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Variational solution to the lattice Boltzmann method for Couette flow

Joseph T. Johnson ,1 Mahyar Madadi ,2 Daniel R. Ladiges ,3 Yong Shi ,4 Barry D. Hughes ,1 and John E. Sader 5,*

1School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
2Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia

3Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China

5Graduate Aerospace Laboratories and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA

(Received 4 October 2023; accepted 16 April 2024; published 29 May 2024)

Literature studies of the lattice Boltzmann method (LBM) demonstrate hydrodynamics beyond the continuum
limit. This includes exact analytical solutions to the LBM, for the bulk velocity and shear stress of Couette flow
under diffuse reflection at the walls through the solution of equivalent moment equations. We prove that the
bulk velocity and shear stress of Couette flow with Maxwell-type boundary conditions at the walls, as specified
by two-dimensional isothermal lattice Boltzmann models, are inherently linear in Mach number. Our finding
enables a systematic variational approach to be formulated that exhibits superior computational efficiency than
the previously reported moment method. Specifically, the number of partial differential equations (PDEs) in the
variational method grows linearly with quadrature order while the number of moment method PDEs grows
quadratically. The variational method directly yields a system of linear PDEs that provide exact analytical
solutions to the LBM bulk velocity field and shear stress for Couette flow with Maxwell-type boundary
conditions. It is anticipated that this variational approach will find utility in calculating analytical solutions for
novel lattice Boltzmann quadrature schemes and other flows.
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I. INTRODUCTION

Optimizing the operation of micro- and nanoscale devices
under ambient conditions has inspired recent investigations in
rarefied gas dynamics [1,2]. The theoretical framework used
in many of these studies is based on the Boltzmann equa-
tion [3–5], which is an evolution equation for the (statistical)
distribution function of molecular gas velocities. Frequently,
the Bhatnagar-Gross-Krook (BGK) model [6] is used for the
collision term in the Boltzmann equation, as we do here.

For steady flow, the regime of gas flow is embodied in the
Knudsen number,

Kn ≡ l

L
, (1)

which is the ratio of the mean free path of the gas, l , to the
bulk length scale of the flow, L. The mean free path, l , is in
turn related to the mean collision-free time of the gas, τ , by

l = csτ, (2)

where cs is the speed of sound. The motion of macroscale
devices generates continuum flows that are typically modeled
by the Navier-Stokes equations, which are valid where the
Knudsen number is small, i.e., Kn � 1. However, micro- and
nanoscale devices generate rarefied flows (Kn �→ 0), neces-
sitating the use of alternate theories, such as the Boltzmann
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equation, that can accommodate arbitrary degrees of rarefac-
tion. Another relevant parameter to these flows is the Mach
number, Ma, which is the ratio of the device speed, U0, to
the speed of sound, cs. The operation of small-scale devices
perturbs the distribution function of the surrounding gases
from thermodynamic equilibrium, generating slow flows for
which [7]

Ma ≡ U0

cs
� 1,

that may be modeled by the Boltzmann equation linearized
about this global equilibrium. Moment [8–10] and variational
[11] methods are analytical techniques that may be used to
study the Boltzmann equation, with the variational method
requiring that the Boltzmann equation is linearized.

Grad’s moment methods are derived either from (i) a
Hermite-polynomial expansion of the distribution function
in the vicinity of a local thermodynamic equilibrium, e.g.,
Grad’s 13-moment theory [8] [[9], Section 28], or (ii) a global
equilibrium with application to the (low Mach number) lin-
earized Boltzmann equation [[9], Section 30]. The coefficients
of both types of expansions are moments of the distribu-
tion function that represent the macroscopic quantities of the
gas, such as its density and bulk velocity. Partial differential
equations (PDEs) for these coefficients are derived by taking
moments of the Boltzmann equation. Solving this system of
PDEs provides an approximation of the distribution function
and its moments. Alternately, numerical methods may be
used to determine the distribution function and its moments
to a desired level of accuracy. These numerical methods are
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broadly characterized as either deterministic, such as the lat-
tice Boltzmann method (LBM) [12,13], or stochastic, like the
Monte Carlo method [14–16]. The standard LBM solves the
Boltzmann equation on a grid of spatial nodes where the dis-
placement between the nodes coincides with the elements of a
velocity-space lattice. Further developments have shown that
the spatial grids can be decoupled from these lattices [17,18].
These velocity-space lattices are selected based on achieving
an accurate quadrature evaluation of the macroscopic vari-
ables that are moments of the distribution function.

At thermodynamic equilibrium, the distribution function
for a monatomic ideal gas is a Gaussian function in parti-
cle velocity space. This suggests the use of Gauss-Hermite
[19,20] or half-space Gauss-Hermite quadrature [18] to cal-
culate the moments of the Gaussian function exactly up to
(2N − 1)th order, with at least N abscissas and weights. This
property of Gauss-Hermite quadrature prompted Cercignani’s
remark, “If we choose the velocities ξi to be located at the
zeroes of the Hermite polynomials Hk (ξ), and a related inter-
polation formula is used, then the method of discrete ordinates
is essentially equivalent to a moment method based on an
expansion ...about a fixed rather than a local Maxwellian”
[[3], p. 354]. The focus of the present work is the LBM.
Thus, all subsequent expansions of the distribution function
are performed about the (fixed) global equilibrium.

The equivalence between the LBM (a specific example
of a discrete-ordinates method) and a moment method was
derived explicitly by Shan and He [10]. Projecting a func-
tion onto the Hilbert space spanned by the N lowest-order
one-dimensional Hermite polynomials requires calculating
the moments of a Gaussian function up to order 2N .
This projection is performed exactly through Gauss-Hermite
quadrature by utilizing n = �(2N + 1)/2� = N + 1 abscissas
and weights. Shan and He [10] extended this equivalence
to the multidimensional case. For example, a distribution
function depending on two velocity-space coordinates, c =
(cx, cy), may be projected onto the space of tensor Hermite
polynomials up to order M = (Mx, My), i.e., up to order Mx in
cx and order My in cy, with at least (Mx + 1, My + 1) abscis-
sas and weights. This thereby proves that an (Mx, My)-order
moment method distribution function is equivalent to that
provided by the LBM on a D1Q(Mx + 1) × D1Q(My + 1)
velocity set; the latter uses (Mx + 1, My + 1)-order Gauss-
Hermite quadrature. This equivalence provides a means of
calculating analytical solutions to the LBM through the mo-
ment method. It also describes the error in the LBM as the
truncation error in a Hermite-polynomial expansion of the dis-
tribution function. Shan and He commented as follows: “This
error is negligible at small Mach numbers and can always
be made smaller by using a quadrature of a higher degree”
[[10], p. 68]. The present study develops this point, for two-
dimensional isothermal discrete-velocity lattice Boltzmann
models, in the case of steady Couette flow. Specifically, we
show that the bulk velocity and shear stress are inherently
linear in Mach number, deriving a novel equivalence between
the nonlinear LBM and linearized solutions to steady Couette
flow.

Ansumali et al. [21] applied diffuse boundary conditions
to a moment method solution of the Boltzmann-BGK equa-
tion. In contrast to Grad’s 13-moment theory that expands

the distribution function about a local equilibrium, Ansumali
et al. [21] expanded the distribution function about the global
equilibrium. In doing so, they determined exact analytical
solutions to the nonlinear isothermal lattice Boltzmann hi-
erarchy. These exact solutions were demonstrated for steady
Couette flow on (i) the D2Q9 = D1Q3 × D1Q3 lattice (as is
further elaborated on by Yudistiawan et al. [22]) and (ii) the
D2Q16 lattice by solving systems of 9 and 16 coupled non-
linear PDEs, respectively [23]. The present study first reports
the moment method approach of Ansumali et al. [21], using
the Hermite-polynomial basis detailed by Grad [8,9] and Shan
and He [10]. We invoke Maxwell-type boundary conditions
for this solution, generalizing the diffuse boundary condition
at the solid walls (reported in Ref. [21]) to incorporate specu-
lar boundary interactions with an accommodation coefficient.

Our work reveals that the bulk velocity and shear stress
are part of a subset of moments of the distribution function,
whose moment equations and boundary conditions linearly
decouple from the other moments. This enables the calcula-
tion of these linearized quantities with only two quadrature
points parallel to the bounding walls of the flow or, equiv-
alently, a first-order expansion of the distribution function
in the particle velocity parallel to the walls. Consequently,
the bulk velocity and shear stress for the D1Q(Mx + 1) ×
D1Q(My + 1) lattice Boltzmann model can be determined
exactly from My + 1 linear PDEs—instead of (Mx + 1)(My +
1) nonlinear PDEs derived through the moment method of
Ansumali et al. [21]. Because the bulk velocity and shear
stress moments are linear in Mach number, their governing
equations—consisting of My + 1 linear PDEs and associated
boundary conditions—are shown to be most efficiently de-
rived from a variational solution to the linearized Boltzmann-
BGK equation. To illustrate this efficiency improvement,
consider the (commonly used) symmetric D1Q(M + 1) ×
D1Q(M + 1) = D2Q(M + 1)2 lattice Boltzmann model, e.g.,
D2Q9 or D2Q16. The number of linear PDEs for the bulk
velocity and shear stress that arise from the variational method
grows linearly with quadrature order, M + 1. In contrast, eval-
uation of these same transport variables using the nonlinear
moment equations grows quadratically with M, i.e., (M + 1)2.
This can represent a dramatic improvement in efficiency.

