
PHYSICAL REVIEW E 109, 055303 (2024)

Spectral Galerkin mode-matching method for applications in photonics
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Many engineered photonic devices can be decomposed into parts where the material properties are inde-
pendent of one or more spatial variables. Numerical mode-matching methods are widely used to simulate
such photonic devices due to the efficiency gained by treating the separated variables analytically. Existing
mode-matching methods based on piecewise polynomials are more accurate than those based on the global
Fourier basis or low-order finite difference, finite-element schemes, but they may exhibit numerical instability
when a large number of eigenmodes are used. To overcome this difficulty, we introduce the spectral Galerkin
mode matching method (SGMM) based on a global piecewise-polynomial basis and a Galerkin method to solve
the eigenmodes. It is shown that the numerical eigenmodes of SGMM preserve the pseudo-orthogonality of
the analytical eigenmodes. This property leads to linear systems that are typically well-conditioned. Numerical
examples indicate that SGMM is more stable than other mode matching methods, and gives reliable results even
when a large number of eigenmodes are used.
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I. INTRODUCTION

The mode-matching method, also known as the modal
method or eigenmode expansion method [1–9], is a popular
computational method for linear partial differential equa-
tions (PDEs) for which separation of variables is possible in
different parts of the domain of definition. In the standard
case, a single variable is identified and divided into intervals
such that the PDE is separable in each region correspond-
ing to an interval [1–4]. The separation of variables leads
to an eigenvalue problem and the solution of the PDE is
then expanded in the eigenmodes with unknown coefficients.
These coefficients are solved from a linear system obtained by
imposing the interface conditions between the neighboring re-
gions. The separated variable is often a variable in a Cartesian
coordinate system [1–4], but it can also be the radial or an-
gular variable in a cylindrical coordinate system [10–12]. For
three-dimensional (3D) problems, the standard mode match-
ing method gives rise to 2D eigenvalue problems involving
two spatial variables [13]. It is also possible to separate two
variables, so the eigenvalue problems are one-dimensional,
but the expansion “coefficients” are functions satisfying sim-
pler 2D PDEs [14]. Clearly, the mode-matching method is
only applicable to special linear PDEs for physical structures
that are locally invariant in the separated variable(s). But
when it is applicable, the mode-matching method can be quite
efficient, because there is no need to discretize the separated
variable(s).

Typically, the mode-matching method is used to solve a
PDE boundary value problem [1–4,10–12]. It reduces the
boundary value problem to a linear system Au = f , where
u is a column vector related to the solution, for example,
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the unknown expansion coefficients in the different regions.
The method can also be used to solve eigenvalue problems
[15,16]. If the original PDE describes an eigenvalue problem
with eigenvalue μ, then the mode-matching method produces
a homogeneous linear system A(μ)u = 0 for a matrix A that
depends on μ [15,16]. The original PDE eigenvalue prob-
lem should not be confused with the eigenvalue problems
obtained from the separation of variables in different re-
gions. The latter can only be solved assuming μ is known.
This implies that the matrix A can only be evaluated for
a given μ. Therefore, A(μ)u = 0 is a nonlinear eigenvalue
problem. We are interested in the mode-matching method
for applications in photonics. The governing PDEs are the
linear frequency-domain Maxwell’s equations. Designed and
fabricated photonic structures and devices often have very
small but simple geometric features, and the mode-matching
method is often applicable.

To implement a mode-matching method, one needs to
decide how to solve the eigenvalue problem in each region
and how to enforce the interface conditions. The classical
approach is to solve the eigenvalue problems analytically
[2–4], but, typically, this is only possible when the eigenvalue
problems are given by ordinary differential equations with
piecewise constant coefficients. If the eigenvalue problems are
solved by a numerical method, the mode-matching method is
referred to as a numerical mode matching method (NMM).
Existing NMMs have utilized the finite difference method
[17,18], the finite element method [10,19–23], spectral el-
ement method [24–29], Fourier series expansions [30–44],
and polynomial-based spectral methods [15,16,45–56], etc.
The interface conditions between two neighboring regions are
typically enforced by matching the coefficients in the eigen-
mode expansions (i.e., mode matching), but the NMMs are
more flexible; the interface conditions can also be enforced by
matching the solution at some sampling points (collocation)
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[15,16,46] or the coefficients in a standard basis (e.g., Fourier
basis) [32,45]. Since the NMMs are applicable to a wider
range of structures and are relatively simple to implement,
they are widely used in practice.

The performance of a NMM depends on how the eigen-
value problems in different regions are solved, how the
interface conditions are enforced, and the conditioning of ma-
trix A. Standard low-order finite-difference and finite-element
methods are easy to use, but they have limited accuracy. Since
the eigenmodes in each region are typically only piecewise
smooth, the method based on a global Fourier basis con-
verges slowly [33,50]. Spectral methods based on piecewise
polynomials exhibit high orders of accuracy for computing
the eigenmodes [50,57]. The size of matrix A is related to
the number of eigenmodes used to represent the solution in
each region. For NMMs, the number of numerically calculated
eigenmodes for each region is finite, and it is often conve-
nient to use all of them to represent the solution. Existing
numerical studies indicate that NMMs using polynomial-
based spectral methods perform better than other methods
[15,16,45–49,55]. To reach a desired level of accuracy, the
matrix A in a polynomial-based spectral NMM is usually
much smaller than those in NMMs based on finite-difference
or finite-element methods. In addition to the size, the condi-
tion number of A is also important. If A is ill-conditioned,
the accuracy of the solution may be limited, and iterative
methods for solving Au = f may have difficulty to converge.
The conditioning of matrix A is also relevant to eigenvalue
problem A(μ)u = 0. The matrix A should be singular at the
exact eigenvalue μ∗, but if for μ near μ∗, A(μ) is severely
ill-conditioned, then it can be difficult to determine μ∗.

