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Unsteady cylinder wakes from arbitrary bodies with differentiable physics-assisted neural network
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This work describes a hybrid predictive framework configured as a coarse-grained surrogate for reconstructing
unsteady fluid flows around multiple cylinders of diverse configurations. The presence of cylinders of arbitrary
nature causes abrupt changes in the local flow profile while globally exhibiting a wide spectrum of dynamical
wakes fluctuating in either a periodic or chaotic manner. Consequently, the focal point of the present study is
to establish predictive frameworks that accurately reconstruct the overall fluid velocity flowfield such that the
local boundary layer profile, as well as the wake dynamics, are both preserved for long time horizons. The
hybrid framework is realized using a base differentiable flow solver combined with a neural network, yielding
a differentiable physics-assisted neural network (DPNN). The framework is trained using bodies with arbitrary
shapes, and then it is tested and further assessed on out-of-distribution samples. Our results indicate that the
neural network acts as a forcing function to correct the local boundary layer profile while also remarkably
improving the dissipative nature of the flowfields. It is found that the DPNN framework clearly outperforms
the supervised learning approach while respecting the reduced feature space dynamics. The model predictions
for arbitrary bodies indicate that the Strouhal number distribution with respect to spacing ratio exhibits similar
patterns with existing literature. In addition, our model predictions also enable us to discover similar wake
categories for flow past arbitrary bodies. For the chaotic wakes, the present approach predicts the chaotic switch
in gap flows up to the mid-time range.
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I. INTRODUCTION

Machine learning has drawn significant attention towards
the field of fluid simulations [1,2], particularly in the past
two decades. Owing to its successful inception in the field of
turbulence modeling [3–6], it has spawned multiple avenues
such as super-resolution reconstruction of fluid flows [7,8],
detection of turbulent interface [9], active flow control [10],
fluid-particle interaction [11], reduced-order modeling (ROM)
for predicting the dynamical state of a fluid system [12–16],
aerodynamic shape optimization [17], among others. To in-
corporate human knowledge in the form of physics models,
methods were introduced that integrate them into the train-
ing procedure, e.g., physics-informed neural network [18,19],
graph neural network [20,21], and generative adversarial net-
work [22] with physical loss functions [23]. While custom
loss functions satisfy the boundary conditions and minimize
the residual of the underlying governing partial differential
equations, they only allow for partial coupling of the flow
solver with the neural network. Another alternative that allows
full integration of the flow solver within the training loop is
via differentiable models [24], e.g., differentiable physics for
turbulence modeling [25]. This approach has demonstrated
its effectiveness as a cost-efficient strategy for turbulence
modeling compared to the cost-intensive direct numerical
simulations. Such approaches have also shown the potential to
serve as a coarse-grained surrogate for unsteady fluid flows.
For instance, the works of Refs. [26,27] demonstrated that
differentiable flow solvers coupled with a neural network can
yield satisfactory reconstruction of flowfields for representa-
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tive test cases. However, the full merits of the hybrid strategy
as a generic and accurate approach are far from established.

A primary task when evaluating the merits of a predictive
framework is to identify a fluid test problem that is of sig-
nificant practical interest and complexity. One such problem
that has been of significant interest to the fluid dynamics
community is that of flow past body [28] or multiple bodies
[29]. Typical factors and challenges that plague the analysis
of such fluid flows may include computational time or the
turn-around time, low to large temporal scales in the flow,
unsteadiness in the flow, the presence of multiple bodies, a
large spectrum of wake dynamics, etc. While coarse-grained
surrogates reduce the computational burden [30], the effec-
tiveness of such a strategy to reliably reconstruct the flowfields
for multiple wake regimes, besides ensuring accuracy in local
boundary profiles and global wake dynamics, is yet to be
examined. For instance, authors of Ref. [31] examine flow
past two side-by-side cylinders to qualitatively evaluate the
generalizability aspect of their models without considering the
local fluid behavior around the body boundary. In addition,
the work by Ref. [28] examined flow past a single bluff-body
of various shapes using a convolutional neural network-based
auto-encoder (CNN-AE) model with an emphasis on global
fluid dynamics. In a similar vein, the investigation by Ref. [23]
points out that their model predictions for flow past a single
cylinder exhibited the largest errors in either the body bound-
ary or the wake region. Clearly, this presents a significant
limitation that should be addressed by advancing performance
measuring metrics based on both the local as well as global
fluid properties.

Flow past objects are of significant interest to the engineer-
ing community from the hydrodynamics as well as structural

2470-0045/2024/109(5)/055304(27) 055304-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4383-0875
https://orcid.org/0000-0001-6647-8910
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.055304&domain=pdf&date_stamp=2024-05-22
https://doi.org/10.1103/PhysRevE.109.055304


SHUVAYAN BRAHMACHARY AND NILS THUEREY PHYSICAL REVIEW E 109, 055304 (2024)

design point of view. The potential implications of the
underlying instabilities [32], wake dynamics [33], wake-
induced vibration [34], and its control [35] have led to
establishing a significant body of research. One of the focal
points concerning this research is understanding the spectrum
of wake flow exhibited by multiple cylinders placed relative
to each other. Some of the investigations that present a com-
prehensive study for two cylinders are Refs. [36–38], etc.,
and Refs. [39–42] for three or more cylinders. These inves-
tigations point towards the direct dependency of the resulting
wake regimes with the spacing ratio (i.e., length L to diameter
D ratio) L/D. More recently, the investigation by Ref. [43]
showed the presence of up to nine distinct flow regimes for
cylinders arranged in an equilateral-triangle position at var-
ious spacing ratios, 1 � L/D � 6 for multiple Reynolds
numbers 50 � Re � 175. While these investigations pro-
vide fundamental insights about wake flow regimes and flow
states, their analysis is limited to the use of equidiameter
circular cylinders or rectangular cylinders with varying aspect
ratios. Consequently, this begs the question if the observations
related to the universal nondimensional parameters such as
Strouhal number and critical spacing ratio (as reported by
Ref. [43]) still hold for arbitrarily shaped cylinders.

Analyzing large datasets of wake flow exhibited by ar-
bitrarily shaped complex configurations offers potential for
novel physical insights; however, employing traditional body-
conforming continuum computational fluid dynamics (CFD)
flow solvers can be time-consuming and warrants special
treatment for catering to changing geometries via the un-
derlying computational grid. While nonconformal immersed
boundary (IB) approaches [44,45] allow for the use of a fixed
Cartesian mesh, exploring a large design space of possible
spacing ratios could significantly ramp up the turn-around
time. Consequently, neural network-based coarse-grained sur-
rogate models for unsteady fluid flows provide a cost-effective
alternative approach [30].

In this work, we build on the ideas by Ref. [26] and present
a hybrid differentiable physics-assisted neural network (or
DPNN) framework that acts as a coarse-grained surrogate for
accurate unsteady fluid simulations for low Reynolds number
flows past multiple bodies. This framework requires a base
solver integrated into the neural network (NN) along with
ground truth data to train the resulting hybrid framework. We
employ a Cartesian grid-based immersed boundary method
(i.e., FoamExtend) as the Reference solver. In addition, we
employ an in-house developed differentiable flow solver (i.e.,
PhiFlow) as the Source solver. For faster training and infer-
ence, the Source intentionally resorts to a first-order spatial
accuracy along with masked stair-step representation of the
underlying body boundary. This inherently reduces the com-
putational burden of the base differentiable flow solver. In
contrast, however, the Reference solver utilizes an accurate
local algebraic reconstruction for fluid flow around the body
boundary with second order spatial accuracy. Given this stark
contrast between the Reference and Source solvers, besides
the highly multimodal nature of the present problem, this
naturally poses a very challenging task for NNs, i.e., to act as
a forcing function to learn the nontrivial corrections. We com-
prehensively evaluate the hybrid approach for multiple wake
categories while drawing necessary comparisons with various

benchmarks. Moreover, our approach of utilizing arbitrarily
shaped bodies in a staggered equilateral triangle position al-
lows for a large data diversity and sheds light on the physics
of the wake dynamics resulting from the arbitrary cylindrical
configurations.

Our focus is thus twofold. First, we train and test the DPNN
framework on a dataset comprising unsteady flow past arbi-
trary bodies placed in a staggered equilateral triangle position,
each at a unique spacing ratio. These tests were performed
once the Reference solver was thoroughly validated and veri-
fied to generate accurate solutions. Second, after establishing
the effectiveness of our approach using multiple performance
measuring metrics, we evaluate the out-of-distribution gen-
eralization capabilities of our framework. These evaluations
is based on configurations that align closely with the current
state of existing literature. Throughout the study, we strive
to understand the physical implications of the solutions de-
rived from the predictive framework, examining both local
boundary layer profiles and global wake dynamics. We also
highlight the framework’s performance in both physical and
reduced feature spaces to demonstrate its long-term temporal
stability.

II. NUMERICAL SETUP AND VALIDATION

In this section, we illustrate the computational setup un-
derpinning the entire hybrid framework. This is followed by
validation test cases undertaken to affirm the correctness of the
setup as well as verify the ability to render accurate solutions.

A. Reference solver

The present study employs the open source FoamExtend V
4.0 immersed boundary (IB) approach as the Reference solver.
As mentioned earlier, the IB-based nonconformal approach
serves a dual purpose. First, it greatly simplifies the use of
a fixed Cartesian mesh for all underlying configurations, ir-
respective of the geometric complexity. This methodology
circumvents the necessity for labor-intensive remeshing for
each geometric configuration and the corresponding coordi-
nate transformation from physical to computational space.
Second, the use of a fixed Cartesian mesh ensures seamless
integration to the deep-learning pipeline wherein one can
leverage the benefits of the Eulerian (i.e., fixed cell in space)
viewpoint. FoamExtend utilizes a discrete forcing approach-
based strategy for enforcing the boundary condition for the
immersed bodies [see Fig. 1(a)] and has been built on top of
the well-established OpenFoam [46] framework. This method
uses a higher order interpolation strategy to interpolate the
fluid properties at the immersed cells by using the properties
in the neighboring fluid cells.

In the present work, we consider the 2D Navier Stokes
equations as mentioned below:

∂u
∂t

+ (u.∇)u = − 1

ρ
∇p + ν∇2u

∇.u = 0, (1)

where u = (u, v) is the velocity field, ρ is the density,
p is the pressure, and ν is the dynamic viscosity. The
first equation represents the momentum conservation equa-
tions, whereas the second equation represents the continuity
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FIG. 1. Boundary reconstruction approach used by
(a) FoamExtend (Reference solver) (b) Phiflow (Source solver).

equation, which also serves as a constraint on the velocity
fields, otherwise known as the “divergence-free” constraint.

The flow scenario describes the incompressible flow past
cylinders at low Reynolds number Re ≈100. For the present
case, the Reynolds number is evaluated based on the cylin-
der height of the primary upstream cylinder as Re = UH

ν
,

where U and H represent the freestream velocity and height
of the upstream cylinder respectively. For the present setup,
ν = 0.01 Ns/m2 and U = 1 m/s are used. A second-order
accurate Crank Nicolson scheme is used to march the
solutions in time, while a second-order limited linear (central-
differencing) scheme is used for convective flux discretiza-
tion. Pressure-implicit with splitting of operators (PISO) [47]
is employed to solve for the discretized momentum and con-
tinuity equations in one predictor and two corrector steps.
In particular, preconditioned conjugate gradient (PCG)-based
solver is used for p linear equations along with a diagonal-
based incomplete Cholesky (DIC) precondition for symmetric
matrices. In addition, for U linear equations, BiCGSTAB is
used along with diagonal-based incomplete LU (DILU) pre-
conditioned for asymmetric matrices.