The variational principle generally establishes an equiva-
lence between the kernel of a self-adjoint linear operator and
the stationary points of a functional. Despite the linearized
Boltzmann-BGK operator not being self-adjoint, Cercignani
[11,24] was able to formulate a variational principle for solu-
tions to the linearized Boltzmann-BGK equation by shifting
the standard functional using a carefully chosen boundary
product. Cercignani demonstrated the utility of the variational
method by calculating the velocity slip in Couette flow from
two judiciously selected trial distributions [11]. Subsequently,
the variational method has been used to calculate (i) plane
Poiseuille flow subject to Maxwell-type boundary conditions
with different accommodation coefficients [25], (ii) combined
Couette-Poiseuille flow [26], and (iii) higher-order velocity
slip coefficients [27,28]. In each case, the distribution function
was represented by a carefully chosen trial solution based
on known asymptotic results or properties of the flow. This
method was generalized to unsteady oscillatory rarefied flows
by Ladiges and Sader [29]—by expressing the distribution
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function as a (normal) polynomial expansion of particle ve-
locity space—to solve oscillatory Couette flow and Stokes’s
second problem. The parameters of this representation of the
distribution function were then derived using the calculus of
variations [11].

The present study uses a general Hermite-polynomial
expansion of the distribution function about the global equi-
librium to formulate a systematic variational approach for
the LBM. It thereby enables direct access to the required
moments of the flow. This variational approach also presents
a substantial improvement in computational efficiency over
the moment method described above. Specifically, it directly
produces the required My + 1 linear PDEs and associated
boundary conditions for steady Couette flow with Maxwell-
type boundary conditions at the solid walls. This system of
equations is solved to give exact analytical solutions for the
LBM bulk velocity and shear stress together with other asso-
ciated transport variables.

This study is organized as follows. Section II reports the
steady Boltzmann-BGK equation and associated Maxwell-
type boundary conditions. Section II A gives the correspond-
ing system of equations for steady Couette flow that arise from
the two-dimensional isothermal lattice Boltzmann model,
which is the foundation of this study. In Sec. III, a moment
method that makes use of a Hermite-polynomial expansion
of the distribution function is formulated for Maxwell-type
boundary conditions at the walls, generalizing the diffuse
reflection formulation of Ref. [21] that used normal polyno-
mials. The proposed variational approach is then reported in
Sec. IV. Specifically, the linearized Boltzmann-BGK equa-
tion for steady Couette flow is presented in Sec. IV A,
which forms the basis for the variational approach detailed
in Sec. IV B. Section V applies the governing equations for
the bulk velocity and shear stress—most efficiently gener-
ated by the variational approach (and identical to those of
the moment method)—to derive exact analytical solutions
to the D2Q9 lattice Boltzmann model for steady Couette
flow under Maxwell-type boundary conditions. A summary
of our findings is given in Sec. VI. Some mathematical details
are relegated to Appendix A and the Supplemental Material
[30], with the exact analytical solution to the D2Q16 lattice
Boltzmann model for Couette flow given in Sec. S7 of the
Supplemental Material [30]. A Mathematica notebook is also
provided to facilitate implementation of the D2Q9 and D2Q16
exact analytical solutions for Couette flow.

II. BOLTZMANN-BGK EQUATION

The steady Boltzmann-BGK equation describes the evolu-
tion of the distribution function, f (x, c), for a gas in space,
x ∈ � ⊂ R3, with particle velocity, c ∈ R3,

c · ∂ f

∂x
= f eq − f

τ
, (3)

where the mean collision-free time for each particle is τ [as
given in Eq. (2)], and the local equilibrium distribution func-
tion is

f eq = ρ

(
m

2πkBT

) 3
2

exp

(
−m|c − U |2

2kBT

)
. (4)

Here m, ρ, U , and T are the particle mass, gas density, bulk ve-
locity, and temperature, respectively, while kB is Boltzmann’s
constant. Requiring the BGK collision model [6] to conserve
mass, momentum and energy,⎡⎣0

0
0

⎤⎦ =
∫
R3

⎡⎣ m
mc

m|c|2

⎤⎦( f eq − f ) dc, (5)

and substituting Eq. (4) into Eq. (5), leads to definitions for
the density, bulk velocity, and temperature as moments of the
distribution function:⎡⎣ ρ

ρU
3ρkBT/m

⎤⎦ =
∫
R3

⎡⎣ 1
c

|c − U |2

⎤⎦ f dc, (6)

where these and all subsequent velocity space integrals are in
Cartesian coordinates. The definition of ρU in Eq. (6) shows
that this quantity is the gas particle flux. The momentum flux
(pressure tensor), P, defined by

P =
∫
R3

c c f dc,

can be partitioned into a macroscopic momentum flux, ρUU ,
and a momentum flux due to thermal motion:

P =
∫
R3

([c − U ] + U )([c − U ] + U ) f dc

= ρUU +
∫
R3

(c − U )(c − U ) f dc.

That is, P = ρUU + P, where the thermal momentum flux
(the stress tensor) is given by

P =
∫
R3

(c − U )(c − U ) f dc. (7)

The equation of state for this BGK gas is therefore

Tr(P) = 3ρkBT

m
, (8)

where Tr refers to the trace. The boundary of the spatial
region, x ∈ �, occupied by the gas is denoted by ∂�. We
also denote by n the unit vector normal to this boundary,
directed to the interior of �. The velocity of the boundary is
denoted by U ∂�. At each point, x ∈ ∂�, the boundary temper-
ature, T∂�, is taken to be prescribed. We impose Maxwell-type
boundary conditions [31] on ∂�, i.e., we allow a prescribed
fraction of particles colliding with the boundary to be re-
leased diffusely, with the remainder reflected specularly, by
use of the accommodation coefficient, α ∈ [0, 1]. There is
specular reflection only if α = 0, while α = 1 corresponds
to purely diffuse release. For x ∈ ∂� and (c − U ∂�) · n > 0,
we have

f (x, c) = (1 − α) f (x, c − 2n(c − U ∂�) · n)

+ αρ∂�(x) f eq
BC(c), (9)
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FIG. 1. Steady Couette flow between shearing parallel walls of
infinite extent, held at the same temperature, T0, and separated by a
distance, L.

where

f eq
BC(c) =

(
m

2πkBT∂�

) 3
2

exp

(
−m|c − U ∂�|2

2kBT∂�

)
, (10)

and ρ∂�(x) is the boundary density, which can be expressed
in terms of integrals over the half space, (c − U ∂�) · n < 0.
This is achieved by integrating the boundary condition in
Eq. (9), over the region of velocity space in which it holds,
using c − 2n(c − U ∂�) · n as the integration variable in the
integral involving f on the right-hand side, and exploiting the

conservation of mass condition,∫
R3

(c − U ∂�) · n f (x, c)dc = 0 if x ∈ ∂�. (11)

This leads to

ρ∂�(x) =
∫

(c−U ∂� )·n<0 (c − U ∂�) · n f dc∫
(c−U ∂� )·n<0 (c − U ∂�) · n f eq

BC dc
. (12)

A. Steady Couette flow

This study focuses on Couette flow driven by steadily
shearing parallel walls of separation, L; see Fig. 1. The veloci-
ties of the bottom and top walls are U1 x̂ and U2 x̂, respectively,
so that the bulk velocity of the gas is

U ∂�(y) = U∂�(y) x̂, (13)

where

U∂�(y) =
{

U2, y = L
2 ,

U1, y = − L
2 .

The temperature boundary condition at the walls is

T∂� = T0.