In many cases, the eigenvalue problems obtained from
separation of variables are defined on an infinite interval and
approximated using perfectly matched layers (PMLs) [58,59].
A PML is a complex coordinate transform that turns outgoing
waves to exponentially decaying solutions, and it is widely
used to truncate unbounded domains in numerical simulation
of waves. Existing polynomial-based spectral NMMs, includ-
ing the polynomial modal method (PMM) [45,47] and the
pseudospectral modal method (PSMM) [16,46,49], produce
coefficient matrices that are ill-conditioned when PMLs are
present, and consequently, do not perform well when the size
of matrix A is large. To overcome this difficulty, we develop a
spectral Galerkin mode matching method (SGMM) in this pa-
per. The spectral Galerkin method is a Galerkin method based
on a family of global basis functions which are piecewise
polynomials and satisfy boundary and interface conditions
[60,61]. In SGMM, the spectral Galerkin method is used to
solve the eigenvalue problems obtained from separation of
variables, and the interface conditions between neighboring
regions are enforced by matching the numerically calculated
eigenmodes. It turns out that the eigenmodes calculated by the
spectral Galerkin method preserve the pseudo-orthogonality
of the analytic eigenmodes. As a result, the mode-matching
process of SGMM is particularly easy to implement. More
importantly, the matrix A in SGMM typically has a much
smaller condition number than those in other polynomial-
based spectral NMMs.

The rest of this paper is organized as follows. In Sec. II,
we recall the basic steps of the mode-matching method for

simulation of time-harmonic electromagnetic waves. In
Sec. III, we present the spectral Galerkin method for solving
the eigenmodes and describe the mode-matching process that
gives rise to the coefficient matrix A. In Secs. IV and V,
we show numerical examples to demonstrate the improved
performance of SGMM. The paper is concluded with some
remarks in Sec. VI.

II. MODE-MATCHING METHOD

For many applications in photonics, light can be adequately
described as an electromagnetic wave. In a nonmagnetic
medium, a time-harmonic electromagnetic wave satisfies the
following frequency-domain Maxwell’s equations:

∇ × E = ik0H, ∇ × H = −ik0εE, (1)

where i is the imaginary unit, k0 = ω/c = 2π/λ is the free-
space wave number, ω is the angular frequency, c is the
speed of light in vacuum, λ is the free-space wavelength,
ε = ε(x, y, z) is the relative permittivity, E is the electric field,
H is the scaled magnetic field [magnetic field multiplied by
the free-space impedance (≈377 �)], and the omitted time
dependence is exp(−iωt ). The relative permittivity ε can be
written as ε = n2, where n is the refractive index. In the
following, we briefly describe the mode-matching method
based on 1D eigenmodes. The method is applicable to 2D
structures that are invariant in one spatial variable and it is
also applicable to rotationally symmetric structures. Typical
examples for 2D structures are open dielectric waveguides.
The cross sections of two waveguides that are invariant in y
are shown in Fig. 1. A so-called bull’s eye structure, which is
a uniform metal slab with a circular hole and some annular
grooves [11,62], is a rotationally symmetric structure. The
schematic representation of a bull’s eye structure with three
annular grooves is shown in Fig. 2.

As indicated in Figs. 1 and 2, some 2D structures and ro-
tationally symmetric structures can be divided into a number
of regions where ε depends only on one spatial variable z.
In each region, an electromagnetic field may be expanded in
transverse electric (TE) and transverse magnetic (TM) modes.
These are 1D eigenmodes characterized by scalar functions
of z satisfying some ordinary differential equation (ODE)
eigenvalue problems. When z is unbounded, the eigenvalue
problems have continuous spectra that are difficult to treat
numerically. A widely used technique is to truncate z to a
finite interval using PMLs [58]. The resulting ODE eigenvalue
problems on the finite interval have only discrete eigenvalues.
We assume z is truncated to an interval I = (z0, z∗) based on
a PML that replaces z by a complex-valued function ẑ(z) such
that dẑ/dz = s(z) and s(z) �= 1 only for z near z0 or z∗. The z
components of the electromagnetic fields, denoted as Ez and
Hz, of TE and TM modes are given by

Ez = 0, Hz = [η(e)]2φ(e)(z)V (e)(x, y), (2)

Hz = 0, εEz = [η(h)]2φ(h)(z)V (h)(x, y), (3)

respectively, where the superscripts (e) and (h) signify the TE
and TM modes, respectively. The mode pairs {φ(e), η(e),V (e)}
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FIG. 1. (a) A rib waveguide consisting of a slab (of thickness t)
with a rib (of width w and height h). It is assumed that (z1, z2, z3) =
(0, t, t + h) and x2 = −x1 = w/2. (b) A strip-loaded waveguide with
a rectangular strip (of width w and height h), a silica buffer layer (of
thickness t), and a silicon substrate. It is assumed that (z1, z2, z3) =
(0, t, t + h) and x2 = −x1 = w/2.

and {φ(h), η(h),V (h)} satisfy the following 1D eigenvalue
problems:

Lpφ
(p) = [η(p)]2wp(z)φ(p), z ∈ I, (4)

φ(p)(z0) = φ(p)(z∗) = 0, p ∈ {e, h}, (5)

and the 2D Helmholtz equations:

∂2V (p)

∂x2
+ ∂2V (p)

∂y2
+ [η(p)]2 V (p) = 0, p ∈ {e, h}, (6)

where

Le = d

dz

[
1

s(z)

d

dz

]
+ k2

0ε(z)s(z), we(z) = s(z)

FIG. 2. Schematic representation of the bull’s eye structure with
three grooves.

and

Lh = d

dz

[
1

ε(z)s(z)

d

dz

]
+ k2

0s(z), wh(z) = s(z)

ε(z)
.

In Eqs. (2) and (3), we include [η(e)]2 and [η(h)]2 in Hz and εEz,
respectively, to simplify the expressions for other components
of the electromagnetic field. Simple zero Dirichlet boundary
conditions, i.e., (5), are used to terminate the PMLs.

The solutions of eigenvalue problems (4) and (5) are dis-
crete sequences {φ(e)

j , η
(e)
j }∞j=1 and {φ(h)

j , η
(h)
j }∞j=1. Typically,

the eigenvalues of the same polarization (TE or TM) are all
distinct. Let 〈·, ·〉e and 〈·, ·〉h be pseudo-inner-products given
by

〈
φ

(p)
i , φ

(p)
j

〉
p
=

∫ z∗

z0

wp(z)φ(p)
i (z)φ(p)

j (z) dz, (7)

then it is easy to verify that〈
φ

(p)
i , φ

(p)
j

〉
p
= 0, if η

(p)
i �= η

(p)
j , p ∈ {e, h}. (8)

In other words, the different eigenmodes of the same polar-
ization (TE or TM) are typically pseudo-orthogonal to each
other.