B. Validation: Strouhal number and force characteristics

We execute a comprehensive grid independence study to
corroborate the Reference solver used to acquire the ground
truth data. We initiate our numerical experiments with flow
past a single cylinder at Reynolds number Re = 100. A com-
putational domain of size [0,24D] × [0,16D] is chosen using
a uniformly spaced Cartesian grid. In particular, we choose

medium and fine spatial resolutions to undertake a grid-
independence study, i.e., �x/D = �y/D ∈ {1/32, 1/50},
where D represents the diameter of the cylinder. This leads
to a blockage ratio, B = D/H = 0.0625. Further, we use a
constant time-step �t = 0.1 s for this validation test case and
perform the simulations until a total time T = 200 s.

The time-averaged drag coefficient C̄d as well as the
root-mean-square (r.m.s.) lift coefficient C′

1 obtained from
the Reference flow solver is compared with existing results.
Specifically, Table I shows the C̄d , C′

1, and Strouhal number
St values for flow past a single cylinder at various grid res-
olutions. It is found that both C̄d and C′

l obtained from the
medium as well as the fine spatial resolutions compare really
well with the existing solutions of Ref. [48], who also employ
a nonconformal immersed boundary-based numerical solver
for the computations. It must be noted that a change in the
underlying grid from medium to fine spatial resolution results
in an increase in the total number of control volumes nc from
393 216 to 960 000. Consequently, to allow for a reasonable
computational time while retaining accuracy, we choose the
medium grid for the remainder of the computations in this
section as well as for obtaining the ground truth solution.

Table II presents the mean as well as the r.m.s. values for
the coefficient of drag and lift for the upstream and down-
stream cylinder (only one) for flow past three cylinders placed
in an equilateral triangle position at spacing ratio L/D = 2.5.
It is found that the present solutions compare really well
with the ones obtained by Ref. [42], who employ a body-
conformal finite-volume approach using a time-step size �t =
0.05 s. The influence of the time-step size is also analyzed in
Table III. It is found that the choice of time-step size results
in a marginal difference in force quantities as well as the
Strouhal number. Consequently, a moderate value of �t =
0.1 s is adopted for the present study. It can now be remarked
that the grid resolution and time-step size chosen for the
present study allow for the accurate computation of flow past
multiple bodies. In addition, we also qualitatively verify the
wake regimes produced using the flow solver, as highlighted
in Appendix B.

C. Differentiable flow solver

The present study uses the open source simulation toolkit
Phiflow (φflow) as the base differentiable flow solver (or
Source). It leverages automatic differentiation (AD) to enable
an end-to-end recurrent training paradigm. This incorporation
allows for the computation of gradients of the simulation out-
comes with respect to its inputs or parameters in an efficient
manner. The key distinction here is not just the ability to solve
fluid flow governing equations but to do so in a way that is
inherently differentiable with respect to the parameters and
states involved in the simulation. By leveraging AD, we can
directly integrate fluid flow simulations into the training loop
of neural network models, enabling them to learn from and
adapt to the underlying physics of fluid dynamics. Phiflow in
this study serves as the computational foundation that allows
us to simulate fluid flow scenarios and directly incorporate
these simulations into a recurrent neural network training
process. This approach is fundamentally different from tra-
ditional CFD methods, which typically focus on solving the
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TABLE I. Coefficient of lift Cl , drag Cd , and Strouhal number St for flow past a single cylinder at Re = 100.

Re = 100 (Single cylinder) C̄d C′
1 St

Constant et al. 2017 [48] (�x = �y = 0.02D) 1.38 — 0.165
Constant et al. 2017 [48] (�x = �y = 0.010D) 1.37 — 0.165
Present (�x = �y = 0.0312D) 1.412 0.276 0.156
Present (�x = �y = 0.02D) 1.403 0.285 0.156

fluid flow governing equations without providing the capa-
bility to compute gradients of the simulation outcomes with
respect to its inputs.

While it is crucial that the base solver (i.e., Source) be
differentiable, the Reference solver (i.e., FoamExtend in this
case) need not be differentiable. We employ the projection
method to decouple the momentum and continuity equation in
a two predictor-corrector step. First, we use the operator
splitting of the diffusion, advection, and pressure terms in
the predictor phase. Specifically, the MacCormack advection
step for advecting the initial velocity fields. Second, in the
corrector phase, the spatial gradients of pressure are used to
compute the divergence-free velocity field [49].

Finally, the choice of Cartesian grids in both Reference and
Source solver allows for a one-to-one mapping between each
control cell. Figure 1 elaborates further on the nuances and
differences between the reconstruction strategies employed by
Reference solver [Fig. 1(a)] and Source solver [Fig. 1(b)]. It
is clear that the former employs a sharp interface algebraic
reconstruction approach locally for the near body boundary
cells whereas the later resorts to a stair-step representation of
the underlying geometry. This is especially important given
that the use of masked stair-step representation of the body
boundary for faster training by the Source results in a very
approximate reconstruction of near-body fluid properties. This
limitation allows for us to build a training setup wherein the
network learns to faithfully reconstruct the local boundary
flow profile based on the accurate Reference solver.

D. Cylinder layout

We carefully choose a setup for cylinder cluster arrange-
ment that allows us to mimic the traditional approach adopted
in open literature. However, as we seek to generate and exploit
a multitude of complexities in the training data to harness the
full capabilities of the present hybrid learning strategy, we
introduce some randomness to the setup. Some specifications
related to the cylinder arrangements are as follows:

(1) Cylinder arrangement. We place three cylinders in
an equilateral triangle position, i.e., one upstream cylinder
followed by two downstream cylinders, placed apart from
each other via the spacing ratio L/D. This setup mimics the
“regular triangular” cluster setup used in Ref. [36] and has
also been investigated recently by Ref. [43]. Additionally, this

arrangement allows us to investigate proximity interference
(P), wake interference (W), a combination of (P+W) inter-
ference as well as no-interference.

(2) Upstream composite cylinder. The upstream cylinder
(cylinder C1) is framed as a composite body consisting of
a base rectangle (at its center) and secondary rectangle or
semicircle on its sides (see Fig. 2). The selection between a
secondary rectangle or a secondary semicircle as one of the
sides of the base rectangle is random. We define a function
f1 : Ru,i → S, such that it maps a random integer Ru,i ∈ {0,1}
to geometric shapes, S ∈ {semicircle, rectangle}, where i ∈
{1,2,3,4}. The outcome can be represented as follows:

Ru,i =
{

0 fi = semicircle
1 fi = rectangle

The length of the base rectangle, as well as the secondary
rectangles, are randomly chosen between fixed upper and
lower limits (see Table IV). The diameter of the semicircle
is equal to the edge length of the base rectangle to which it is
attached.

(3) Downstream cylinders. The choice of the downstream
cylinders is either a rectangular cylinder of a certain length
and height or a circular cylinder of a certain diameter. This
selection is partially random. We define a function f2,3 : Rd →
S, such that it maps a random integer Rd ∈ {0,1} to geometric
shapes, S ∈ {circle, rectangle}. Once the upper downstream
cylinder (cylinder C2) is chosen (say a rectangular cylinder),
the lower downstream cylinder (cylinder C3) gets fixed (a cir-
cular cylinder). This outcome can be represented as follows:

Rd =
{

0 f2 = circle; f3 = rectangle
1 f2 = rectangle; f3 = circle .

This forces the training dataset to always contain a rectan-
gle and a circular cylinder as the two downstream cylinders.
In addition, once the height of the downstream rectangular
cylinder, HC2 (or the diameter of the downstream circu-
lar cylinder, DC3) is chosen, the dimension (i.e., diameter
or cylinder height) of the other downstream cylinder is fixed
to satisfy the following criterion:

HC2 + DC3 = 2HC1. (2)

TABLE II. Coefficient of lift Cl , drag Cd , and Strouhal number St for flow past three cylinders at various time-step sizes.

Re = 100 (Three cylinders, L/D = 2.5) C̄d,1 C̄l,1 C′
l,1 C̄d,2 C̄l,2 C′

l,2

Zheng et al. [42] 1.23 0.0 −0.002 1.53 −0.087 0.335
Present (�x = �y = 0.0312D) 1.249 0.0 0.0 1.561 0.166 0.433
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TABLE III. Coefficient of lift Cl , drag Cd , and Strouhal number St for flow past three cylinders.

Re = 100 (Three cylinders, L/D = 2.5) C̄d,1 C̄l,1 C′
l,1 C̄d,2 C̄l,2 C′

l,2 St

Present (�t = 0.25) 1.254 0.0 0.0 1.584 0.172 0.49 0.148
Present (�t = 0.1) 1.249 0.0 0.0 1.561 0.166 0.433 0.156
Present (�t = 0.05) 1.244 0.0 0.0 1.545 0.166 0.359 0.156

This restricts the cylinders from overlapping. The dimen-
sions of the rectangle and the circular cylinder are randomly
chosen between a fixed upper and lower limit (see Table IV).

(4) Spacing ratio. The distance between center-to-center
distance between the downstream cylinders, as well as the
downstream and upstream cylinders, is controlled by the spac-
ing ratio L/D. The L/D values are chosen such that it covers
a wide spectrum of possible wake flow regimes (i.e., 1.2
� L/D � 5.5). Care is taken to avoid overlapping bodies for
low L/D values. Finally, to ensure an unbiased selection of the
spacing ratio, the Latin hypercube sampling (LHS) is chosen
as a design of the experiment method.

Points 2 and 3 above intentionally introduce arbitrariness
to the training data to serve a dual purpose. First, we analyze
the role of arbitrariness in the wake flow regime to offer new
insight into the present body of knowledge around flow past
equidiameter cylinders. Second, this introduces data diversity
while also allowing us to evaluate the generalizability of the
hybrid learning framework to more representative problems.
Further, point 4 allows us to uncover various wake categories
that have been introduced recently by Ref. [43] for similar
spacing ratios. For the present work, we employ a python
script which pregenerates a set of cylinder configurations
using a fixed random number seed. The configurations of
cylinder generated is done in a manner that always satisfies
the bounds mentioned in Table IV. At the end of this step,
we have 100 set of cylinder layouts, each available in a .stl
format that is used by the Reference flow solver. These serve
as the basis to classify the solid cells from the fluid cells.
Once the flowfield for all the 100 experiments (based on 100
unique cylinder layouts) are computed, we choose the first
50 as training and the remaining 50 as inference or testing
samples.

E. Wake categories

This section introduces the various wake categories ob-
tained from the Reference solver at multiple spacing ratios
L/D for equidiameter cylinders placed in an equilateral
triangle position. These representative spacing ratios for
equidiameter cylinders are for illustration purposes and
are not part of the training data. We purposely choose

equidiameter circular cylinders so that fair comparisons can
be drawn with Ref. [43] who also evaluate it on identical
conditions.