The Boltzmann-BGK equation in Eq. (3) and its boundary
conditions are translationally invariant with respect to the
Cartesian coordinates, x and z. We enforce the condition that
the bulk flow is spatially invariant in the x direction. There-
fore, the time-invariant distribution function is independent of
the spatial positions, x and z, and is denoted by f (y, cx, cy, cz );
the subscripts, x, y, z, henceforth refer to the Cartesian compo-
nents of the tensor quantity. The corresponding Maxwell-type
boundary conditions are

f

(
±L

2
, cx, cy ≶ 0, cz

)
= (1 − α) f

(
±L

2
, cx,−cy, cz

)
+ αρ∂�

(
±L

2

)(
m

2πkBT0

) 3
2

× exp

(
− m

2kBT0

{[
cx − U∂�

(
±L

2

)]2
+ c2

y + c2
z

})
, (14)

where for the upper wall, y = L/2, we require that cy < 0; for the lower wall, y = −L/2, we require that cy > 0. The gas
densities on the walls, y = ±L/2, are given by

ρ∂�

(
±L

2

)
=
(

2πkBT0

m

) 3
2

∫
c.̂y≷0 cy f

(± L
2 , cx, cy, cz

)
dc∫

c.̂y≷0 cy exp
(− m

2kBT0

{[
cx − U∂�

(± L
2

)]2 + c2
y + c2

z

})
dc

. (15)

In Eqs. (14) and (15), and also below for brevity, we provide
boundary conditions for both walls as a single equation. In
the domains of integration, the upper inequality is taken when
y = L/2, whereas the lower inequality is for y = −L/2. The
variables and parameters of this system are scaled using the
mean collision-free time, τ , speed of sound,

cs =
√

kBT0

m
,

and the equilibrium gas density, ρ0, i.e., in the absence of the
walls, and the Knudsen number, Kn. We therefore define the

following (dashed) dimensionless variables:

f = ρ0c−3
s f ′, f eq = ρ0c−3

s f eq′
, ρ = ρ0ρ

′,

U = csu, U∂� = csu∂�,

T = T0T ′, x = Lx′, P = ρ0c2
s P′, P = ρ0c2

sP
′,

ρ∂� = ρ0ρ
′
∂�, c = csc′

U2 = csu2, U1 = csu1.

Substituting the dimensionless quantities into the steady
Boltzmann-BGK equation, Eq. (3), and omitting the “ ′ ”
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notation for brevity, gives the dimensionless Boltzmann-BGK
equation,

c · ∂ f

∂x
= 1

Kn
( f eq − f ), (16)

where the dimensionless local equilibrium is

f eq(c) = ρ

(2π )
3
2

exp

(
−|c − u|2

2T

)
, (17)

and the dimensionless moments of the distribution function
are ⎡⎢⎢⎢⎢⎣

ρ

ρu
3ρT

P
P

⎤⎥⎥⎥⎥⎦ =
∫
R3

⎡⎢⎢⎢⎢⎣
1
c

|c − u|2
c c

(c − u)(c − u)

⎤⎥⎥⎥⎥⎦ f dc.

The dimensionless Maxwell-type boundary conditions on the
walls, y = ±1/2 (for cy ≶ 0 when y = ±1/2), are

f

(
±1

2
, cx, cy, cz

)
= (1 − α) f

(
±1

2
, cx,−cy, cz

)
+ α

ρ∂�

(± 1
2

)
(2π )

3
2

× exp

⎛⎝− [cx − u∂�

(± 1
2

)]2 + c2
y + c2

z

2

⎞⎠,

(18)

where

ρ∂�

(
±1

2

)
=

(2π )
3
2
∫

c·̂y≷0 cy f
(± 1

2 , cx, cy, cz
)
dc∫

c·̂y≷0 cy exp
(− [cx−u∂�(± 1

2 )]2+c2
y+c2

z

2

)
dc

. (19)

The integral in the denominator of Eq. (19) could be evaluated
exactly at this point. However, LBM evaluates the integrals in
Eq. (19) using quadrature [21]. To replicate the LBM solution
via the moment method in Sec. III, we refrain from evaluating
the integral in the denominator here. We exhibit the relevant
quadrature approximation of Eq. (19) in Eq. (S1.18) of the
Supplemental Material [30] and use the exact evaluation of its
denominator in Sec. IV A.

We consider the lattice Boltzmann model particle velocities
to be confined to the xy plane and enforce isothermal flow in
this lattice Boltzmann model, i.e., T = 1 [21]. This enables
f to be expressed as the (isothermal) reduced distribution
function,

f̃ (y, cx, cy) ≡
√

2π exp

(
c2

z

2

)
f (y, cx, cy, cz ), (20)

whose Boltzmann-BGK equation follows directly from
Eq. (16),

cy
∂ f̃

∂y
= 1

Kn
( f̃ eq − f̃ ). (21)

Here the local equilibrium is

f̃ eq = ρ

2π
exp

(
− (cx − u)2 + (cy − v)2

2

)
, (22)

and⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu
ρv

Pxx

Pxy

Pxy

Pyy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
∫ ∞

−∞

∫ ∞

−∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cx

cy

c2
x

cxcy

(cx − u)(cy − v)
c2

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f̃ dcxdcy. (23)

The dimensionless energy flux, Q, in the resulting two-
dimensional system is[

Qx

Qy

]
=
∫ ∞

−∞

∫ ∞

−∞

(
c2

x + c2
y

)[cx

cy

]
f̃ dcxdcy. (24)

The reduced distribution function, f̃ , is subject to the bound-
ary conditions,

f̃
(± 1

2 , cx, cy
) = (1 − α) f̃

(± 1
2 , cx,−cy

)
+ αρ∂�

(± 1
2

)
f̃ eq
BC

(± 1
2 , cx, cy

)
, (25)

for cy ≶ 0 when y = ±1/2, and

f̃ eq
BC

(
±1

2
, cx, cy

)
= 1

2π
exp

⎛⎝−
[
cx − u∂�

(± 1
2

)]2 + c2
y

2

⎞⎠,

(26a)

ρ∂�

(
±1

2

)
=
∫

c·̂y≷0 cy f̃
(± 1

2 , cx, cy
)
dcxdcy∫

c·̂y≷0 cy f̃ eq
BC

(± 1
2 , cx, cy

)
dcxdcy

.

(26b)

III. THE MOMENT METHOD SOLUTION

The moment method approach of Ansumali et al. [21]
is now used to derive PDEs and BCs for Couette flow un-
der Maxwell-type boundary conditions with arbitrary gas
accomodation at the solid walls [32]. These PDEs and BCs
extend the results of Ref. [21], that only considered pure
diffuse reflection at the walls, and will be used to benchmark
the proposed variational solution. We note that the moment
method of Ansumali et al. [21] involves an expansion of the
distribution function in normal polynomials about the global
equilibrium. This differs from Grad’s 13-moment theory [8]
[[9], Section 28] which employs a Hermite-polynomial expan-
sion about a local equilibrium; see above.

The (isothermal) reduced distribution function, f̃ , in
Eq. (20) is approximated by projecting it onto a subspace of
velocity space spanned by Hermite polynomials, Hmx,my [33],
of dimension, M = (Mx, My),

f̃ ≈ w2D

Mx∑
mx=0

My∑
my=0

amx,myHmx,my , (27)

where the global equilibrium is

w2D(cx, cy) = 1

2π
exp

(
− c2

x + c2
y

2

)
.

The Hermite polynomials used here are defined in Sec. S1
of the Supplemental Material [30]. The position-dependent
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coefficients, amx,my (y), are given by

amx,my = mx! my!
∫ ∞

−∞

∫ ∞

−∞
f̃ Hmx,my dcxdcy, (28)

which are moments of the velocity distribution function, in-
cluding the mass flux (bulk velocity field) parallel to the walls,
a1,0 = ρu, and the shear stress distribution, a1,1 = Pxy. Multi-
plying both sides of the Boltzmann-BGK equation in Eq. (21)
by Hmx,my , using the Hermite-polynomial recursion relation,
and integrating over cx and cy, produces the PDEs:

∂amx,1

∂y
= 1

Kn

(
amx

1,0

amx−1
0,0

− amx,0

)
, (29a)

my
∂amx,my−1

∂y
+ ∂amx,my+1

∂y
= 1

Kn

(
amx

1,0a
my

0,1

a
mx+my−1
0,0

− amx,my

)
,

(29b)

My
∂amx,My−1

∂y
= 1

Kn

(
amx

1,0a
My

0,1

a
mx+My−1
0,0

− amx,My

)
,

(29c)

where mx = 0, 1, . . . , Mx and my = 1, . . . , My − 1, on ap-
plication of the orthogonality relation between Hermite
polynomials. We note that the system of moment equations in
Eq. (29) is closed due to the use of a truncated expansion in
Hermite polynomials [34]; see Eq. (27). This is equivalent to
the use of a discrete-velocity set as highlighted by Shan and
He [10].

These equations represent a coupled system of (Mx +
1)(My + 1) nonlinear PDEs that needs to be solved, to eval-
uate the macroscopic quantities and the reduced distribution
function for steady Couette flow. Note that Eq. (29a) is inde-
pendent of my, a property which is used to determine the total
number of coupled PDEs.