For scattering problems, the incident wave may come from
z = ±∞. In that case, the total field is not outgoing as z →
±∞. Since the TE and TM modes are calculated using PMLs,
they are only compatible with outgoing waves. Therefore, the
total field cannot be expanded in these 1D eigenmodes. To
overcome this difficulty, we need to solve a 1D scattering
problem in each region for the given incident wave, then ex-
pand the difference between the total field and the 1D solution
in the TE and TM modes [14,63]. Note that the incident wave
and the total field are associated with the entire structure that
consists of a number of regions where ε depends only on z,
and the 1D solutions are specific to each region.

As shown in Fig. 1, a 2D structure that is invariant in y
and piecewise invariant in x can be divided into regions (or
segments) corresponding to different intervals of x. In the
lth region for x ∈ (xl−1, xl ), the relative permittivity ε is a
function of z only. If we denote all quantities in this region by
an additional superscript (l ) and assume that the field depends
on y as exp(iβy) for a propagation constant β, then the total
field in the lth region can be written as

E (l )
z = 1

ε(l )

∞∑
j=1

[
η

(l,h)
j

]2
φ

(l,h)
j V (l,h)

j + E (l,1D)
z , (9)

H (l )
z =

∞∑
j=1

[
η

(l,e)
j

]2
φ

(l,e)
j V (l,e)

j + H (l,1D)
z , (10)

E (l )
y = i

∞∑
j=1

[
β

ε(l )s

dφ
(l,h)
j

dz
V (l,h)

j − k0φ
(l,e)
j

∂V (l,e)
j

∂x

]

+ E (l,1D)
y , (11)

H (l )
y = i

∞∑
j=1

[
β

s

dφ
(l,e)
j

dz
V (l,e)

j + k0φ
(l,h)
j

∂V (l,h)
j

∂x

]
,

+ H (l,1D)
y , (12)
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where

V (l,p)
j = [

a(l,p)
j eiα(l,p)

j (x−xl−1 ) + b(l,p)
j e−iα(l,p)

j (x−xl )]eiβy, (13)

α
(l,p)
j =

√[
η

(l,p)
j

]2 − β2, p ∈ {e, h}, (14)

a(l,p)
j and b(l,p)

j are unknown coefficients, E (l,1D)
z , H (l,1D)

z ,
E (l,1D)

y , and H (l,1D)
y are the z and y components of the 1D so-

lution in the lth segment. The complex square root in Eq. (14)
follows a branch cut along the negative imaginary axis. For the
case xl−1 = −∞ or xl = +∞, we set a(l,p)

j = 0 or b(l,p)
j = 0,

respectively. If there is another region corresponding to x ∈
(xl , xl+1), then the tangential components of the total field
should be continuous at x = xl . That is,

E (l )
z

∣∣
x=xl

− E (l+1)
z

∣∣
x=xl

= 0, (15)

H (l )
z

∣∣
x=xl

− H (l+1)
z

∣∣
x=xl

= 0, (16)

E (l )
y

∣∣
x=xl

− E (l+1)
y

∣∣
x=xl

= 0, (17)

H (l )
y

∣∣
x=xl

− H (l+1)
y

∣∣
x=xl

= 0. (18)

In the classical mode-matching method, the eigenvalue
problems (4) are solved analytically. This is possible when
ε is piecewise constant in z. If η(p), p ∈ {e, h} is known, the
eigenfunction φ(p) can be written down analytically in each
interval of z where ε is a constant. In a PML layer where
s(z) �= 1, the eigenfunction can be expressed in terms of ẑ.
Using the boundary conditions at z0 and z∗, and the interface
conditions at the discontinuities of ε, a nonlinear equation for
η(p) can be derived and solved by a root-finding method. Next,
one needs to truncate the infinite expansions in Eqs. (9)–(12),
and set up a system of equations for the unknown expansion
coefficients. If N TE modes and N TM modes are retained,
the interface conditions (15)–(18) can be approximated by
multiplying Eq. (15) by s(z)φ(l,h)

i (z), Eqs. (16) and (17) by
s(z)φ(l,e)

i (z), Eq. (18) by s(z)/ε(l )(z)φ(l,h)
i (z), and integrating

with respect to z on (z0, z∗) for all i ∈ {1, 2, . . . , N}. This leads
to a linear system

Au = f , (19)

where u is a vector for all unknown coefficients a(l,p)
j and

b(l,p)
j , and f contains the integrals related to the 1D solutions.

However, the analytic mode matching method is often difficult
to implement. Even if ε is piecewise constant, the eigenvalues
[η(p)]2 are, in general, complex due to PMLs and the possible
complex value of ε. It is not easy to calculate the complex
roots of a nonlinear equation systematically, and it is not
obvious how to choose a finite number of modes.

A NMM solves the eigenvalue problems (4) by a numer-
ical method. The electromagnetic field in each segment can
be approximated by a sum of the 1D solution and a finite
number of numerically calculated TE and TM eigenmodes.
Using the continuity conditions (15)–(18), we can obtain
the linear system (19), where u is a vector of the unknown
expansion coefficients or the field components at the inter-
faces. A variety of numerical methods can be used to solve
the 1D eigenvalue problems. Since ε is usually piecewise
smooth, spectral methods based on piecewise polynomials

have clear advantages as far as the 1D eigenvalue prob-
lems are concerned. The accuracy of a NMM depends on
how the 1D modes are solved and how the interface con-
ditions are enforced, and is often limited by the regularity
of electromagnetic field. Existing numerical studies indicate
that NMMs based on piecewise polynomials are more ac-
curate than NMMs based on conventional finite-difference,
finite-element, and Fourier series methods [15,16,45–47,55].
Existing NMMs using polynomial-based spectral methods
include the polynomial modal method (PMM) and the pseu-
dospectral modal method (PSMM) [15,45,49]. For PMM, the
interface conditions are implemented by matching expansion
coefficients in some polynomial bases [45,47]. For PSMM,
the interface conditions are implemented by collocation, thus,
u in Eq. (19) is a vector of the electromagnetic field at
the interfaces [15,16,49]. For many problems, the condition
number of matrix A obtained by PSMM or PMM is very
large. A large condition number limits the achievable accu-
racy of the numerical solutions and renders standard iterative
methods ineffective. If the original problem for Maxwell’s
equations is an eigenvalue problem, where the eigenvalue μ

may be the frequency ω (or free-space wave number k0) or the
propagation constant β, there is no incident wave, and thus
f = 0. When a mode-matching method is used, the matrix A
depends on μ. Thus, Eq. (19) becomes A(μ)u = 0, and it is
a nonlinear eigenvalue problem. If μ∗ is the exact solution,
the conditioning of A(μ) for μ near μ∗ is highly relevant.
If A(μ) is ill-conditioned, it can be difficult to determine μ∗
accurately.

