 2/π , c01 =
π/2, c02 = 8/π , c03 = 9π/8, etc. The first relation (50a) re-
produces the classical Weber’s solution for the electric current
density onto a conducting disk [44], see below.

Alternatively, setting x = sin θ , one has

MPn(x) = c0n
Pn(x)

|x| (−1 < x < 1). (52)

One sees that MPn(x) keeps the parity of Pn(x), i.e., it is sym-
metric for even n and antisymmetric for odd n. For instance,
one has

M1 = 2

π

1

|x| ,

Mx = π

2

x

|x| ,

Mx2 = 2

π

4x2 − 1

|x| .

2. Disk in the half-space

The general representation (40) allows one to solve bound-
ary value problems (35), (37) in the upper half-space, by
imposing Dirichlet or Neumann boundary condition on ∂�0.
In the case of a disk of radius b, the first problem actually
concerns the Dirichlet boundary condition on the horizontal
plane, for a class of functions f (r) that are strictly zero for
r � b. Its solution can be written in the integral form:

u(x0, y0, z0) =
∫

x2+y2<b2
dx dy f (x, y)

× z0

2π
(
z2

0 + (x − x0)2 + (y − y0)2
)3/2 , (53)

where the factor in front of f is the harmonic measure density
[45]. Alternatively, one can use the representation (40) of a
harmonic function in oblate spheroidal coordinates, in which
the coefficients Amn are obtained by setting α = 0, multiplying
by Ȳ ∗

mn cos θ and integrating over θ and φ:

Amn = 1

Qm
n (0)

∫ π/2

−π/2
dθ

∫ 2π

0
dφ f (θ, φ) Ȳ ∗

mn(θ, φ) cos θ.

(54)

For instance, if f (θ, φ) = sign(θ ), then one gets

Amn = 2πδm,0a0n

Qm
n (0)

∫ 1

−1
dx sign(x) Pn(x)

= 2πδm,0a0n

Qm
n (0)

Pn−1(0) − Pn+1(0)

n + 1/2
(55)

for odd n, where P2n(0) = (−1)n (2n)!
22n(n!)2 . As a consequence, one

has

u =
∞∑

n=0

Q2n+1(i sinh α)

Q2n+1(0)
P2n+1(sin θ )(P2n(0) − P2n+2(0)).

(56)

This is also the solution of the Laplace equation in the up-
per half-space with the boundary condition u|z=0 = 
(b − r),
where 
(z) is the Heaviside step function: 
(z) = 1 for z > 0
and 0 otherwise. This is the splitting probability for the disk
of radius b, i.e., the probability that a particle started from a
point (α, θ, φ) hits the disk before hitting its complement (the
horizontal plane without this disk) [45–47].

In the same vein, the representation (40) with even m + n
allows one to solve the mixed Dirichlet-Neumann boundary
value problem (37) in the upper half-space, with coefficients
Amn given by Eq. (54). For instance, if f = 1, then one gets

Amn = 2
√

πδm,0δn,0

Qn(0)
, (57)

so that

u = Q0(i sinh α)

Q0(0)
, (58)

where α = cosh−1((r+ + r−)/(2b)), with r± =√
(r ± b)2 + z2. This expression can be written more

explicitly as

u(r, z) = 1

π
cos−1

(
1 − 8b2

(r+ + r−)2

)
. (59)

It is worth noting that the mixed Dirichlet-Neumann boundary
value problem for rotationally invariant functions f (r),

�u = 0 (z > 0),

{
u(r, 0) = f (r) (0 � r < b),
(∂zu(r, z))|z=0 = 0 (r > b),

(60)

was solved by Beltrami via integral representations (see
Ref. [44], p. 66):

u(r, z) =
∫ ∞

0
dξ A(ξ ) e−zξ J0(ξr), (61)

where

A(ξ ) =
∫ 1

0
ds cos(ξs)

d

ds

(
2

π

∫ s

0
dt

t f (tb)√
s2 − t2

)
. (62)

For instance, setting f (r) = 1, one retrieves the Weber’s solu-
tion for the electric potential around a conducting disk:

u(r, z) = 2

π

∫ ∞

0

dξ

ξ
sin(ξb) e−ξz J0(ξr), (63)
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from which

−(∂nu)|∂�+ = 2

π
√

b2 − r2
(0 � r < b), (64)

where J0(z) is the Bessel function of the first kind. One sees
that the above expressions (58) and (59) are more explicit than
the equivalent integral representation (63). In probabilistic
terms, 1 − u(r, z) is the escape (or survival) probability for
a particle started from a point (r, z), which can be destroyed
upon its first arrival onto the absorbing disk. Alternatively,
C0u(r, z) can be understood as the concentration of particles
diffusing from infinity (with a concentration C0) towards an
absorbing disk. In this light, j = −DC0(∂nu)|∂�+ is the dif-
fusive flux density onto the disk. Dividing this expression by
the total flux, one gets the harmonic measure density on the
absorbing disk for a particle started from infinity:

ω(r) =
DC0

2
π

√
b2−r2

DC0
2
π

b
= 1

b
√

b2 − r2
. (65)

IV. TWO APPLICATIONS

As mentioned in Sec. I, the Dirichlet-to-Neumann operator
M and its eigenfunctions have found numerous applications
in applied mathematics and engineering. Here we briefly
discuss two applications in physics. In Sec. IV A, we start
with diffusion-controlled reactions in chemical physics and
illustrate the use of M for representing the Robin boundary
condition that is often used to describe surface reactions on
partially reactive targets. In Sec. IV B, we highlight their rela-
tion to the statistics of encounters between a diffusing particle
and the boundary, which is relevant in statistical physics and
in the theory of reflected Brownian motion.