The system of PDEs in Eq. (29) may be simplified—as per-
formed by Ansumali et al. [21] for diffuse reflection only—but
the process is protracted. It is clear from Eq. (29) that all
moments, amx,my , with the same value of mx are coupled,
(mx, )–moments. It follows that each such set of moments
is coupled to (i) the (1,)–moments, through a1,0, and (ii)
the (0,)–moments, through a0,0 and a0,1, that appear in the
right-hand side of Eq. (29). The (0,)–moments are solved
with considerable effort and are reported in Secs. S1, S4, and
S5 of the Supplemental Material [30]. This leaves the (1,)–
moments to be evaluated to determine the remaining moments
and the reduced distribution function. The (1,)–moments de-
fine the primary transport variables for steady Couette flow
in the continuum limit, including the bulk velocity and shear
stress. Its associated velocity slip coefficient is calculated
from the bulk velocity field parallel to the walls [11,27–29].

Fortunately, the PDEs and boundary conditions that deter-
mine the (1,)–moments, a1,my , are linear and decouple from
the other moments; see Sec. S1 of the Supplemental Material
[30]. This allows the (1,)–moments to be more efficiently
calculated from a smaller system of linear equations than the
moment PDEs in Eq. (29). Deducing this smaller set of linear
PDEs and boundary conditions from Eq. (29)—by solving the

(0,)–moments—is elaborate (see Secs. S1, S4, and S5 of the
Supplemental Material [30]) and gives

∂a1,1

∂y
= 0, (30a)

my
∂a1,my−1

∂y
+ ∂a1,my+1

∂y
= −a1,my

Kn
, (30b)

My
∂a1,My−1

∂y
= −a1,My

Kn
, (30c)

where my = 1, . . . , My − 1, i.e., My + 1 coupled linear PDEs.
A reduced distribution function that is correct up to order

(Mx, My) in (cx, cy), as shown in Eq. (27), is equivalent to a
Gauss-Hermite quadrature approximation of the reduced dis-
tribution function on a lattice of (Mx + 1, My + 1) abscissas,
ci, and weights, ωi, [10]

ci = cix,iy = (cx,ix , cy,iy ),

ωi = ωix,iy = wix wiy ,

where ix ∈ [0, Mx] and iy ∈ [0, My]. On this lattice, the bound-
ary conditions for the (1,)–moments are

My∑
my=0

a1,my

(± 1
2

)
my!

Hmy (cy,iy )

= αu∂�

(
±1

2

)
+(1 − α)

My∑
my=0

(−1)my a1,my

(± 1
2

)
my!

Hmy (cy,iy ),

(31)

for cy,iy ≶ 0.
The PDEs in Eq. (30) and boundary conditions in Eq. (31)

only depend on the (1,)–moments. They are also linear in the
boundary velocities, u∂�(± 1

2 ) = u2,1, and the (1,)–moments
themselves. This suggests that the (1,)–moments may be iden-
tically derived from the linearized Boltzmann-BGK equation,
which we prove in Sec. IV A. Only after the (1,)–moments
have been calculated can the remaining moments and reduced
distribution function in Eq. (27) be determined from Eq. (29).

In summary, use of the moment method requires the solu-
tion to the (Mx + 1)(My + 1) coupled nonlinear PDEs defined
in Eq. (29). After considerable effort, a simplified set of My +
1 coupled linear PDEs is generated in Eq. (30), with associ-
ated boundary conditions in Eq. (31). The next section details
a more efficient means of arriving at this simplified set of
linear PDEs and its associated boundary conditions, by us-
ing a variational approach for the linearized Boltzmann-BGK
equation. This variational approach thus presents a substantial
improvement in computational efficiency, by eliminating the
need to solve the initial (Mx + 1)(My + 1) coupled nonlinear
PDEs.

IV. A VARIATIONAL SOLUTION FOR
LOW-MACH-NUMBER COUETTE FLOW

We first review the linearized Boltzmann-BGK equa-
tion subject to Maxwell-type boundary conditions [[5],
Section 1.11], which forms the basis for the proposed vari-
ational approach.
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A. Linearized Boltzmann-BGK equation for low-Mach-number
Couette flow

For two parallel walls moving with dimensionless veloci-
ties, u1 and u2, in their planes at low Mach number, i.e.,

|u1|, |u2| � 1,

the distribution function, f , of the gas is perturbed slightly
from global thermodynamic equilibrium, giving

f (y, c) = w3D(c)[1 + 	(y, c) + o(	)], (32)

with

w3D(c) = 1

(2π )
3
2

exp

(
−c2

x + c2
y + c2

z

2

)
,

where |	| � 1 is of order the Mach number. The macroscopic
quantities may also be expanded about their values at thermo-
dynamic equilibrium:⎡⎢⎢⎣

ρ

u
T
P

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
0
1
I

⎤⎥⎥⎦+

⎡⎢⎢⎣
η

u
κ

p

⎤⎥⎥⎦+ o(	),

where I is the identity tensor, and⎡⎢⎢⎣
η

u
κ

p

⎤⎥⎥⎦ =
∫
R3

⎡⎢⎢⎣
1
c

1
3 |c|2 − 1

c c

⎤⎥⎥⎦w3D(c)	(y, c) dc. (33)

Similarly, expanding the Boltzmann-BGK equation in Eq. (3)
to linear order in Mach number gives

Kn cy
∂	

∂y
= η + c · u + κ

2
(|c|2 − 3) − 	, (34)

where we have retained the temperature dependence because
there is no isothermal constraint imposed in this Sec. IV A. As
we show below, the bulk velocity and stress are independent
of temperature to linear order in Mach number. The same
expansion of the boundary condition, Eq. (18), provides the
required boundary condition on 	:

	

(
±1

2
, cx, cy, cz

)
= (1 − α)	

(
±1

2
, cx,−cy, cz

)
+ αcxu∂�

(
±1

2

)
± α

√
2π

∫
cy≷0

cy	

(
±1

2
, cx, cy, cz

)
× w3D(c)dc, (35)

for cy ≶ 0. Equations (34) and (35) may be simplified to
evaluate the (1,)–moments, such as the bulk velocity parallel
to the walls and the shear stress, by considering the moment,

	̃(y, cy ) ≡
∫ ∞

−∞

∫ ∞

−∞
w̃2D(cx, cz )cx	(y, c)dcxdcz,

where

w̃2D(cx, cz ) = 1

2π
exp

(
− c2

x + c2
z

2

)
.

Taking this moment of Eq. (34) and using the orthogonality of
Hermite polynomials gives

Kn cy
∂

∂y
	̃ = u − 	̃, (36)

where [
u

pxy

]
=
∫ ∞

−∞

[
1
cy

]
	̃(y, cy) w1D(cy)dcy,

and

w1D(cy) = 1√
2π

exp

(
−c2

y

2

)
,

with the corresponding boundary conditions obtained by eval-
uating this same moment of Eq. (35),

	̃
(± 1

2 , cy
) = αu∂�

(± 1
2

)+ (1 − α)	̃
(± 1

2 ,−cy
)
, (37)

for cy ≶ 0.
Equations (32), (36), and (37) show that there is no cou-

pling of the bulk velocity and stress to the temperature
perturbation, κ , at linear order in Mach number; the shear
stress transfers heat into the gas at higher order in Mach num-
ber. Thus, the isothermal nonlinear bulk velocity and shear
stress obtained by the moment method in Sec. III (which
is equivalent to the nonlinear isothermal lattice Boltzmann
model employing a two-dimensional discrete-velocity set) are
identical to those that would obtained from the linearized
Boltzmann equation. This establishes that the bulk velocity
and shear stress for the nonlinear LBM are exactly recoverable
from the linearized Boltzmann equation.

The next section will show that a variational approach to
solving Eqs. (36) and (37) directly reproduces Eqs. (30) and
(31) for the (1,)–moments and thus exhibits superior effi-
ciency to the moment method.

B. Variational solution to the linearized
Boltzmann-BGK equation

Cercignani [11] describes a variational approach to solv-
ing the linearized Boltzmann-BGK equation, for an arbitrary
distribution function that is subject to kinetic boundary con-
ditions. This includes the Maxwell-type boundary conditions
used in this study.

We apply Cercignani’s variational approach to steady
Couette flow for a Hermite-polynomial expansion of the dis-
tribution function, subject to a quadrature approximation of
Maxwell-type boundary conditions. The (1,)–moment PDEs
in Eq. (30) and its boundary conditions in Eq. (31) are
derived directly from this variational formulation using the
Euler-Lagrange equations and natural boundary conditions,
respectively. This eliminates the need for detailed analysis of
the moment equations in Eq. (29), as was performed in the
Sec. III. As we shall show, this approach provides a dramatic
improvement in computational efficiency over the moment
method, while recovering precisely the same results.