Single bluff-body wake. At extremely small spacing ratio,
i.e., L/D = 1.2, the three cylinders are close to each other
such that they exhibit vortices as if it were a “single bluff-
body.” This is further demonstrated pictorially in Fig. 32 in
the Appendix B, along with other representative cases. This
kind of wake is periodic in nature.

Deflected gap wake. At slightly larger spacing ratio, i.e.,
L/D = 1.5, the fluid in between the two downstream cylinders
(or gap flow) switches direction to either the upper cylinder
(i.e., cylinder 2) or the lower cylinder (i.e., cylinder 3), hence
the name “deflected gap.” This switch is constant with time.
The kind of wake is periodic, with some modulation over time.

Flip-flopping wake. For marginally larger spacing ratio,
i.e., L/D = 2.25, the gap flow in between the two downstream
cylinders switches direction erratically between the upper
cylinder (i.e., cylinder 2) or the lower cylinder (i.e., cylinder
3), hence the name “flip-flopping.” This chaotic switch is a
challenging case for any predictive framework, and the kind
of wake is irregular in nature.

Antiphase wake. For moderately larger spacing ratio, i.e.,
L/D = 3.5, the vortices shed by the two downstream cylinders
rotate in opposing directions, hence the name “antiphase.”
This wake category is periodic in nature and exhibits a
symmetry about the centerline streamwise direction. For
arbitrarily shaped bodies, this symmetry is lost and is con-
sequently referred to in this work as “quasi-anti-phase” wake.

Fully developed in-phase wake. For larger spacing ratio,
i.e., L/D = 5, the vortices shed by the two downstream cylin-
ders are in same direction; hence the name “in-phase.” Further,
the upstream cylinder also sheds vortices which merges with
the vortices shed by the downstream cylinders, hence the term
“fully developed.” This kind of wake is periodic in nature. For
arbitrarily shaped bodies, this is referred to in this work as
“quasi-in-phase” wake.

III. HYBRID PREDICTIVE FRAMEWORK

This section introduces the methodology behind the
DPNN-based hybrid framework used in the present work.

TABLE IV. Upper and lower limits for the dimensions of the cylinders.

Length (L) Height (H ) Radius (R)

Component Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit

Upstream cylinder (Primary) Base rectangle 0.40 0.50 0.40 0.50 — —
(Secondary) Rectangle 0.15 0.25 0.15 0.25 — —

Downstream cylinder Rectangle 0.40 0.50 0.70 1.00 — —
Circular cylinder — — — — 0.40 0.50
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FIG. 2. Computational domain including the three bodies placed
in an equilateral triangle position (not to scale).

As alluded earlier, such a strategy embeds the base differ-
entiable flow solver Phiflow with a neural network (NN)
architecture, mimicking the solver-in-the-loop strategy previ-
ously employed by Ref. [26]. Such a strategy reaps the benefit
of long-term training feedback while enabling an end-to-end
training paradigm. We build on the above by enabling a ro-
bust and efficient coarse-grained surrogate model for unsteady
flows for investigating one of the core fluid flow problems,
i.e., wake flows caused by arbitrarily shaped objects. This
serves a dual purpose, i.e., first, the arbitrarily shaped bodies
allow for a rich and diverse set of datasets. Second, while it is
well known that the shape of the body is responsible for the
resulting wake characteristics, such an issue has not prompted
an investigation into a large spectrum of spacing ratios to the
best of our knowledge.

A. Neural network architecture

In this section, we highlight the neural network (NN) archi-
tectures that were explored in the present study. We explore a
range of popular architectures while keeping the total number
of parameters in each network architecture within reasonable
limits to facilitate a fair comparison.

The network takes as input of channel size = 3, i.e., ve-
locity fields, u = u, v along with the shape mask or marker
field m f ∈ Rnx×ny , where nx and ny represents the number
of grid points along the longitudinal and lateral directions,
respectively. The shape mask m f uniquely identifies the shape
of the enclosed body and is fixed for a given test configuration.
While the ground truth data is obtained on a high-resolution
grid of size nx, ny = (768 × 512), the network only receives
a downsampled (3×) velocity and shape mask as inputs (i.e.,
96 × 64), for faster training. For a training sample, there are a
total of t f = 3000 frames or snapshots (of which the first 1500
are discarded to only consider statically stable snapshots),
each representing velocity fields generated sequentially using
a constant time step of �t = 0.1 s (or, total time t = 300 s).
The entire dataset consists of 100 different experiments each
at a unique spacing ratio, resulting in 100 unique shape masks
m f . We use the default “glorot uniform” to initialize the
weights and “zeros” for its biases. As mentioned in Sec. II D
and Fig. 2, to allow for a fair comparison, we employ the same

cylinder cluster arrangement as also employed by Ref. [43],
with the equidiameter cylinders employed by Ref. [43] being
replaced by arbitrarily shaped cylinders in the present work.
Among the entire dataset, 50 are used for training, and the re-
maining 50 are used for testing. The training is executed using
a batch size of 50 for 50 epochs (see Appendix C1, Fig. 42)
using Adam [50] as the optimizer. A variable learning rate α

is employed, which is sequentially reduced with epochs. The
output from the network is constrained to be of channel size
= 2, i.e., the velocity field at the next time step. In this work,
we predominantly employ residual neural network (ResNet)-
based architecture. Figure 3 shows a typical ResNet based
architecture used alongside the Source solver as the hybrid
approach. This architecture comprises multiple convolution
blocks in series with residual connections in between them.
The architecture uses rectified linear unit (or ReLU) as the
activation function. Appendix C provides the details related
to each architecture.

B. Present hybrid framework

The DPNN-based hybrid predictive framework is a recur-
sive learning strategy wherein the base flow solver PhiFlow
(φflow) is coupled with the neural network as shown in Fig. 3.
In the present study, the Reference solver (i.e., FoamExtend)
provides the precomputed ground truth data. The hybrid
framework receives an initial guess rt from the Reference
solver and feeds it to the base solver (i.e., PhiFlow). The base
solver then updates the velocity field to the next time-step
u∗. At this stage, no learning is involved. The output from
PhiFlow is then fed to the NN architecture as input, i.e.,
velocity fields u, v, and shape marker field m f . The output
from the NN, f (u∗; θW ) acts as the forcing function which is
used to correct the output from the base solver PhiFlow (θw

represents the network weights). This step is made recursive
for m solver unrollment steps signifying as many forward
steps by base solver in time by feeding the cumulative out-
put back to the base solver, i.e., ut+1 = u∗ + f (u∗; θW ). At
the end of the m unrolling steps, the computed or predicted
velocity flowfield is compared with the Reference solution to
determine the L2 loss.

We remark that both the Reference and the base solvers
are subject to identical values for the dynamic viscosity ν,
time-step size �t , and freestream conditions, besides making
sure to incorporate the same object under consideration. The
critical difference here lies in their respective solution strate-
gies and the techniques to handle body boundary conditions,
i.e., while the Reference solver is spatially second-order accu-
rate and algebraically reconstructs the fluid properties along
the body boundary to locally satisfy the no-slip boundary
conditions, the Source solver is spatially first-order accurate
and resorts to a masked stair-step representation for compu-
tational efficiency. This fact serves as the key motivation to
learn the global wake dynamics as well as the local boundary
representation via the loss formulation, as will be discussed in
the next section.

C. Loss formulation

The loss formulation provides the central goal of the
learning process. In this study, this means recovering the
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FIG. 3. DPNN-based hybrid predictive framework.

ground truth velocity flowfields as accurately as possible. The
trainable parameters of the model are iteratively updated by
minimizing the loss function. This allows the optimizer to
navigate the nonconvex energy landscape with the goal to
arrive at a global/local minima. Typical choices of a loss func-
tion L use some error norm to compare network prediction u
with the ground truth r. For instance, the L2 norm for a purely
supervised training is given as

L = L2(r − u). (3)

Such a formulation minimizes the Euclidean distance be-
tween u and r. Although popular, such a loss is devoid of
additional information from the physics point of view. For
instance, Ref. [26] showed that one can formulate physics-
based loss formulations by taking advantage of the temporal
unrolling during the training. This was followed by an inde-
pendent investigation [25] wherein they built a custom loss
function to accurately predict turbulent flows. Consequently,
a greater emphasis is placed on rendering a loss yielding
a physically consistent solution. Such a physics-based loss
could take the form

L = 1

m

m∑
i=1

L2(rt+i − ui ), (4)

where m represents the number of unrollment steps used dur-
ing training and t represents the instant of time. This loss
is strictly not computed at every time step, however, the ag-
gregated history of the loss of every intermediate step (while
unrolling for m steps) is summed up to obtain the final L norm
error.

D. Benchmarks

In addition to our present DPNN framework, we also com-
pare it to existing benchmarks. As part of this comparative
evaluation, we employ the data-driven supervised learning
(SL) method. In addition, we evaluate results produced by
only running the base solver, i.e., Source. For the SL approach,
the network directly receives the input rt from the Reference
solver and produces the output as the flowfield for the sub-
sequent time step, i.e., f (rt ; θW ). As this SL framework does
not contain an integrated Source solver, the output generated

by the network serves as the final prediction for the next
time step [i.e., ut+1 = f (rt ; θW )]. This makes the SL approach
faster. Notably, to ensure a fair comparison, the outputs from
both DPNN and SL frameworks utilize identical underlying
networks and receive the same input during training/testing.
For the output produced from the Source solver, the next
time-step predictions can be written as ut+1 = u∗. Finally, For
reasons of completeness and validation, we also juxtapose our
predictions with those from the Reference solver. Compar-
isons with the Source solver highlight the starting point on
which the DPNN solver learns to apply its corrections. Further
details related to the network architecture may be found in
Appendix C.

IV. RESULTS AND DISCUSSIONS

In this section, we present a detailed analysis of the results
obtained from the present hybrid learning framework as well
as other benchmarks. As mentioned earlier, we employ mul-
tiple neural network architectures within the hybrid learning
approach. Henceforth, we begin by undertaking an analysis
that compares various network architectures for a common
problem in the following section.

A. Role of network parameters in model performance

We start by presenting the statistical evaluations of models
builds using different network architectures for all the testing
samples. An effective representation of the distribution of
the model performance across a large spectrum of testing
samples is done via kernel density estimation (or KDE). Be-
sides highlighting the model confidence, it further allows for
the potential identification of outliers. The KDE is evaluated
based on the mean absolute error, μ of the model predictions
compared to the ground truth data, for the 100th testing frame.
The mean absolute error, μ is evaluated as follows:

μ = 1

nc

nc∑
i=1

(|uref,i − ubaseline,i|) + (|vref,i − vbaseline,i|). (5)

Figure 4 presents the approximate probability distribution
via the KDE for the 50 testing samples from different net-
work architectures. It is found that most of the approximate
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FIG. 4. Comparison of the mean absolute error μ at the end of
100th testing frame for 50 testing samples obtained from different
NN architectures.

probability distribution is indicative of a Gaussian-like distri-
bution. These include the KDE obtained from the convolution
neural network (CNN) and the residual network-based mod-
els, i.e., ResNet [51], together with the newer variants
ResNeXt [52], DenseNet [53], and diluted residual network
(Dil-ResNet) from Ref. [30]. On the contrary, however, the
Unet [54] exhibits multiple peaks in the distribution while also
incurring greater sample mean error μN (see Table V). While
attributing higher error to the architectures is not straightfor-
ward, strikingly, both the Unet with downsample (with DS)
and the Dil-ResNet (with DS) architectures employ encoder
blocks that compress the input data to a reduced dimension
via the stride operation. This is not entirely surprising as
the model struggles to retain local features of the input upon
downsampling. We remark that identical choice of activation
function, optimizer, learning rate η, initial weights θW, loss
function, etc. have been used for all the architectures. Con-
sequently, it can be mentioned that the models without any
compression or convolution downsample serve as a better
alternative for the present choice of problems.