A. Partially reactive boundaries

Diffusion-controlled reactions play an important role in
physics, chemistry and biology [48–58]. In the idealized set-
ting introduced by Smoluchowski [59], a reactant diffuses
towards its partner or towards a catalytic surface, and reacts
upon their first encounter. In many situations, however, the
first encounter is not sufficient, as the reactant and/or its
partner may need to overcome an activation energy barrier,
to be in an appropriate “active” state, to arrive onto a specific
catalytic germ, to pass through a channel/pore, etc. [58]. If
any of these conditions is failed, then the reactant resumes
its bulk diffusion until the next encounter, and so on. Starting
from Collins and Kimball [60], such partial reactions are de-
scribed by imposing the Robin boundary condition, in which
the diffusive flux of particles towards the catalytic boundary
is postulated to be proportional to their concentration on that
boundary. In other words, the concentration C of diffusing
reactants in the steady-state regime obeys

�C = 0 in �, (66a)

−D∂nC = κC on ∂�, (66b)

lim
|x|→∞

C = C0, (66c)

where D is the diffusion coefficient, κ � 0 is a constant re-
activity of the boundary, and C0 is the initial concentration

maintained at infinity. Setting q = κ/D and C = C0(1 − u),
one can express the Robin boundary condition ∂nu + qu = q
on ∂� with the help of the Dirichlet-to-Neumann operator as
Mu|∂� + qu|∂� = q. Inverting this relation yields

u|∂� = (M + q)−1q

=
∞∑

k=0

(vk, 1)L2(∂�)

‖vk‖2
L2(∂�)

q

μk + q
vk, (67)

where we used the orthogonality and completeness of the
basis of the eigenfunctions {vk} of M.

For prolate spheroids, a general solution (7) of the Laplace
equation can be written as

u(α, θ, φ) =
∑
m,n

fmn
Qm

n (cosh α)

Qm
n (cosh α0)

Ymn(θ, φ), (68)

where the coefficients fmn are found from the restriction of u
onto ∂� as

fmn =
∫ π

0
dθ

∫ 2π

0
dφ sin θ Y ∗

mn(θ, φ) u|∂�

=
∞∑

k=0

(vk, 1)L2(∂�)

‖vk‖2
L2(∂�)

q

μk + q

×
∫ π

0
dθ

∫ 2π

0
dφ sin θ Y ∗

mn(θ, φ) vk (θ, φ)

=
∞∑

k=0

(vk, 1)L2(∂�)

‖vk‖2
L2(∂�)

q

μk + q
[Vk]mn, (69)

where we employed the representation (17). Using Eqs. (B30)
and (B34) from Appendix B, one can further simplify

fmn =
√

4π

aE sinh α0Q0(cosh α0)

∞∑
k=0

[V∗
k ]00[Vk]mn

(V†
kcVk )

q

μk + q

=
√

4π

∞∑
k=0

[Ṽ∗
k ]00[Ṽk]mn

(Ṽ†
kṼk )

q

μk + q
, (70)

where Ṽk = c
1
2 Vk , and the diagonal matrix c is formed by

cmn. Since μk and Ṽk are eigenvalues and eigenvectors of
the Hermitian matrix M̃ = c

1
2 Mc− 1

2 , one can also rewrite the
above expression in a matrix form:

fmn =
√

4π q[(M̃ + qI)−1]mn,00, (71)

where I is the identity matrix. Similar representations were
discussed in Refs. [17,40].

Knowing the concentration, one can easily deduce the total
diffusive flux onto the boundary:

Jq =
∫

∂�

(−D∂nC) = DC0

∫
∂�

(∂nu)|∂�

= DC0q(1,M(M + q)−11)L2(∂�)

= DC0q
∞∑

k=0

|(1, vk )L2(∂�)|2
‖vk‖2

L2(∂�)

μk

μk + q

= 4πDC0q

sinh α0Q2
0(cosh α0)

∞∑
k=0

[V∗
k ]00 [Vk]00

(V†
kcVk )

1

μk + q
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= 4πDC0aE q

Q0(cosh α0)

∞∑
k=0

[Ṽ∗
k ]00 [Ṽk]00

(Ṽ†
kṼk )

1

μk + q

= 4πDC0aE q

Q0(cosh α0)
[(M̃ + qI)−1]00,00. (72)

Denoting by

C = 4πaE

Q0(cosh α0)
= 8πaE

ln
( b+aE

b−aE

) (73)

the harmonic (Newtonian) capacity of the prolate spheroid,
one gets

Jq = J∞ q[(M̃ + qI)−1]00,00, (74)

where

J∞ = DC0C (75)

is the total diffusive flux onto a perfectly reactive prolate
spheroid (see also [40]). As a consequence, the effect of partial
reactivity is represented by q[(M̃ + qI)−1]00,00. In the limit of
a sphere (a → b), this factor reduces to q/(q + 1/b) so that
one retrieves the Collins-Kimball diffusive flux [60]

Jq = 4πDC0b
qb

1 + qb
(a = b), (76)

where 4πDC0b is the Smoluchowski diffusive flux J∞ onto a
perfectly reactive sphere of radius b [59].

For oblate spheroids, a similar computation involves

u(α, θ, φ) =
∑
m,n

fmn
Qm

n (i sinh α)

Qm
n (i sinh α0)

Ȳmn(θ, φ), (77)

with the same expression (71) for the coefficients fmn. The
total diffusive flux reads

Jq = J∞ q[(M̃ + qI)−1]00,00, (78)

where

J∞ = 4πDC0aE

iQ0(i sinh α0)
= DC0C, (79)

and

C = 4πaE

iQ0(i sinh α0)
= 4πaE

cos−1(a/b)
(80)

is the harmonic capacity of the oblate spheroid. In the case of
a disk, the total flux was thoroughly studied in Ref. [61].