Cercignani’s variational principle—Theorem 2 in Sec. S6
of the Supplemental Material [30]—establishes that solutions
to the linearized Boltzmann-BGK equation, Eq. (36), satisfy
the inhomogeneous boundary conditions in Eq. (37) if and
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only if they are stationary points of the functional,

J[	̃] = 〈	̃,L	̃〉V + JHS[	̃]. (38)

Here the linearized Boltzmann-BGK operator for steady Cou-
ette flow is defined by

L	̃ ≡ cy
∂	̃

∂y
− 1

Kn

{∫ ∞

−∞

[
w1D(cy) 	̃

]
dcy − 	̃

}
, (39)

which acts on the vector space of differentiable and integrable
functions, V , accompanied by the inner product defined by
Cercignani [[11], pp. 299–300] as

〈g1, g2〉V =
∫ 1

2

− 1
2

∫ ∞

−∞
w1D(cy)g1(y, cy)g2(y,−cy) dcy dy,

(40)

and the boundary product is

JHS[	̃] = 〈	̃, 	̃ − (1 − α)	̃(y,−cy ) − αu∂�(y)〉B.

The (1,)–moments are sought by expressing the dis-
tribution function, 	̃, as a full-space Hermite-polynomial
expansion,

	̃(y, cy) =
My∑

my=0

a1,my (y)

my!
Hmy (cy). (41)

A full-space solution cannot produce the velocity space
discontinuity induced by the diffuse component of
the Maxwell-type conditions in Eq. (37). This issue is
overcome by applying full-space Gauss-Hermite quadrature
to these boundary conditions, so that Eq. (37) holds at
Gauss-Hermite abscissa leaving the walls,

	̃(∓ 1/2, cy,iy ≷ 0) = (1 − α)	̃(∓1/2,−cy,iy )

+ αu∂�(∓1/2), (42)

for cy,iy ≷ 0. For a full-space solution to satisfy these bound-
ary conditions, this same quadrature must be applied to the
boundary product,

JFS[	̃] =
{ ∑

sgn(y)cy,iy >0

cy,iywiy	̃(y, cy,iy )

× [	̃(y,−cy,iy ) − (1 − α)	̃(y, cy,iy )

− 2αu∂�(y)]

}y= 1
2

y=− 1
2

, (43)

where

J[	̃] = 〈	̃,L	̃〉V + JFS[	̃], (44)

and the sgn(y) function is defined by

sgn(y) =
⎧⎨⎩1 y > 0,

0 y = 0,

−1 y < 0.

Quadrature need not be applied explicitly to the full-space
integrals in the functional, 〈	̃,L	̃〉V , because they comprise
full-space Gaussian moments that will be calculated exactly
through quadrature.

Substituting the Hermite-polynomial expansion of the dis-
tribution function in Eq. (41) into the functional in Eq. (44),
gives

J[	̃] =
∫ 1

2

− 1
2

L
(

a1,my ,
∂a1,my

∂y

)
dy + JFS[	̃],

where

L =
∫ ∞

−∞
w1D(cy)	̃(y, cy )L	̃(y,−cy )dcy. (45)

Defining a deviation of the moments,

â1,my = a1,my + εφ1,my ,

allows the first variation of J to be written as

δJ[	̃] = lim
ε→0+

∫ 1
2

− 1
2

d

dε
L
(̂

a1,my ,
∂ â1,my

∂y

)
dy + δJFS[	̃],

where

δJFS[	̃] = lim
ε→0+

d

dε
JFS[̂̃	],

and

̂̃	(y, cy) =
My∑

my=0

â1,my (y)

my!
Hmy (cy).

Application of the chain rule then gives

δJ[	̃] = lim
ε→0+

My∑
my=0

∫ 1
2

− 1
2

[
dâ1,my

dε

∂L
∂ â1,my

+ d

dε

(
∂ â1,my

∂y

)

× ∂L
∂
(

∂
∂y â1,my

)]dy + δJFS[	̃]

= lim
ε→0+

My∑
my=0

∫ 1
2

− 1
2

[
φ1,my

∂L
∂ â1,my

+ ∂φ1,my

∂y

× ∂L
∂
(

∂
∂y â1,my

)]dy + δJFS[	̃].

Integrating by parts and then taking the limit inside the inte-
gral gives

δJ[	̃] =
My∑

my=0

∫ 1
2

− 1
2

φ1,my

[
∂L

∂a1,my

− ∂

∂y

∂L
∂
(

∂
∂y a1,my

)]dy

+ δJFS[	̃]

+
My∑

my=0

[
φ1,my

∂L
∂
(

∂
∂y a1,my

)]y= 1
2

y=− 1
2

.

Because the perturbing functions, φ1,my , are arbitrary, a vari-
ational solution (stationary points of the functional J) must
zero each term in the first variation, i.e., they satisfy the
Euler-Lagrange equations,

∂L
∂a1,my

− ∂

∂y

∂L
∂
(

∂
∂y a1,my

) = 0, (46)
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where my = 0, 1, . . . , My, and zero the boundary terms, i.e.,

My∑
my=0

[
φ1,my

∂L
∂
(

∂
∂y a1,my

)]y= 1
2

y=− 1
2

+ δJFS[	̃] = 0. (47)

Next, we separately study the boundary terms in Eq. (47) and
the governing equation in Eq. (46).

1. Boundary terms

The boundary product in Eq. (43) ensures that the lattice
Boltzmann boundary conditions in Eq. (42) naturally satisfies

the boundary terms in Eq. (47). To show this, we consider the
first variation of the full-space boundary product,

δJFS[	̃] = lim
ε→0+

d

dε

{ ∑
sgn(y)cy,iy >0

cy,iywiy
̂̃	(y, cy,iy )

× [̂̃	(y,−cy,iy ) − (1 − α)̂̃	(y, cy,iy )

− 2αu∂�(y)]

}y= 1
2

y=− 1
2

,

which can be written as

δJFS[	̃] =
{ ∑

sgn(y)cy,iy >0

cy,iywiy

My∑
my=0

Hmy (cy,iy )

my!

My∑
n=0

(a1,nφ1,my + φ1,na1,my )
1

n!

× [Hn(−cy,iy ) − (1 − α)Hn(cy,iy )] − 2αu∂�(y)φ1,my

}y= 1
2

y=− 1
2

.

The terms involving Hn(cy,iy ) are symmetric about the exchange of indices, n and my, while the terms involving Hn(−cy,iy ) are
antisymmetric, allowing these summations to be rewritten,

δJFS[	̃] =
( ∑

sgn(y)cy,iy >0

cy,iywiy

My∑
my=0

2
Hmy (cy,iy )

my!
φ1,my

{ My∑
n=0

a1,n

n!

[
Hn(−cy,iy )

2

− (1 − α)Hn(cy,iy )

]
− αu∂�(y)

}
+

My∑
my=0

φ1,my

My∑
n=0

Isgn(y)
n,my

a1,n

)y= 1
2

y=− 1
2

, (48)

where the summations, I±
n,my

, are defined by

I±
n,my

≡ 1

n!my!

∑
cy,iy≷0

cy,iywiy Hn(cy,iy )Hmy (−cy,iy ).

We then return to the first boundary term in Eq. (47). Inspection of the definitions of the operator, L, in Eq. (39) and the integral,
L, in Eq. (45) shows that only the spatial derivative terms in the definition of L contribute to the first boundary term in Eq. (47),
i.e.,

My∑
my=0

[
φ1,my

∂L
∂
(

∂
∂y a1,my

)]y= 1
2

y=− 1
2

= −
My∑

my=0

⎡⎣φ1,my

My∑
n=0

My∑
n′=0

a1,nIn,n′
∂ ∂

∂y a1,n′

∂
(

∂
∂y a1,my

)
⎤⎦y= 1

2

y=− 1
2

= −
My∑

my=0

[
φ1,my

My∑
n=0

a1,nIn,my

]y= 1
2

y=− 1
2

, (49)

where

In,my ≡
∫ ∞

−∞
cyw1D(cy)

Hn(cy)Hmy (−cy)

n!my!
dcy. (50)

This integral is evaluated exactly in this section and the
next, in two different ways—with and without the use of
Gauss-Hermite quadrature—to facilitate the calculation under
consideration.

In this section, it is noted that the integrand in Eq. (50)
is a polynomial of order � 2My + 1, so Gauss-Hermite
quadrature with My + 1 abscissas and weights evaluate these

integrals exactly, i.e.,

In,my =
My∑

iy=0

cy,iywiy

n!my!
Hn(cy,iy )Hmy (−cy,iy ) = I+

n,my
+ I−

n,my
.