As shown in Fig. 2, for a rotationally symmetric structure,
ε depends only on z and r, where (r, ϕ, z) are the cylindrical
coordinates. If ε is piecewise constant in r, then the entire
structure can be divided into annular regions where ε depends
only on z, and the mode matching method is applicable. The
total field can be expanded in a Fourier series, so the mth term
depends on ϕ as exp(imϕ). Then the terms for different m can
be solved separately. We list the details in Appendix A.

III. SPECTRAL GALERKIN MODE-MATCHING METHOD

In this section, we present a spectral Galerkin mode-
matching method (SGMM). The basic idea is to solve the
1D eigenvalue problems in the different regions by a spectral
Galerkin method based on a global piecewise polynomial
basis and enforce the interface conditions by matching the
numerical eigenmodes. Compared with PSMM and PMM,
the condition number of matrix A obtained by SGMM is
typically much smaller because the numerical eigenmodes
computed by the spectral Galerkin method preserve the
pseudo-orthogonality condition (8).

First, we describe the spectral Galerkin method for solving
the 1D eigenvalue problems. For the sake of simplicity, we
only give a detailed account for the TM modes satisfying
Eq. (4) and drop the superscript (h) for eigenfunction φ(h) and
eigenvalue η(h). The weak form of the TM eigenvalue problem
is finding nonzero φ ∈ H1

0 (z0, z∗) and η2 ∈ C, such that

a(φ,ψ ) = η2 b(φ,ψ ), ∀ψ ∈ H1
0 (z0, z∗), (20)
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where

a(φ,ψ ) = −
∫ z∗

z0

1

s(z)ε(z)

dφ

dz

dψ

dz
dz + k2

0〈φ,ψ〉e, (21)

b(φ,ψ ) = 〈φ,ψ〉h. (22)

It is clear that the bilinear forms a(·, ·) and b(·, ·) are
symmetric.

The spectral Galerkin method is suitable when ε is a piece-
wise smooth function of z. We assume the domain of z, i.e.,
(z0, z∗), is divided into P intervals by z0 < z1 < · · · < zP−1 <

zP = z∗ and ε(z) is smooth on (zp−1, zp) for 1 � p � P. More-
over, the first and last intervals, (z0, z1) and (zP−1, z∗), are the
actual PML layers where s(z) �= 1. The PML function s(z)
is continuous and s(z) = 1 for z1 � z � zP−1. Clearly, φ is
continuous and its derivative φ′ satisfies

1

ε(z−
p )

φ′(z−
p ) = 1

ε(z+
p )

φ′(z+
p ), p = 1, 2, · · · , P − 1. (23)

For some positive integers Kp, we seek approximate eigen-
functions which are continuous on (z0, z∗), are polynomials of
degree at most Kp on pth interval Ip = (zp−1, zp), 1 � p � P,
and satisfy condition (23). We define an N-dimensional sub-
space of H1

0 (z0, z∗) by

VN =
{
φ ∈ H1

0 (z0, z∗) : φ|Ip ∈ PKp, 1 � p � P;

1

ε(z−
p )

φ′(z−
p ) = 1

ε(z+
p )

φ′(z+
p ), 1 � p � P − 1

}
,

where PKp is the vector space of polynomials of z with degree
at most Kp. Therefore, the approximate eigenvalue problem
is to find nonzero φ ∈ VN and η2 ∈ C, such that a(φ,ψ ) =
η2b(φ,ψ ) for all ψ ∈ VN .

To implement the spectral Galerkin method, we need a ba-
sis for VN . In the following, we construct a basis and show that
the dimension of VN is N = ∑P

p=1(Kp − 1). For any φ ∈ VN ,
we can expand φ on Ip in Legendre polynomials. Thus, for
each p ∈ {1, 2, · · · , P},

φ|Ip =
Kp∑

k=0

c(p)
k Lk (z̃), (24)

where z̃ is given by z = zp−1 + |Ip|(1 + z̃)/2 for z ∈ Ip, Lk is
the Legendre polynomial of degree k, c(p)

k for 0 � k � Kp are
the coefficients, and |Ip| = zp − zp−1. Since φ is continuous,
vanishes at z0 and z∗, and satisfies condition (23), we have 2P
equations that allow us to solve the last two coefficients c(p)

Kp−1

and c(p)
Kp

of each interval in terms of the other coefficients. If
we define two column vectors c and c∗ by

c = [
c(1)

0 , · · · , c(1)
K1−2, · · · · · · , c(P)

0 , · · · , c(P)
KP−2

]T
,

c∗ = [
c(1)

K1−1, c(1)
K1

, · · · · · · , c(P)
KP−1, c(P)

KP

]T
,

where the superscript T denotes the vector transpose, then the
2P conditions can be written as

B1c∗ = B2c, (25)

where B1 is a (2P) × (2P) matrix and B2 is a (2P) × N
matrix. It is easy to verify that B1 is invertible, thus c∗ = Fc

with F = B−1
1 B2. The matrix F can be written as

F = [F1, F2, · · · , FP],

where F p is a (2P) × (Kp − 1) submatrix of F.
Substituting Eq. (25) into Eq. (24), for 1 � q � P, we can

obtain

φ

∣∣∣∣
Iq

(z) =
P∑

p=1

Kp−2∑
k=0

c(p)
k ψ

(p)
k

∣∣∣∣
Iq

(z), (26)

where ψ
(p)
k is given by

ψ
(p)
k

∣∣
Iq

= δpqLk (z̃) + F p
2q−1,kLKq−1(z̃) + F p

2q,kLKq (z̃).

In the above, δi j is the Kronecker symbol and F p
i j is the

(i, j) entry of the matrix F p. Equation (26) implies that each
function in VN is a linear combination of N = ∑P

p=1(Kp − 1)

functions ψ
(p)
k for 0 � k � Kp − 2 and 1 � p � P. These

functions are linearly independent and form a basis for VN .
Notice that on the pth interval Ip, ψ

(p)
k is the sum of the

Legendre polynomial of degree k with two additional Leg-
endre polynomials of higher degree, and on the qth interval Iq

(q �= p), it is simply the sum of two Legendre polynomials of
high degree.