Figure 10 illustrates the behavior of the diffusive flux
Jq, rescaled by J∞, as a function of the reactivity param-
eter q. Expectedly, this ratio changes from 0 at q = 0 (no
surface reaction) to 1 at q → ∞ (perfect surface reaction).
For prolate spheroids, their anisotropy reduces the diffusive
flux monotonously (curves are shifted downwards as a/b
decreases). As the spheroid gets thinner, its accessibility to
Brownian motion is reduced, and this effect is enhanced by
decreasing the reactivity q and thus requiring more and more
returns to the target to realize a successful reaction. The sit-
uation is more subtle for oblate spheroids. Even in the limit
a = 0, the disk remains accessible to Brownian motion so that
the effect of anisotropy onto the diffusive flux is moderate (all
shown curves are close to each other). Curiously, the reduc-
tion of the diffusive flux by anisotropy is not monotonous

10-2 10-1 100 101 102
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0.4

0.6

0.8

1

(a)

10-2 10-1 100 101 102
0

0.2

0.4
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0.8

1

(b)

10-2 10-1 100
1

1.1

1.2

1.3

(c)

FIG. 10. The diffusive flux Jq onto a partially reactive spheroidal
boundary with semiaxes a and b, rescaled by J∞. Panels (a) and
(b) present Jq as a function of qb for prolate and oblate spheroids,
respectively, whereas panel (c) shows Jq as a function of a/b for
oblate spheroids. For an easier comparison between different curves,
the ratio Jq/J∞ on panel (c) was rescaled by its minimum (so that all
the minimal ratios are equal to 1). The matrix M̃ in Eqs. (72) and (78)
was truncated to the size (nmax + 1)2 × (nmax + 1)2, with nmax = 10.

for oblate spheroids. For instance, one can notice that the
curves for a/b = 0.01 and a/b = 0.2 cross each other. This
nonmonotonicity is illustrated on panel (c) which shows the
ratio Jq/J∞ as a function of a/b. When q is not too large,
this ratio exhibits a minimum at some intermediate aspect
ratio that depends on the reactivity parameter q. From the
mathematical point of view, this behavior may be a conse-
quence of the nonmonotonous dependence of eigenvalues μmn

of the Dirichlet-to-Neumann operator on the aspect ratio a/b,
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as illustrated in Fig. 7. From the physical point of view, it may
result from an intricate interplay between the accessibility
of the surface controlled by its curvature (i.e., by a/b) and
the number of failed reaction attempts on it due to partial
reactivity (controlled by qb). For instance, if the flux Jq was
not rescaled by J∞, there would be no minimum. Further clar-
ifications of this effect require a more detailed analysis of the
diffusive dynamics near curved, partially reactive boundaries.
We stress, however, that this effect is moderate for oblate
spheroids.

More generally, the Dirichlet-to-Neumann operator and
its matrix representation allow one to investigate the effect
of spatially heterogeneous reactivity when q changes on the
boundary [17]. In addition, one can use the Steklov eigen-
functions to compute the Green’s function with the Robin
boundary condition.

B. Statistics of boundary encounters

The Steklov eigenfunctions also play the central role in
the encounter-based approach to diffusion-controlled reac-
tions [18]. In this context, one usually considers a more
general setting, in which the Laplace equation (1) is replaced
by the modified Helmholtz equation, (p − D�)u = 0, with
p � 0. The eigenfunctions of the related Steklov problem de-
termine the spectral expansion of the Laplace transform of the
encounter propagator P(x, 
, t |x0), i.e., the joint probability
density of the position X t and the boundary local time 
t of a
particle that starts from a point x0 and diffuses in a domain �

with the reflecting boundary ∂� [18]. Here the boundary local
time 
t can be understood as the (rescaled) number of encoun-
ters between the diffusing particle and the boundary, which
is crucial for describing various phenomena occurring on the
boundary [20–23]. The encounter propagator allows one to
access most common characteristics of diffusion-controlled
reactions, including the conventional propagator, the survival
probability, the first-passage time probability density, the har-
monic measure density, the diffusive flux, etc. For instance,
one can investigate the first-crossing time τ = inf{t > 0 :

t > 
} of a threshold 
 by the boundary local time 
t . In
other words, the random variable τ is the first time instance
when the number of encounters exceeds a given threshold.
The probability density of this random variable,

U (
, t |x0)dt = Px0{τ ∈ (t, t + dt )}, (81)

was shown to be expressed in terms of the integral
of P(x, 
, t |x0) over the boundary ∂� (see details in
Refs. [18,62]):

U (
, t |x0) = D
∫

∂�

dx P(x, 
, t |x0). (82)

For a bounded domain, any threshold is crossed with probabil-
ity 1 so that the probability density U (
, t |x0) is normalized to
1. However, when a three-dimensional domain is unbounded,
the particle can escape to infinity and never return to the
boundary ∂�. As a consequence, the integral of U (
, t |x0)
over t may be smaller than 1; in fact, this integral determines
the probability of crossing of a given threshold 
:

Px0{
∞ > 
} =
∫ ∞

0
dt U (
, t |x0), (83)

which can be seen as the Laplace transform of U (
, t |x0),
evaluated at p = 0. One can therefore employ the general
spectral expansion for the Laplace transform of the encounter
propagator P(x, 
, t |x0), derived in Ref. [18], to determine
this probability in terms of the Steklov eigenfunctions for the
Laplace equation (i.e., for p = 0) that we studied here:

Px0{
∞ > 
} =
∞∑

k=0

[Vk (x0)]∗

‖vk‖2
L2(∂�)

e−μk


∫
∂�

dx vk (x). (84)

At 
 = 0, this is simply the probability of hitting the
boundary (before escaping to infinity). At large 
, this prob-
ability decays exponentially, and the rate of this decay is
given by the smallest eigenvalue μ0. When prolate spheroids
get thinner (a → 0), the eigenvalue μ0 diverges according to
Eq. (31), so that the crossing probability Px0{
∞ > 
} decays
faster with 
. Indeed, it is hard for Brownian motion to access
thin prolate spheroids, and it is therefore unlikely to experi-
ence many encounters with it (i.e., to get large 
∞). In turn,
the eigenvalue μ0 approaches a constant value in the opposite
limit of thin oblate spheroids. This is consistent with the
fact that even a disk (a = 0) remains accessible to Brownian
motion in three dimensions.