FIG. 5. Influence of random number seed on the performance of
residual network (ResNet) architecture.

Neural network-based learning is a stochastic, nonlinear
optimization process that aims to iteratively improve the
model predictions on training data while managing uncer-
tainty and navigating through a complex, multidimensional
solution space. In this context, using a gradient-based opti-
mizer like Adam may result in a locally optimal solution with
some sensitivity to the initial guess. To check the robustness
of the model, the influence of the random number seed must
be evaluated. We investigate the performance of the ResNet-
based architecture for multiple seeds. Figure 5 shows the
approximate probability density based on the mean absolute
error μ obtained using ResNet-based architectures for differ-
ent values of random number seed for all the testing samples.
It can be observed that the Gaussian-like distribution of the
error μ is retained for different random seed values, besides
showing consistency in the model performance in terms of the
sample mean μN (see Table VI). In light of these discussions,
it can be remarked that the performance is independent of the
random number seed. Finally, we also determine the influence
of the adaptive learning rate η that determines the convergence
and consequently the nature of solutions obtained. This is

TABLE V. Comparative performance among various NN architectures in terms of mean μN and standard deviation σN (across 50 testing
samples, at the end of 100 testing frame).

Architecture No. parameters Mean (μN ) Standard deviation (σN )

CNN 546 478 0.03124 0.0082
ResNet 516 674 0.02626 0.00657
Unet (with DS) 520 342 0.07693 0.0138
Unet 520 342 0.06067 0.0152
Dil-ResNet (with DS) 548 066 0.07266 0.0211
Dil-ResNet 548 066 0.04303 0.01101
ResNeXt 524 322 0.03871 0.00787
DenseNet 566 578 0.04258 0.0047
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TABLE VI. Comparative performance of ResNet architecture for
different random seeds.

Random seed no. Mean (μ) Standard deviation (σ )

1 0.03029 0.00818
2 0.02643 0.00747
3 0.02483 0.00706
4 0.02991 0.00896
42 0.02626 0.0082

briefly discussed in Appendix C 1. The remainder of the study
is based on the ResNet architecture.

B. Qualitative comparison of predictive models across
wake categories

In this section, we compare various benchmark models,
assessing their capability to accurately reproduce the dynamic
wake characteristics for new, unseen testing samples with
different spacing ratios. This analysis is fundamentally im-
portant because, intriguingly, different spacing ratios between
the cylinders yield diverse wake behaviors, each of which
necessitates faithful reproduction. For instance, the deflected
gap wake should exhibit a narrow and a wide wake immedi-
ately downstream of the two subsequent cylinders, with the
gap flow between these cylinders being deflected towards the
narrow wake region. This deflection should remain constant
with time. In contrast, for the flip-flopping or the chaotic
wakes, the gap flow switches direction in an erratic manner.
As such, while some wake patterns exhibit a periodic, uniform
repetition, others veer into the realm of chaos. It is, therefore, a
fascinating problem that tests the predictive capabilities of the
models. Five representative testing samples are chosen from
the available 50 experiments, each exhibiting a unique spacing
ratio and the corresponding wake dynamics. We present vor-

ticity flowfields generated entirely from the network’s output.
This allows us to highlight the regions of interest, i.e., cylinder
wake and near body boundary, besides also indicating the
direction of rotation of the vortices. Figure 6 compares the
vorticity flowfield obtained from the various benchmarks, in-
cluding the Reference solver at the spacing ratio L/D = 1.26.
The vorticity flowfield obtained from the Reference exhibits a
single bluff-body wake with a certain shedding frequency. It
is found that while all the baselines can reproduce the correct
category of the wake, the Source and the supervised learning
(SL) approach very quickly deviate from the correct vortex
shedding cycle. However, the present DPNN approach com-
pares remarkably well with the Reference data even for long
time horizons. In addition, the shedding frequency is typically
around 0.1 Hz or 10 s. So within the 300 �t time horizon, the
framework is expected to capture close to 30 vortex shedding
cycles. However, this is an estimate and actually value would
depend upon the L/D value of the cylinder layout.

Figure 7 presents the comparison of the vorticity flowfield
obtained at the spacing ratio L/D = 1.57 for which the Refer-
ence solver portrays deflected gap wake. As alluded to earlier,
the deflected gap flow shifts toward the narrower wake region
(i.e., lower downstream cylinder in this case), with the direc-
tion of the gap flow remaining stable over time. Consequently,
the predictive models should preserve this phenomenon while
accurately predicting the vortex-shedding cycle. It is found
from Fig. 7 that the predictions from Source quickly tran-
sitions to a single bluff-body wake, whereas the vorticity
contours obtained from the SL approach transform into a
hybrid quasi-in-phase wake. In contrast, however, the current
DPNN approach aligns impressively with the Reference data
across extended time horizons. This observation holds true
for the deflected gap flow direction and the overall vortex
shedding cycle.

Figure 8 showcases a comparison of the vorticity flowfield
at a spacing ratio L/D = 2.34, where the Reference solver

FIG. 6. Comparison of vorticity ω flowfields obtained using various benchmarks for different time instances for the spacing ratio L/D =
1.26 (single bluff-body wake, 17th testing sample).
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FIG. 7. Comparison of vorticity ω flowfields obtained using various benchmarks for different time instances for the spacing ratio L/D =
1.57 (deflected gap wake, 39th testing sample).

displays a flip-flopping (or chaotic) wake, i.e., the gap flow in
between the two downstream cylinders chaotically switches
direction. This is evident in Fig. 8 wherein the gap flow point-
ing downwards from the frame at t = 60�t has transitioned
to the top at t = 120�t . The predictions from DPNN seem to
capture this switch correctly up to frame t = 180�t , whereas,
for long temporal horizons, both the gap flow direction and
the vortex shedding cycles have visible differences. These
differences further augments when compared to the vorticity
flowfields obtained from Source and SL approaches.

Figure 9 exhibits a comparative analysis of vorticity flow-
fields at a spacing ratio of L/D = 3.37, which, as per the

Reference solver, corresponds to a fully developed quasi-
in-phase wake. The clockwise rotating vortices (highlighted
in blue) emitted from the freestream side of the upper
cylinder and the gap side of the lower cylinder, appear
to be in quasi-in-phase. The same can be mentioned for
the anticlockwise rotating vortices (highlighted in red) shed
from the freestream side of the lower cylinder and the
gap side of the upper cylinder. It is found that among
all the baselines, both DPNN and SL approaches perform
well, with the former preserving the vortex structure quite
remarkably for long-time horizons. However, the Source
depicts a chaotic wake and fails to reproduce the actual

FIG. 8. Comparison of vorticity ω flowfields obtained using various benchmarks for different time instances for the spacing ratio L/D =
2.34 (chaotic wake, 41st testing sample).
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FIG. 9. Comparison of vorticity ω flowfields obtained using various benchmarks for different time instances for the spacing ratio L/D =
3.37 (fully developed quasi-in-phase wake, 26th testing sample).

wake dynamics for the given spacing ratio and geometric
configuration.

Figure 10 highlights the vorticity flowfields obtained at the
spacing ratio of L/D = 3.89 from various benchmarks. The
flowfield obtained from the Reference solver indicates a fully
developed quasi-anti-phase wake. It is observed that the vor-
tices emitted from the freestream side of the two downstream
cylinders shed vortices in the opposite direction. This dynamic
nature of the wake is accurately retained by the present DPNN
approach. On the contrary, the SL approach produces a hybrid
wake, i.e., wake transitions into a hybrid wake, whereas the
Source yields a chaotic wake.

The exercise underscored the crucial need for developing
robust and precise models. These models should accurately
identify the underlying wake category and deliver sustained
temporal fidelity over extended periods. While the current sec-
tion provides a qualitative comparison of individual baselines
across multiple wake categories, the subsequent section will
present a quantitative analysis of the key variables of interest.

C. Quantitative comparisons in physical and
reduced feature space

In the preceding section, we employed velocity and vor-
ticity flowfields as a qualitative measure of performance

FIG. 10. Comparison of vorticity ω flowfields obtained using various benchmarks for different time instances for the spacing ratio L/D =
3.89 (fully developed quasi-anti-phase wake, 32nd testing sample).
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FIG. 11. Comparison of u, v-velocity components downstream of the bodies and its variation with time (39th testing sample).

accuracy. The network used in our study is trained purely
on physical space, specifically the velocity flowfields as a
collection of control volumes with staggered faces. Through
the actions of the kernels, convolutions transform these phys-
ical quantities into an equivalent dimensional feature space,
achieved through zero-padding. This process poses an en-
gaging question: Does the network retain its performance in
Fourier space or the reduced feature space offered by the first
three principal components?

We begin our investigation by adopting the 39th testing
sample, which depicts a deflected gap wake, as discussed
in Sec. IV B. In Fig. 11, we present the temporal variation
of the velocity components u, v at multiple spatial probes
using different baselines. These probes are placed at the
wake of the downstream cylinders along the centerline axis,
i.e., (npx, npy) = (48,32), (64,32), (80,32), where npx, npy

represents the nodal positioning in the x and y directions,
respectively. It must be noted here that the present DPNN
approach from hereon refers to m = 4 steps of unrolling dur-
ing training. Thus, an evaluation period up to t = 300�t is
a substantial period wherein multiple vortex-shedding cycles
are captured. It is found that the present DPNN framework
results in very good agreement with the modulated signals
obtained for both u, v velocity components, with the agree-
ment seemingly better for probes placed further away from
the bodies. The minor offset with the data obtained from the
Reference solver tends to happen for higher time values t . On
the contrary, however, this offset is rather early for the predic-
tions obtained from the Source solver. Moreover, for higher
values of time t , the predictions significantly differ from the
Reference.

Figure 12 displays the distributions of u-velocity across
several cross-sections aligned in the longitudinal direction
(along the rows) at multiple instances of time (along the
columns), obtained from multiple benchmarks. Barring some
minor differences, we found that the current framework aligns
exceptionally well with data obtained from the Reference
solver across various spatial locations and at different time in-
stances. Similar observations can also be drawn from Fig. 13,
where the u-velocity distributions are plotted along multiple
horizontal cross-sections at different instances of time. Nat-
urally, these observations are also reflected in Fig. 14 where
the mean absolute error, μ [calculated based on Eq. (5)] for
the recursive predictions with respect to the ground-truth data
are shown. It is found that the present DPNN-based approach
yields the lowest cumulative error over time, whereas the
data from the Source results in the highest growth of error
over time. As such, it can be mentioned that the DPNN ap-
proach has successfully enabled a hybrid framework that can
faithfully reproduce the dynamical behavior of the physical
quantity (i.e., velocity flowfields). It must be remarked that
the mean absolute error, μ may not always see a monotonic
rise. Depending upon the vortex shedding cycle, the error (i.e.,
difference between velocity flowfield computed by the model
and that obtained from the reference solver) may dip if the
vortices are out of phase.