For φ given in Eq. (26), we evaluate

a
(
φ,ψ

(p)
k

) = η2b
(
φ,ψ

(p)
k

)
for 0 � k � Kp − 2 and 1 � p � P, and obtain

Lc = η2Mc, (27)

where L and M are N × N symmetric matrices. The detailed
calculation of matrices L and M is provided in Appendix B.
Let {η2

j , c j}N
j=1 be the N eigenpairs of (27), then c j gives

a numerical eigenmode φ j . Typically, the N eigenvalues of
Eq. (27) are all distinct, thus cT

i Mc j = 0 if i �= j. It can be
easily verified that cT

i Mc j = 〈φi, φ j〉h. Therefore, the TM nu-
merical eigenmodes are pseudo-orthogonal to each other, i.e.,

〈φi, φ j〉h = 0, i �= j.

The TE modes can be similarly solved. Since the derivative
of φ(e) is continuous, the approximation space VN should be

VN = {
φ ∈ H2

0 (z0, z∗) : φ|Ip ∈ PKp, p = 1, · · · , P
}
.

Moreover, the numerical TE modes preserve the pseudo-
orthogonality condition (8).

After the 1D eigenvalue problems for all regions are
solved, we can use the interface conditions (15)–(18) for
2D structures to set up the linear system (19). For SGMM,
we enforce the interface conditions by matching the numer-
ically calculated 1D eigenmodes. We truncate the infinite
sums in Eqs. (9)–(12) to finite sums, multiply Eq. (15) by
s(z)φ(l,h)

i (z), Eqs. (16) and (17) by s(z)φ(l,e)
i (z), Eq. (18) by

s(z)/ε(l )(z)φ(l,h)
i (z) for all i ∈ {1, 2, ..., N}, and integrate with

respect to z. The resulting linear relations between the expan-
sion coefficients are written as Eq. (19). Since the interface
conditions (15)–(18) connect and lth and (l + 1)st regions,
we can also use the eigenmodes of the (l + 1)st region to
establish the final linear system. The pseudo-orthogonality
of 1D eigenmodes allows us to simplify the computation
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significantly. The case for rotationally symmetric structures
is similar.

IV. NUMERICAL EXAMPLES: EIGENVALUE PROBLEMS

In this section, we use SGMM to solve three photonic
eigenvalue problems involving two optical waveguides and
one dielectric resonator. An optical waveguide, such as an
optical fiber, is a structure that guides the propagation of light.
A typical optical waveguide is translationally invariant along
its axis and is described by a permittivity function depend-
ing only on the two transverse variables. For the waveguides
shown in Fig. 1, the waveguide axis is the y axis and the
relative permittivity ε depends on x and z. The first example,
shown in Fig. 1(a), is a rib waveguide consisting of a slab
with a rib placed on a substrate and covered by a cladding.
The thickness of the slab, the height and width of the rib are
t , h, and w, respectively. The refractive indices of the slab, the
substrate, and the cladding are nc, nb, and nt , respectively, and
they satisfy nc > nb > nt � 1. The rib waveguide is a classi-
cal waveguide in the field of integrated optics. It is usually
considered for nc slightly larger than nb. The second example,
shown in Fig. 1(b), is a strip-loaded waveguide widely used
in the field of silicon photonics. A rectangular silicon strip of
width w, height h, and refractive index nb is placed on top
of a silica (SiO2) buffer layer with refractive index nc and
thickness t . Below the buffer layer is the silicon substrate with
the same refractive index nb as the strip. Above the strip and
the buffer layer is the cladding with refractive index nt . The
refractive indices of the waveguide satisfy nb > nc > nt � 1.

For any optical waveguide, the most important task is to
calculate its eigenmodes. Typically, for a given real frequency,
we solve the so-called propagation constant β, assuming the
mode depends on y as eiβy. This is an eigenvalue problem
of the Maxwell’s equations where β (or β2) is the eigen-
value. A proper eigenmode is a guided mode with a real
β and an electromagnetic field decaying exponentially to
zero as

√
x2 + z2 → ∞. For suitable parameter values, the

rib waveguide shown in Fig. 1(a) indeed has guided modes.
The strip-loaded waveguide is designed to confine light in
the small rectangular silicon strip, but its substrate below the
buffer layer is also silicon and, consequently, it does not have
any true guided modes. Instead, the strip-loaded waveguide
has leaky modes that radiate power laterally to infinity in the
substrate. A leaky mode is an improper eigenmode with a
complex propagation constant β and a divergent field (in the
substrate) as

√
x2 + z2 → ∞. The nonzero imaginary part of

β is a consequence of the radiation loss and gives the decay
rate along the waveguide axis.

Although the structures shown in Fig. 1 are quite sim-
ple, the eigenmodes cannot be solved analytically. Over the
years, many numerical methods have been developed to solve
waveguide modes. The standard approach, as in the finite-
different and finite-element methods [64–66], is to truncate
and discretize the x-z plane, and approximate the Maxwell’s
equations by a matrix eigenvalue problem Au = β2u or Au =
β2Bu, where u is a vector for two field components, A and
B are large sparse matrices. For waveguides with a piecewise
constant ε, the boundary integral equation (BIE) method can
also be used and gives rise to a nonlinear eigenvalue problem

TABLE I. The propagation constant β∗ of the guide mode in the
rib waveguide, calculated by SGMM for different N . Underline digits
should be correct.

N β∗/k0 N β∗/k0

60 3.4131323699 220 3.4131321428
100 3.4131320853 260 3.4131321428
140 3.4131321382 300 3.4131321426
180 3.4131321419 340 3.4131321423

A(β )u = 0, where u is the wave field at the material interfaces
(i.e., the discontinuities of ε). The matrix A in the BIE method
is much smaller, but it is not sparse [67,68]. For waveguides
with horizontal and vertical material interfaces only, the mode
matching method is applicable. Same as the BIE method,
the mode-matching method leads to a nonlinear eigenvalue
problem.

The rib waveguide shown in Fig. 1(a) was previously
analyzed by many authors [15,65,68–70]. We consider the
waveguide with t = 0.5 µm, h = 0.5 µm, w = 3 µm, nt = 1,
nc = 3.44, and nb = 3.4 for free-space wavelength 1.15 µm.
Assuming the horizontal interface between the substrate and
the slab is located at z = z1 = 0, we truncate the z variable
to (z0, z∗), where z0 = −5 µm and z4 = z∗ = 2 µm. This leads
to four intervals of z given by (zp−1, zp), 1 � p � 4, where
z2 = t and z3 = t + h. Since the electromagnetic field de-
cays exponentially to zero as

√
x2 + z2 → ∞, we do not use

PMLs. In addition, the electromagnetic field components of
the guided mode has even or odd symmetry in x, and thus
we only need to match the interface conditions at x = x2. The
SGMM gives rise to a nonlinear eigenvalue problem with a
(4N ) × (4N ) matrix A, where N is the number of 1D TE or
TM numerical eigenmodes.