For illustrative purposes, we consider the starting point to
be uniformly distributed over the spheroidal boundary and
evaluate the the associated crossing probability:

P(
) = 1

|∂�|
∫

∂�

dx0 Px0{
∞ > 
}

= 1

|∂�|
∞∑

k=0

e−μk

|(1, vk )|2L2(∂�)

‖vk‖2
L2(∂�)

. (85)

Comparing this expression with the spectral expansion of the
total flux Jq [see the third line in Eq. (72)], one can realize that

Jq

Dc0q|∂�| =
∫ ∞

0
d
 e−q
 ρ(
), (86)

where ρ(
) = −∂
P(
) is the probability density of the ran-
dom variable 
∞. As a consequence, we can formally invert
the matrix representation (72) to get

P(
) = C
|∂�| [e−
M̃/M̃]00,00 (87)

for both prolate and oblate spheroids, with C being their har-
monic capacity given by Eqs. (73) and (80).

Figure 11 shows the behavior of the crossing probability
P(
) for prolate and oblate spheroids, as well as for the sphere
of radius b, for which P(
) = e−
/b. The slowest decay of
P(
) corresponds to the sphere, which is the most accessible
to Brownian motion. As a/b goes to 0, the decay is getting
faster and faster for prolate spheroids. In turn, for oblate
spheroids, the crossing probability P(
) approaches that of
a disk. The role of the starting point x0 and other properties
of the boundary local time 
∞ can be investigated using our
results.

V. CONCLUSIONS

In this paper, we investigated the spectral properties of the
Dirichlet-to-Neumann operator M and the related Steklov
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FIG. 11. The crossing probability P(
) from Eq. (85) as a func-
tion of the threshold 
 for prolate and oblate spheroids with semiaxes
a and b. The starting point is uniformly distributed on the boundary.
The matrix M̃ in Eq. (87) was truncated to the size (nmax + 1)2 ×
(nmax + 1)2, with nmax = 10.

problem for anisotropic domains in three dimensions. Using
prolate and oblate spheroidal coordinates, we derived a ma-
trix representation of M on the basis of spherical harmonics
for both exterior and interior problems. Its diagonalization
allowed us to access the eigenvalues μmn and eigenfunctions
vmn of M, as well as the Steklov eigenfunctions Vmn. These
eigenfunctions inherited the symmetries of the considered
domains; in particular, Vmn depend on the angle φ via the
factor eimφ , and are symmetric (respectively, antisymmetric)
with respect to the horizontal plane z = 0 when m + n is
even (respectively, odd). As a consequence, they are also the
eigenfunctions of the mixed Steklov-Neumann (respectively,
Steklov-Dirichlet) problems in the upper half-space. We also
described recurrence relations to speed up the numerical con-
struction of truncated matrices. While the interior spectral
problem in a bounded domain could alternatively be solved by
other numerical methods [63–74], exterior spectral problems
in unbounded domains are in general more difficult to address
by conventional tools.

We discussed the impact of domain anisotropy onto the
behavior of eigenvalues and eigenfunctions. In particular, we
showed how the eigenvalues of M for the exterior of a prolate
spheroid diverge in the limit a → 0 (the exterior of a nee-
dle); in turn, in the opposite limit of thin (disklike) oblate
spheroids, the eigenvalues reach finite values. In this limit,
we also got complementary insights onto a classical mixed
Dirichlet-Neumann problem in the half-space.

Apart from their own fundamental interest in spectral ge-
ometry, the Steklov eigenfunctions offer flexible meshless
representations for solutions of interior and exterior boundary
value problems. In the context of diffusion-controlled reac-
tions, these eigenfunctions allow one to incorporate the effect
of partial reactivity, e.g., to compute the steady-state con-
centration of particles that react on the spheroidal boundary.
In particular, we showed how the total diffusive flux (i.e.,
the overall reaction rate) depends on the anisotropy of the
target. Another application from statistical physics concerns
the statistics of encounters between a diffusing particle and
the spheroidal target. The Steklov eigenfunctions determine

the crossing probability Px0{
∞ > 
}, i.e., the probability that
the (rescaled) number of encounters, 
∞, exceeds a given
threshold 
, before the particle escapes to infinity. The cross-
ing probability generalizes the hitting probability of the target
(the latter corresponding to 
 = 0). In particular, we showed
that the smallest eigenvalue μ00 of the Dirichlet-to-Neumann
operator determines the exponential decay of the crossing
probability at large thresholds 
.

In summary, this study brings novel insights onto the
spectral properties of the Dirichlet-to-Neumann operator for
exterior domains, with the special emphasis on anisotropy.
Even though the derived eigenvalues and eigenfunctions are
not as explicit as in the case of the exterior of a ball, the ma-
trix representation offers an efficient numerical computation
and allows for getting asymptotic results. One straightforward
extension of this study concerns diffusion across a semiper-
meable spheroidal boundary, which is a model of diffusive
exchange in anisotropic living cells or tissues [75–77]. The
exchange between interior and exterior compartments is usu-
ally described by a transmission boundary condition that can
be reformulated in terms of two Dirichlet-to-Neumann op-
erators for the interior and exterior problems. Moreover, an
extension of the encounter-based approach to semipermeable
membranes allows one to treat much more sophisticated ex-
change mechanisms [78–81]. Another promising direction is
related to the Dirichlet-to-Neumann operator for the (modi-
fied) Helmholtz equation. As briefly discussed in Sec. IV B,
the related Steklov eigenfunctions determine the encounter
propagator and thus most diffusion-reaction characteristics in
this system. While one could employ prolate/oblate spheroidal
wave functions, their analysis is more sophisticated and less
explicit. Alternatively, one can consider other domains, in
which the Laplace operator admits separation of variables
in appropriate curvilinear coordinates (e.g., a torus). A sys-
tematic investigation of the Dirichlet-to-Neumann operator in
such relatively simple shapes can help to uncover the intricate
relations between the geometry and the spectral properties of
this operator.
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APPENDIX A: INTERIOR PROBLEMS