We now compute the power spectral density (or PSD)
based on the velocity flowfields obtained from the predictive
frameworks. Figures 15(a)–15(c) presents the PSD obtained
from the velocity measurements at the npx, npy = (64, 32)
probe location with respect to different time ranges. For ref-
erence, node npx, npy = (0, 0) is indexed in the bottom left.
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FIG. 12. Comparison of the u-velocity at multiple vertical cross-
sections (39th testing sample).

The position npx, npy = (64, 32) represents the two-thirds
of the distance in streamwise direction and half the distance
in the lateral direction from the origin.. It is found that for a
relatively smaller time range of up to 100 �t , the PSD versus
frequency obtained from the DPNN aligns exceptionally well
with the data obtained from the Reference solver signifying
that the present framework is able to faithfully reconstruct
small as well as large scale structures in the velocity flowfield.
However, minor differences in the high-frequency range are
found for large recursive predictions (i.e., up to 300 �t), indi-
cating small-scale differences in the velocity flowfields. This
bodes well with the observations in Fig. 11, where observable
differences are found for larger recursive predictions.

We perform principal component analysis (or PCA) on
the predicted velocity fields obtained from the baselines to
evaluate the principal components (or PC) and their variation
with respect to time t . Figure 16 presents the first three PC’s
and their distribution with time. It is found that the temporal
variation of PC 1 and PC 2 indicates a periodicity in the data
obtained from the Reference solver, which seems to be cap-
tured correctly in predictions obtained by DPNN. Moreover,
the temporal variation in the PC 2, PC 3, and PC 3, PC 1
components are also in good overall agreement with the Ref-
erence solver. The protracted vortex shedding cycle obtained
from Source observed in Fig. 11 is also reflected in Fig. 16
in terms of the open-ended arc indicating a longer vortex

shedding time-period. As a result of these investigations, it
can be remarked that the performance of the DPNN approach
demonstrates consistency in both the physical and reduced
feature space.

D. Reconstructing flowfields: Global and local perspectives

As we delve deeper into investigating the present coarse-
grained surrogate model, it becomes increasingly clear that
both local and global fluid structures are crucial for the
overall representation of flow physics. Specifically, precisely
reproducing local boundary layer phenomenon and global
wake dynamics becomes essential. The intersection of these
scales—the local and the global—is where true accuracy
in understanding and predicting flow dynamics lies. To that
extent, we investigate the ability of the learned models to
correctly reconstruct the local mean velocity boundary layer
profile (with momentum thickness, θ ) as well as the mean
gap flow ŪG, while also evaluating the global fluid variables
in terms of kinetic energy KE and enstrophy �. This step
is not trivial given that the Source solver employs a masked
stair-step representation for the underlying body boundary for
computational efficiency.

It is also crucial to remark here that while three level
coarsening will naturally influence the local resolution of the
boundary layer profile it still retains a parabolic profile for
the upstream body, as will be shown later on. Thus at a given
level of grid resolution, the goal is to mitigate the difference
between the under-resolved boundary layer of the Source and
the resolved boundary layer of the Reference transferred to
the Source mesh. Hence, our goal is not a super-resolution
task, i.e., transferring a low-resolution solution to a higher
resolution, but instead to improve the solution given a fixed
computational mesh.

The momentum thickness, θ is evaluated as follows:

θ (x) =
[ ∫ δmax

0

ū(x, y)

ūe(x)

(
1 − ū(x, y)

ūe(x)

)
dy

]
. (6)

The time and space averaged streamwise velocity at the gap
[43], UG/U is evaluated as follows:

UG

U∞
= 1

U∞

∫ 0.5

−0.5
ū d

(
y

G

)
, (7)

where ū is the time-mean streamwise velocity at the gap. The
kinetic energy KE and enstrophy � are calculated as follows:

KE (t,U ) = 1

2

∫
L2(A)

U (t )2dA, (8)

�(t,U ) = 1

2

∫
L2(A)

ω(t )2dA. (9)

While KE is a popular choice for statistical evaluation of
fluid flows, enstrophy represents the rotational energy of the
flow and corresponds to the dissipative effects of the flow [55].

Figure 17 presents the boundary layer profile in the lat-
eral y direction just above the body boundary along the
cross-section drawn at the upstream cylinder for three dis-
tinct testing samples. The sharpness in the boundary layer
profile is a result of grid resolution, i.e., while the original
grid resolution employed to obtain the ground truth solution
was done using (nc = 768 × 512) it was later downsampled
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FIG. 13. Comparison of the u-velocity at multiple horizontal cross-sections (39th testing sample).

FIG. 14. Variation of the mean absolute error from various
frameworks with testing frames for the 39th testing sample.

FIG. 15. Comparison of the power spectral density of the stream-
wise velocity for multiple time ranges (39th testing sample). For
reference, node npx, npy = (0, 0) is indexed in the bottom left.

to (nc = 96 × 64). Despite the fact that downsampling high-
resolution data obtained from the Reference solver can distort
the actual boundary profile, reconstructing the steep rise in ve-
locity remains a critical element to be preserved. It is evident
that the inadequate treatment of the body boundary results in a
much thicker boundary layer profile obtained from the Source.
This results in an enlarged effective diameter of the body,
subsequently changing the equivalent effective spacing ratio.
Such alteration points to a potential difference in the wake

FIG. 16. Comparison of the first three principal components and
its variation with time (39th testing sample).
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FIG. 17. Comparison of the time-averaged boundary layer profile along the lateral y direction of the upstream body for (a) 28th, (b) 40th,
and (c) 46th testing samples.

category (single bluff-body wake instead of deflected gap
wake from Source in Fig. 7). On the contrary, the bound-
ary layer profile obtained from the DPNN approach agrees
quite well with the Reference data. This is also observed
in Table VII, where the momentum thickness θ/D has been
reported for three representative testing samples followed by
Fig. 18 where we plot the boundary layer momentum (BLM)
thickness θ/D obtained from multiple frameworks for all test-
ing samples arranged in ascending manner. It is clear that the
DPNN-based velocity flowfield indeed closely reconstructs
the θ/D values for all testing samples, barring very few out-
liers.

Figure 19 shows the streamwise mean gap velocity profile
distribution between the two downstream regions. The promi-
nent peaks adjacent to the parabolic profile near the center
are caused by the interaction of the separated shear layer
from the upstream cylinder with the gap side shear layers
of the downstream cylinders. This interaction penetrates the
gap flow. There seems to be a very good agreement of the
mean streamwise velocity profile at this gap obtained from
the DPNN approach with that of the Reference, whereas the
thicker boundary layer profile exhibited by the Source results
in a narrower gap profile. Finally, we also quantify the time
and space averaged streamwise velocity at the gap UG

U∞
in

Table VIII, where a very good agreement between DPNN
and Reference data has been noted. In addition, we also com-
pare the mean stream velocity (MSV) obtained from multiple
frameworks for all testing samples in Fig. 20. It is again found
that the DPNN-based velocity flowfields result in excellent
agreement of UG

U∞
as compared to the Reference solution. On

the contrary, however, the velocity flowfields obtained from
Source suffer from severe under predictions. Along the same
vein, it is thus clear that the corrections offered by the NN in

TABLE VII. Comparison of the boundary layer momentum
thickness θ/D for multiple testing samples.

Boundary layer momentum thickness (θ/D)

No. testing
samples Reference Source DPNN

28 0.852 0.527 0.697
40 0.91 0.723 0.902
46 1.01 0.812 0.895

the hybrid DPNN-based framework indeed produces solutions
that are consistent with actual physics.

To enable a comparison between global variables that rep-
resent interesting fluid phenomena, we focus on assessing the
enstrophy, symbolized by �, and the kinetic energy, repre-
sented by KE . Tables IX and X present the time-averaged
enstrophy � and kinetic energy KE obtained from multiple
benchmarks. It is found that the flowfields obtained from
Source exhibit considerably lower values of � and KE , indi-
cating loss of rotational and kinetic energy over time. In other
words, the flowfields obtained from Source result in signif-
icant decay of kinetic and rotational energy due to stronger
dissipation effects resulting from the coarse grid simulations.
In contrast, however, the time-averaged enstrophy and kinetic
energy obtained from DPNN are in excellent agreement with
the data obtained from the Reference solver. Given the fact that
the same numerical schemes are employed in the base solver
for both the Source and the DPNN (i.e., the solver embedded
in the loop), the network thus acts as a forcing function that
counters the strong numerical dissipation introduced by the
Source solver. This exercise, thus, clearly points towards the
ability of the DPNN approach to yield predictions that pre-
serve the local boundary layer profile along with the global
wake dynamics in a way that results in lower numerical dissi-
pation, as achieved by the Reference solver. In this light, it is
crucial to remark that the comparisons made in Tables VII-X
are sampled at or from different locations, i.e., while mo-
mentum thickness θ/D and mean streamwise velocity at the
gap UG

U∞
are sampled at specific discrete location, the mean

enstrophy, �/�0 as well as mean kinetic energy, KE/KE0 are
evaluated over the entire domain. Consequently, the relative
accuracy of predictions from DPNN for these quantities differ.
Hence comparison across of these aforementioned quantities
in Tables VII-X should be made with care. So far, we have
demonstrated the reliability of the model at an individual pre-

FIG. 18. Boundary layer momentum thickness (arranged in as-
cending order) obtained from various frameworks for all testing
samples.
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FIG. 19. Comparison of the time-averaged streamwise gap velocity profile in between the two downstream bodies for (a) 28th, (b) 40th,
and (c) 46th testing samples.

diction level. Additional evaluations for all the 50 previously
unseen test samples have also been performed and are shown
in Appendix A, supporting the conclusions drawn above.

E. Insights through model predictions

A key aspect of our research is the model’s ability to
produce not only robust but also practical and valuable pre-
dictions. As we advance, we will undertake a comprehensive
evaluation to further substantiate the model’s reliability in
producing results comparable to established literature. Specif-
ically, we will compare nondimensional parameters such as
the Strouhal number (St) and spacing ratio (L/D), which are
typically associated with the flow around two or more cylin-
ders. This broadens our evaluation beyond individual testing
samples, as was conducted in previous sections. To our knowl-
edge, this marks the first occasion when such an investigation
has been carried out for arbitrarily shaped bodies.

Despite the fact that the present dataset corresponds to
flowfields obtained for flow past arbitrary configurations, one
can still compare the distributions of the Strouhal number St
based on the dominant frequency of one of the two down-
stream cylinders with the spacing ratio L/D. The diameter in
the spacing ratio L/D is simply the projected height of the
upstream cylinder. This results in the distribution of the nondi-
mensional number (i.e., Strouhal number and spacing ratio),
which allows for comparison with Ref. [43], who report the
data obtained for flow past equidiameter cylinders computed
using an immersed boundary-based flow solver. Figure 21
compares the Strouhal number based on the dominant fre-
quency of the downstream cylinder (upper) as a function of
the spacing ratio L/D. Figure 21 offers multiple insights, viz.,
besides the observable oscillations in the Strouhal number, a
good overall fit between the solutions from the two different
methodologies is noted. This illustrates that despite the arbi-

TABLE VIII. Comparison of the time and space averaged
streamwise velocity at the gap UG

U∞ for multiple testing samples.