In Table I, we list the numerical results for propagation
constant β∗ calculated using SGMM for different N . From
the table, we observe that the numerical results exhibit good
convergence as N is increased. Keeping nine significant digits,
we obtain the result β∗/k0 ≈ 3.41313214 (after rounding)
when N = 140. This agrees very well with previous nu-
merical results reported in Refs. [15,65,70]. In Ref. [65],
Hadley reported a result with seven significant digits β∗/k0 =
3.413132. The same nine digit result was previously obtained
by Chung et al. using a multidomain pseudospectral method
[70] and by Song et al. using the PSMM with N = 280 [15],
where N is also the number of 1D TE or TM numerical modes.

Next, we consider the strip-loaded waveguide shown in
Fig. 1(b) with nt = 1, nc = 1.45, and nb = 3.5. The width
and height of the strip are w = 0.5 µm and h = 0.22 µm,
respectively. The thickness of the silica (SiO2) buffer layer
is t = 1 µm. The free-space wavelength is 1.55 µm. A leaky
mode with a small Im(β∗) in such a waveguide has been
analyzed by many authors [16,70,71]. The electromagnetic
field of the leaky mode blows up in the silicon substrate and
decays to zero at infinity in the cladding layer. Assuming
the horizontal interface between the substrate and the buffer
layer is located at z = z1 = 0, we truncate the z variable to
(z0, z∗), where z0 = −1.50 µm and z5 = z∗ = 5.22 µm. This
leads to five intervals of z given by (zp−1, zp), 1 � p � 5,
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TABLE II. The propagation constant β∗ of the leaky mode in the
strip-loaded waveguide, calculated by SGMM for different N .

N SGMM: Re(β∗/k0 ) SGMM: Im(β∗/k0 )

140 2.412373612 2.1054 × 10−7

240 2.412363560 3.1373 × 10−8

340 2.412370638 2.9699 × 10−8

440 2.412371573 2.9298 × 10−8

540 2.412371815 2.9187 × 10−8

640 2.412371901 2.9151 × 10−8

740 2.412371938 2.9139 × 10−8

840 2.412371956 2.9135 × 10−8

940 2.412371965 2.9133 × 10−8

1040 2.412371971 2.9133 × 10−8

where z2 = t , z3 = t + h, and z4 = 3.75 µm. In the silicon
substrate, we use a PML with the profile given by

s(z) = Sa + iSb

(
z − z1

z0 − z1

)ζ

, z0 � z � z1.

In the above formula, parameters Sa, Sb, and ζ are set to be
1, 80, and 3, respectively. These values are chosen according
to the behavior of the leaky mode, including decay rate and
oscillatory behavior. Since the electromagnetic field in the
cladding layer decays to zero, no PML is needed in the fifth
layer.

In Table II, we show the propagation constant β∗ of the
leaky mode calculated using SGMM. The SGMM gives rise to
β∗/k0 ≈ 2.412372 + i2.9 × 10−8. The same result was previ-
ously obtained using other methods such as the Fourier modal
method [16,70,71]. We show the κ (A) for both PSMM and
SGMM with β/k0 = 2 in Fig. 3(a). When N > 640, the condi-
tion number κ (A) is large, i.e., the matrix A of PSMM is near
singular, even though β is not near β∗. Therefore, for large N ,
the numerical results calculated using PSMM are unreliable.
On the other hand, the κ (A) of SGMM increases slowly when
N is increased. Consequently, the numerical results obtained
using SGMM are more reliable than those obtained using
PSMM.

The smallest singular value σmin(A) of the matrix A for
PSMM and SGMM is also shown in Fig. 3(b). It can be
seen that for β �= β∗, σmin(A) of PSMM decreases as N is
increased, but σmin(A) of SGMM remains almost unchanged.
For example, if β/k0 = 2.41, σmin(A) of PSMM is 2.7 × 10−8

and 2.4 × 10−11 for N = 340 and N = 490, respectively, and
σmin(A) of SGMM is 0.1155 and 0.1151 for N = 340 and
N = 490, respectively. This clear suggests that SGMM is
more stable than PSMM when N is large.

The previous numerical examples focus on waveguide
modes where β is the eigenvalue. In this part, we con-
sider a dielectric resonator consisting of three parallel and
infinitely-long rectangular cylinders. Our objective is to calcu-
late resonant modes that radiate power to infinity. A resonant
mode is a solution of the Maxwell’s equations without sources
and incoming wave. It satisfies the outgoing radiation con-
dition and has a complex wave number k∗. This is an
eigenvalue problem of the Maxwell’s equations where k∗ (or
k2
∗) is the eigenvalue. The nonzero imaginary part of k∗ is a

300 400 500 600 700 800 900
105

1010

1015

1020

2.41 2.411 2.412 2.413 2.414

10-10

10-5

100

FIG. 3. (a) Comparison of κ (A) of PSMM and SGMM for
β/k0 = 2 with increasing N . (b) The σmin(A) of PSMM and SGMM
for different β and N .

consequence of the radiation loss and gives the damping rate
with time t . Note that the imaginary part of k∗ should be
negative. As shown in Fig. 4(a), the width and height of the
rectangular cylinder are w and h, respectively, and distance

150 200 250 300 350

105

1010

FIG. 4. (a) The real part of Ey. The dash black lines represent
the cylinders. (b) Comparison of κ (A) of PSMM and SGMM for
k0 = 2(µm−1).
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TABLE III. The resonant wave number k∗ of the resonant mode,
calculated by SGMM for different N .