While the main text is focused on exterior problems, the
same approach is valid for the interior spectral problems when
the Laplace equation has to solved inside a bounded prolate
or oblate spheroid. In fact, the coefficients F m

n,n′ (z) and F̄ m
n,n′ (z)

remain unchanged, and the difference between exterior and
interior settings is only manifested in the coefficients cmn:

(i) for prolate spheroids, it is sufficient to replace Qm
n (z) by

Pm
n (z) in Eq. (12), as well as the sign:

cmn = sinh α0 P′m
n (cosh α0)

aE Pm
n (cosh α0)

. (A1)
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FIG. 12. Several eigenfunctions vmn of the Dirichlet-to-Neumann
operator M for the interior of the prolate spheroid with semiaxes
a = 0.5 and b = 1. The associated eigenvalues are shown on the top.
The truncation order is nmax = 10.

(ii) for oblate spheroids, it is sufficient to replace Qm
n (z) by

Pm
n (z) in Eq. (43), as well as the sign:

cmn = i cosh α0 P′m
n (i sinh α0)

aE Pm
n (i sinh α0)

. (A2)

In both cases, as P′
0 = 0 and thus c00 = 0, one can easily check

that the first eigenvalue is zero, μ00 = 0, as it should be.
Figures 12 and 13 illustrate several eigenfunctions vmn

for the interior prolate/oblate spheroid with semiaxes a = 0.5
and b = 1. The associated eigenvalues μmn are shown on the
top of each panel. Expectedly, a constant eigenfunction v00

corresponds to μ00 = 0. Other eigenfunctions also resemble
the spherical harmonics.
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FIG. 13. Several eigenfunctions vmn of the Dirichlet-to-Neumann
operator M for the interior of the oblate spheroid with semiaxes
a = 0.5 and b = 1. The associated eigenvalues are shown on the top.
The truncation order is nmax = 10.

One can also consider more sophisticated domains con-
fined between two confocal prolate (oblate) spheroids. These
domains are characterized as α1 < α < α2, where α1 =
tanh−1(a/b) and α2 = tanh−1(A/B), with a, b and A, B being
the semiaxes of the inner and outer boundaries such that
aE = √

b2 − a2 = √
B2 − A2 is half of the focal distance for

both boundaries. In this case, a general solution of the Laplace
equation involves both Pm

n (z) and Qm
n (z) but the structure of

the matrix representation is very similar. We just mention
two settings, in which either Dirichlet or Neumann boundary
condition is imposed on the outer boundary, whereas the inner
boundary has the Steklov condition (the opposite setting can
be easily obtained).

(i) For prolate spheroids, the matrix M is still given by
Eq. (14), in which α0 is replaced by α1, and the coefficients
cmn depend on the boundary condition on the outer spheroid:

cmn = − sinh α1

aE

Pm
n (cosh α2)Q′m

n (cosh α1) − Qm
n (cosh α2)P′m

n (cosh α1)

Pm
n (cosh α2)Qm

n (cosh α1) − Qm
n (cosh α2)Pm

n (cosh α1)
(Dirichlet), (A3)

cmn = − sinh α1

aE

P′m
n (cosh α2)Q′m

n (cosh α1) − Q′m
n (cosh α2)P′m

n (cosh α1)

P′m
n (cosh α2)Qm

n (cosh α1) − Q′m
n (cosh α2)Pm

n (cosh α1)
(Neumann). (A4)

(ii) For oblate spheroids, the matrix M is still given by Eq. (42), in which α0 is replaced by α1, and the coefficients cmn depend
on the boundary condition on the outer spheroid:

cmn = cosh α1

iaE

Pm
n (i sinh α2)Q′m

n (i sinh α1) − Qm
n (i sinh α2)P′m

n (i sinh α1)

Pm
n (i sinh α2)Qm

n (i sinh α1) − Qm
n (i sinh α2)Pm

n (i sinh α1)
(Dirichlet), (A5)

cmn = cosh α1

iaE

P′m
n (i sinh α2)Q′m

n (i sinh α1) − Q′m
n (i sinh α2)P′m

n (i sinh α1)

P′m
n (i sinh α2)Qm

n (i sinh α1) − Q′m
n (i sinh α2)Pm

n (i sinh α1)
(Neumann). (A6)

APPENDIX B: NUMERICAL COMPUTATION

In this section, we discuss a practical implementation
of the proposed method. The construction of the (trun-
cated) matrix M requires computing the integral (15) and the

coefficients cmn, both involving associated Legendre functions
Pm

n (x) and Qm
n (x). For this reason, we briefly summarize the

main steps in the evaluation of these functions and related
integrals.
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1. Associated Legendre functions

The definition and basic properties of associated Legendre
functions Pm

n (x) and Qm
n (x) can be found in many textbooks,

e.g., in Ref. [82] (chapter 8). As we focus on integer indices
n = 0, 1, 2, . . . and m = −n,−n + 1, . . . , n, the numerical
computation of Pm

n (x) is fairly standard in the common range
−1 � x � 1 (see, e.g., the built-in function legendre in mat-
lab). However, the computation of the coefficients cmn requires
evaluating both Pm

n (z) and Qm
n (z) at z = cosh α > 1 or z =

i sinh α. While Pm
n (z) with even m are just polynomials and

thus can be immediately evaluated at any complex number,
the computation is more subtle for other associated Legendre
functions that involve square roots and logarithms and thus
require cuts in the complex plane. Throughout this section, we
follow Ref. [82] and distinguish two conventions by writing
the argument as x for x ∈ (−1, 1), or as z for z /∈ [−1, 1]. For
instance, two conventional definitions read for m � 0 as

Pm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Pn(x), (B1a)

Pm
n (z) = (z2 − 1)m/2 dm

dzm
Pn(z), (B1b)

and

Qm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Qn(x), (B2a)

Qm
n (z) = (z2 − 1)m/2 dm

dzm
Qn(z), (B2b)

where Pn(z) are the Legendre polynomials and Qn(z) are the
Legendre functions of the second kind (see below). In the
following, we focus on Pm

n (z) and Qm
n (z) and briefly describe

their numerical computation via the standard recurrence for-
mulas for completeness. As these formulas are identical for
both Pm

n (z) and Qm
n (z), we consider the latter functions and

then just mention changes for Pm
n (z).