A change of variables, cy,iy → −cy,iy , in the I−
n,my

summation
gives

In,my = I+
n,my

−
∑

cy,iy >0

cy,iywiy

Hmy (cy,iy )Hn(−cy,iy )

n!my!
, (51)
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while that same change of variables in the I+
n,my

summation
produces

In,my = I−
n,my

−
∑

cy,iy <0

cy,iywiy

Hmy (cy,iy )Hn(−cy,iy )

n!my!
. (52)

Substituting Eqs. (51) and (52) into the first boundary term,
Eq. (49), and adding it to the second boundary term, Eq. (48),
reduces the expression for the boundary terms to

My∑
my=0

[
φ1,my

∂L
∂
(

∂
∂y a1,my

)]y= 1
2

y=− 1
2

+ δJFS[	̃]

=
( ∑

sgn(y)cy,iy >0

cy,iywiy

My∑
my=0

2
Hmy (cy,iy )

my!
φ1,my

×
{ My∑

n=0

a1,n

n!

[
Hn(−cy,iy ) − (1 − α)Hn(cy,iy )

]

− αu∂�(y)

})y= 1
2

y=− 1
2

. (53)

The LBM boundary conditions in Eq. (31) zero the summation
over n in Eq. (53). This establishes that Eq. (31) are the natural
boundary conditions for this variational formulation.

2. Euler-Lagrange equations

Next, we turn our attention to the Euler-Lagrange equa-
tions in Eq. (46) so that the (1,)–moments of the Hermite-
polynomial expansion of the distribution function, Eq. (41),
satisfy the linearized Boltzmann-BGK equation, Eq. (36). Ap-
plying the linearized Boltzmann-BGK operator, Eq. (39), to
Eq. (41), gives

L	̃ =
My∑

my=0

cyHmy (cy)

my!

∂a1,my

∂y
+ 1

Kn

My∑
my=1

Hmy (cy)

my!
a1,my ,

which becomes

L	̃ =
My∑

my=0

Hmy+1(cy) + myHmy−1(cy)

my!

∂a1,my

∂y

+ 1

Kn

My∑
my=1

Hmy (cy)

my!
a1,my ,

on application of the recursion relation for Hermite polyno-
mials. The integral of Eq. (45) is easily evaluated from the
orthogonality relation and the parity of Hermite polynomials,
giving

L = −
My∑

my=0

My∑
n=0

a1,n
∂a1,my

∂y
In,my + 1

Kn

My∑
my=1

(−1)my

my!
a2

1,my
.

In contrast to the previous section, the integrals in
Eq. (50) are evaluated exactly without using Gauss-Hermite

quadrature,

In,my = (−1)my

n!my!

∫ ∞

−∞
cyw1D(cy)Hn(cy)Hmy (cy) dcy

= (−1)my

n!my!

∫ ∞

−∞
w1DHn+1Hmy dcy

+ n(−1)my

n!my!

∫ ∞

−∞
w1DHn−1Hmy dcy

= (−1)n+1

n!
(δn+1,my + n δn−1,my ), (54)

which when substituted into L produces

L =
My−1∑
n=0

(−1)n

n!
a1,n

∂a1,n+1

∂y
+

My∑
n=1

(−1)n

(n − 1)!
a1,n

∂a1,n−1

∂y

+ 1

Kn

My∑
n=1

(−1)n

n!
a2

1,n. (55)

Equation (55) can be written in two further ways that makes
the computation of the Euler-Lagrange equations in Eq. (46)
clearer:

L = a1,0
∂a1,1

∂y
+

My−1∑
n=1

(−1)n

n!
a1,n

(
∂a1,n+1

∂y
+ n

∂a1,n−1

∂y

)

+
My∑

n=1

(−1)n

Kn n!
a2

1,n + (−1)My

(My − 1)!
a1,My

∂a1,My−1

∂y
, (56a)

L = −a1,1
∂a1,0

∂y
+

My−1∑
n=1

(−1)n+1

n!

(
n a1,n−1 + a1,n

∂a1,n−1

∂y

)

+
My∑

n=1

(−1)n

Kn n!
a2

1,n + (−1)My+1

(My − 1)!
a1,My−1

∂a1,My

∂y
. (56b)

Substituting Eqs. (56a) and (56b) into the first and second
terms of Eq. (46), respectively, yields the My + 1 coupled
linear (1,)–moment equations in Eq. (30); their associated
boundary conditions follow from Eq. (53) and are identical
to Eq. (31). That is, the variational approach gives the fi-
nal result of the moment method reported in Sec. III. This
is achieved without any reference to the original system of
(Mx + 1)(My + 1) nonlinear coupled PDEs generated by the
moment method (that require sophisticated mathematical ma-
nipulations). As such, the variational approach presents a
strong improvement in computational efficiency.

V. APPLICATION TO STEADY COUETTE FLOW USING
THE D2Q9 LATTICE

This section reports exact analytical solutions for steady
Couette flow with arbitrary accomodation at the solid walls,
according to the D2Q9 lattice Boltzmann model. This makes
use of Eqs. (30) and (31), which are most efficiently derived
using the proposed variational method, as discussed above. A
full derivation of the bulk velocity, shear stress and distribu-
tion function is presented in Appendix A. Calculations for the
D2Q16 lattice are also given in Sec. S7 of the Supplemental
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Material [30]. These analytical solutions can be used in future
to benchmark lattice Boltzmann simulations with arbitrary
accommodation at the solid walls.

Solving Eqs. (30) and (31), on the D2Q9 lattice, gives the
following expressions for the bulk velocity and shear stress:

u = a1,0(y) = (u2 − u1)y

1 + 2
√

3
(

2
α

− 1
)
Kn

+ u2 + u1

2
, (57a)

Pxy = a1,1(y) = Kn(u1 − u2)

1 + 2
√

3
(

2
α

− 1
)
Kn

. (57b)

Note that the density has been scaled to unity, and thus the
expression in Eq. (57a) coincides with that for the mass
flux.

The corresponding velocity slip coefficient, σ , is defined
by the small Knudsen number expansion of the bulk velocity
at the bottom wall,

u

(
−1

2

)
= u1 + σKn

∂u(0)

∂y

∣∣∣∣
y=− 1

2

+ o(Kn),

where

u = u(0) + u(1)Kn + o(Kn).

This gives the following result for the slip coefficient on the
D2Q9 lattice:

σ =
√

3

(
2

α
− 1

)
.

The remaining moments are reported in the Appendix A.
Together, they enable the reduced distribution function on the
D2Q9 lattice to now be calculated.

Components of the D2Q9 reduced distribution function are
defined by f̃ix,iy (y) = f̃ (y, cx,ix , cy,iy ), where (cx,1, cx,2, cx,3) =
(cy,1, cy,2, cy,3) = (−√

3, 0,
√

3). The reduced distribution
function can then be expressed by the vector,

˜f = [ f̃1,1, f̃1,2, f̃1,3, f̃2,1, f̃2,2, f̃2,3, f̃3,1, f̃3,2, f̃3,3]T , (58)

where the superscript T denotes the transpose. Substituting
the above-calculated moments into Eq. (58) gives

˜f ≈ 1

3

[
V 0

12
+ Pxy

4

(
V Pxy + y

Kn
√

3
V yPxy

)

+ P2
xy

(V P2
xy

2
+ y√

3Kn
V yP2

xy
+ y2

3Kn2 V y2P2
xy

)

+ a

4
√

3
V a + d1

2
√

3
V d1

+ aPxy

(
V aPxy√

3
+ y

3Kn
V yaPxy

)
+ a2

3
V a2

]
,

where

V 0 = [1, 4, 1, 4, 16, 4, 1, 4, 1]T ,

V Pxy = [1, 0,−1, 0, 0, 0,−1, 0, 1]T ,

V yPxy = [1, 4, 1, 0, 0, 0,−1,−4,−1]T ,

V a = [−1,−4,−1, 0, 0, 0, 1, 4, 1]T ,

V d1 =
[

− 1

2
exp

(
y

Kn
√

3

)
, 0,−1

2
exp

(
− y

Kn
√

3

)
,

exp

(
y

Kn
√

3

)
, 0, exp

(
− y

Kn
√

3

)
,

− 1

2
exp

(
y

Kn
√

3

)
, 0,−1

2
exp

(
− y

Kn
√

3

)]T
,

V P2
xy

= [1, 0, 1,−2, 0,−2, 1, 0, 1]T ,

V yP2
xy

=
[

1

2
, 0,−1

2
,−1, 0, 1,

1

2
, 0,−1

2

]T
,

V y2P2
xy

=
[

1

4
, 1,

1

4
,−1

2
,−2,−1

2
,

1

4
, 1,

1

4

]T
,

V aPxy =
[

− 1

2
, 0,

1

2
, 1, 0,−1,−1

2
, 0,

1

2

]T
,

V yaPxy =
[

− 1

2
,−2,−1

2
, 1, 4, 1,−1

2
,−2,−1

2

]T
,

V a2 =
[

1

4
, 1,

1

4
,−1

2
,−2,−1

2
,

1

4
, 1,

1

4

]T
,

and the above-listed constants are

a = u1 + u2

2
,

d1 =
αKn2

√
3 exp
(

1
2Kn

√
3

)
[α(α + 4) − 4](u2 − u1)2(

α + exp
(

1
Kn

√
3

)− 1
)
[α − 2

√
3(α − 2)Kn]2

.