Mean streamwise velocity at the gap ( UG
U∞ )

No. testing
samples Reference Source DPNN

28 0.896 0.530 0.857
40 0.956 0.657 0.958
46 0.958 0.728 0.946

trary nature of the embedded bodies, the underlying frequency
of vortex shedding (nondimensionalized by the corresponding
diameter and freestream velocity) for a certain body at a given
spacing ratio exhibits similar patterns. Besides, it is also noted
that the transition from low-frequency single bluff-body wake
to deflected gap wake and subsequently to high-frequency,
chaotic wake happens at nearly the same spacing ratio (as
compared to Ref. [43]). This observation is especially im-
portant given that the Strouhal number accuracy is crucially
dependent on long-term recursive predictions, and deviations
cause significant differences in the vortex shedding frequency
[28], e.g., from Source (not shown here). Consequently, it
can be remarked that the present DPNN-based predictive
framework allow for useful and reliable predictions enabling
long-term temporal accuracy. While multiple factors, such as
shear layer growth, instabilities, gap flow, etc., contribute to
the frequency of vortex shedding, further investigations are
needed to probe the cause of the fluctuations.

In prior sections, we emphasized the necessity of eval-
uating the performance of the predictive model using test
samples representative of different wake categories. In this
section, we expand on this by presenting additional metrics
of interest. This exercise allows for inferring greater physical
insights from the predictions obtained so far, thus offering a
unique perspective on solutions obtained from the predictive
framework. Figure 22 represents the time-averaged enstrophy
� evaluated over the spacial domain for 300 testing frames for
all testing samples, color marked by the category of the wake.
It is found that there exist clear strata or bands of regions
belonging to certain wake categories, e.g., single bluff-body,
deflected gap, and chaotic wake, whereas these bands overlap
for the fully developed quasi-in/-anti-wake categories. This
indicates that the mean rotational energy of the flowfields is
lowest for the single bluff-body wake and highest for the fully
developed quasi-in-phase wake. This is not entirely surprising
as the vortices shed from the upstream cylinder in the fully

FIG. 20. Mean streamwise velocity at the gap (arranged in as-
cending order) obtained from various frameworks for all testing
samples.
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TABLE IX. Comparison of the normalized time-averaged enstro-
phy �/�0 for multiple testing samples.

Mean enstrophy (�/�0)

No. testing samples Reference Source DPNN

28 1.001 0.926 0.985
40 0.998 0.944 0.979
46 0.999 0.988 0.997

TABLE X. Comparison of the normalized time-averaged kinetic
energy KE/KE0 for multiple testing samples.

Mean kinetic energy (KE/KE0)

No. testing samples Reference Source DPNN

28 1.000 0.924 0.991
40 1.000 0.929 0.995
46 1.000 0.927 0.996

FIG. 21. Strouhal number along with the spacing ratio for the
arbitrarily shaped cylinders and its comparison with Chen et al. [43].
Strouhal number is evaluated based on the dominant frequency of the
downstream (upper) cylinder obtained for 300 frames.

FIG. 22. Comparison of the enstrophy � of the predictions ob-
tained from DPNN color-coded by the wake category. The color bars
represent the region within the maximum and the minimum � for
each wake category.

FIG. 23. Comparison of the L2 norm error of the predictions
obtained from DPNN.

FIG. 24. Comparison of the L2 norm error of the predictions
obtained from Source.

FIG. 25. Comparison of the enstrophy with L2 norm of the pre-
dictions from Source solver, sorted in ascending manner.

developed wake category penetrate the gap region while merg-
ing with vortices shed from the downstream cylinder, thereby
increasing the rotational energy of the flow:

L2,φ =

√√√√∑nc
i=1

(
φ

j
Ref,i − φ

j
baseline,i

)2

nx × ny
. (10)

Figure 23 illustrates the time-averaged L2 norm error com-
puted using Eq. 10 for each testing sample based on the
velocity field up to t f = 300 frames. The variables nx, ny are
the numbers of computational cells in the streamwise and
lateral directions, and φ represents the quantity of interest.
The samples are color-marked according to the wake cate-
gory they exhibit. Unsurprisingly, it is found that the testing
samples belonging to the chaotic wakes incur the highest
error. Additionally, the testing samples corresponding to the
deflected gap wake result in the lowest error from both DPNN
and Source, which can be attributed to the stable gap flow
(see Fig. 24). On the contrary, the testing samples exhibiting
fully developed quasi-in-phase wake result in the highest error
from the Source. To probe further, in Fig. 25, we compare
the normalized enstrophy � for the flowfields obtained from
Source and the corresponding L2 norm error, each in ascend-
ing order. It is found that there exists a clear relationship
between the dissipation resulting from the higher enstrophy in
the flowfields and the corresponding error. This suggests that
the error in predictions obtained from Source is predominantly
influenced by the numerical dissipation.

F. Generalizability towards out-of-distribution cases

A crucial component towards determining the performance
of a neural network-based predictive model is its generaliz-
ability to new, unseen datasets. As such, an evaluation with
test data precludes inherent biases of the training dataset.
Evaluations on out-of-distribution (OOD) datasets allows for
estimating the robustness of the model while potentially iden-
tifying the model’s inherent bias towards certain kind of data.
In addition, such practices hint towards the applicability of
the model to real-world data, which are likely to be OOD. We
have carefully designed experiments for OOD datasets which
allow us to perform the following:

1. Three equidiameter cylinders. This setup mimics the
existing one as shown in Fig. 2 with the exception of
the geometric symmetry induced by three equidiameter
cylinders at spacing ratios of L/D = [1.5, 3.5, 5.0] with
each cylinder having unit diameter. This serves as an
interesting problem considering that the model was never
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FIG. 26. Comparison of velocity flowfield obtained from DPNN
and Reference solver at multiple time instances for flow past the
three-cylinder case at L/D = 1.5.

trained for symmetry (the equidiameter cylinders result
in symmetric distribution about the x axis). Additionally,
this allows for a direct comparison of the wake category
with that obtained by Zheng et al. [42]. For the cho-
sen spacing ratio, the flowfield should exhibit deflected
gap wake, antiphase wake, and fully developed in-phase
wake, respectively.

2. Two side-by-side cylinders. This layout chooses two side-
by-side equidiameter cylinders which is contrary to the
present training setup to assess the performance of the
model for an entirely alternative problem of practical rel-
evance. The spacing ratios chosen for this case are L/D
= [1.5, 2.5, 4.0], which allow for direct comparison with
Bao et al. [56] and should yield flip-flopping (or chaotic)
wake, in-phase wake, and antiphase wake, respectively.

1. Test case 1: Three cylinders

Figure 26 presents the velocity flowfields obtained from the
DPNN approach and its comparisons with the data obtained
from the Reference solver at multiple time instances, i.e., three
equidiameter cylinders arranged in an equilateral triangle lay-
out for the spacing ratio L/D = 1.5. The Reference (or ground
truth data) solver depicts a deflected gap flow wake, with the
deflected gap flow being deflected towards the narrow wake
region (upper cylinder), which bodes well with the observa-
tions by Zheng et al. [42]. It is found that the predictions
obtained by the present DPNN approach also result in the
same wake dynamics. In addition, the vortex shedding cycle
result in an excellent agreement with the data obtained from
the Reference solver, which instills further confidence in the
long-term temporal predictions.

Figure 27 presents the velocity flowfields obtained from the
present approach and its comparison with the data obtained

FIG. 27. Comparison of velocity flowfield obtained from DPNN
and Reference solver at multiple time instances for flow past the
three-cylinder case at L/D = 3.5 and 5.

FIG. 28. Comparison of velocity flowfield obtained from DPNN
and Reference solver at multiple time instances for flow past the two
cylinder case at L/D = 1.5.

from the Reference solver at the spacing ratios L/D = 3.5 and
5, up to a total time of t = 500�t . The wake exhibited at these
spacing ratios clearly depicts antiphase and fully developed
in-phase patterns, respectively, as reported by Zheng et al.
[42]. The comparison shows that DPNN is able to preserve
the overall wake structures remarkably well for long time
horizons, irrespective of either in-phase or fully developed
antiphase wake.

2. Test case 2: Two cylinders

Figure 28 highlights the velocity flowfield obtained from
the present approach and its comparison with the correspond-
ing ground truth data at multiple time instances, i.e., two
side-by-side cylinders at a spacing ratio L/D = 1.5. The data
obtained from the Reference solver exhibits flip-flopping wake
pattern wherein the gap flow switches direction in a chaotic
manner and augers well with the observation by Bao et al.
[56]. This can be clearly seen in Fig. 28, e.g., the gap flow
at t = 1�t (directed towards the lower cylinder) switches
direction at t = 30�t (directed towards the upper cylinder).
Addressing such a tumultuous shift poses a significant chal-
lenge for any predictive framework [57,58]. For instance,
while DPNN accurately predicts the first two shifts, its effec-
tiveness diminishes when it comes to long-term forecasting,
particularly struggling with the accurate reconstruction of
chaotic wake dynamics. Nevertheless, considering the fact
that the proposed framework yields satisfactory performance
for predicting the chaotic dynamics for midtime horizons, this
acts as a promising direction for future research.

Figure 29 presents the velocity flowfield obtained from the
present DPNN approach and its comparison with the Refer-
ence data for spacing ratios L/D = 2.5 and 4 for multiple time
instances. The wake dynamics exhibit in-phase and antiphase
wake, respectively, which bodes well with the observations
made by Bao et al. [56]. It is found that the predictions

FIG. 29. Comparison of velocity flowfield obtained from DPNN
and Reference solver at multiple time instances for flow past the two
cylinder case at L/D = 4 and 2.5.
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from the present approach compare really well with the data
obtained from the Reference solver, especially for the an-
tiphase wake at L/D = 4 where it is seen to preserve the
symmetry of the flow about the centerline x axis. For the in-
phase wake obtained at L/D = 2.5, the flowfields diverge at
long-time predictions, i.e., t = 500�t . Therefore, given these
observations, it is encouraging to note that the current DPNN
approach is successful in faithfully reconstructing wake dy-
namics for periodic flows (both in-phase and antiphase) over
extended time horizons. Although the accuracy of predictions
for chaotic wakes is limited to midtime horizons, the progress
made so far offers a solid foundation for further refinement
and optimization.

3. Computational complexity

The hybrid DPNN framework incurs a similar compu-
tational cost as that of the base Phiflow solver, depending
on training or inference phase. This is because Phiflow is
embedded into the training itself. For instance, for one train-
ing sample within a batch of training dataset, the L2 norm
loss evaluation requires m unrolling steps, necessitating m
Source solver calls. Consequently, the cost associated for ev-
ery training sample scales with the number of Phiflow calls.
However, and more importantly, during inference we make
only 1 Phiflow call, per time step. Consequently, the inference
is relatively much quicker than training. In the present work,
we use an Intel Xeon E5-1650 CPU and a NVIDIA GTX
1080Ti GPU. The training period using a single GPU on 50
experiments having 100 frames each takes approximately 70
minutes per epoch.