In the first step, one can compute the Legendre functions
Qn(z) up to the desired order n via the recurrence relation,

Qn(z) = 2n − 1

n
zQn−1(z) − n − 1

n
Qn−2(z), (B3)

starting from

Q0(z) = 1

2
ln

(
z + 1

z − 1

)
, Q1(z) = zQ0(z) − 1. (B4)

From Eq. (B2b), one can also evaluate

Q1
n(z) = 1

n
√

z2 − 1
(n(2n − 1)zQn(z)

− [(2n − 1)(n − 1)z2 + n2]Qn−1(z)

+ (n − 1)2zQn−2(z)) (B5)

for n � 2, where we used another recurrence relation

d

dz
Qn(z) = n + 1

z2 − 1

(
Qn+1(z) − zQn(z)

)
. (B6)

One also has

Q1
1(z) =

√
z2 − 1 Q0(z) − z√

z2 − 1
. (B7)

Since we know Q0
n(z) = Qn(z) and Q1

n(z), the other func-
tions Qm

n (z) can be found via the recurrence relation:

Qm−1
n (z) = 2mz(z2 − 1)−

1
2 Qm

n (z) + Qm+1
n (z)

(n + m)(n − m + 1)
(B8)

for m = −n + 2,−n + 3, . . . ,−1, 0, or

Qm+1
n (z) = (n + m)(n − m + 1)Qm−1

n (z) − 2mzQm
n (z)

(z2 − 1)
1
2

(B9)

for m = 1, 2, . . . , n. Note that the derivative of Qm
n (z) can be

found via either of two equivalent relations

dQm
n (z)

dz
= 1

z2 − 1

[
(n + m)(n − m + 1)

√
z2 − 1 Qm−1

n (z)

− mzQm
n (z)

]
, (B10)

= 1

z2 − 1

[√
z2 − 1 Qm+1

n (z) + mzQm
n (z)

]
. (B11)

The computation of Pm
n (z) relies on the same recurrence

relations, except for their initiation, namely, Eqs. (B4) and
(B7) are replaced by

P0(z) = 1, P1(z) = z, P1
1 (z) =

√
z2 − 1. (B12)

2. Alternative matrix representation

In the limit α0 → 0, the coefficients F̄ m
n,n′ (sinh α0) given by

Eq. (44) logarithmically diverge that makes their numerical
computation more subtle. It is therefore convenient to get
an alternative matrix representation that can be constructed
even at α0 = 0. For this purpose, we apply the operator M to
Eq. (46) that yields

μmn

∞∑
n′=0

[Vmn]mn′Ȳmn′ = μmnvmn = Mvmn

=
∞∑

n′=0

[Vmn]mn′cmn′
Ȳmn′√

cosh2 α0 − cos2 θ
,

where we wrote explicitly the action of M onto a spherical
harmonic Ȳmn′ via Eq. (41). Multiplying both sides of this
relation by

√
cosh2 α0 − cos2 θ Ȳ ∗

mn0
cos θ and integrating over

θ and φ, we get

μmn

∞∑
n′=0

[Vmn]mn′Ḡmn′,mn0 (sinh α0) = [Vmn]mn0 cmn0 , (B13)

where we used the orthogonality of spherical harmonics, and
defined

Ḡmn,m′n′ (z) =
∫ 2π

0
dφ

∫ π/2

−π/2
dθ cos θ Ȳmn(θ, φ)

×
√

z2 + sin2 θ Ȳ ∗
m′n′ (θ, φ)

= 2πδm,m′amnam′n′Gm
n,n′ (z), (B14)

with

Gm
n,n′ (z) =

∫ 1

−1
dx Pm

n (x)Pm
n′ (x)

√
z2 + x2. (B15)
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These coefficients resemble F̄ m
n,n′ (z) from Eq. (44), except that

the square root
√

z2 + x2 stands in the numerator and thus
eliminates the divergence at z = 0. Finally, Eq. (B13) can be
written as an eigenvalue problem

∞∑
n′=0

[Vmn]mn′
Ḡmn′,mn0 (sinh α0)

cmn0

= 1

μmn
[Vmn]mn0 . (B16)

This relation implies that Vmn is a left eigenvector of the ma-
trix with the elements Ḡmn′,mn0 (sinh α0)/cmn0 , whereas 1/μmn

is the associated eigenvalue. One sees that this is a matrix rep-
resentation of M−1, the inverse of the Dirichlet-to-Neumann
operator, which is called the Neumann-to-Dirichlet operator.
The numerical advantage of this matrix representation is that
the elements Ḡm

n,n′ (z) do not diverge as z → 0. In particular,
one can compute the matrix elements Ḡmn′,mn0 (0)/cmn0 and
then diagonalize the truncated matrix.

3. Recurrence formulas for the integral

Now we describe the recurrence formulas for computing
the elements of the matrix M. These formulas are actually
valid in a more general case:

Hm
n,n′ =

∫ 1

−1
dx f (x2) Pm

n (x) Pm
n′ (x), (B17)

where f (x) is a given integrable function. Due to the symme-
try relation (25), these integrals vanish when n + n′ is odd.
They also are zero if |m| > n or |m| > n′. The remaining
nonzero values can be found recursively by using the recur-
rence relation for associated Legendre polynomials:

(n − m + 1)Pm
n+1(x) = (2n + 1)xPm

n (x) − (n + m)Pm
n−1(x).