Pure specular reflection from the walls, i.e., α = 0, does not
allow for momentum transfer to the gas. Thus, solutions to the
Boltzmann equation are unspecified when α = 0. The solu-
tions reported in this study hold for all values of α ∈ (0, 1],
including the limit α → 0+ (which differs from α = 0, as
discussed).

The derived analytical LBM solutions for the bulk velocity
and shear stress, using the D2Q9 and D2Q16 lattices (Supple-
mental Material [30] section S7), are compared to benchmark
direct numerical solutions of the linearized Boltzmann-BGK
equation [35,36] in Appendix B.

Mathematica code for the moments and reduced distribu-
tion function, on both the D2Q9 and D2Q16 lattices, are given
in the Supplemental Material [30].

VI. SUMMARY

The LBM is a numerical method for obtaining approximate
yet accurate solutions to kinetic theory. This study makes a
number of contributions to the LBM for steady Couette flow:

(1) The complete moment equations in Eq. (29) were
derived for a lattice of arbitrary quadrature order and are
nonlinear in general.

(2) The specific subset of moments equations from
Eq. (29) with mx = 1 pertain solely to the (1,)–moments, e.g.,
the bulk velocity (mass flux) and shear stress. This subset of
My + 1 coupled moment equations are purely linear and not
an approximation of Eq. (29); see Sec. III.
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(3) A Hermite-polynomial-based variational approach to
the linearized Boltzmann-BGK equation was formulated that
directly produces these My + 1 coupled linear PDEs discussed
in point 2 and their boundary conditions; see Sec. IV B.

(4) Solution for the bulk velocity (mass flux) and shear
stress using Eq. (29) requires the sophisticated manipulation
of (Mx + 1)(My + 1) PDEs; this complication is overcome
through use of the variational method in point 3; see Secs. III
and IV B.

(5) The above points establish that the variational ap-
proach presents a substantial improvement in computational
efficiency relative to use of the moment method in Eq. (29).
Namely, the number of PDEs in the former approach grows
linearly with quadrature order, whereas the latter grows
quadratically.

(6) Exact analytical solutions to the two-dimensional
isothermal lattice Boltzmann model for steady Couette flow
under Maxwell-type boundary conditions were reported; see
Sec. V.

(7) Exact analytical solutions for the bulk velocity and
shear stress using the D2Q9 and D2Q16 lattice Boltzmann
models were compared to benchmark numerical data for the
linearized Boltzmann-BGK equation; see Appendix B.

The proposed variational approach can be used in future to
derive exact analytical solutions for alternate LBM quadrature
schemes and other flow geometries.
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APPENDIX A: EXACT ANALYTICAL SOLUTION TO THE
D2Q9 LATTICE

In this Appendix, we solve the Boltzmann-BGK equa-
tion for steady Couette flow under Maxwell-type boundary
conditions on the D2Q9 lattice. This is achieved by first
evaluating the moments present in the Hermite-polynomial
expansion of the reduced distribution function, Eq. (27).
These evaluated moments for Maxwell-type boundary condi-
tions are then compared to those reported by Ansumali et al.
[21] for diffuse reflection, α = 1. Finally, the relationship
between the reduced distribution function and the moments
is inverted to derive the reduced distribution function com-
ponents that determine these moments and corresponding
macroscopic variables. These results provide benchmark an-
alytical solutions for the LBM.

1. Moment evaluation

The (0,)–moments on the D2Q9 velocity set, calculated in
Sec. S5 of the Supplemental Material [30], are

ρ ≡ a0,0 = 1, v ≡ a0,1

a0,0
= 0, Pyy ≡ a0,2 + a0,0 = 1.

(A1)

The PDEs in Eq. (30) for the (1,)–moments of the D2Q9
lattice Boltzmann solution are

∂a1,1

∂y
= 0,

∂a1,0

∂y
+ ∂a1,2

∂y
= −a1,1

Kn
,

2
∂a1,1

∂y
= −a1,2

Kn
,

whose general solution is

a1,0(y) = −yPxy

Kn
+ a, (A2a)

a1,1(y) = Pxy, (A2b)

a1,2(y) = 0, (A2c)

where the constants, Pxy and a, are to be determined from the
boundary conditions.

The abscissas in the D2Q9 velocity set are specified by the
roots of the third-order Hermite polynomial,

H3(ξ ) = ξ 3 − 3ξ = ξ (ξ −
√

3)(ξ +
√

3),

that is, ξ ∈ {−√
3, 0,

√
3}. The y-directed velocities in this

velocity set are cy,iy ∈ {−√
3, 0,

√
3}, for which the Hermite

polynomials are

H1(±
√

3) = ±
√

3, H2(±
√

3) = 2.

Making use of these quantities in the boundary condition,
Eq. (31), at y = −1/2, gives

αu1 = αa1,0
(− 1

2

)+ √
3(2 − α)a1,1

(− 1
2

)+ αa1,2
(− 1

2

)
,

(A3)

whereas at y = 1/2 we obtain

αu2 = αa1,0
(

1
2

)− √
3(2 − α)a1,1

(
1
2

)+ αa1,2
(

1
2

)
. (A4)

For partially diffuse interactions, i.e., α ∈ (0, 1], we sub-
stitute Eq. (A2) into the boundary conditions Eqs. (A3) and
(A4), whose solution is

a1,1 = Kn(u1 − u2)

1 + 2
√

3
(

2
α

− 1
)
Kn

,

a = u1 + u2

2
,

giving the corresponding bulk velocity and shear stress:

u = a1,0(y) = (u2 − u1)y

1 + 2
√

3
(

2
α

− 1
)
Kn

+ u2 + u1

2
, (A5a)

Pxy = a1,1(y) = Kn(u1 − u2)

1 + 2
√

3
(

2
α

− 1
)
Kn

. (A5b)

The energy flux in the x̂ direction, Qx, may also be evaluated,
using

Qx ≡ a3,0 + a1,2 + 4a1,0.

On the D2Q9 velocity set, H3(cx,ix ) = H3(cy,iy ) = 0, which
gives a3,0 = a0,3 = 0, resulting in the energy flux,

Qx = 4a1,0 = 4ρu, (A6)
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The (2,)–moments, which are required to evaluate the energy
flux normal to the walls,

Qy ≡ a2,1, (A7)

are specified by substituting the (0,)–moments, Eq. (A1), into
the PDEs in Eq. (29) and setting mx = 2. This gives the system
of PDEs:

∂a2,1

∂y
= 1

Kn

(
a2

1,0 − a2,0
)
,

∂a2,0

∂y
+ ∂a2,2

∂y
= − 1

Kn
a2,1,

2
∂a2,1

∂y
= − 1

Kn
a2,2,

the general solution of which is

a2,0 =
(

−Pxyy

Kn
+ a

)2

− d1√
3

cosh

(
y√
3Kn

)
+ 2P2

xy − d2√
3

sinh

(
y√
3Kn

)
, (A8a)

a2,1 = 2Pxy

(
−Pxyy

Kn
+ a

)
+ d1 sinh

(
y√
3Kn

)
+ d2 cosh

(
y√
3Kn

)
, (A8b)

a2,2 = 4P2
xy − 2d1√

3
cosh

(
y√
3Kn

)
− 2d2√

3
sinh

(
y√
3Kn

)
,

(A8c)

where the constants, d1 and d2, are to be determined.
The boundary conditions in Eq. (31) for the (2,)–moments

are now specified. For y = −1/2 and cy,iy = √
3, we have

αu2
1 = αa2,0

(− 1
2

)+ √
3(2 − α)a2,1

(− 1
2

)+ αa2,2
(− 1

2

)
,

(A9)

whereas for y = 1/2 and cy,iy = −√
3,

αu2
2 = αa2,0

(
1
2

)− √
3(2 − α)a2,1

(
1
2

)+ αa2,2
(

1
2

)
. (A10)

Substituting Eq. (A8) into Eqs. (A9) and (A10), then gives

d1 =
αKn2

√
3 exp
(

1
2Kn

√
3

)
[α(α + 4) − 4](u2 − u1)2(

α + exp
(

1
Kn

√
3

)− 1
)
[α − 2

√
3(α − 2)Kn]2

,

d2 = 0.