V. CONCLUSIONS

This work implements a differentiable physics-assisted
neural network (DPNN) approach as a coarse-grained surro-
gate for unsteady incompressible flow past arbitrarily shaped
bodies for a low Reynolds number of around 100. The bodies
under consideration are arranged in a staggered equilateral
triangle manner at multiple spacing ratio 1.2 � L/D � 5.5 to
produce wakes of varying nature. The main conclusions from
the work can be summarized as follows:

(1) The DPNN-based predictive framework outperforms
the standard data-driven supervised learning approach and the
Source as a robust coarse-grained surrogate for unsteady fluid
flows past arbitrary bodies. This has been qualitatively and
quantitatively verified using multiple performance measuring
indices that indicate accurate reconstruction of local (bound-
ary layer) and global (wake dynamics) fluid phenomenon and
for both physical quantities and Fourier space or reduced
feature space.

(2) The framework has also been evaluated for out-of-
distribution test samples for cases that assess the ability of
the predictive framework to preserve symmetry (i.e., antiphase
wake), stable gap flow (i.e., deflected gap wake), long-term
temporal stability, chaotic dynamics (i.e., flip-flopping wake).
It is found that the framework is largely wake agnostic, i.e.,
it renders a good prediction irrespective of the wake category.
However, for the chaotic or flip-flopping wake, the framework
can only accurately maintain the chaotic switching of the gap
flow up to a certain midtime range.

(3) The L2 errors computed on the predictions obtained
from DPNN and Source are lowest for the deflected gap wake
owing to its stable gap flow as well as long vortex formation
length, the latter of which occupies the bulk of the compu-
tational space. The DPNN-based predictions seem to suffer
from the onset of chaotic dynamics, which later manifest into
inaccurate wake dynamics. The flowfields from Source seem
to suffer from large dissipation due to the underlying coarse
computational grid, which results in the continuous decay of
kinetic/rotational energy.

(4) The Strouhal number distributions with the spacing
ratio for the arbitrary bodies results in good agreement with
the literature based on flow past equidiameter bodies. Also,
the transition in the wake category from a single bluff-body
wake to a deflected gap wake and eventually to a chaotic
wake occurs at nearly the same spacing ratios. Moreover, we
discover similar categories and patterns in the wake exhibited
by the arbitrary bodies, except that in-phase and antiphase
wakes yield in quasi-in/-anti-phase wakes. Additionally, the
arbitrary nature of the bodies promotes an early vortex shed-
ding by the upstream cylinder and precludes quasi-in-phase
wakes from occurring at all.

(5) The enstrophy calculated based on the flowfields
obtained from DPNN exhibit clear strata of test samples
belonging to unique wake categories. This is particularly
noticeable for single bluff-body, deflected gap, and chaotic
wakes, whereas these delineations tend to overlap for the fully
developed quasi-in/-anti-phase wake categories.

In view of these discussions, we postulate that such a strat-
egy that incorporates both a low-fidelity solver as well as the
neural network as a hybrid predictive framework derives merit
from each component. Such a strategy paves the way for the
low-fidelity solver to incorporate as much of the underlying
physics as possible while the network learns the difference be-
tween low-fidelity solver and high-fidelity data. This specific
attribute is key that makes such a framework more promising
than purely data-driven supervised learning.

The present approach also shows potential merits as a
generic reconstruction strategy for near-body boundary fluid
properties. This is especially true for non body-conformal
sharp interface immersed boundary approaches for high Mach
and Reynolds numbers flows [59] that are prone to suffer from
heat flux reconstruction at the body boundary. Moreover, the
present learning framework would also be interesting avenue
for flows over rough surfaces [60,61] with practical relevance.
In addition, the generalizability of the approach opens up the
potential directions for learning the kinematics of dispersed
spherical particles [62].

The information related to the data and code supporting
this study are openly available in Ref. [63].
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FIG. 30. Comparison of the mean absolute error based on the
enstrophy for 300 frames for all the 50 testing samples via histogram.

APPENDIX A: COMPREHENSIVE EVALUATIONS ACROSS
ALL TESTING SAMPLES

Sections IV B and IV C evaluates representative testing
samples via quantities of interest such as KE , �, etc. To
present a comprehensive assessment of the present predictive
framework for all testing samples, we compute the mean ab-
solute error μφ for the predictions based on the kinetic energy
KE and enstrophy � as follows:

μφ = 1

n f

n f∑
j=1

|φRef − φbaseline|. (A1)

Figure 30 illustrates the mean absolute error evaluated
based on enstrophy μ� for n f = 300 frames for all 50 individ-
ual testing samples. Upon observation, it becomes evident that
the flowfields generated by our current DPNN methodology
consistently result in lower μ� for all the testing samples.
This observation also holds true for the mean absolute er-
ror based on kinetic energy μKE , as shown in Fig. 31. This
suggests that, without exception, the predictions derived from
the current DPNN methodology are consistently accurate and
significantly outperform the Source.

APPENDIX B: VERIFICATION OF WAKE FLOW REGIMES

In this section, we undertake a few additional verification
test cases for flow past three equidiameter cylinders placed
in an equilateral position, as adopted in Ref. [43] for mul-
tiple spacing ratio L/D. This exercise allows for qualitative
reproduction of the expected wake flow regimes for the given
spacing ratio, as reported in the literature and further affirms
the correctness of the numerical setup employed in the flow

FIG. 31. Comparison of the mean absolute error based on the ki-
netic energy for 300 frames for all the testing samples via histogram.

FIG. 32. Single bluff-body wake obtained from the Reference
solver at L/D = 1.2 depicted using (a) instantaneous velocity U
flowfield, (b) instantaneous vorticity ω flowfield, (c) time-averaged
velocity U flowfield, (d) lateral velocities with time based on the
probe placed just downstream of the cylinders, (e) PSD based on
lateral velocity downstream of upstream cylinder 1, (f) PSD based
on lateral velocity in the wake of the downstream cylinders 2,3, (g)
scaled enstrophy �/�0 with time, (h) scaled kinetic energy KE/KE0

with time, and (i) mean velocity at the gap u/U .

solver. In addition, this also sheds light towards the proce-
dure adopted to categorize the flowfield into a distinct wake.
Naturally, for the sake of fairness, we adopt the same con-
ditions in terms of Reynolds number Re and spacing ratio,
L/D, i.e., Re = 100 at L/D of (1.2, 1.5, 2.25, 3.5, 5). For
the aforementioned spacing ratios, the expected wake flow
should exhibit single bluff-body wake, deflected gap flow, flip-
flopping flow, antiphase flow, and fully developed in-phase
flow, respectively.

Figure 32 presents the characteristics of the flowfield ob-
tained at the spacing ratio L/D=1.2, which also agrees with
Ref. [43]. It can be found from Figs. 32(a) and 32(b) that the
velocity and corresponding vorticity flowfields depict a single
bluff-body wake, i.e., the cluster of bodies shed vortex as if a
single bluff-body. The time-averaged mean velocity flowfield
shown in Fig. 32(c) is descriptive of the zone of influence of
the downstream wake. The lateral v velocity measured just
downstream of the three cylinders exhibits periodicity in the
flow with time. The power spectral density (or PSD) calcu-
lated based on the lateral v velocities is shown in Figs. 32(e)
and 32(f) for upstream cylinder and downstream cylinders,
respectively. It is found that the downstream cylinders exhibit
identical dominant frequencies of vortex shedding f . In addi-
tion, Figs. 32(g) and 32(h) portray the scaled enstrophy �/�0

and scaled kinetic energy KE/KE0, that indicates periodicity
of the flowfield. Last, Fig. 32(i) indicates the mean gap flow
based on the time-averaged streamwise velocity normalized
by freestream velocity. It is found that at such small L/D, the
gap flow between the two downstream cylinders is weak and
exhibits a parabolic profile. With increasing L/D, the shear
layer emitted from the upstream cylinder is captured by the
gap.
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FIG. 33. Deflected gap wake obtained from the Reference solver
at L/D = 1.5 depicted using (a) instantaneous velocity U flowfield,
(b) instantaneous vorticity ω flowfield, (c) time-averaged velocity U
flowfield, (d) lateral velocities with time based on the probe placed
just downstream of the three cylinders, (e) PSD based on lateral
velocity downstream of the cylinder 1, (f) PSD based on lateral
velocity in the wake of the downstream cylinders 2,3, (g) scaled
enstrophy �/�0 with time, (h) scaled kinetic energy KE/KE0 with
time, and (i) mean velocity at the gap u/U .

Figure 33 depicts the attributes of the deflected gap wake
obtained at a spacing ratio L/D = 1.5, as also reported in the
independent work by Refs. [42,43]. Figures 33(a) and 33(b)
shows the instantaneous velocity U and vorticity ω flowfields,
which is typical of the deflected gap wake in terms of the long
vortex formation length with the gap flow pointing towards
the narrow wake region (i.e., upper downstream cylinder as
reported in Ref. [43] in Fig. 3 of their work). The temporal
stability of the gap flow is clearly shown in terms of the time-
averaged velocity field in Fig. 33(c). The lateral velocities
measured just downstream of the three cylinders are plotted
in Fig. 33(d), which fluctuate about a mean position. The PSD
evaluated based on these lateral velocities in the immediate
wake of the three cylinders are shown in Figs. 33(e) and
33(f), where the dominant frequency of the two downstream
cylinders are found to be identical. Figures 33(g) and 33(h)
present the temporal variation of the scaled enstrophy as well
as kinetic energy, with minor dissipation. Last, Fig. 33(i)
portrays the parabolic mean velocity at the gap. The spacing
ratio L/D = 1.5 is not large enough for the detached shear
layer from the upstream cylinder to be fully trapped within
the gap in this case, and they follow the freestream side of the
two downstream cylinders.

Figure 34 presents the features exhibited by a chaotic wake
for a spacing ratio L/D = 2.25, as also reported by Ref. [43].
This category of wake exhibits irregular switching of the gap
flow direction, which is indicated in the temporal variation of
the lateral velocities measured just downstream of the three
cylinders shown in Fig. 34(d). This transition in the gap is
chaotic in nature and also results in an altered frequency of
vortex shedding by the two downstream cylinders [as shown
in Fig. 34(f)]. The irregularity in the flow is also present in the

FIG. 34. Flip-flopping chaotic wake obtained from the Reference
solver at L/D = 2.25 depicted using (a) instantaneous velocity U
flowfield, (b) instantaneous vorticity ω flowfield, (c) time-averaged
velocity U flowfield, (d) lateral velocities with time-based on probe
placed just downstream of the cylinders, (e) PSD based on lateral
velocity downstream of upstream cylinder 1, (f) PSD based on lateral
velocity in the wake of the downstream cylinders 2,3, (g) scaled
enstrophy �/�0 with time, (h) scaled kinetic energy KE/KE0 with
time, and (i) mean velocity at the gap u/U .

temporal variation of the scaled enstrophy and kinetic energy,
as seen in Figs. 34(g) and 34(h). The shear layer shed from the
upstream cylinder now enters the gap region along the inner
side of the two downstream cylinders and cases two peaks in
the time-averaged gap flow [see Fig. 34(i)].