(B18)
Applying this relation to both Pm

n (x) and Pm
n′ (x) in Eq. (B17),

we get for even n + n′:

Hm
n,n′ =

∫ 1

−1
dx f (x2) Pm

n (x)
(2n′ − 1)xPm

n′−1(x) − (n′ − 1 + m)Pm
n′−2(x)

n′ − m

=
∫ 1

−1
dx f (x2)

[
(n − m + 1)Pm

n+1(x) + (n + m)Pm
n−1(x)

2n + 1
(2n′ − 1)Pm

n′−1(x) − n′ − 1 + m

n′ − m
Pm

n (x)Pm
n′−2

]

= 2n′ − 1

(2n + 1)(n′ − m)

(
(n + 1 − m)Hm

n+1,n′−1 + (n + m)Hm
n−1,n′−1

) − n′ − 1 + m

n′ − m
Hm

n,n′−2. (B19)

As a consequence, if Hm
n,0 and Hm

n,1 are known, then one can
evaluate the remaining elements.

For any m > 0, one has to evaluate

Hm
n,m = 2

∫ 1

0
dx f (x2) Pm

n (x) (−1)m(2m − 1)!! (1 − x2)m/2︸ ︷︷ ︸
=Pm

m (x)

= −(2m − 1)2
∫ 1

0
dx f (x2) Pm−1

m−1 (x)
√

1 − x2Pm
n (x)

= 2m − 1

2n + 1

(
(n + m − 1)(n + m)Hm−1

n−1,m−1

− (n − m + 1)(n − m + 2)Hm−1
n+1,m−1

)
for even m + n, where we used another recurrence relation
to express

√
1 − x2Pm

n (x) in terms of Pm−1
n±1 (x). Similarly, one

needs

Hm
n,m+1 = 2m + 1

2n + 1

(
(n + m − 1)(n + m)Hm−1

n−1,m

− (n − m + 1)(n − m + 2)Hm−1
n+1,m

)
for odd m + n. In other words, once the elements Hm−1

n,n′ are
constructed, one can find the elements Hm

n,n′ . As a conse-
quence, if one knows the elements H0

n,0 and H0
n,1, one can first

construct all the elements H0
n,n′ by using recurrence relations

(B19), and then progressively get the elements Hm
n,n′ . We stress

that this procedure does not depend on the function f , which
determines only the initialization step, i.e., the elements H0

n,0

and H0
n,1.

For the integrals F̄ m
n,n′ (z) from Eq. (44), one has f (y) =

(z2 + y)−1/2, for which we have

F̄ 0
0,0(z) = ln

(√
z2 + 1 + 1√
z2 + 1 − 1

)
, (B20a)

F̄ 0
1,1(z) =

√
z2 + 1 − z2

2
ln

(√
z2 + 1 + 1√
z2 + 1 − 1

)
. (B20b)

Using the recurrence relations

Pn(x) = 2n − 1

n
xPn−1(x) − n − 1

n
Pn−2(x) (B21)

for Legendre polynomials Pn(x) and integrating by parts, one
gets two sets of relations

F̄ 0
n+1,0(z) = 2n + 1

n + 1
F̄ 0

n,1(z) − n

n + 1
F̄ 0

n−1,0(z), (B22a)

F̄ 0
n+1,1(z) = −n − 1

n + 2
F̄ 0

n−1,1(z) − 2n + 1

n + 2
z2F̄ 0

n,0(z). (B22b)

These relations determine all F̄ 0
n,0(z) and F̄ 0

n,1(z), from which
one can construct recursively all F̄ m

n,n′ (z), as described above.
According to Eq. (45), this construction can also be applied to
get the elements F m

n,n′ (z).
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For the integrals Ḡm
n,n′ (z) from Eq. (B15), one has f (y) =

(z2 + y)1/2, for which we have

Ḡ0
0,0(z) =

√
z2 + 1 + z2

2
ln

(√
z2 + 1 + 1√
z2 + 1 − 1

)
, (B23a)

Ḡ0
1,1(z) = (z2 + 2)

√
z2 + 1

4
− z4

8
ln

(√
z2 + 1 + 1√
z2 + 1 − 1

)
.

(B23b)

Using the recurrence relations and integrating by parts, one
retrieves Eq. (B22a), which is completed by

Ḡ0
n+1,1(z) = −n − 3

n + 4
Ḡ0

n−1,1(z) − 2n + 1

n + 4
z2Ḡ0

n,0(z). (B24)

These relations determine all Ḡ0
n,0(z) and Ḡ0

n,1(z), from which
one can construct recursively all Ḡm

n,n′ (z), as described above.
In the limit of a disk (z = sinh α0 → 0), one gets Ḡ0

0,0(0) =
1 and Ḡ0

1,1(0) = 1/2, from which all other elements Ḡm
n,n′ (0)

can be recursively constructed.

4. Orthogonality of eigenfunctions

Let us check that the eigenfunctions vk obtained from the
eigenvectors Vk of the matrix M are orthogonal to each other.
For oblate spheroids, we have

(vk1 , vk2 )L2(∂�) =
∫ π/2

−π/2
dθ

∫ 2π

0
dφ hθ hφ v∗

k1
vk2

= a2
E cosh α0

∑
m1,n1,m2,n2

[
V∗

k1

]
m1n1

[
Vk2

]
m2n2

× Ḡm1n1,m2n2 (sinh α0)

= a2
E cosh α0

1

μk1

∑
m2,n2

[
V∗

k1

]
m2n2

cm2n2

[
Vk2

]
m2n2

,

(B25)

where we used Eqs. (B13) and (B16), and Ḡm1n1,m2n2 (sinh α0)
are given by Eq. (B14). It remains to show that the above sum
vanishes when μk1 �= μk2 .

For this purpose, we rewrite Eq. (42) in a matrix form as
M = Fc, where F is the symmetric matrix with elements

F̄mn,m′n′ (sinh α0) = 2πδm,m′amnam′n′ F̄ m
n,n′ (sinh α0), (B26)

and c is the diagonal matrix formed by cmn. On the one hand,
one can transpose the relation MVk1 = μk1 Vk1 and multiply it
by cVk2 on the right to get

V†
k1

cFcVk2 = μk1 V†
k1

cVk2 .