N Re(k∗)(µm−1) Im(k∗)(µm−1) Q

50 4.043389814 −3.694732 × 10−5 54718
90 4.043271220 −3.809019 × 10−5 53075
130 4.043271193 −3.806935 × 10−5 53104
170 4.043271191 −3.806961 × 10−5 53104
210 4.043271191 −3.806960 × 10−5 53104

between two nearby cylinders is d . The coordinate system is
chosen such that the structure is invariant in y and symmetric
in x. Following Ref. [72], we let w = 0.576 µm, h = 1.21 µm,
d = 0.384 µm, and refractive index of the cylinder n = 3.48.
Since the structure is invariant in y, we can consider resonant
modes which are also invariant in y. In that case, the elec-
tromagnetic field can be decoupled into TE waves (Ez = 0)
and TM waves (Hz = 0). We focus on TE waves for which
coefficients a(l,h)

j and b(l,h)
j vanish. To implement SGMM,

we truncate the z variable to (z0, z∗), where z0 = −2.60 µm,
z5 = z∗ = 3.81 µm, and z = 0 corresponds to the lower sur-
face of the cylinders. This leads to five intervals of z given by
(zp−1, zp), 1 � p � 5, where z1 = −0.60 µm, z2 = 0, z3 = h,
and z4 = h + 0.60 µm. In the first and last layers, we use
PMLs with their profiles given by

s(z) =
⎧⎨
⎩

30 + i30 × ( z−z1
z0−z1

)3
, z0 � z � z1

30 + i30 × ( z−z4
z∗−z4

)3
, z4 � z � z∗.

Since the structure is symmetric in x, the electromagnetic field
components have even or odd symmetry in x. Thus, we only
need to match the field along three vertical lines at x = w/2,
w/2 + d , and 3w/2 + d . The order of the matrix A is 6N ,
where N is the number of 1D numerical modes.

The numerical results obtained using SGMM are listed
in Table III. The last column of Table III shows the quality
factor Q = −0.5Re(k∗)/Im(k∗). For applications in photon-
ics, resonances with high quality factors are highly desired.
Results shown in Table III exhibit numerical convergence as
N is increased. The real and imaginary parts of k∗ have eight
and five significant digits respectively. The real part of the
electric field component Ey (obtained with N = 150) is shown
in Fig. 4(a). Our results agree well with Ref. [72]. Other
numerical mode matching method can also be used to solve
this problem. In Fig. 4(b), we show the condition number of A
for PSMM and SGMM. It is clear that as N is increased, κ (A)
of PSMM increases far more rapidly than κ (A) of SGMM.
Consequently, SGMM is more stable than PSMM when N is
large.

V. NUMERICAL EXAMPLES: SCATTERING PROBLEMS

In this section, we consider a scattering problem for the
bull’s eye structure shown in Fig. 2. The refractive index
of the metal slab (yellow region) is n = 0.1808 + i5.117.
The surrounding medium is air. This structure is rotation-
ally symmetric and can be divided into eight annular regions
where ε depends on z only. The lth region is given by

TABLE IV. The normalized transmission coefficient T calcu-
lated by SGMM for r2 = 0.540 µm and different N .

N T N T

114 9.776167 414 9.775859
174 9.775368 474 9.775883
234 9.775693 534 9.775890
294 9.775772 594 9.775901
354 9.775840 654 9.775904

rl−1 < r < rl , 1 � l � 8, where r0 = 0 and r8 = +∞. The
thickness of the structure is D = 0.28 µm. The radius of the
hole is r1 = 0.2 µm. The inner radius of the first groove is r2.
The width, depth, and period of the groove are w = 0.3 µm,
d = 0.09 µm, and W = 0.78 µm, respectively. The incident
wave impinging on the top surface is a TM polarized plane
wave given by Hinc = [0, H inc

y , 0], H inc
y = exp[i(αx + γ z)],

and Einc = i∇ × Hinc/k0, where α = k0 sin θ , γ = −k0 cos θ ,
and θ is the incident angle in the xz plane. The free-space
wavelength is 0.8 µm. The incident wave can be expanded in
a Fourier series, so the mth term depends on ϕ as exp(imϕ).
Specially, when θ = 0, only the Fourier coefficients for m =
±1 are nonzero [11]. Assuming the horizontal interface be-
tween the bottom of the slab and air is located at z = z2 = 0,
we truncate the z variable to (z0, z∗), where z0 = −0.4 µm
and z∗ = z6 = 0.68 µm. This leads to six intervals of z given
by (zp−1, zp), 1 � p � 6, where z1 = −0.1 µm, z3 = D − d ,
z4 = D, and z5 = D + 0.1 µm. In the first and last layers, we
use PMLs with profiles given by

s(z) =
{

40 + i30 × ( z−z1
z0−z1

)3
, z0 � z � z1

40 + i30 × ( z−z4
z∗−z4

)3
, z5 � z � z∗.

For such a structure, we consider the normalized transmis-
sion coefficient T defined by T = Pextra/P inc, where P inc is
the power of the incident wave on the cross section of the hole
and Pextra is the extra transmitted power in comparison with
the uniform metal slab. They are given by

P inc = −1

2

∫ r1

0

∫ 2π

0
ẑ · Re(Einc × H

inc
)rdϕdr,

Pextra = −1

2

∫
R2

ẑ · Re(E × H − Eref × H
ref

)rdϕdr,

where Eref and Href are the transmitted fields for the uniform
metal slab without the hole and grooves. In Table IV, we list
our numerical results obtained using SGMM for r2 = 0.54 µm
and a normal incident wave with θ = 0. It appears that the
numerical results converge to T = 9.7759 with five significant
digits. This result is consistent with T = 9.74 of Ref. [62] and
agrees well with T = 9.77 reported in Ref. [11]. The coeffi-
cient T for different values of r2 calculated using SGMM and
PSMM is shown in Fig. 5(a). The results of PSMM are nearly
identical with those of SGMM. The condition number κ (A) of
the matrix A for SGMM and PSMM is shown in Fig. 5(b). It
is observed that κ (A) of PSMM increases more rapidly than
κ (A) of SGMM. Therefore, we expect the results obtained by
SGMM are more reliable.
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FIG. 5. (a). The normalized transmission coefficient T for dif-
ferent r2. (b). Comparison of κ (A) by using PSMM and SGMM for
r2 = 0.540 µm. The order of A is 28N for both methods.

VI. CONCLUSION

Numerical mode matching methods are widely used to
simulate photonic devices. Existing studies indicate that spec-
tral mode-matching methods based on polynomials, such as
PMM and PSMM, perform better than other implementations.
However, if a large number of 1D eigenmodes are needed,
these methods may exhibit numerical instability, especially
when PMLs are used to truncate the unbounded domain. The
SGMM developed in this paper is also a polynomial-based
spectral mode matching method, but it produces significantly
better-conditioned systems. This method relies on a global
piecewise polynomial basis and a Galerkin scheme to solve
the 1D numerical eigenmodes and matches the fields us-
ing the numerically calculated 1D eigenmodes. Interestingly,
the numerical eigenmodes preserve the pseudo-orthogonality
of the analytical eigenmodes. Numerical examples indi-
cate that the coefficient matrix in SGMM always have a
much smaller condition number than that of PSMM. There-
fore, if a large number of 1D eigenmodes are needed,
the numerical results obtained using SGMM are more reli-
able than those obtained by other spectral mode matching
methods.