The remaining normal stress, Pxx, and energy flux are deter-
mined from these constants, giving

Pxx = a2,0 + a0,0 = u2 + 2P2
xy − d1√

3
cosh

(
y

Kn
√

3

)
+ 1,

(A11a)

Qy = a2,1 = 2Pxy

(
−Pxyy

Kn
+ a

)
+ d1 sinh

(
y√
3Kn

)
.

(A11b)

2. Comparison to Ansumali et al. [21] for diffuse reflection

Ansumali et al. [21] reported exact analytical solutions for
pure diffuse reflection, i.e., α = 1, for both D2Q9 and D2Q16
velocity sets. The Knudsen number used in Ref. [21], denoted
Kn∗, is related to the present Knudsen number by

Kn∗ = Kn
√

3, (A12)

with the mean-free-path definitions being the origin of the
difference.

Setting α = 1 in Eqs. (A5a) and (A5b), and making use of
Eq. (A12), gives

ρu = a1,0(y) = (u2 − u1)y

1 + 2Kn∗ + u1 + u2

2
,

Pxy = a1,1(y) = Kn∗(u1 − u2)

(1 + 2Kn∗)
√

3
,

while Eq. (A11) becomes

Pxx = Kn∗2(u2 − u1)2

3(1 + 2Kn∗)2

[
2 − exp

(
− 1

2Kn∗

)
cosh
( y

Kn∗
)]

+ ρu2 + 1,

Qy = Kn∗
√

3(1 + 2Kn∗)2
(u2 − u1)2

[
Kn∗ exp

(
− 1

2Kn∗

)
× sinh

( y

Kn∗
)

− 2y

]
+ 2aPxy,

which are identical to the results for D2Q9 in Ref. [21], as
required. The same is true for the energy flux parallel to the
walls, Qx, in Eq. (A6).

3. Evaluation of the reduced distribution function

The reduced distribution function components are de-
fined by f̃ix,iy (y) = f̃ (y, cx,ix , cy,iy ), where (cx,1, cx,2, cx,3) =
(cy,1, cy,2, cy,3) = (−√

3, 0,
√

3), allowing the quadrature ap-
proximated moments,

amx,my ≈
3∑

ix=1

3∑
iy=1

Hmx (cx,ix )Hmy (cy,iy ) f̃ix,iy (y),

to be represented by the matrix equation,

a ≈ C · ˜f ,

a = [a0,0, a0,1, a0,2, a1,0, a1,1, a1,2, a2,0, a2,1, a2,2]T ,

˜f = [ f̃1,1, f̃1,2, f̃1,3, f̃2,1, f̃2,2, f̃2,3, f̃3,1, f̃3,2, f̃3,3]T ,

where C is a matrix composed of Hermite-polynomial entries.
Alternately, the velocities and corresponding reduced distri-
bution function components may be enumerated by a single
index (instead of two, as is convention for the LBM [37]),
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giving

[c0, c1, c2, · · · , c8]T = cs

√
3[(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1)]T ,

˜f = [ f̃1,1, f̃1,2, f̃1,3, f̃2,1, f̃2,2, f̃2,3, f̃3,1, f̃3,2, f̃3,3]T

= [ f̃7, f̃3, f̃6, f̃4, f̃0, f̃2, f̃8, f̃1, f̃5]T .

The matrix, C, is transformed into a Vandermonde matrix, C, via

C = Z · C,

through the following invertible matrix:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −1 0 1 0 0 0

−1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
1 0 −1 0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Z−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

that transforms the Hermite-polynomial entries in C to the monomial entries that comprise the Vandermonde matrix. The
Vandermonde matrix is expressible as the Kronecker product of two invertible matrices,

C = Cx ⊗ Cy,

where those matrices are

Cx = Cy =
⎡⎣ 1 1 1

−√
3 0

√
3

3 0 3

⎤⎦,
with the corresponding inverse matrices being

C−1
x = C−1

y =

⎡⎢⎣0 − 1
2
√

3
1
6

1 0 − 1
3

0 1
2
√

3
1
6

⎤⎥⎦.
The inverse of the Vandermonde matrix is given by the product,

C−1 = C−1
x ⊗ C−1

y .

The reduced distribution function components are then determined by inverting the original matrix equation, to give

˜f ≈ C−1 · a,

where

C−1 = (C−1
x ⊗ C−1

y

) · Z−1 = 1

36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −√
3 1 −√

3 3 −√
3 1 −√

3 1
4 0 −2 −4

√
3 0 2

√
3 4 0 −2

1
√

3 1 −√
3 −3 −√

3 1
√

3 1
4 −4

√
3 4 0 0 0 −2 2

√
3 −2

16 0 −8 0 0 0 −8 0 4
4 4

√
3 4 0 0 0 −2 −2

√
3 −2

1 −√
3 1

√
3 −3

√
3 1 −√

3 1
4 0 −2 4

√
3 0 −2

√
3 4 0 −2

1
√

3 1
√

3 3
√

3 1
√

3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Substituting the moments, a, into this equation gives the reduced distribution function components,

˜f ≈ 1

3

[
V 0

12
+ Pxy

4

(
V Pxy + y

Kn
√

3
V yPxy

)
+ P2

xy

(V P2
xy

2
+ y√

3Kn
V yP2

xy
+ y2

3Kn2 V y2P2
xy

)
+ a

4
√

3
V a + d1

2
√

3
V d1 + aPxy

(
V aPxy√

3
+ y

3Kn
V yaPxy

)
+ a2

3
V a2

]
,
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where

V 0 = [1, 4, 1, 4, 16, 4, 1, 4, 1]T , V Pxy = [1, 0,−1, 0, 0, 0,−1, 0, 1]T ,

V yPxy = [1, 4, 1, 0, 0, 0,−1,−4,−1]T , V a = [−1,−4,−1, 0, 0, 0, 1, 4, 1]T ,

V d1 =
[

− 1

2
exp

(
y

Kn
√

3

)
, 0,−1

2
exp

(
− y

Kn
√

3

)
, exp

(
y

Kn
√

3

)
, 0, exp

(
− y

Kn
√

3

)
,

− 1

2
exp

(
y

Kn
√

3

)
, 0,−1

2
exp

(
− y

Kn
√

3

)]T
,

V P2
xy

= [1, 0, 1,−2, 0,−2, 1, 0, 1]T , V yP2
xy

=
[

1

2
, 0,−1

2
,−1, 0, 1,

1

2
, 0,−1

2

]T
,

V y2P2
xy

=
[

1

4
, 1,

1

4
,−1

2
,−2,−1

2
,

1

4
, 1,

1

4

]T
, V aPxy =

[
− 1

2
, 0,

1

2
, 1, 0,−1,−1

2
, 0,

1

2

]T
,

V yaPxy =
[

− 1

2
,−2,−1

2
, 1, 4, 1,−1

2
,−2,−1

2

]T
, V a2 =

[
1

4
, 1,

1

4
,−1

2
,−2,−1

2
,

1

4
, 1,

1

4

]T
.

APPENDIX B: COMPARISON OF THE D2Q9 AND D2Q16
SOLUTIONS TO BENCHMARK NUMERICAL DATA

In this Appendix, exact analytical solutions for the D2Q9
and D2Q16 velocity sets in Sec. V and Sec. S7 of the Supple-

mental Material [30], respectively, are compared to literature
benchmark data. Specifically, numerical results for the bulk
velocity at the wall and the shear stress (constant throughout
the gas) are reported by Li et al. [35,36], across a range
of Knudsen numbers and accommodation coefficients. This

FIG. 2. Scaled bulk wall velocity (top row) and scaled bulk velocity slip at the wall (bottom row) versus Knudsen number, for accom-
modation coefficients, α = 0.1, 0.5, 0.9; wall velocities are uwall = ±1/2. Top and bottom rows give the same comparison while highlighting
differences for large and small Kn, respectively. Exact analytical solution for D2Q9 velocity set [dashed red; Eq. (57a)], exact analytical
solution for D2Q16 velocity set [solid blue; Eq. (S7.6a) of Supplemental Material [30]], and benchmark data for Kn = 3
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FIG. 3. Dimensionless shear stress versus Knudsen number for accommodation coefficients, α = 0.1, 0.5, 0.9; wall velocities are uwall =
±1/2. Exact analytical solution for D2Q9 velocity set [dashed red; Eq. (57b)], exact analytical solution for D2Q16 velocity set [solid blue;
Eq. (S7.5b) in the Supplemental Material [30]], and benchmark data for Kn = 3
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literature data is a direct numerical solution of the linearized
Boltzmann-BGK equation [38].

Results for the bulk velocity at the wall are given
Fig. 2, whereas those for the shear stress are in Fig. 3.
As expected, the exact analytical solution for the D2Q16

velocity set is more accurate than that for the D2Q9 ve-
locity set in all cases, as has been reported previously for
purely diffuse reflection [19]. Some differences persist for
D2Q16 in accord with the use of a finite discrete-velocity
set.
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