On the other hand, multiplication of the relation MVk2 =
μk2 Vk2 by V†

k1
c on the left yields

V†
k1

cFcVk2 = μk2 V†
k1

cVk2 .

Subtracting these equations, one gets(
μk1 − μk2

)
V†

k1
cVk2 = 0,

which implies the orthogonality for any μk1 �= μk2 :

V†
k1

cVk2 =
∑
m,n

[
V∗

k1

]
mncmn

[
Vk2

]
mn = 0, (B27)

and thus the orthogonality of the eigenfunctions vk1 and vk2

due to Eq. (B25).
Since the matrix M is not symmetric, its eigenvectors Vk

are not orthogonal to each other; in fact, their orthogonality
relation (B27) includes the weighting coefficients cmn. For this
reason, it is more convenient to consider rescaled eigenvectors
Ṽk = c

1
2 Vk , which are the eigenvectors of the Hermitian ma-

trix

M̃ = c
1
2 Mc− 1

2 = c
1
2 Fc

1
2 . (B28)

In fact, one has M̃Ṽk = μkṼk , with the same eigenvalue μk .
The rescaled eigenvectors Ṽk are orthogonal to each.

Note that Eq. (B25) allows one to compute the L2(∂�)-
norm of each eigenfunction directly from the corresponding
eigenvector:

‖vk‖2
L2(∂�) =

∫ π/2

−π/2
dθ

∫ 2π

0
dφ hθ hφ |vk|2

= a2
E cosh α0

1

μk

∑
m,n

[V∗
k ]mncmn[Vk]mn

= a2
E cosh α0

V†
kcVk

μk
= a2

E cosh α0
Ṽ†

kṼk

μk
. (B29)

This straightforward computation helps to avoid numerical in-
tegration over θ . A similar computation for prolate spheroids
yields

‖vk‖2
L2(∂�) = a2

E sinh α0
V†

kcVk

μk
= a2

E sinh α0
Ṽ†

kṼk

μk
. (B30)

In the same vein, one can compute the projection of an
eigenfunction vk onto a constant. For oblate spheroids, one
gets

(1, vk )L2(∂�) =
∫ π/2

−π/2
dθ

∫ 2π

0
dφ hθ hφ vk

= a2
E cosh α0

∑
m,n

[Vk]mnḠmn,00(sinh α0)
√

4π

=
√

4π a2
E cosh α0

c00

μk
[Vk]00, (B31)

where we used that Ȳ00 = a00 = 1/
√

4π . For instance, for the
exterior problem, substitution of c00 from Eq. (43) yields

(1, vk )L2(∂�) =
√

4πaE

iQ0(i sinh α0)

[Vk]00

μk
. (B32)

For prolate spheroids, a similar computation gives

(1, vk )L2(∂�) =
√

4π a2
E sinh α0

c00

μk
[Vk]00. (B33)

For instance, for the exterior problem, substitution of c00 from
Eq. (12) yields

(1, vk )L2(∂�) =
√

4π aE

Q0(cosh α0)

[Vk]00

μk
. (B34)
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5. Axisymmetric setting

In many applications, it is sufficient to look at axisym-
metric eigenfunctions, which do not depend on the angle φ

and thus correspond to m = 0. These eigenfunctions can be
constructed by diagonalizing the matrix M0, for which the
computation can be further simplified. We briefly discuss this
case below for prolate and oblate spheroids.

a. Prolate spheroids

In this case, Eq. (10) is reduced to

f (θ ) =
∞∑

n=0

fn ψn(θ ), (B35)

where

ψn(θ ) =
√

n + 1/2 Pn(cos θ ) (B36)

are normalized Legendre polynomials. The action of M reads
then

[M f ](θ ) =
∞∑

n=0

[M0 f ]nψn(θ ), (B37)

where the (infinite-dimensional) matrix M0 represents the op-
erator M on the orthonormal basis of Legendre polynomials,
with

[M0]n,n′ = M0n,0n′

=
√

(n + 1/2)(n′ + 1/2) c0n′ F 0
n,n′ (cosh α0), (B38)

where

c0n = − sinh α0 Q′
n(cosh α0)

aE Qn(cosh α0)
, (B39)

and

F 0
n,n′ (z) =

∫ 1

−1
dx

Pn(x)Pn′ (x)√
z2 − x2

. (B40)

By symmetry, the elements F 0
n,n′ (z) are zero when n + n′ is

odd. Once the eigenvectors V0n of the matrix M0 are found,

the eigenfunction v0n and the Steklov eigenfunction V0n are
given by

v0n(θ ) =
∞∑

n′=0

[V0n]0n′ψn′ (θ ) (B41)

and

V0n(α, θ ) =
∞∑

n′=0

Qn′ (cosh α)

Qn′ (cosh α0)
[V0n]0n′ψn′ (θ ). (B42)

b. Oblate spheroids

In the same vein, one employs the normalized Legendre
polynomials

ψn(θ ) =
√

n + 1/2 Pn(sin θ ) (B43)

to get the matrix representation of M:

[M0]0n,0n′ =
√

(n + 1/2)(n′ + 1/2) c0n′ iF 0
n,n′ (i sinh α0),

(B44)
where

c0n = cosh α0Q′
n(i sinh α0)

iaE Qn(i sinh α0)
. (B45)

c. Disk

In the limit a = 0, the coefficients c0n from Eq. (B45)
approach constants; in fact, using

Q2n(0) = (−1)n (2n)!

4n (n!)2

π

2i
, (B46)

Q2n−1(0) = (−1)n 22n−1(n!)2

n(2n)!
, (B47)

and the recurrence relation (B6) to evaluate Q′
n(0) =

nQn−1(0), we deduce Eq. (51). Note that these coefficients can
be found iteratively as

c0n = c0(n−2)

(1 − 1/n)2
. (B48)

One has c0n � n as n increases.
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