In this paper, we only studied 2D problems for which
the relative permittivity ε is a function of two variables. The
method can be extended to some 3D problems for which mode
matching method gives 1D eigenmodes. In that case, it is
necessary to solve a 2D Helmholtz equation corresponding
to each 1D eigenmode using the finite element method or the
boundary integral equation method [63,68].
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APPENDIX A: MODE-MATCHING METHOD FOR
ROTATIONALLY SYMMETRIC STRUCTURES

In this Appendix, we fix an integer m and assume
both the incident wave and the total field depend on ϕ as
exp(imϕ). In the lth region corresponding to r ∈ (rl−1, rl ),
the z components of the electromagnetic field can be ex-
panded as in Eqs. (9) and (10), and the ϕ components can be
expanded as

E (l )
ϕ =

∞∑
j=1

[
1

rε(l )s

dφ
(l,h)
j

dz

∂V (l,h)
j

∂ϕ
− ik0φ

(l,e)
j

∂V (l,e)
j

∂r

]

+ E (l,1D)
ϕ , (A1)

H (l )
ϕ =

∞∑
j=1

[
1

rs

dφ
(l,e)
j

dz

∂V (l,e)
j

∂ϕ
+ ik0φ

(l,h)
j

∂V (l,h)
j

∂r

]

+ H (l,1D)
ϕ , (A2)

where

V (l,p)
j =

[
a(l,p)

j

H (1)
m

(
η

(l,p)
j r

)
H (1)

m
(
η

(l,p)
j rl−1

) + b(l,p)
j

H (2)
m

(
η

(l,p)
j r

)
H (2)

m
(
η

(l,p)
j rl

)
]

eimϕ

(A3)

for p ∈ {e, h}. In the above, H (1)
m and H (2)

m are mth order
Hankel functions of first and second kinds, respectively, a(l,p)

j

and b(l,p)
j are unknown coefficients. In addition, if rl−1 = 0,

we set a(l,p)
j = 0 and change H (2)

m to Bessel function Jm, and

if rl = ∞, we set b(l,p)
j = 0. At the interface between the lth

region and the (l + 1)th region for r ∈ (rl , rl+1), we impose
the following continuity conditions:

E (l )
z

∣∣
r=rl

− E (l+1)
z

∣∣
r=rl

= 0, (A4)

H (l )
z

∣∣
r=rl

− H (l+1)
z

∣∣
r=rl

= 0, (A5)

E (l )
ϕ

∣∣
r=rl

− E (l+1)
ϕ

∣∣
r=rl

= 0, (A6)

H (l )
ϕ

∣∣
r=rl

− H (l+1)
ϕ

∣∣
r=rl

= 0. (A7)

Following the steps of the mode-matching method in a 2D
structure, we can also obtain a linear system Au = f .

APPENDIX B: CALCULATION
OF THE MATRICES L AND M

In the interval Iq, the basis functions can be represented in
the following compact form:

ψ|Iq (z) = Cqlq, (B1)
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where

lq = [L0(z̃), L1(z̃), · · · , LKq (z̃)]T,

ψ = [ψ(1), · · · ,ψ(P)]T,

ψ(p) = [
ψ

(p)
0 , ψ

(p)
1 , · · · , ψ

(p)
Kp−2

]
, 1 � p � P.

In the above, Cq is the N × (Kq + 1) matrix given by

Cq = [
Ĉ

T
q , FT

2q−1, FT
2q

]
, Ĉq = [Oq1, · · · , Iqq, · · · , OqP],

where Oqp is the (Kq − 1) × (Kp − 1) null matrix for q �= p,
Iqq is the (Kq − 1) × (Kq − 1) identity matrix, and F i is the
ith row vector of the matrix F.

The derivatives of the basis functions can be written as
dψ

dz

∣∣∣∣
Iq

(z) = 2

|Iq|CqDqlq, (B2)

where Dq is the (Kq + 1) × (Kq + 1) differential matrix such
that dlq/dz̃ = Dqlq, and it can be calculated by using the
relation

d

dz̃
Lk+1(z̃) =

{∑k
i=0,2,4,...(2i + 1)Lξ (x) if k is even∑k
i=1,3,5,...(2i + 1)Lξ (x) if k is odd.

For both Eqs. (27) and (19), many integrals need to be
evaluated. Each integral with respect to z on (z0, z∗) is a
sum of integrals on (zp−1, zp) and they can be scaled as in-
tegrals on (−1, 1) for smooth functions. In Ip, we can expand
the functions s(z), ε(z)/s(z), and 1/ε(z)s(z) in the Legendre
polynomials:

s(z) =
∞∑

k=0

spkLk (z̃),
s(z)

ε(z)
=

∞∑
k=0

s̃pkLk (z̃),

1

ε(z)s(z)
=

∞∑
k=0

ŝpkLk (z̃). (B3)

The matrices L and M are given as

L = −
P∑

p=1

2

|Ip|CpDpŜpDT
pCT

p + k2
0

P∑
p=1

|Ip|
2

CpSpCT
p,

M =
P∑

p=1

|Ip|
2

CpS̃pCT
p,

where

Ŝp =
∞∑

k=1

ŝpkLpk, Sp =
∞∑

k=1

spkLpk, S̃p =
∞∑

k=1

s̃pkLpk

(B4)
and

Lpk =
∫ 1

−1
Lk (z̃)l plT

pdz̃. (B5)

To evaluate the matrix Lpk , we make use of the Wigner 3 j
symbols [73–75]:∫ 1

−1
LiL jLkdz̃ = 2

(
i j k
0 0 0

)2

.

Moreover, since s(z) and ε(z) are continuous with bounded
variations and are piecewise analytical, we can approximate
these functions to high accuracy with a small number of Leg-
endre polynomials. Therefore, the infinite series in Eq. (B4)
can be truncated to finite sums.

An alternative is to use the Legendre-Gauss-Lobatto
quadrature to calculate these integrals. For a positive
integer Nq, the quadrature rule is

∫ 1
−1 f (ξ )dξ≈∑Nq

q=0 wq f (ξq),

where ξ0 = −1, ξNq = 1, {ξ j}Nq−1
q=1 are the zeros of L′

Nq
(ξ ), and

wq = 2

Nq(Nq + 1)

1

[LNq (ξq)]2
, 0 � q � Nq.
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