FIG. 35. Antiphase wake obtained from the Reference solver at
L/D = 3.5 depicted using (a) instantaneous velocity U flowfield,
(b) instantaneous vorticity ω flowfield, (c) time-averaged velocity
U flowfield, (d) lateral velocities with time based on the probe
placed just downstream of the cylinders, (e) PSD based on lateral
velocity downstream of upstream cylinder 1, (f) PSD based on lateral
velocity in the wake of the downstream cylinders 2,3, (g) scaled
enstrophy �/�0 with time, (h) scaled kinetic energy KE/KE0 with
time, and (i) mean velocity at the gap u/U .
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FIG. 36. Fully developed in-phase wake obtained from the Refer-
ence solver at L/D = 5 depicted using (a) instantaneous velocity U
flowfield, (b) instantaneous vorticity ω flowfield, (c) time-averaged
velocity U flowfield, (d) lateral velocities with time based on probe
placed just downstream of the cylinders, (e) PSD based on lateral
velocity downstream of upstream cylinder 1, (f) PSD based on lateral
velocity in the wake of the downstream cylinders 2,3, (g) scaled
enstrophy �/�0 with time, (h) scaled kinetic energy KE/KE0 with
time, and (i) mean velocity at the gap u/U .

Figure 35 indicates the characteristics of the antiphase
wake obtained at a spacing ratio L/D = 3.5, as also reported
by Refs. [42,43]. The vorticity flowfield shown in Fig. 35(b)

indicates the counter-rotating vortices while maintaining sym-
metrical distribution along the centerline x axis, resulting in an
identical dominant frequency of vortex shedding by the two
downstream cylinders. Besides, this category of wake exhibits
a uniform variation of the lateral velocity as well as the scaled
enstrophy and kinetic energy, as also seen in the distribution of
scaled enstrophy and kinetic energy in Figs. 35(g) and 35(h).
Further, Fig. 35(i) indicates greater penetration of the shear
layer emitted from the upstream cylinder, as evident from the
prominent peaks in the gap flow profile.

Figure 36 presents the features of a fully developed in-
phase wake, obtained at a spacing ratio L/D = 5, as also
confirmed by Refs. [42,43]. For this category of wake, the vor-
tices are also shed by the upstream cylinder and are swallowed
by the gap between the two downstream cylinders and later
merge with the vortices shed by the two downstream cylin-
ders. Besides, such a category of wake results in a uniform
variation of the lateral velocity as well as scaled enstrophy,
and kinetic energy, resulting in an identical dominant fre-
quency of vortex shedding by the two downstream cylinders.

Figure 37 presents the time-averaged mean velocity flow-
fields of all the 100 datasets, arranged in increasing L/D
values (left to right, top to bottom), for the time range 150 s
� t � 300 s. It can be found that the first few datasets exhibit
a single bluff-body wake. At slightly higher spacing ratios,
the wake transitions to wake interference as the downstream
cylinders are fully submerged in the wake of the upstream
cylinder. At moderate spacing ratios, the wake pertains to
proximity + wake interference due to partial immersion of
the downstream cylinders within the wake of the upstream

FIG. 37. Time-averaged velocities fields obtained from the Reference solver for all datasets arranged in the order of ascending spacing ratio.
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FIG. 38. Comparison of phase difference based on the v velocity probed in the wake of the two downstream cylinders with respect to
spacing ratio L/D obtained from the Reference solver.

cylinders. At the high spacing ratio values, the wake of the
upstream cylinders has minimal interference with the down-
stream cylinders and hence corresponds to the no-interference
wake category.

Besides probing the velocity fields, we analyze the tem-
poral distribution of the cross-stream velocities probed in
the immediate wake of the two downstream cylinders. This
enables us to further categorize the wake into in-phase (or
quasi-in-phase) and antiphase (quasi-anti-phase). Specifically,
we use cross-correlation to evaluate the phase difference be-
tween the two downstream cylinders using their respective
cross-stream v-velocities. Figure 38 presents the phase dif-
ference φ2,3 of the 100 training datasets in terms of their
spacing ratio L/D. It can be observed that there is a sudden
jump in the φ2,3 between the single bluff-body wake and
deflected gap wake. This result bodes well with the observa-
tions reported in Ref. [43]. In addition, there exists a clear

difference in the φ2,3 values for the quasi-anti-phase wake
and fully developed quasi-anti-phase wake flow, which is in
line with the expectations. It is also found that unlike the
reported observations in Ref. [43], the present study shows
a transition from quasi-anti-phase wake to fully developed
quasi-in-phase wake due to early shedding of the vortices by
the upstream cylinder. Consequently, the arbitrary nature of
the bodies promotes such a transition and precludes quasi-in-
phase wake from appearing at all. Figures 39 and 40 show
the continuous wavelet transformation on the cross-stream
velocities for two representative samples that depict quasi-
anti-phase and fully developed quasi-in-phase wake flow,
respectively. Finally, Fig. 41 presents the effective Reynolds
number Re for all the individual datasets calculated based
on the height of the upstream cylinder Hc1. It is found that
the Re values between 75 � Re � 100, among the 100
experiments.

FIG. 39. Continuous wavelet transformation and the associated frequency distribution obtained using the Reference solver for the v-velocity
distributions of the 83rd dataset. The upper row corresponds to the v velocity obtained from the wake of the upper downstream cylinder (black),
whereas the lower row corresponds to the lower downstream cylinder (blue).
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FIG. 40. Continuous wavelet transformation and the associated frequency distribution obtained using the Reference solver for the v-velocity
distributions of the 95th dataset. The upper row corresponds to the v velocity obtained from the wake of the upper downstream cylinder (black),
whereas the lower row corresponds to the lower downstream cylinder (blue).

APPENDIX C: FINE TUNING NEURAL NETWORK
ARCHITECTURE AND PARAMETERS

1. Adaptive learning rate

While choosing a constant learning rate, η is straight-
forward, it may heavily influence the decay of the loss
function. For instance, an extremely low η may lead to low
convergence, whereas for relatively high η may result in diver-
gence or oscillatory convergence. This issue can be remedied
using a learning rate schedule, i.e., start with a relatively
high η and progressively reduce it with training epochs. The
influence of a constant and a variable η is shown in Fig. 42.
It is found that while the loss decays with training epochs,
the influence of learning rate η on the loss is minimal. We
incorporate a variable learning rate for the remainder of the
study. We remark that 50 epochs are sufficient for obtaining a
convergence in the training loss.

2. Residual network: ResNet

Figure 43 describes a typical residual network (or ResNet)
architecture [51] wherein multiple ResNet blocks have been
connected in series with skip-connections in between. Each
ResNet block comprises two convolutional layers having 32
filters, each with a kernel of size of [5 × 5]. The input
is first fed to a convolutional layer whose output is then
fed to a ResNet block. There are a total of nine ResNet
blocks, the output of which is activated by the rectified lin-
ear activation function (or ReLU) activation function. Such
a deep network results in a total of 516 674 trainable
parameters.

3. Convolutional neural network: CNN

A fully convolutional neural network (or CNN) architec-
ture has been adopted [64]. The CNN architecture comprises

FIG. 41. Comparison of the effective Reynolds number Re for all 100 individual datasets based on the characteristic length scale of the
upstream cylinder (cylinder height Hc1).
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FIG. 42. Influence of learning rate schedule on the convergence.
The dash-dotted line indicates the sequential decay of the learning
rate value with epochs.

input, hidden, and output layers. For the present case, we have
adopted 11 hidden layers of kernel size = [5 × 5] and filters
varying as (4, 8, 16, 32, 64, 128, 64, 32, 16, 8, 4). To preserve
the size of the inputs, we employ padding while also using the
ReLU activation function. No downsampling or max-pooling
was applied throughout the CNN layers. This setting resulted
in a total of 546 478 trainable parameters.

4. U-Net

A U-Net-based architecture has been adopted from
Ref. [54] that comprises an encoder path followed by a
decoder path with skip connections between each level of
encoding and decoding. Each encoding level consists of two

convolutional layers followed by a [2 × 2] Maxpooling oper-
ator for downsampling. The number of filters for each level is
chosen as (4, 8, 16, 32), with the final convolutional block
comprising 64 filters, each having a fixed kernel size of
[5 × 5]. The output from the [2 × 2] Upsamping operator is
concatenated with the corresponding output from the encoded
level. The resulting feature maps are then fed to a convolution
layer. The number of filters in each convolution layer in the
decoded path is chosen as (32, 16, 8, 4). This architecture
resulted in a total of 520 342 trainable parameters.

5. Diluted residual networks: DilResNet

A dilated residual network (or Dil-ResNet) architecture
has been adopted from an independent work by Ref. [30],
who presented this architecture for 2D as well as 3D tur-
bulent flows with an aim to learn high-resolution turbulent
fluid dynamics using low spatial and temporal resolutions.
This architecture employs an encoder and decoder (i.e., using
MaxPooling and Upsampling, respectively), each containing a
single convolutional layer without any activation. In addition
to the encoder and decoder layer, a processor is connected
in between to enable the encode-process-decode paradigm.
The processor consists of four dilated CNN blocks connected
in series and residual connections between them. Each CNN
blocks comprise 7 dilated CNN layers, each having n f = 36
number of filters, along with dilation rate DR ∈ 1, 2, 4, 8, 4,
2, 1 and ReLU activation. These values have been kept the
same as the original work by Ref. [30] to allow for a fair
comparison. The DilResNet architecture results in a total of
548 055 trainable parameters.

FIG. 43. A residual network architecture with skip connections.
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6. ResNeXt

A ResNeXt architecture has been adopted from Ref. [52]
that in the original work showed improved performance
compared to base ResNet architecture for image classifica-
tion tasks. The ResNeXt architecture proposed by Ref. [52]
comprises a branched design that mimics the split-transform-
merge strategy on the base ResNet design. The spitting is
performed once the input is convolved using n f = 32 filters
into a number of branches, each having the same topology.
The number of branches (or Cardinality) = 5 is chosen for the
present study. Each branch executes transformation on the re-
sulting input by two layers of convolutions followed by Batch
Normalisation and ReLU activation. Finally, the outputs from
each branch are concatenated to perform merge operation.
This is followed by another convolution layer which is merged
with a skip connection from the input. This operation is
repeated 9 times, resulting in a total of 524 322 trainable
parameters.

7. Dense convolution network: DenseNet

A dense convolution network (or DenseNet) architecture
has been adopted from Ref. [53] that was originally imple-
mented for object recognition tasks. In this architecture, each
layer is connected to every other layer in a feed-forward man-
ner, allowing for better feature propagation, supporting feature
reuse, and alleviating the vanishing gradient problem. In this
architecture, the inputs are initially passed through a convo-
lution layer with n f = 64 filters, followed by a collection of
dense layers (or dense blocks) and transition layers, connected
in series. In each dense layer, the inputs pass through a bot-
tleneck layer wherein the first convolution layer expands the
number of filters to 4 × 32 and then a second convolution
layer containing n f = 32 filters. To further reduce the number
of feature maps, the output from the bottleneck layer is passed
through the transition layer. There are a total of three Dense
layers and 2 transition layers, resulting in a total of 566 578
trainable parameters.
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